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BEST PROXIMITY POINTS OF CYCLIC ϕ-CONTRACTIONS
IN ORDERED METRIC SPACES

Majid Derafshpour — Shahram Rezapour — Naseer Shahzad

Abstract. In this paper, we shall give some results about best proximi-

ty points of cyclic ϕ-contractions in ordered metric spaces. These results

generalize some known results.

1. Introduction

Let (X, d) be a complete metric space. The well-known Banach contraction
theorem assures us a unique fixed point of a contraction T :X → X. As a gen-
eralization of the Banach contraction principle, W. A. Kirk et al. proved the
following fixed point result in 2003 ([5]).

Theorem 1.1. Let A and B be nonempty closed subsets of a complete metric
space (X, d). Suppose that T :A ∪ B → A ∪ B is a map satisfying T (A) ⊆ B,
T (B) ⊆ A and there exists k ∈ (0, 1) such that d(Tx, Ty) ≤ kd(x, y) for all
x ∈ A and y ∈ B. Then, T has a unique fixed point in A ∩B.

Let A and B be nonempty subsets of a metric space (X, d). We say that
a map T :A ∪ B → A ∪ B is cyclic whenever T (A) ⊆ B and T (B) ⊆ A. The
map T is called a cyclic contraction whenever T is a cyclic map and there exists
α ∈ (0, 1) such that

d(Tx, Ty) ≤ αd(x, y) + (1− α)d(A,B)
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for all x ∈ A and y ∈ B ([5]). If ϕ: [0,∞) → [0,∞) is a strictly increasing map,
then we say that the map T is a cyclic ϕ-contraction map whenever T is a cyclic
map and

d(Tx, Ty) ≤ d(x, y)− ϕ(d(x, y)) + ϕ(d(A,B))

for all x ∈ A and y ∈ B ([1]). Also, x ∈ A ∪ B is called a best proximity
point if d(x, Tx) = d(A,B). Note that, a best proximity point x is a fixed point
of T whenever A ∩ B 6= ∅. Thus, it generalizes the notion of fixed point in
case when A ∩ B = ∅. Recently, J. Anuradha and P. Veeramani provided the
notion of proximal pointwise contraction maps ([2]). They gave a result about
best proximity points of proximal pointwise contraction maps whenever (A,B)
is a nonempty weakly compact convex pair in a Banach space.

In 2005, G. Petruşel proved some results about periodic points of cyclic
contraction maps ([6]). Then, A. A. Eldered and P. Veeramani proved some
results about best proximity points of cyclic contraction maps in 2006 ([3]).
They raised a question about the existence of a best proximity point for a cyclic
contraction map in a reflexive Banach space. In 2009, M. A. Al-Thagafi and
N. Shahzad gave a positive answer to the question ([1]).

In this paper, we shall give some results about best proximity points of cyclic
ϕ-contractions in ordered metric spaces. Note that a mapping on an ordered
(cone) metric space can be a contraction but it is not a contraction in classical
sense ([4]).

Let X be a nonempty set and T a selfmap on X. We denote the set of all
nonempty subsets of X by 2X and the set of all invariant nonempty subsets of
X by I(T ), that is

I(T ) = {Y ∈ 2X :T (Y ) ⊆ Y }.

For each pair of sets X and Y and selfmaps T :X → X and S:Y → Y , we define
the selfmap T × S:X × Y → X × Y by T × S(x, y) = (Tx, Sy). If (X,≤) is
a partially ordered set, then we define

X≤ = {(x, y) ∈ X ×X:x ≤ y or y ≤ x}.

Let (X, d,≤) be an ordered metric space and T :X → X a selfmap on X. For
each nonempty subset C of X and x∗ ∈ X, we define

ET,C(x∗) =
{

x ∈ C : lim
n→∞

T 2nx = x∗
}

.

The space X is called regular whenever every bounded monotone sequence in X

is convergent. We say that a selfmap T :X → X is orbitally continuous whenever
for each x ∈ X and sequence {n(i)}i≥1 with Tn(i)x → a for some a ∈ X, we
have Tn(i)+1x → Ta. Here, Tm+1 = T (Tm).
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2. Main results

Now, we are ready to state and prove our results.

Theorem 2.1. Let (X, d,≤) be an ordered metric space, A,B ∈ 2X and T

a decreasing selfmap on A∪B such that T (A) ⊆ B and T (B) ⊆ A. Suppose that
there exists x0 ∈ A such that x0 ≤ T 2x0 ≤ Tx0 and

d(Tx, Ty) ≤ d(x, y)− ϕ(d(x, y)) + ϕ(d(A,B))

for all x ∈ A and y ∈ B with x ≤ y, where ϕ: [0,∞) → [0,∞) is a strictly
increasing map. If xn+1 = Txn and dn = d(xn+1, xn) for all n ≥ 0, then
dn → d(A,B).

Proof. First note that we have

x0 ≤ x2 ≤ . . . ≤ x2n ≤ x2n+1 ≤ . . . ≤ x3 ≤ x1

for all n ≥ 1. Thus, we obtain

0 ≤ dn+1 ≤ dn − ϕ(dn) + ϕ(d(A,B))

for all n ≥ 1. Hence, the sequence {dn} is decreasing and bounded from below.
If dn0 = 0 for some n0, then dn → d(A,B) = 0. Suppose that dn > 0 for all
n ≥ 1 and dn → t0 for some t0 ≥ d(A,B). Since

ϕ(d(A,B)) ≤ ϕ(dn) ≤ dn − dn+1 + ϕ(d(A,B)),

we have ϕ(dn) → ϕ(d(A,B)). This implies that ϕ(t0) = ϕ(d(A,B)). So, t0 =
d(A,B) because ϕ is strictly increasing. �

Theorem 2.2. Let (X, d,≤) be a regular ordered metric space, B ∈ 2X ,
A a closed nonempty subset of X and T a decreasing selfmap on A ∪ B such
that T (A) ⊆ B and T (B) ⊆ A. Suppose that there exists x0 ∈ A such that
x0 ≤ T 2x0 ≤ Tx0 and

d(Tx, Ty) ≤ d(x, y)− ϕ(d(x, y)) + ϕ(d(A,B))

for all x ∈ A and y ∈ B with x ≤ y, where ϕ: [0,∞) → [0,∞) is a strictly
increasing map. If T is orbitally continuous, then there exists x ∈ A such that
d(x, Tx) = d(A,B).

Proof. Again, note that x0 ≤ x2 ≤ . . . ≤ x2n ≤ x1 for all n ≥ 1. Since X

is regular and A is closed, there exists x ∈ A such that x2n → x. Also, note that

d(A,B) ≤ d(x2n, Tx) = d(Tx2n−1, Tx) ≤ d(Tx2n−1, Tx2n) + d(Tx2n, Tx)

for all n ≥ 1. If T is orbitally continuous, then d(Tx2n, Tx) → 0. Hence,
d(x, Tx) = d(A,B) because d(Tx2n−1, Tx2n) → d(A,B) by Theorem 2.1. �
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We note that T is not a cyclic ϕ-contraction in [1, Example 3]. To see this,
let x = −1/2 and y = 1/2. Then 2/3 = d(Tx, Ty) > d(x, y) − ϕ(d(x, y)) +
ϕ(d(A,B)) = 1/2. For improvment it is sufficient that we change the function
ϕ by ϕ(t) = t2/(2(1 + t)). The following is another example for a cyclic ϕ-
contraction.

Example 2.3. Consider the Euclidian ordered metric space X = R with
the usual norm. Suppose that A = [−1, 0], B = [0, 1] and T :A ∪ B → A ∪ B

is defined by Tx = −x/3 for all x ∈ A ∪ B. If ϕ: [0,∞) → [0,∞) is defined by
ϕ(t) = t/2, then ϕ is strictly increasing and T is a cyclic ϕ-contraction map.

The following example shows that Theorem 2.2 may be applied in situations
where [1, Theorem 8] does not work.

Example 2.4. Consider the regular ordered metric space X = L1([0, 1])
with the norm ‖ · ‖1 and the order f ≤ g if and only if f(t) ≤ g(t) for almost
all t ∈ [0, 1]. Suppose that A = {f ∈ X : −1 ≤ f ≤ 0}, B = {g ∈ X : 0 ≤
g ≤ 1} and T :A ∪ B → A ∪ B is defined by Tf = −f/3 for all f ∈ A ∪ B. If
ϕ: [0,∞) → [0,∞) is defined by ϕ(t) = t/2, then ϕ is strictly increasing and T

is a decreasing cyclic ϕ-contraction map. Note that A is closed and convex, T is
orbitally continuous and T0 = 0. But, X is not a reflexive Banach space.

Theorem 2.5. Let (X, d,≤) be an ordered metric space, A,B ∈ 2X and T

a selfmap on A∪B such that T (A) ⊆ B, T (B) ⊆ A and ((A×B)∪(B×A))∩X≤ ∈
I(T × T ). Suppose that there exists x0 ∈ A such that (x0, Tx0) ∈ X≤ and

d(Tx, Ty) ≤ d(x, y)− ϕ(d(x, y)) + ϕ(d(A,B))

for all x ∈ A and y ∈ B with (x, y) ∈ X≤, where ϕ: [0,∞) → [0,∞) is a strictly
increasing map. If xn+1 = Txn and dn = d(xn+1, xn) for all n ≥ 0, then

dn → d(A,B).

Proof. First note that we have

d(T 2n+1x0, T
2nx0) ≤ d(T 2nx0, T

2n−1x0)− ϕ(d(T 2nx0, T
2n−1x0)) + ϕ(d(A,B))

for all n ≥ 1. Thus, we obtain

0 ≤ dn+1 ≤ dn − ϕ(dn) + ϕ(d(A,B))

for all n ≥ 1. Hence, the sequence {dn} is decreasing and bounded from below.
If dn0 = 0 for some n0, then dn → d(A,B) = 0. Suppose that dn > 0 for all
n ≥ 1 and dn → t0 for some t0 ≥ d(A,B). Since

ϕ(d(A,B)) ≤ ϕ(dn) ≤ dn − dn+1 + ϕ(d(A,B)),
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we have ϕ(dn) → ϕ(d(A,B)). This implies that ϕ(t0) = ϕ(d(A,B)). So, t0 =
d(A,B) because ϕ is strictly increasing. �

Theorem 2.6. Let (X, d,≤) be an ordered metric space, A,B ∈ 2X and
T a selfmap on A ∪ B such that T (A) = B, T (B) ⊆ A and ((A × B) ∪ (B ×
A)) ∩ X≤ ∈ I(T × T ). Suppose that for each x, y ∈ A there exists z ∈ A such
that (x, z), (y, z) ∈ X≤. Also, suppose that there exist x0, x

∗ ∈ A such that
x0 ∈ ET,A(x∗), (x0, Tx0) ∈ X≤ and

d(Tx, Ty) ≤ d(x, y)− ϕ(d(x, y)) + ϕ(d(A,B))

for all x ∈ A and y ∈ B with (x, y) ∈ X≤, where ϕ: [0,∞) → [0,∞) is a strictly
increasing map. Also, suppose that y ∈ A, (x, y) ∈ X≤ and x ∈ ET,A(x∗) imply
that y ∈ ET,A(x∗). Then, ET,A(x∗) = A and the following statement holds:

ET,B(Tx∗) = B and d(x∗, Tx∗) = d(A,B) ⇔ T is orbitally continuous.

Proof. Let x ∈ A. If (x0, x) ∈ X≤, then x ∈ ET,A(x∗). If (x0, x) /∈ X≤,
then there exists z ∈ A such that (x0, z) ∈ X≤ and (x, z) ∈ X≤. Hence, x ∈
ET,A(x∗). Thus, ET,A(x∗) = A.

Now, suppose that T is orbitally continuous and y ∈ B. Choose x′ ∈ A

such that Tx′ = y. Since ET,A(x∗) = A, T 2nx′ → x∗ and so T 2n+1x′ → Tx∗.
Hence, we have T 2ny → Tx∗. Thus, ET,B(Tx∗) = B. If d(x∗, Tx∗) 6= d(A,B),
then {d(T 2n+1x0, T

2nx0)} is a decreasing sequence because (x0, Tx0) ∈ X≤. By
Theorem 2.5, d(T 2n+1x0, T

2nx0) ↓ d(A,B). Choose a natural number n such
that

d(A,B) ≤ d(T 2n+1x0, T
2nx0) < d(x∗, Tx∗).

Put x = T 2nx0 and y = T 2n+1x0. Since (x, y) ∈ X≤, (Tx, Ty) ∈ X≤ and
so {d(T 2nx, T 2ny)} is a decreasing sequence and d(T 2nx, T 2ny) ↓ d(x∗, Tx∗).
Hence, d(x∗, Tx∗) ≤ d(T 2n+1x0, T

2nx0) < d(x∗, Tx∗) which is a contradiction.
Therefore, d(x∗, Tx∗) = d(A,B).

Now, suppose that d(x∗, Tx∗) = d(A,B), ET,B(Tx∗) = B, x ∈ A ∪ B and
Tn(i)x → a for some a ∈ A ∪ B. We shall show that Tn(i)+1x → Ta. Put
A′ = A ∩ {Tn(i)x} and B′ = B ∩ {Tn(i)x}.

Case 1. Let d(A,B) = 0. First suppose that A′ = {Tn1(i)x} and B′ =
{Tn2(i)x} are subsequences of {Tn(i)x}. Since {Tn1(i)x} is a subsequence of
{T 2nx}, Tn1(i)x → x∗. Also, we have Tn1(i)+1x → Tx∗ because Tx ∈ B and
ET,B(Tx∗) = B. Since {Tn1(i)x} is a subsequence of {Tn(i)x} and Tn(i)x → a,
Tn1(i)x → a. Thus, a = x∗ and so a = x∗ = Ta = Tx∗. Since {Tn2(i)x}
is a subsequence of {T 2n+1x} = {T 2n(Tx)}, Tx ∈ B and ET,B(Tx∗) = B,
Tn2(i)x→Tx∗. Also, we have Tn2(i)+1x→x∗ because T 2x∈A, ET,A(x∗)=A and
{Tn2(i)x} is a subsequence of {T 2n+2x}={T 2n(T 2x)}. Hence, Tn(i)+1x→ Ta.
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Now, suppose that B′ = {t1, . . . , tk} is finite. By using a similar argu-
ment, we have Tn1(i)x → x∗, Tn1(i)+1x → Tx∗ and a = x∗ = Ta = Tx∗.
Since {Tn(i)+1x} = {Tn1(i)+1x} ∪ {Tt1, . . . , T tk}, Tn(i)+1x → Ta. If A′ =
{s1, . . . , sm} is finite, then B′ = {Tn2(i)x} is a subsequence of {Tn(i)x} and
so Tn2(i)x → a. By using a similar argument, we have Tn2(i)x → Tx∗ and
Tn2(i)+1x → x∗. Thus, a = x∗ = Ta = Tx∗. Since {Tn(i)+1x} = {Tn2(i)+1x} ∪
{Ts1, . . . , T sm}, we have Tn(i)+1x → Ta.

Case 2. Let d(A,B) > 0. We claim that A′ or B′ is finite.
In fact, if A′ and B′ are infinite, then similar to the above case we have

Tn1(i)x → x∗ and Tn2(i)x → Tx∗.
Since {Tn1(i)x} and {Tn2(i)x} are subsequences of {Tn(i)x} and Tn(i)x → a,

we obtain a = x∗ = Tx∗. So, d(A,B) = d(x∗, Tx∗) = 0 which is a contradiction.
Now, suppose that B′ = {t1, . . . , tk} is finite. By using a similar argument

as in Case 1, we have Tn1(i)x → x∗, Tn1(i)+1x → Tx∗ and a = x∗. Since
{Tn(i)+1x} = {Tn1(i)+1x} ∪ {Tt1, . . . , T tk}, Tn(i)+1x → Ta.

If A′ = {s1, . . . , sm} is finite, then B′ = {Tn2(i)x} is a subsequence of
{Tn(i)x} and so Tn2(i)x → a. By using a similar argument as in Case 1, we have
Tn2(i)x → Tx∗. Thus, a = Tx∗. Also, we have Tn2(i)+1x → x∗ because T 2x ∈ A,
ET,A(x∗) = A and {Tn2(i)x} is a subsequence of {T 2n+2x} = {T 2n(T 2x)}.

Now, we show that Ta = x∗. In fact, (x∗, x∗) ∈ X≤ and

d(x∗, T 2x∗) ≤ d(T 2nx∗, x∗) + d(T 2nx∗, T 2x∗).

Hence, by using the assumptions we have d(T 2nx∗, T 2x∗) ≤ d(T 2n−2x∗, x∗).
Thus d(x∗, T 2x∗) ≤ d(T 2nx∗, x∗) + d(T 2n−2x∗, x∗).

Since ET,A(x∗) = A and x∗ ∈ A, T 2nx∗ → x∗ and T 2n−2x∗ → x∗. Hence,
x∗ = T 2x∗. Since a = Tx∗, Ta = x∗. Thus, Tn2(i)+1x → Ta.

Since {Tn(i)+1x} = {Tn2(i)+1x}∪{Ts1, . . . , T sm}, we have Tn(i)+1x → Ta.�

The following example shows that the assumption

d(Tx, Ty) ≤ d(x, y)− ϕ(d(x, y)) + ϕ(d(A,B))

for all x ∈ A and y ∈ B with (x, y) ∈ X≤, does not imply the following assump-
tion:

y ∈ A, (x, y) ∈ X≤, x ∈ ET,A(x∗) ⇒ y ∈ ET,A(x∗).

Example 2.7. Consider the subsets

A = {x1 = (6, 3), x2 = (1, 3)} and B = {y1 = (2, 0), y2 = (0, 4)}

of R2 via the following order:

(a, b) ≤ (c, d) ⇔ a ≤ c and b ≤ d.



Proximity Points of Cyclic ϕ-Contractions 199

Define T :A ∪ B → A ∪ B by Tx1 = y2, Tx2 = y1, Ty1 = x2, Ty2 = x1. Note
that, x2 ≤ x1 and y1 ≤ x1 and other elements are not comparable. Also, we
have d(Tx1, Tx2) = d(x2, y2) = d(A,B) =

√
2 and d(x1, y1) =

√
25. Consider

the map ϕ: [0,∞) → [0,∞) by ϕ(x) = x/2. Then, we have

d(Tx1, T y1) ≤ d(x1, y1)− ϕ(d(x1, y1)) + ϕ(d(A,B)),

while T 2nx1 → x1 and T 2nx2 → x2.

The following example shows that the assumptions of Theorem 2.6 do not
imply orbital continuity of T .

Example 2.8. Define S: R → R by Sx = −x/3 for all x ∈ R. Put a0 = −1
and define the sequences {an}n≥0 and {bn}n≥1 by bn = San−1 and an = Sbn for
all n ≥ 1. Now, define the sequences {cn}n≥0 and {dn}n≥1 as follows:

cn = a2n+1 and dn = a2n for all n ≥ 0.

Now, consider the subsets

A = {(cn, 0)}n≥0 ∪ {(dn, 0)}n≥0 ∪ {(0, 0)},
B = {(b2n,−1)}n≥0 ∪ {(b2n+1,−2)}n≥1 ∪ {(0,−1)}

of R2 via the following order:

(a, b) ≤ (c, d) ⇔ a ≤ c and b ≤ d.

Define T :A ∪B → A ∪B by

T (cn, 0) = (b2n,−1), T (dn, 0) = (b2n+1,−2),

T (b2n,−1) = (dn+1, 0), T (b2n+1,−2) = (cn+1, 0),

T (0, 0) = (0,−1), T (0,−1) = (0, 0).

If we define ϕ: [0,∞) → [0,∞) by ϕ(t) = t/2, then it is easy to check that

T (A) = B, T (B) ⊆ A, ((A×B) ∪ (B ×A)) ∩X≤ ∈ I(T × T ),

d(Tx, Ty) ≤ d(x, y)− ϕ(d(x, y)) + ϕ(d(A,B))

for all x ∈ A and y ∈ B with (x, y) ∈ X≤ and for each x, y ∈ A there exists
z ∈ A such that (x, z), (y, z) ∈ X≤. If we put x0 = x∗ = (0, 0), then

(x0, Tx0) = ((0, 0), (0,−1)) ∈ X≤,

and y ∈ A, (x, y) ∈ X≤ and x ∈ ET,A(x∗) imply that y ∈ ET,A(x∗). Finally,
note that T 2nx → (0, 0) for all x ∈ A, T 2nx0 → x∗, ET,B(Tx∗) = B and
d(x∗, Tx∗) = d(A,B) while limn→∞ T 2n+1(cn, 0) = (0,−2) 6= Tx∗ = (0,−1) for
all m ≥ 1. This implies that T is not orbitally continuous.
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Theorem 2.9. Let (X, d,≤) be an ordered metric space, A,B ∈ 2X and
T a selfmap on A ∪ B such that T (A) = B, T (B) ⊆ A and ((A × B) ∪ (B ×
A)) ∩ X≤ ∈ I(T × T ). Suppose that for each x, y ∈ A there exists z ∈ A such
that (x, z), (y, z) ∈ X≤. Also, suppose that there exist x0, x

∗ ∈ A such that
x0 ∈ ET,A(x∗) and

d(Tx, Ty) ≤ d(x, y) for all x ∈ A and y ∈ B.

Also, suppose that y ∈ A, (x, y) ∈ X≤ and x ∈ ET,A(x∗) imply that y ∈
ET,A(x∗). Then, ET,A(x∗) = A and the following statement holds:

ET,B(Tx∗) = B and d(x∗, Tx∗) = d(A,B) ⇔ T is orbitally continuous.

Proof. Similar as in the proof of Theorem 2.6 we can show that ET,A(x∗) =
A and ET,B(Tx∗) = B whenever T is orbitally continuous. If d(x∗, Tx∗) 6=
d(A,B), then there exists x ∈ A and y ∈ B such that

d(A,B) ≤ d(x, y) < d(x∗, Tx∗).

Note that {d(T 2nx, T 2ny)} is a decreasing sequence and

d(T 2nx, T 2ny) ↓ d(x∗, Tx∗).

Hence, d(x∗, Tx∗) ≤ d(x, y) < d(x∗, Tx∗) which is a contradiction. Thus,

d(x∗, Tx∗) = d(A,B).

Similar to the proof of Theorem 2.6 we can show that T is orbitally continuous
whenever ET,B(Tx∗) = B and d(x∗, Tx∗) = d(A,B). �

The following example shows that the assumption

d(Tx, Ty) ≤ d(x, y)

for all x ∈ A and y ∈ B, does not imply the following assumption in Theorem 2.9:

y ∈ A, (x, y) ∈ X≤, x ∈ ET,A(x∗) ⇒ y ∈ ET,A(x∗).

Example 2.10. Consider the subsets

A = {x1 = (0, 0), x2 = (0, 1)} and B = {y1 = (1, 0), y2 = (1, 1)}

of R2 via the following order:

(a, b) ≤ (c, d) ⇔ a ≤ c and b ≤ d.

Define T :A ∪ B → A ∪ B by Tx1 = y1, Tx2 = y2, Ty1 = x1, Ty2 = x2. Note
that

d(Tx, Ty) ≤ d(x, y) for all x ∈ A and y ∈ B,
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T 2nx1 → x1 and T 2nx2 → x2. Thus, the following assumption does npt hold:

y ∈ A, (x, y) ∈ X≤, x ∈ ET,A(x∗) ⇒ y ∈ ET,A(x∗).

The following example shows that the following assumption is necessary in
Theorem 2.9:

d(Tx, Ty) ≤ d(x, y) for all x ∈ A and y ∈ B.

Example 2.11. Let X = R, A = [0, 1] and B = [2, 3]. Define T :A ∪ B →
A ∪B by Tx = x + 2 for all x ∈ A and Tx = x−2

2 for all x ∈ B. Note that, T is
orbitally continuous and we have T 2nx0 = x0/2n and T 2n+1x0 = x0/2n + 2 for
all x0 ∈ A and n ≥ 0. Thus, T 2nx0 → 0 and T 2n+1x0 → 2 for all x0 ∈ A. But,
note that the assumption doesn’t hold because d(T1, T2) � d(1, 2).

The following example shows that the assumption

d(Tx, Ty) ≤ d(x, y) for all x ∈ A and y ∈ B

can not be replaced by the following assumption in Theorem 2.9:

d(Tx, Ty) ≤ d(x, y) for all x ∈ A and y ∈ B with (x, y) ∈ X≤.

Example 2.12. Consider the subsets

A = {x1 = (1, 2), x2 = (2, 2)} and B = {y1 = (3, 1), y2 = (4, 1)}

of R2 via the following order:

(a, b) ≤ (c, d) ⇔ a ≤ c and b ≤ d.

Define T :A ∪ B → A ∪ B by Tx1 = y1, Tx2 = y2, Ty1 = Ty2 = x2. Note
that, x1 ≤ x2 and y1 ≤ y2 and other elements are not comparable. It is easy
to check that T (A) = B, T (B) ⊆ A, ((A × B) ∪ (B × A)) ∩ X≤ ∈ I(T × T )
and for each x, y ∈ A there exists z ∈ A such that (x, z), (y, z) ∈ X≤. Also,
there exist x0, x

∗ ∈ A such that x0 ∈ ET,A(x∗). Finally, y ∈ A, (x, y) ∈ X≤ and
x ∈ ET,A(x∗) imply that y ∈ ET,A(x∗). Note that T 2nxi → x2, T 2n+1xi → y2,
T 2nyi → y2 and T 2n+1yi → x2 for i = 1, 2. Thus, T is orbitally continuous while
d(x2, Tx2) 6= d(A,B).
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