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STRUCTURE OF THE FIXED-POINT SET
OF MAPPINGS WITH LIPSCHITZIAN ITERATES

Jaros law Górnicki

Dedicated to Kazimierz Goebel on the occasion of his 70th birthday

Abstract. We prove, by asymptotic center techniques and some inequal-

ities in Banach spaces, that if E is p-uniformly convex Banach space, C

is a nonempty bounded closed convex subset of E, and T : C → C has lip-
schitzian iterates (with some restrictions), then the set of fixed-points is

not only connected but even a retract of C. The results presented in this

paper improve and extend some results in [6], [8].

1 Introduction

We consider Banach spaces E over the real field only. Our notation and
terminology are standard. Let C be a nonempty bounded closed convex subset
of E. We say that a mapping T :C → C is nonexpansive if

‖Tx− Ty‖ ≤ ‖x− y‖ for every x, y ∈ C.

The result of Bruck [1] asserts that if a nonexpansive mapping T :C → C has
a fixed point in every nonempty closed convex subset of C which is invariant
under T and if C is convex and weakly compact, then FixT = {x ∈ C : Tx
= x}, the set of fixed points, is nonexpansive retract of C (that is, there exists
a nonexpansive mapping R:C → FixT such that R|FixT = I). A few years
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ago, the Bruck result was extended by Domı́nguez Benavides and Lorenzo Ra-
mı́rez [3] to the case of asymptotically nonexpansive mappings if the space E
was sufficiently regular.

On the other hand it is known that the set of fixed points of a k-lipschitzian
mapping can be very irregular for any k > 1.

Example 1.1 ([10]). Let F be a nonempty closed subset of C of a Banach
space. Fix z ∈ F , 0 < ε < 1 and put

Tx = x+ ε · dist (x, F ) · (z − x), x ∈ C.

It is not difficult to see that FixT = F and the Lipschitz constant of T tends
to 1 if ε ↓ 0.

For more information on the structure of fixed-point sets see [2], [5].
In 1973, K. Goebel and W. A. Kirk [4] introduced the class of uniformly

k-lipschitzian mappings for k ≥ 1 which is a natural generalization of the nonex-
pansive mappings. Recall that a mapping T :C → C is uniformly k-lipschitzian,
k ≥ 0, if

‖Tnx− Tny‖ ≤ k‖x− y‖ for every x, y ∈ C and n ∈ N.

Goebel and Kirk stated a relationship between the existence of a fixed point for
uniformly lipschitzian mappings and the Clarkson modulus of convexity. Recall
that the modulus of convexity δE is the function δE : [0, 2]→ [0, 1] defined by

δE(ε) = inf
{

1− 1
2
‖x+ y‖ : ‖x‖ ≤ 1, ‖y‖ ≤ 1, ‖x− y‖ ≥ ε

}
,

and uniform convexity means δE(ε) > 0 for ε > 0. For example, a Hilbert space
is uniformly convex. This fact is a direct consequence of parallelogram identity.

Theorem 1.2 ([4]). Let E be a uniformly convex Banach space with modulus
of convexity δE and let C be a nonempty bounded closed convex subset of E.
Suppose T :C → C is uniformly k-lipschitzian and k < γ, where γ > 1 is the
unique solution of the equation

γ

(
1− δE

(
1
γ

))
= 1.

Then T has a fixed point in C. (Note that in a Hilbert space, k < γ =
√

5/2, in
Lp-spaces, 2 < p <∞, k < (1 + 2−p)1/p).

E. Sęd lak and A. Wiśnicki [10] proved: under the assumptions of Theo-
rem 1.2, FixT is not only connected but even a retract of C. Recently the
present author extended this result [7], [8].
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In this paper, via one of number of inequalities in Banach spaces, we show
new theorems on the structure fixed point sets for mappings with lipschitzian
iterates. We improve some results from the papers [6]–[8].

2. Preliminaries

K. Goebel and W. A. Kirk’s result was extended in various directions by
Lifshitz (1975), Casini and Maluta (1985), Tan and Xu (1993), Domı́nguez Ba-
navides and Xu (1995), Domı́nguez Benavides (1998), see [5]. In present paper
we continue this study.

Let (E, ‖ ·‖) be a Banach space, C be a nonempty subset of E and T :C → C
a lipschitzian mapping. We denote by ‖Tn‖ the Lipschitz norm of Tn, n =
1, 2, . . . , i.e.

‖Tn‖ = sup
{
‖Tnx− Tny‖
‖x− y‖

: x, y ∈ C, x 6= y
}
.

In 1988 the present author and M. Krüppel [9] constructed a uniformly lip-
schitzian mapping for which

1 ≤ lim inf
n→∞

‖Tn‖ < lim sup
n→∞

‖Tn‖,

see Example 5.3.
Let p > 1 and denote by λ a number in [0, 1] and by Wp(λ) the function

λ · (1−λ)p+λp · (1−λ). The functional ‖ · ‖p is said to be uniformly convex [12]
on the Banach space E if

there exists a positive constant cp such that for all λ ∈ [0, 1] and x, y ∈ E the
following inequality holds

‖λx+ (1− λ)y‖p ≤ λ‖x‖p + (1− λ)‖y‖p − cp ·Wp(λ) · ‖x− y‖p.

H. K. Xu [11] proved that the functional ‖·‖p is uniformly convex in the whole
Banach space E if and only if E is p-uniformly convex, i.e. there exists a constant
c > 0 such that the modulus of convexity δE(ε) ≥ c · εp for 0 ≤ ε ≤ 2. We note
that a Hilbert space is 2-uniformly convex (indeed, δH(ε) = 1−

√
1− (ε/2)2 ≥

ε2/8) and an Lp-space (1 < p <∞) is max{p, 2}-uniformly convex.
An infinite real matrix A = [an,k]n,k≥1 is called strongly ergodic if

(1) an,k ≥ 0, for all n, k,
(2) limn→∞ an,k = 0, forall k,
(3)
∑∞
k=1 an,k = 1, for all n,

(4) limn→∞
∑∞
k=1 |an,k+1 − an,k| = 0.

In the paper [6] the present author proved the following generalization of
theorems for uniformly lipschitzian mappings:
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Theorem 2.1. Let p > 1 and let E be a p-uniformly convex Banach space,
C a nonempty bounded closed convex subset of E, and A = [an,k]n,k≥1 a strongly
ergodic matrix. If T :C → C is a mapping such that

lim inf
n→∞

inf
m=0,1,...

∞∑
k=1

an,k‖T k+m‖p < 1 + cp,

then T has a fixed point in C.

This result generalizes, among others Lifshitz’s Theorem [5] (in case of a Hil-
bert space), by show that the above mentioned theorem admits certain pertur-
bations in the behavior of the norm of successive iterations in infinite sets; see
[6, Example 1]. From this example it follows that the class of mappings with lip-
schitzian iterates is significantly greater than the class of uniformly lipschitzian
mappings.

3. Asymptotic centers

Now we prove a generalization of [8, Lemma 2.2]. Let C be a nonempty
bounded closed convex subset of a p-uniformly convex Banach space E and let
T :C → C be a mapping such that ‖T k‖ ≥ 1 for all k = 1, 2, . . . , and

lim sup
n→∞

∞∑
k=1

an,k‖T k‖p < 1 + cp

for some constant cp > 0.
For x, y ∈ C we use

r(y, {T kx}) = lim sup
n→∞

∞∑
k=1

an,k‖y− T kx‖p and r(C, {T kx}) = inf
y∈C
r(y, {T kx})

to denote the asymptotic radius of {T kx} at y and the asymptotic radius of
{T kx} in C, respectively. By Lemma 1 from the paper [6] in p-uniformly convex
Banach spaces the asymptotic center of {T kx} in C:

A(C, {T kx}) = {y ∈ C : r(y, {T kx}) = r(C, {T kx})}

is a singleton.
Let A:C → C denote a mapping which associates with a given x ∈ C a unique

z ∈ A(C, {T kx}), that is, z = Ax. Then we have the following lemma:

Lemma 3.1. Let E be a p-uniformly convex Banach space and let C be
a nonempty bounded closed convex subset of E. Then the mapping A:C → C is
continuous.

Proof. Without loss of generality we assume that 0 ∈ C. On the contrary,
suppose that there exists x0 ∈ C and ε0 > 0 such that for all η > 0 there exists
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x1 ∈ C such that ‖x1−x0‖ < η and ‖z1−z0‖ ≥ ε0, where {z0} = A(C, {T kx0}),
{z1} = A(C, {T kx1}).

Fix η > 0 and take x1 ∈ C such that

‖x1 − x0‖ < η and ‖z1 − z0‖ ≥ ε0.

Let R0 = r(C, {T kx0}), R1 = r(C, {T kx1}) and

R = lim sup
n→∞

∞∑
k=1

an,k‖z1 − T kx0‖p.

Notice that

(3.1) R0 < R.

Choose ε > 0. Then

(3.2)


‖z1 − T kx0‖ < p

√
R+ ε,

‖z0 − T kx0‖ < p
√
R0 + ε < p

√
R+ ε,

‖z0 − z1‖ ≥ ε0,

for all but finitely many k.

If, for example, ‖z1 − T kx0‖ ≥ p
√
R+ ε for all k, then

‖z1 − T kx0‖p ≥ R+ ε.

Multiplying both sides of this inequality (for fixed k) by suitable element of the
matrix A and summing up such obtained inequalities for k ≥ 1, we have for
n = 1, 2, . . . :

∞∑
k=1

an,k‖z1 − T kx0‖p ≥ (R+ ε) ·
∞∑
k=1

an,k = R+ ε.

Taking the limit superior as n→∞ on each side we get

R = lim sup
n→∞

∞∑
k=1

an,k‖z1 − T kx0‖p ≥ R+ ε > R,

which is contradiction.

It follows by (3.2) and the properties of δE that∥∥∥∥T kx0 − z1 + z0
2

∥∥∥∥ ≤ (1− δE
(
ε0

p
√
R+ ε

))
p
√
R+ ε,

and ∥∥∥∥T kx0 − z1 + z0
2

∥∥∥∥p ≤ (1− δE
(
ε0

p
√
R+ ε

))p
(R+ ε).
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Multiplying both sides of this inequality (for fixed k) by suitable element of the
matrix A and summing up such obtained inequalities for k ≥ 1, we have for
n = 1, 2, . . . :

∞∑
k=1

an,k

∥∥∥∥z1 + z0
2
− T kx0

∥∥∥∥p ≤ (1− δE
(
ε0

p
√
R+ ε

))p
(R+ ε) ·

∞∑
k−1

an,k

=
(

1− δE
(
ε0

p
√
R+ ε

))p
(R+ ε).

Taking the limit superior as n→∞ on each side we get

R0 < lim sup
n→∞

∞∑
k=1

an,k

∥∥∥∥z1 + z0
2
− T kx0

∥∥∥∥p ≤ (1− δE
(
ε0

p
√
R+ ε

))p
(R+ ε).

Moreover (for fixed k), from triangle inequality we have

‖T kx0 − z1‖p ≤ (‖T kx1 − z1‖+ ‖T kx0 − T kx1‖)p.

Let a = ‖T kx1− z1‖, b = ‖T kx0−T kx1‖. By Mean Value Theorem (Lagrange):
(a+b)p = ap+b·p·ξp−1 for some number ξ ∈ (a, a+b). Thus, ξ < a+b ≤ 2·diamC,
because 0 ∈ C, and

‖T kx0 − z1‖p ≤‖T kx1 − z1‖p + ‖T kx0 − T kx1‖ · p · (2 · diamC)p−1

≤‖T kx1 − z1‖p + ‖T k‖ · ‖x0 − x1‖ · p · (2 · diamC)p−1.

Multiplying both sides of this inequality (for fixed k) by a suitable element of
the matrix A and summing up such obtained inequalities for k ≥ 1, we have for
n = 1, 2, . . . :

∞∑
k=1

an,k‖T kx0−z1‖p ≤
∞∑
k=1

an,k‖T kx1−z1‖p+p·(2·diamC)p−1·‖x0−x1‖·
∞∑
k=1

an,k.

Taking the limit superior as n→∞ on each side we get

R = lim sup
n→∞

∞∑
k=1

an,k‖T kx0 − z1‖p(3.3)

≤ lim sup
n→∞

∞∑
k=1

an,k‖T kx1 − z1‖p

+ p · (2 · diamC)p−1 · ‖x0 − x1‖ · lim sup
n→∞

∞∑
k=1

an,k‖T k‖

≤R1 + p · (2 · diamC)p−1 · ‖x0 − x1‖ · lim sup
n→∞

∞∑
k=1

an,k‖T k‖p

≤R1 + ε+ p · (2 · diamC)p−1 · η · (1 + cp).
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Similarly,

(3.4) R1 < lim sup
n→∞

∞∑
k=1

an,k‖T kx1−z0‖p ≤ R0+ε+p ·(2 ·diamC)p−1 ·η ·(1+cp).

From (3.3) and (3.4), we have

R ≤R1 + ε+ p · (2 · diamC)p−1 · η · (1 + cp)(3.5)

<R0 + 2 · ε+ 2p · p · (diamC)p−1 · η · (1 + cp).

If R0 = 0, then from (3.5) it follows R = 0. This contradicts (3.1). If R0 > 0,
then combining (3.5) with (3.3) and applying the monotonicity of δE , we obtain

R0 <

(
1− δE

(
ε0

p
√
R0 + 3ε+ 2p · p · (diamC)p−1 · η · (1 + cp)

))p
· (R0 + 3ε+ 2p · p · (diamC)p−1 · η · (1 + cp)).

Letting η, ε ↓ 0 and using the continuity of δE , we conclude that

1 ≤
(

1− δE
(
ε0
p
√
R0

))p
< 1.

This contradiction proves the continuity of the mapping A. �

4. Main result

In this section we study the structure of fixed point sets for mappings with
lipschitzian iterates. The following theorem shows that the fixed-point set in
Theorem 2.1 (Theorem 2 of [6]) is actually a retract of C.

Theorem 4.1. Let p > 1 and let E be a p-uniformly convex Banach space,
C a nonempty bounded closed convex subset of E, and A = [an,k]n,k≥1 a strongly
ergodic matrix. If T :C → C is a mapping such that

g = lim inf
n→∞

inf
m=0,1,...

∞∑
k=1

an,k‖T k+m‖p < 1 + cp,

then T has a fixed point in C and FixT is a retract of C.

Proof. We may assume that ‖T k‖ ≥ 1 for all k = 1, 2, . . . , otherwise the
well known Banach Contraction Principle guarantees the existence a fixed point
of T which is a singleton. Without loss of generality we assume that 0 ∈ C.

Let {ni} and {mi} be sequences of natural numbers such that

g = lim
i→∞

∞∑
k=1

ani,k‖T k+mi‖p < 1 + cp.



388 J. Górnicki

From Theorem 2.1, FixT 6= ∅. For any x ∈ C we can inductively define a se-
quence {zj} in the following manner: z1 is the unique point in C that minimizes
the functional

r(y, {T kx}) = lim sup
i→∞

∞∑
k=1

ani,k‖y − T k+mix‖p

over y ∈ C and zj+1 is the unique point in C that minimizes the functional

r(y, {T kzj}) = lim sup
i→∞

∞∑
k=1

ani,k‖y − T k+mizj‖p

over y ∈ C, that is, zj = Ajx, j = 1, 2, . . . Analogically as in the proof of
Theorem 2.1 (see [6, Theorem 2]),

r(zj , {T kzj}) = lim sup
i→∞

∞∑
k=1

ani,k‖zj − T k+mizj‖p(4.1)

≤Bj · lim sup
i→∞

∞∑
k=1

ani,k‖x− T k+mix‖p = Bj · r(x, {T kx})

for j = 1, 2, . . . , where

B =
1
cp

(
lim
i→∞

∞∑
k=1

ani,k‖T k+mi‖p − 1
)
< 1.

For a fixed N ∈ N, from Jensen’s inequality we have

‖zj+1−zj‖p = ‖Aj+1x−Ajx‖p ≤ 2p−1(‖Aj+1x−TNAjx‖p+‖TNAjx−Ajx‖p).

Multiplying this inequality for N = k +mi by suitable element ani,k, summing
up these inequalities for k = 1, 2, . . . , and next taking the limit superior on each
side as i→∞, we obtain

‖Aj+1x−Ajx‖p ≤ 2p−1
(

lim sup
i→∞

∞∑
k=1

ani,k‖Aj+1x− T k+miAjx‖p

+ lim sup
i→∞

∞∑
k=1

ani,k‖T k+miAjx−Ajx‖p
)

≤ 2p−1
(
r(Aj+1x, {T kAjx}) + r(Ajx, {T kAjx})

)
≤ 2p · r(Ajx, {T kAjx})
≤ 2p ·Bj · r(x, {T kx}) ≤ 2p ·Bj · (diamC)p

for j = 1, 2, . . . , x ∈ C. Thus

‖Aj+1x−Ajx‖ ≤ 2 · diamC · (B1/p)j = 2 · diamC ·Dj
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where D = B1/p < 1 and

sup
x∈C
‖Asx−Ajx‖ ≤ Dj

1−D
· 2 · diamC → 0 if s, j →∞,

which implies that sequence {Ajx} converges uniformly to a function

Rx = lim
j→∞
Ajx, x ∈ C.

It follows from Lemma 3.1 that R:C → C is continuous.
Moreover, for fixed N ∈ N, we have

‖Rx− TNRx‖p

≤ (‖Rx−Ajx‖+ ‖Ajx− TNAjx‖+ ‖TNAjx− TNRx‖)p

≤ 3p−1(‖Rx−Ajx‖p + ‖Ajx− TNAjx‖p + ‖TN‖p · ‖Ajx−Rx‖p)
≤ 3p−1(1 + ‖TN‖p) · ‖Rx−Ajx‖p + 3p−1 · ‖Ajx− TNAjx‖p.

Multiplying this inequality for N = k +mi by suitable element ani,k, summing
up these inequalities for k = 1, 2, . . . , we obtain

∞∑
k=1

ani,k‖Rx− T k+miRx‖p ≤ 3p−1 ·
(

1 +
∞∑
k=1

ani,k‖T k+mi‖p
)
· ‖Rx−Ajx‖p

+ 3p−1 ·
∞∑
k=1

ani,k‖Ajx− T k+miRx‖p

for i = 1, 2, . . . Taking the limit superior on each side as i→∞, we get

r(Rx, {T kRx}) = lim sup
i→∞

∞∑
k=1

ani,k‖Rx− T k+miRx‖p

≤ 3p−1 ·
(

1 + lim
i→∞

∞∑
k=1

ani,k‖T k+mi‖p
)
· ‖Rx−Ajx‖p

+ 3p−1 · lim sup
i→∞

∞∑
k=1

ani,k‖Ajx− T k+miAjx‖p

(4.1)
≤ 3p−1 · (2 + cp) · ‖Rx−Ajx‖p + 3p−1 ·Bj · (diamC)p → 0

if j → ∞. Thus r(Rx, {T kRx}) = 0. This implies that Rx = TRx. Indeed, for
any ε > 0 there exists natural numbers n, n+ 1 such that

‖TnRx−Rx‖ < ε and ‖Tn+1Rx−Rx‖ < ε.

Otherwise, we have for any n and m,

∞∑
k=1

an,k‖Rx− T k+mRx‖p ≥
1
2
εp
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and therefore

r(Rx, {T kRx}) = lim sup
i→∞

∞∑
k=1

ani,k‖Rx− T k+miRx‖p

≥ lim inf
i→∞

∞∑
k=1

ani,k‖Rx− T k+miRx‖p ≥
1
2
εp.

Thus, for every natural numbers s, there exists a natural number ns such that

‖Rx− TnsRx‖ < 1
s

and ‖Rx− Tns+1Rx‖ < 1
s
,

i.e.

TnsRx→ Rx and Tns+1Rx→ Rx as s→∞.

Since T is continuous,

TRx = T
(

lim
s→∞
TnsRx

)
= lim
s→∞
Tns+1Rx = Rx,

and the proof is complete. �

5. Some applications

Now we give applications of some well known inequalities in Hilbert spaces,
see [11].

Lemma 5.1. Let H be a Hilbert space. Then

‖λx+ (1− λ)y‖2 = λ‖x‖2 + (1− λ)‖y‖2 − λ(1− λ)‖x− y‖2

for all x, y ∈ H, 0 ≤ λ ≤ 1 (c2 = 1).

Let A = [an,k]n,k≥1 be the Cesaro matrix, that is, for n = 1, 2, . . . ,

an,k =

{ 1
n

for k = 1, . . . , n,

0 for k ≥ n+ 1.

Hence the following result follows from Theorem 4.1:

Corollary 5.2 ([8, Theorem 4.1]). Let H be a Hilbert space, C a nonempty
bounded closed convex subset of E. If T :C → C is a mapping such that

g = lim inf
n→∞

inf
m=0,1,...

1
n

n∑
k=1

‖T k+m‖2 < 2,

then T has a fixed point in C and FixT is a retract of C.

Corollary 5.2 improves Lifshitz’s Theorem [5], [7, Corollary 9] (in case of
a Hilbert space). To illustrate this let us consider the following example.
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Example 5.3. Let l2 be a Hilbert space, B = {x ∈ l2 : ‖x‖ ≤ 1} and define
T :B → B such that

‖Tn‖ =

{
1.4 for 1 0k < n ≤ 9 · 10k,

1.96 for 9 · 10k < n ≤ 10k+1,

n = 1, 2, . . . , k = 0, 1, . . . The method of construction of this mapping is de-
scribed in [9]. For this mapping

lim sup
n→∞

‖Tn‖ = 1.96 >
√

2

and

lim inf
n→∞

inf
m=0,1,...

1
n

n∑
j=1

‖T j+m‖2

≤ lim inf
n→∞

1
n

n∑
j=1

‖T j‖2 = lim
n→∞

1
9 · 10n

9·10n∑
j=1

‖T j‖2

= lim
n→∞

1
9 · 10n

[
(1.4)2 · (9 + 8(10 + 102 + . . .+ 10n))

+ (1.96)2 · (1 + 10 + 102 + . . .+ 10n−1)
]

=
160.6416

81
≈ 1.98 < 2,

which means that the assumptions of Corollary 5.2 are satisfied.

When E is particularly an Lp-space (1 < p < ∞), we have the following
inequalities, see [11] and the references given there.

Lemma 5.4. Suppose E is an Lp-space.

(a) If 1 < p ≤ 2, then

‖λx+ (1− λ)y‖2 ≤ λ‖x‖2 + (1− λ)‖y‖2 − (p− 1) · λ · (1− λ) · ‖x− y‖2

for all x, y ∈ E and 0 ≤ λ ≤ 1 (cp = p− 1).

(b) If 2 < p <∞, then

‖λx+ (1− λ)y‖p ≤ λ‖x‖p + (1− λ)‖y‖p − cp ·Wp(λ) · ‖x− y‖p

for all x, y ∈ E, 0 ≤ λ 6 1, where Wp(λ) = λ(1− λ)p + λp(1− λ) and

cp =
1 + tp−1p

(1 + tp)p−1
= (p− 1)(1 + tp)2−p

with tp being the unique solution of the equation

(p− 2)tp−1 + (p− 1)tp−2 − 1 = 0, 0 < t < 1.
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All constant appeared in the above inequalities are best possible (for example, in
L3-space, cL3 = 2−

√
2, in L4-space, cL4 = 1/3).

Thus for the Cesaro matrix we have the following corollaries:

Corollary 5.5. Let C be a nonempty bounded closed convex subset of Lp

(1 < p ≤ 2). If T :C → C is a mapping such that

g = lim inf
n→∞

inf
m=0,1,...

1
n

n∑
k=1

‖T k+m‖2 < p,

then T has a fixed point in C and FixT is a retract of C.

Corollary 5.6. Let C be a nonempty bounded closed convex subset of Lp

(2 < p ≤ ∞). If T :C → C is a mapping such that

g = lim inf
n→∞

inf
m=0,1,...

1
n

n∑
k=1

‖T k+m‖p < 1 + cp,

then T has a fixed point in C and FixT is a retract of C.

More consequences (among others, for Hardy and Sobolev spaces) are anal-
ogous to those presented in [6].

Remark 5.7. Note that Theorem 1.2 was significantly generalized by Lif-
shitz (1975), Casini and Maluta (1985), Tan and Xu (1993), Domı́nguez Bena-
vides and Xu (1995), Domı́nguez Benavides(1998) and the present author (2009)
(see [5], [7]) but it is not very clear whether our statements are also valid in all
these cases.
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