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ROOT PROBLEM FOR CONVENIENT MAPS

Marcio C. FENILLE — OZzIRIDE M. NETO

ABSTRACT. In this paper we study when the minimal number of roots of
the so-called convenient maps from two-dimensional CW complexes into
closed surfaces is zero. We present several necessary and sufficient condi-
tions for such a map to be root free. Among these conditions we have the
existence of specific liftings for the homomorphism induced by the map on
the fundamental groups, existence of the so-called mutation of a specific ho-
momorphism also induced by the map, and existence of particular solutions
of specific systems of equations on free groups over specific subgroups.

1. Introduction

Let f: K — Y be a continuous map from a finite 2-dimensional CW complex
into a closed surface. The root problem for such a map is concerned, roughly,
with the study of its minimal number of roots, denoted by u(f), which is defined
to be the minimal cardinality of g~!(a) among all maps g homotopic to f, where
a €Y is an arbitrary point. By [6], the number p(f) is independent of the point
a €'Y and it is finite. When u(f) = 0, that is, f is homotopic to a map which
is not onto, we say that f is root free.

The Nielsen root theory provides a number, called the Nielsen root num-
ber, denoted by N(f), which is a lower bound for u(f) (see [2] for details).
D. L. Gongalves and P. Wong [7] proved that, under the conditions assumed
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here, N(f) = 0 implies f is root free, what does not occur in general (when
Y is not a surface, for example). In many cases, it is not easy to compute the
number N (f).

In this paper, we prove necessary and sufficient conditions for the mentioned
map f: K — Y to be root free. The sufficient part of these conditions restrict the
problem to a specific type of maps, the so-called convenient maps (Definition 2.2).

In Section 2, we study the first of such conditions which is about the triviality
of the homomorphism fy,: mo(K) — m2(Y), induced by f on the second homo-
topy groups, and the existence of a lifting for fu:m (K) — m1(Y") through the
homomorphism lx: w1 (Y!) — 71(Y) induced by the natural inclusion I: Y — Y
of the 1-skeleton Y! of the surface Y into Y. (Here we are considering sur-
faces with their minimal cellular decomposition). In Section 3 we present some
consequences of the main result of Section 2, the Theorem 2.6.

In Section 4, we define a new concept mutation of a homomorphism. This
is used to provide conditions for the existence of liftings of a homomorphism
through an epimorphism from a free group into an arbitrary group. Such condi-
tions will be used later, in Section 5, to provide conditions for maps to be root
free.

A similar concept symbolic mutation is presented in Section 6. In fact, we
prove that symbolic mutation is a kind of generalization of the concept of muta-
tion. In Section 7, we use this new concept to show alternative ways to use the
main results (theorems) of previous sections. Namely, we present results linking
the annihilation of the roots of a map f with the existence of particular solutions
of a system of equations on a free group.

We finish the paper presenting in Section 8 several examples to illustrate the
applicability of the main results.

Throughout the text, we use the capital letter K to denote a finite and con-
nected two-dimensional CW complex. We simplify two-dimensional CW complex
by 2-complex. The capital letter Y is used to denote closed surfaces. We also
simplify f is a continuous map by f is a map. The homotopy homomorphisms
induced by f are denoted as fx and homology homomorphisms as f,.

2. Convenient maps

Let K and L be finite and connected 2-complexes and let IT = 71 (K) and
= =m(L). Let f: K — L be a map from K into L and let a = fx:II — = be
its induced homomorphism on fundamental groups. Since = acts on the group
7o (L) making it into a Z-module, a change of ring procedure defines an action
of I on the group 7o (L) making it a II-module. The procedure is the following:
For each 7 € TI and each v € ma(M), we define the action 7 -y = «a(w) - v. To
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avoid confusion, when my(L) is viewed as a II-module through this procedure,
we denote it by 4m2(L).

Note that if « is the trivial homomorphism, then the action of II on (L)
is also trivial, that is, 7 - v = 7. This occur, in particular, if either K or L (or
both) is simply connected.

Since ,m2(L) is a II-module, we have the second cohomology module of I
with coefficients in ,m2(L), denoted by H?(IT; 4m2(L)).

Let [K, L], be the set of the based homotopy classes of based maps from K
into L inducing the homomorphism «:II — = on fundamental groups.

The following result is Corollary 4.13 of [1, p. 95].

THEOREM 2.1. Homotopy classes [f] € [K, L], are uniquely determined by
their induced module homomorphisms fyu,: ma(K) — omao(L) if and only if the
cohomology module H?(IT; ,mo(L)) is trivial.

The condition H?(II; ,m2(L)) = 0 is an essential assumption in most of the
results proved in this paper. Because of this, we introduce the following defini-

tion:

DEFINITION 2.2. A map f: K — L inducing o:II — = on fundamental
groups is called a convenient map if H?(I1; o mo(L)) = 0.

REMARK 2.3. In a sense, the class of convenient maps is really convenient,
since, by Theorem 2.1, two such maps are homotopic if and only if the homo-
morphisms induced on 7; and w5 are equal.

REMARK 2.4. We have the following results:

(a) If mo(L) = 0, then every map f: K — L is convenient.

(b) If Y is a closed surface, S? # Y # RP?, then m2(Y) = 0 and every map
f: K —Y is convenient.

(c) If mo(K) = 0, then K is aspherical (see [1]) and so it is a K(II, 1)-
complex. Hence H?(II; ,m2(L)) ~ H?(K; om2(L)). Thus, amap f: K —
L is convenient if and only if H?(K; ,mo(L)) = 0.

(d) If IT = 7 (K) is a free group, say of rank p, then the bouquet V7St is
a K(II, 1)-complex and we have

H2(TT; om2(L)) = H?(VPSY; oma(L)) = 0.

Hence, every map f: K — L is convenient.

(e) If K = K' is a 1-complex, then IT = 7;(K) is a free group and every
map f: K — L is convenient.

(f) A map f: K — S? is convenient if and only if H?(II;Z) = 0.

(g) For amap f: K—RP? to be convenient it is sufficient that H2(IT; Z) =0
for every local coefficient system defined by II — Aut(Z), which we
denote Z.
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(h) A constant map k: K — Y is always convenient if S? # Y # RP? and,
if Y = S2 or Y = RP?, then it is convenient if and only if H?(I[;Z) = 0.

The first five items of the above remark are easy. In order to justify the sixth
and seventh items, we present a simple argument: If Y is either the 2-sphere or
the 2-dimensional projective space, then m3(Y) ~ Z. Given a map f: K — Y
inducing o = fu:II — m1(Y) on fundamental groups, we have:

o If Y = 52, then « is the trivial homomorphism and, in this case, the
action of IT on mo(Y') ~ Z is trivial.

o If Y = RP2? then m(Y) =~ Zy = {—1,1} and, in this case, for each
m € Il and v € m(Y), we have exactly two possibilities: either -y =~
or Ty = —7.

This shows that the action of II on 7o (Y) ~ Z defines a local coefficient
system a: I — Aut(Z) ~ Aut(m2(Y)) for K, as well as for any K (II, 1)-complex.
According to the two items above, we have:

o If Y = S2 the system a: Il — Aut(Z) is trivial, i.e. a(r) =1, 7 € II.
e If Y = RP2, the system &:II — Aut(Z) may be surjective or not.

This is enough to justify items (f) and (g) of Remark 2.4. The first part
of item (h) is an immediate consequence of item (b) and the second part of it
is a consequence of items (f) and (g), since a constant map induces the trivial
homomorphism on fundamental groups.

Before we present the main theorem of this section, we present an important
lemma which will be used in its proof.

LEMMA 2.5. Every homomorphism a:1l — = is obtained as an induced ho-
momorphism on fundamental groups by a cellular map f: K — L.

ProoOF. Let p: K — Kp and 9: Lg — L homotopy equivalences (which
exists by Theorem 1.9 of [1, p. 61]), where Kp and Lg are the model 2-complexes
of group presentations P = (z1,...,2, | T1,... ,7m) and Q = (y1,... , Yy |
S1y.-- 8y, respectively. Then, the 1-skeletons of Kp an Lg are, respectively,
the bouquets

Kp=V"S"=¢jUe, U...Ue, and Lg=V"S'=¢]Ue U...Ue, .

Denote x = {z1,... ,z,} and y = {y1,... ,y.} and let F(x) and F(y) be
the free groups of rank n and u, generated by x and y, respectively. Let N(r)
be the normal subgroup of F(x) generated by the words r1,...,7r,, and let
N(s) be the normal subgroup of F(y) generated by the words sq,...,s,. Let
Om: F(x) - I = F(x)/N(r) and Qz: F(y) — Z = F(y)/N(s) be the quotient

homomorphisms.
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For each 1 < j < n, choose w; € F(y) such that Q=(w;) = (a o Qm)(x;).
Let o': F(x) — F(y) be the unique homomorphism such that a!(z;) = w;. It
is easy to see that a0 Qi = Q= oal, that is, the square in the following diagram

is commutative.

0 N(r) F(x) T 0
0 — N(s) F(y) = ——0

Let f1: K71, — ng be the map which is defined so that its image on each eij
is the loop which travels Lg exactly as the homomorphism o' spells o' (z;) as
a word in F(y). It is obvious that there is a natural identification

al = f#:F(x) =m(Kp) — m(Lg) = F(y).

Now, each relator r; is a word in F'(x) (may be a word with a unique letter
or even the empty word) such that («a o Qm)(r;) = 0 in Z, since Qp(r;) = 0.
Moreover, the model 2-complex Kp has m cells of dimension two, say €2, ... ,€2,,
indexed so that the 2-cell €? is attached in K3 according to the relation word r;.
Let I: L§ — Lg be the natural inclusion. Then (lo f)4(r;) = (Qz o a')(ry) =
(a0 Qqp)(r;) = 0 for each 1 < i < m. Hence, the composed map [ o f! extends
to each 2-cell €2, defining a cellular map f’: Kp — Lg which satisfies, for each
1<j<n, (fyoQz)(z;) = (o fHu(r;) = (QLoat)(z;) = (aoQu)(z;). This
proves that f, = a.

To finalize, define f = 9 o f' o p: K — L. Since ¢ and % are homotopy
equivalences, it follows that fu = fq"iﬁ = q. O

Now, we present the main theorem of this section. For this, Y is a closed
surface with minimal celular decomposition and Y! is its 1-skeleton. In addition,
we write : Y! — Y to be the natural inclusion.

THEOREM 2.6. A convenient map f: K — Y is root free if and only if the
homomorphism fyu,:mo(K) — ma(Y') is trivial and there is a homomorphism ¢
making commutative the diagram below:

7T1(K) TWI(Y)

The “only if” part is true even if f is not a convenient map.

PROOF. Suppose that f is root free. Then, let ¢ be a map homotopic to
f and a € Y be a point such that ¢~!(a) = (). Up to composition of ¢ with
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a self-homeomorphism of Y homotopic to the identity map, we can consider
that @ € Y\ Y!. Thus, Y! is a strong deformation retract of Y \ {a}. Let
r:Y \ {a} — Y! be a retraction. Define 3: K — Y to be the composition
®=row. Then, lop: K — Y is a map homotopic to f. Now it is enough to
define ¢ = B, to obtain fu = Iy o ¢. Moreover, since mo(Y!) = 0, it is obvious
that fx, is the trivial homomorphism.

In order to prove the “if” parte, suppose that fy, is trivial and ¢: m (K) —
71(Y!) is a homomorphism verifying fz = lg o ¢. By Lemma 2.5, there is
a cellular map @: K — Y such that ¢ = Gu:m (K) — m(Y"'). Let ¢ K - Y
be the composition ¢ = lo®. Then i =lpo0¢ = fu and fu, = 0 = pu,.
Let f': K — Y be a cellular approximation of f and consider as the base point
in Y its (unique) 0-cell and as a base point in K any of the its 0-cells. Since ¢
and f°! are both cellular maps, they are based maps. Moreover, pu = f;fl and
O, = jg = 0. Now, from assumption, H?(Il; ,m2(M)) = 0. From Theorem 2.1
it follows that f°°! is (based) homotopic to . Consequently, f is homotopic to
© (through a not necessarily based homotopy). Since ¢ is not surjective, f is
root free. a

When the homomorphism ¢ in Theorem 2.6 exists, we say that it is a lifting
of fg through lu. Optionally, we say that fu has a lifting through ly.

It is obvious that if f is a convenient map and the homomorphism fyu is
trivial, then the lifting ¢ exists, indeed, it is enough to define ¢ to be also the
trivial homomorphism. Thus, in this case, the map f is root free if and only if
the homomorphism fy, is also trivial.

The “if” part of Theorem 2.6 is not true, in general, if the map f is not
a convenient map. We present now an example to illustrate this fact: Let T be
the torus S x St. Since T is a K (m1(T), 1)-space, we have H?(71(T); om2(S?)) ~
H?(T;Z) ~ Z for every map T — S? inducing « (the trivial homomorphism)
on fundamental groups. Therefore, there are not convenient maps from T into
the 2-sphere S%. However, it is clear that there is a map f: T — S? of degree 1,
and such map is not root free. Now, it is obvious that fx and f4, are trivial
homomorphisms. In particular, there is a homomorphism ¢: 7 (K) — m(T?!)
satisfying [y o ¢ = fx. In order to obtain another example, let ps: S? — RP? be
the universal covering and let f: T — RP? be the composition f = py o f. This
map is not convenient and is not root free, in fact u(f) = 2. However, T# and
[ 4, are trivial.

3. Some consequences of Theorem 2.6

PROPOSITION 3.1. Let G be a finite group such that Hom(G; Z2) is nontriv-
1al. For each nontrivial homomorphism o: G — Zs there is a finite 2-complex
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K, with m(K) ~ G, and there is a map f,: K — RP2, which is not root free,
inducing a on fundamental groups.

PROOF. From assumption, G has a group presentation P = (x | r), where
x and r are finite. Let K = Kp be the model 2-complex of the group presen-
tation P (see [1] for details on model 2-complex). Then G = 71 (K) and, up to
isomorphism, each homomorphism « € Hom(G; Z2) can be considered as a homo-
morphism from 71 (K) into 71 (RP?). By Lemma 2.5, each such homomorphism
« is realized as the induced homomorphism on fundamental groups by a cellular
map f,: K — RP2. Then, since 71 (RP!) ~ Z and 71(G) is a finite group, it is
easy to see that there is a lifting ¢o:m1 (K) — 71 (RP!) of (f4)x through Iy if
and only if (fy)s is trivial. Now, since Hom(G; Z3) # 0, by assumption, for each
nontrivial homomorphism o € Hom(G;Zs), each map f,: K — RP? is not root
free, by Theorem 2.6. a

To illustrate the applicability of this proposition, consider the pseudo-pro-
jective plane P53, of degree 2d which is obtained by attaching a 2-cell in the
1-sphere by a map S! — S? of degree 2d. (Note that RP? = P2%). It is
well known that m(P3;) ~ Zogq and so Hom(m1(P3,); Z2) ~ Zs. Let a:Zog ~
71 (P3;) — 71 (RP?) ~ Zy be the unique nontrivial homomorphism belonging to
Hom(m (P3,); Z2). By the previous proposition, there is a map f:P3, — RP?
such that fx = a and f is not root free.

PROPOSITION 3.2. Let K be a 2-complex with free fundamental group. A map
fi K =Y is root free if and only if the homomorphism fu, is trivial.

PrOOF. Let f: K — Y be a map. By Remark 2.4, f is convenient. For
each generator z; of the free group m(K), choose a word w; in the free group
71 (Y1) such that ly(w;) = fu(x;). Then, there is a (unique) homomorphism
¢:m1(K) — m(Y?') such that ¢(z;) = wj. It is clear that ¢ is a lifting of fx
through lx. By Theorem 2.6, f is root free if and only if fy, is trivial. ]

Another proof for this proposition can be constructed using a Theorem of
Wall (see [1, p. 120]), which states that every finite and connected 2-complex
with free fundamental group is homotopy equivalent to a finite bouquet of 1- and
2-dimensional spheres.

PROPOSITION 3.4. Let K be a 2-complex with finite fundamental group and
let fi K —Y be a convenient map. Then f is root free if and only if fu and
fu, are trivial. Additionally, if a constant map k: K — Y is convenient (see
Remark 2.4(h)), then f is root free if and only it is homotopic to a constant
map.

PROOF. Since 7m1(Y!) is a free group and 7 (K) is a finite group, the unique
homomorphism from 71 (K) into 71(Y'!) is the trivial homomorphism. Thus,
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fa:m(K) — m(Y) has a lifting through l4: 71 (Y1) — 71 (Y) if and only if f4
is trivial. It follows from Theorem 2.6 that f is root free if and only if fx and
f#, are both trivial. It proves the first part of the proposition. The second part
is a consequence of the first part and Remark 2.3. |

Note that the “only if” parts of Proposition 3.4 is true even if f is not
convenient. An as a particular case of the second part of this proposition, we
have the following corollary.

COROLLARY 3.5. Let K be a 2-complex with finite fundamental group and let
Y be a closed surface, S*> #Y # RP2. Then every map f: K — Y is homotopic
to a constant map.

PROOF. Note that mo(Y) = 0, so every map f: K — Y is convenient (see
Remark 2.4) and Y is a finite K(m(Y),1)-complex. It is well known that if
G is a group which contains a torsion subgroup, then every K (G, 1)-complex is
infinite (see Proposition I1.3 of [8]). Therefore, the fundamental group 7 (Y) is
torsion free. So Hom (71 (K);m1(Y)) = 0 and the result follows from the previous
proposition, Remark 2.3 and item (h) of Remark 2.4. a

Now, we will consider cases in which the fundamental group of K is abelian.

We say that a subgroup H of a group G is cyclic (in G) if H is either trivial
or can be generated by a single element.

Let A be an abelian group with torsion subgroup 7. Then A ~ F &7, where
F is the free abelian group A/7. A group homomorphism h: A — B induces
two group homomorphisms

W:F—-B and h':T - B

in a natural way: For each x € F we define h” (z) = (h o A)(z,0) and, for each
y € T we define h7 (y) = (a0 A)(0,y), where A: F & T ~ A.

LEMMA 3.6. Let A be an abelian group and suppose that A =F ® T, where
F is a free abelian group and T is an abelian torsion group. Let h: A — B be
a group homomorphism and let £&: F — B be an epimorphism from a (nonabelian)
free group F onto B. There is a lifting ¢: A — F of h through £ if and only if
h” (F) in cyclic and h (T) is trivial.

PROOF. Since F is free, it is obvious that A7 has a lifting ¢7: 7 — F through
¢ if and only if h7 is trivial and, in this case, also ¢7 is trivial.

Now, if there exists a lifting ¢”: F — F of h” through ¢, then the image
#” (F) is an abelian free subgroup of F, by Nielsen—Schreler Theorem (see [9]).
Then, it is easy to check that ¢” (F) is cyclic (see Chapter III of [3]). Therefore,
since h” = £ o 7, the subgrupo h” (F) of B is also cyclic.
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Conversely, suppose that h”7 (F) is cyclic and let ¥ € h” (F) be its genera-
tor. Let p be the rank of F and let F’ be the free abelian group generated by
U1,...,up. There is an isomorphism n: 7' — F, such that (no h)(u1) = ¥ and
(noh)(u;) =0 for each 1 < ¢ < p. Since £ is an epimorphism, we can select
a word w € F such that £&(w) = ¢. Let ¢': F/ — F be the (unique) homomor-
phism from F’ into F satisfying ¢'(u;) = w and ¢'(u;) = 1 for each 1 < i < p.
Now, define ¢ : F — F to be the composition ¢* = ¢'on~!, where n~1: F — F’
denotes the inverse isomorphism of 7. It is obvious that ¢” is a lifting of h”
through &. (|

ProrOSITION 3.7. Let f: K — Y be a convenient map and suppose that
m(K) =F & T is an abelian group, where T is its torsion subgroup. We have:
(a) If S? #Y # RP?, then f is root free if and only if f;;(}") is cyclic.

(b) If Y = S?, then f is root free if and only if fu, is trivial.
(c) If Y = RP?, then f is root free if and only if fz, and f; are trivial.

Proor. We will prove each assertion separately.

(a) We have m2(Y) = 0 and 71 (Y") torsion free. Hence, the homomorphisms
fa,:ma(K) — mo(Y) and fi: 7T — m(Y) are both trivial. By Theorem 2.6, f is
root free if and only if f7: F — m1(Y) has a lifting through ly: 7 (Y') — m1 (V).
But by Lemma 3.6, this occurs if and only if f#f(f) is cyclic.

(b) Since fu:m(K) — m1(S?) is trivial and so has a lifting through Iy, it
follows by Theorem 2.6 that f is root free if and only if fy, is trivial.

(¢) Certainly fi(}") is cyclic and so f%f has a lifting through l4x, by Lem-
ma 3.6. Again by this lemma, there is a lifting ¢ of fx trough [y if and only if
f; is trivial. The result follows from Theorem 2.6. (]

From this proposition we can extract a particular result for the case in which
the domain of the map is the torus T.

COROLLARY 3.8. A convenient map f: T — Y from the torus into a closed
surface is root free if and only if fu is not injective.

PRrOOF. If fy is injective, then it is clear that fumi(T) is not cyclic and, by
Proposition 3.7, f is not root free. Now, note that fu,:m3(T) — m2(Y) is trivial
and suppose that fyx is not injective. Then, since m(T) = Z & Z, it is obvious
that fum (T) = fi(]-") is cyclic. By the previous proposition, f is root free. [

PROPOSITION 3.9. Let K be an aspherical 2-complex and let T, be the torsion
subgroup of Hy(K). If Hom(71;Z2) = 0 then every convenient map from K into
RP? is root free.

PROOF. First, we remember that a (finite and connected) 2-complex K is
aspherical if and only if mo(K) = 0 (see [1] for details). Thus, for any map
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f: K — RP2 the homomorphism fg, is trivial. Now, let p:m (K) — H;(K)
be the Hurewicz homomorphism (the abelianization homomorphism). Since
71 (RP?) is an abelian group, there is a unique homomorphism fg: Hy(K) —
71 (RP?) such that fg o p = fsx. By assumption, f(gl is trivial. Moreover, it is
clear that the imagem of fg ! is cyclic, where F; is the abelian free subgroup of
H,(K) such that Hy(K) ~ F; @ 7;. By Lemma 3.6, there is a homomorphism
¢': Hi(K) — 71 (RP) such that I o ¢/ = fg. Define ¢: m1(K) — 71 (RP!) to be
the composition ¢ = ¢’op. Then ¢ is a lifting of fx through l». By Theorem 2.6,
f is root free. O

4. Mutation of homomorphisms and existence of liftings

In this section, we present a new concept which we call mutation of homo-
morphisms. We present its definition and some easy technical lemmas. We will
show the relationship between the existence of (P, #)-mutations of a given group
homomorfismo 7: F(x) — G and the existence of liftings of a homomorphism
a:IT — =, through a group homomorphism 6: G — = verifying the commutativ-
ity « 0o Q = 0 o7, where Q: F(x) — II is the quotient homomorphism given by
the presentation group P. In the next section we will use this relationship to
study the root problem.

Let P = (x | r) be a group presentation with alphabet x = {z1,... ,2,}
and set of relators r = {ry,... , 7, }. Let II be the group presented by P, that
is, I = F(x)/N(r), and let Q: F(x) — II be the quotient homomorphism. Let
0: G — = be a group homomorphism with kernel ker(9).

DEFINITION 4.1. Given a group homomorphism 7: F(x) — G, by a (P, 0)-
mutation of 7 we mean a homomorphism Mr: F(x) — G satisfying:
(a) For each w € F(x) there is M(w) € ker(d) such that Mr7(w) =
M(w)T(w);
(b) Mr(r;) = eg, the identity element of G, for every relator r; € r.

e F—
Ql M

IT

0

[1] ¢——

If Mr:F(x) — G is a (P,0)-mutation of a homomorphism 7: F'(x) — G,
then the function M: F(x) — G carrying w € F(x) into M(w) € ker(6) is such
that M(1) = eg (the identity element of G) and M(r;) = 7(r;)~! for each
1<i<m.

On the other hand, suppose that M: F(x) — G is a function carrying w €
F(x) into M(w) € ker(d) and satisfying the following three conditions: (a)
M(1) = eq, (b) M(r;) = 7(r;)~! for each 1 < i < m and (c) the function
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Mr: F(x) — G given by M7(w) = M(w)7(w) is a group homomorphism. Then,
it is easy to prove that Mr: F(x) — G is a (P, #)-mutation of 7: F(x) — G.

This show that in order to construct a (P,#)-mutation of a given group
homomorphism 7: F(x) — G, it is necessary and sufficient to define a function
M:F(x) — G, with M(w) € ker(#) for every w € F(x), satisfying the three
conditions above. Such a function, when exists, will be called the (P, 8)-mutator
function of 7 to M.

THEOREM 4.2. Let P = (x | r) be a group presentation for the group II
and let 0: G — = be a group homomorphism. Suppose that T: F(x) — G and
a: Il — E are group homomorphisms making commutative the diagram

F(X)T—>G

J Je
I——F=
where the left vertical arrow is the natural quotient homomorphism. Then « has

a lifting ¢: 11 — G through 0 if and only if T has a (P, 0)-mutation. Moreover, the
liftings of a through 6 are in one-to-one correspondence with the (P, 8)-mutations

of T.
PROOF. Suppose that exists a lifting ¢: II — G of 7 through 8. Then, in the
diagram below, the square and the lower triangle are commutative.

T

G

0

[1] ¢——

F(x)
QJ ¢
~
n——-7)
For each w € F(x), we have (6 o ¢ o Q)(w) = (a0 Q)(w) = (0 o 7)(w).
Thus, 0(¢ o Q(w)) = O(7(w)), for every w € F(x). It shows that 7 and (¢ o
Q) differ only by elements in ker(#), that is, for each w € F(x), the element
(¢ 0 Q)(w)7(w)~! belongs to ker(f). Define the function M: F(x) — G to be
M(w) = (¢ o Q)(w)r(w)~t. Then M(w) € ker(#) for each w € F(x) and we
have:
e M(1)=1;
o M(r;) = (¢poQ)(r)r(r;)~t = 7(r;)~1, for each r;, since Q(r;) = er.
e Mr:F(x) — G given by M7(w) = M(w)7(w) is a group homomor-
phism, since by the definition we have M7(w) = (¢ o Q)(w).
It follows that M is a (P, 0)-mutation of 7.
In order to prove the reciprocal, let M7: F(x) — G be a (P,6)-mutation
of 7. Then Mr(r;) = eg for each relator r; € r. Hence, M7(w) = e¢g for
every w € N(r), where N(r) is the normal subgroup of F(x) generated by the
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set of relators r. Now, since ker(Q2) = N(r), it follows that ker(£2) C ker(Mr).
Thus, there is a (unique) homomorphism ¢: IT — G satisfying ¢ o = M. Such
homomorphism is defined as follows: For each w € II, choose w € F(x) such that
w = Q(w). We define ¢(w) = Mr7(w). It follows that, for each w = Q(w) € II,
we have (0 o ¢)(W) = (0 o M7)(w) = O(M(w)T(w)) = (M(w))0(T(w)) =
(fo7)(w) = (o) (w) = a(w). Therefore, ¢: I — G is a lifting of « through 6.0

5. Mutation for annihilation of roots

Let f: Kp — Y be a convenient cellular map, where Kp is the model 2-
complex of the group presentation P = (x | r) and Y is a closed surface (See
[1] for model 2-complex). Let Y! be the 1-skeleton of Y. Since f is cellular, its
restriction on K}; provides a cellular map flzK}; — Y! making commutative
the left diagram below, where the vertical arrows are the natural inclusions:

1 f! i
Kp———vy! F(x) ———— m (Y1)
T T
Kp — Y 1 (Kp) f—HTl(Y)
#

The fundamental group m1 (Kp) is that presented by P. The right diagram
above is that induced on fundamental groups by the left diagram. Considering
the identification of F'(x) with 71 (K} ), we have:

THEOREM 5.1. A convenient cellular map f: Kp — Y s root free if and
only if fu,:ma(Kp) — ma(Y) is trivial and fi:m (Kp) — m(Y") has a (P,ly)-
mutation. More precisely,

(a) If op: Kp — Y s a non-surjective cellular map homotopic to f, then
oy m(Kp) — m(Y?") is a (P,ly)-mutation of fl,.

(b) If Mfy:m(Kp) — mi(Y?") is a (P,ly)-mutation of fy, and fyu, is triv-
ial, then there is a mon-surjective cellular map ¢: Kp — Y homotopic
to f such that go;l‘# = Mf#

PROOF. The first part is an immediate consequence of Theorems 2.6 and 4.2.
In order to prove (a) and (b), we include some details.

(a) Suppose that ¢: Kp — Y is a non-surjective cellular map homotopic to f.
We consider Y with its minimal cellular decomposition. Let a € Y be a point
not belonging to the image of ¢ and belonging to the interior of the unique 2-cell
of Y, (such a point exists, since |Kp| is compact and Y is Hausdorfl and so
the image of ¢ is a proper closed subset of Y). There is a strong deformation
retraction 7Y \ {a} — Y!. Since a ¢ im(p) and Y \ {a} is open in Y, the
map @: Kp — Y \ {a}, obtained from ¢ by restriction of its range, is again
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a continuous map. Let ¢: Kp — Y be the cellular map ¢ = r o @. In the left
diagram below, where j and the vertical arrows are natural inclusions, the square
and the lower triangle are commutative. Moreover, r is a homotopy equivalence
inducing the identity homomorphism on fundamental groups.

1 1
Kb d Yl m(Kp) — (YY)
/ o Y .
i Y\ {a} ! i
2N
m(Kp) —————— m(Y)
Kp = v ou=r

It follows that py = jy 0Py, =lgory oYy = ly oy, Hence, Yy is a lifting
of ¢y through lx. On the other hand, we have r o oi = '. Thus, 9071‘# =
4 o Q. Therefore, the right diagram above is commutative. By the proof of
Theorem 4.2, ¢}, is a (P,ly)-mutation of fj. Note that the (P,l4)-mutator
function M: 7 (Kp) — m1(Y") which makes Mf}, = ¢} is capriciously given
by

M(w) = (¥ 0 Q)(w) fu(w) ™" = g (w) fy(w) "

(b) Suppose that fg, is trivial and Mf#:m(K%;) — m(Y?') is a (P, ly)-
mutation of f%k By Theorem 4.2, there is a lifting ¢: m (Kp) — 71 (Y!) of fa
through l. Moreover, we have M f;# = ¢ o). (See the diagram below). Let
¢01: K — Y be a cellular map such that (¢1)x = ij# (Such a map exists
by Lemma 2.5).

Mfy

//f;\

7T1(K713) —>7T1(Y1)

QJ / Jl#
m(Kp) ——— m(Y)
~_
on
Since M f#(n) = 1 for each relation word r; € r, the cellular map ¢, extends to
a cellular map ¢9: Kp — Y. Let ¢: Kp — Y be the cellular map given by the
composition ¢ =l o s. It is clear that ¢ is non-surjective (in fact, im(¢) C Y1)
and @' = 1. Therefore, QD:# = Mf;é

Now, we will prove that ¢ is homotopic to f. Since fx, and ¢4, are trivial
homomorphisms (the first from assumption and the second by construction), due
to Theorem 2.1 it is enough to prove that fu = 4. But this is a consequence
of the following identities, where we use the definition of ¢ as in Theorem 4.2:
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For each w = Q(w) € w1 (Kp), we have

(W) = (Lo p2)4(W) = (I 0 (p2)4 0 Q) (w) = (I o (p1)4)(w)
= (lp o Mfy)(w) = (I 0 g0 Q) (w) = (I 0 ¢)(W) = fu(W).

This concludes the proof. O

REMARK 5.2. The whole result of Theorem 5.1 is not true, in general, for
non convenient maps. However, the “only if” part is always true (due to Theo-
rem 2.6), that is, if f: K'p — Y is an arbitrary cellular map and f is root free,
then the homomorphism f;ﬁ has a (P,l4)-mutation. Also, item (a) is true even
if f is not convenient.

THEOREM 5.3. Let Kp be the model 2-complex of the group presentation
P=(x|r) andlet f: Kp — Y be a map. If f is root free, then fu,:mo(Kp) —
w2 (Y') is trivial and there exists a map ¢: Kp — Y homotopic to f such that
goqléé(n—) = 1 for each relator r; € r. The reciprocal is true if f is a convenient
map.

PROOF. Suppose that f: Kp — Y is root free. Then, there is a cellular map
: Kp — Y homotopic to f such that im(¢) C Y. Let fea: Kp — Y be a cellular

approximation of f. By the item (a) of Theorem 5.1, the homomorphism 90;& is

1
cel

a (P, ly)-mutation of (fl;)%. Therefore, @l (r;) =1 for each r; € r.

Now, suppose that f is a convenient map and suppose that fu, is trivial and
p: Kp — Y is a cellular map homotopic to f such that gp#(ri) = 1 for each
r; € r. Then, the map ¢': K} — Y extends to a cellular map p: Kp — Y.
Thus, the upper triangles of both diagrams below are commutative.

1 1

Ky —F 5y 1 (Kp) — Y

l Q Ly

Kp T) Y 7T1(Kp) — 7T1(Y)
pu=ry

Now, for each w = Q(w) € 7 (Kp), we have (Iyop,, ) (W) = (40P 40Q)(w) =
(I 0 o) (w) = (pg 0 Q)(w) = (W) = f4(W). Then, the lower triangle of the
right diagram is also commutative. This means that ©, is a lifting of fx through
. By Theorem 2.6, f is root free. g

6. Symbolic mutation

Let {X}, = {X1,...,%,} be a list of n abstract symbols and let G be
a nontrivial group with identity element eq. Let W(G,{X},) be the set of all
(reduced and of finite length) words of the form

G g1 X2 g2 - X g,
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where each gs, for 0 < s < k, is an element of the group G, each J; is an integer
and each A; € {1,... ,n}. We require that every word in W(G, {X},,) contains
at least one symbol of the list {X},, and an element of the group G, which can be
the identity element. However, the identity element of G can be omitted when
we spell the words. Thus, each symbol X; is itself an element of W(G, {X},,).
In addition, we also consider as an element of W(G, {X},,) the “empty” word,
which we denote by 1. Such element can be identified with eq, since this last
can be omitted. Hence, also e can be see as an element of W(G,{X},). The
others elements of G are not itself elements of W (G, {X},,).

On the set W(G, {X},,) we define the natural multiplication: the product
of two words is formed simply by writing one after the other and by reduc-
ing the word obtained, that is, given A = gof{‘f\iglf{‘;\igg . ..X‘f\’;gk and ' =
G0X%, 01 ... X%, g; two arbitrary elements in W (G, {X},), we define the product
AT to be the word obtained by reducing the word

GX g1 X2 go . X (91G0) X Gn - X5 G-

The semi-group W (G, {X},), equipped with this product is a (non-abelian)

group with identity element 1 and natural inversion given by
§ 5 s - —1y—6 —1y—8s —1ap—61 —
[gox)\llglx/\zzgg . %/\’ng] 1= 9y, 1%)%’“ e G5 1%/\22g1 1%/\1 9o L

DEFINITION 6.1. Let 7: F(x) — G be a group homomorphism, where x =
{z1,...,xz,} is an alphabet with n letters. A symbolic mutation of T with respect
to the list {X},, = {X1,...,%,} is a function (not necessarily a homomorphism)

X:F(x) — W(G, {X},),

verifying the following conditions:
(a) X(1) =1;
(b) X(x;) = X; for each index 1 < j < n;
(c) X(wiws) = X(w1)7(wy)X(we)7(w1) ™ for every wy,ws € F(x).

Note that these three conditions define completely the function X exclusively
in terms of the homomorphism 7, since each w € F(x) is a word of the form

S

w= H(wlf““mg% Py,

k=1
The proof that the image of the function X is (in fact) in the group W (G,{X},)

is easy and will be omitted.

LEMMA 6.2. Let M7:F(x) — G be a (P,8)-mutation of the group homo-
morphism 7: F(x) — G. Then, the (P,8)-mutator function M: F(x) — G can
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be seen as a symbolic mutation F(x) — W(G,{M},) of T with respect to the
list of symbols {M}, = {M(x1),... , M(zn)}.

PrROOF. Since M(1) is the identity element of G, which is identified with
the empty word 1, it is sufficient to prove that
M(wiws) = M(wy)7(wy) M (we)7(wy) 7L

Now, since 7 and Mt are homomorphisms, we have

M(’wl’wQ)T(U)l)’T(’LUQ) = M(wlwg)T(wlwg) = MT(U)l’LUQ)

= M7 (w1) M7 (we) = M(wy)7 (w1 ) M(ws)T(ws).

Multiplying both sides on the right by the element 7(wz) " 7(w;)~! of G, we
obtain the desired formula. g

By using the definition of symbolic mutation and induction argument, we
can prove the following result:

PROPOSITION 6.3. Let X: F(x) — W(G,{X},) be a symbolic mutation of T.
For any integer p > 0, we have

X(w™P) = [X(w)T(w)]Pr(w)?  for every w € F(x)
and for wy, ... ,ws € F(x) and nonnegative integers p1,... ,ps, we have
X(wit ... wh)

=TTt ) G~ (w7

=1

In particular, %(x;l) = T(xj)_l?ﬁj_lr(xj) and so %]-_1 = T(xj)f{(xj_l)T(wj)_l.

These identities show that the structure of the group W (G, {X},), which
exists independently on the homomorphism 7, is “compatible” with this homo-
morphism in the following way:

1= .’ij;1 = f{(xj)T(xj)%(le)T(xj)_l = .’f(xjx]fl) =X(1) = 1.

In the following results, Kp is a model 2-complex of a group presentation P =
(x| r), where x = {x1,...,x,} is the alphabet and r = {rq,... , 7, } is the set of
relators. We consider the natural identification m (K5) = F(x). Furthermore, Y
is a closed surface and ly:m (Y!) — 71 (Y) denotes the homomorphism induced
on fundamental groups by the natural inclusion.
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THEOREM 6.4. Let f: Kp — Y be a cellular map and
X:F(x) — W(m(Y'), {X},)

be a symbolic mutation of the obvious homomorphism f#:F(x) — m (Y1), If
f s root free, then the homomorphism fyu, is trivial and there is a function
A: {X},, — (Y1) satisfying the following conditions:

(a) A(X;) € ker(ly) for every index 1 < j <mn;

(b) A(X(ri))fu(ri) = 1 (= identity element of m(Y")) for every index

1<t < my

where A(X(w)) is the word obtained from X(w) by replacing each symbol X; by
A(X;). The reciprocal is true if f is a convenient map.

PROOF. Suppose that f is root free. Then, by Theorem 5.1 and Remark 5.2,
fa, is trivial and f}, has a (P,ly)-mutation Mf}:F(x) — m(Y"), being
M[h(w) = M(w)fl(w). Define the function 2A: {X}, — mi(Y!) by A(X;) =
M(z;), for each 1 < j < n. Then A(X(w)) is the word obtained from ¥(w) €
W(m (Y"),{X},) by replacing each symbol X; by the word M(z;) € m(Y!).
By Lemma 6.2,

A(X(w)) = M(w) for every w € F(x).
In particular, A(X(w)) € ker(l4) for every w € F'(x) and, moreover,

A(X(re)) fp(ri) = M(ri) f(ri) = Mfy(ri) =1

(the identity element of m;(Y1)) for every 1 <i < m.
Now, suppose that f is a convenient map and suppose that fy, is trivial and
there exists a function 2: {X},, — 71 (Y'!) satisfying the conditions (a) and (b).
First, we will prove that 2A(X(w)) € ker(lx) for every w € F(x). For this, we
note that if A(X(w1)) and A(X(w2)) belong to ker(l4), then A(X(wyw2)) belongs
to ker(ly). In fact, if A(X(w1)) and A(X(w2)) belong to ker(lx), then

Ly (A(X (wiw2))) = Ly (A(X (w1)) 7 (wn) AKX (w2))7(w1) ™) = 1ry vy,
where 1, (yy is the identity element of 71 (Y"). This proves that A(X(wiws)) €
ker(l4).
Now, since for each 1 < j < n, A(X(z;)) = A(X;) € ker(ly), and each

w € F(x) is a word of the form

S

w= H(mf““x’z’”“ cooabeR)

k=1
by repeating the previous argument, we have that 2(X(w)) € ker(l4) for every
w € F(x). Define the function M: F(x) — m(Y!) by M(w) = A(X(w)) €
71 (Y1), Then M(w) € ker(ly) for every w € F(x) and, moreover,
o M(1) = A(X(1) = 1.
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o M(ri) =A(X(ri)) = fu(ri) ™
e Define Mf: F(x) — m(Y") by Mf}, = M(w)f}(w). Then, certainly,
M (1) =1 and, given wy, ws € F(x), we have

Mf;k(wlwg) =A(% ’u)1’LU2))f#(w1’w2)
X(w1) fip (w1) X (w2) e (w2) 1) fh (wiws)
w1)) [ (w1)A(X (w2)) flu (w1) " fla(wr) flu(w2)
X (w1)) [ (wi)RA(X (w2)) f (ws)
= M(w1) f(w1) M(ws) f (wa) = My (w1) M [l (ws),

showing that Mf}, is a group homomorphism.

This is enough to prove that M f%é is a (P,ly)-mutation of the homomorphism
fli- Therefore, by Theorem 5.1, f is root free. O

THEOREM 6.5. Let f: Kp — Y be a cellular map and let fj#:m(K};) —
71 (Y1) be the obvious homomorphism. If f is root free, then fy, is trivial and
the following m x n system of equations on the free group m (Y'*), with unknowns
X1,...,%,, has a solution over ker(ly):

x(r)fy () =1,
{8%Xf}:
(Tm)f ( m) =1

The reciprocal is true if f is a convenient map.

Proor. Suppose that f is root free. Then fy, is trivial and, by Theorem 6.4,
there is a function 2:{X}, — m1(Y') such that A(X;) € ker(ly) for every
1 < j < n and, furthermore, ﬁ(%(rz))f#(n) =1 for every 1 < i < m. Then,
the n-vector (A(X1),...,2A(X,)) is a solution of the system {SXf}, with each
coordinate belonging to ker(l4).

On the other hand, suppose that (sq,...,s,) is a solution of the system
{8Xf}, with each coordinate s; € ker(lyx). Define the function 2:{X}, —
71 (Y1) by A(X;) = s; for each 1 < j < n. Then, it is clear that A(X;) € ker(l4)
for each 1 < 7 < n and, furthermore, ﬂ(%(ri))f#(ri) =1 foreach 1 < i < m.
Now, we apply Theorem 6.4 and the result follows. O

7. Making the results applicable

In this section, we develop results which are more suitable for applications.

LEMMA 7.1. Let X: F(x) — W(G,{X},) be a symbolic mutation of the
group homomorphism 7: F(x) — G. Then, for each word of the type xi* ... xPn
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in F(x), we have
n
X(@h b )r(aft . alr) = [ ()]
j=1
PRrROOF. Suppose that py,... ,p, are all nonnegative. By Proposition 6.3,

n—1
X(ap"..ahr) = < H [:{(l‘j)T(gjj)]pj>
'[x(xn) (zn)P X ()T (2]l k)T

( H (%7 (z5)] )[%nT(xn)]p"_lf{nT(x’fl ...xfl’fllxﬁ"_l)_l.

Multiplying both sides on the right by 7(z}* ... zP") we obtain
X .oy (2t b)) = H[%J(gcz)]pl
i=1
Now, by the formulas of Proposition 6.3, for any integer p > 0 and w € F(x),
we have, X(w™P)r(w™?) = [X(w)7(w)] Pr(w)PT(w™P) = [X(w)7(w)]P.
The general case also follows similarly using formulas of Proposition 6.3. O

Next, we consider X1,...,X, as unknowns of equations on the free group
T (Yl)

THEOREM 7.2. Let Kp be the model 2-complex of a group presentation P =
(x| r), with x = {z1,... ,2n} and r = {r1,... ,7:m}, where the relators are in
the generic form

51 5 5k 5(791)
ry=(x" oozt (et 2t );

s FIey) 5(km) §(km)
T = (2™ o) (2™ Tp™"

Let f: Kp — Y be a map into a closed surface. If f is root free, then the

homomorphism fu, is trivial and the following m x n system, on the free group

71 (YY), with unknowns X1, . .. %n, has a solution over ker(l4):
HH%f#st 6()— L,
A=1j=1
{8%Xf}:

km n N
11 H[%jﬁe(%ﬂ&f”; =1

A=1j=1
The reciprocal is true if f is a convenient map.

PrROOF. The prove is a consequence of Theorem 6.5 and Lemma, 7.1. ([l
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By Theorem 7.2 we have that if P = (z1,...,2, | 2}"...2E") is a group
presentation with n generators and only one relator of the form above, then
a convenient cellular map f: Kp — Y is root free if and only if fx, is trivial and
the equation [7_,[X; f4 ()’ = 1, with unknowns X1, ... ,%,, has a solution
over ker(ly).

8. Examples and applications

In this section, we present some examples and applications of the main re-
sults, in special Theorem 7.2. The examples are presented in some subsections,
separated accordingly to the closed surface Y, the range of the map being stud-
ied.

8.1. Maps into the torus.

EXAMPLE 8.1. Let Kp be the model 2-complex of P = (z,y,z | x%y325).
Let 7: F(xz,y,2) — F(a,b) be the group homomorphism between free groups
given by

7(z) =ab, 7(y)=ab and 7(2)= (ba)~ .

Consider the 1-skeleton K = S; vV S,V S] = e’ Ue; Ue, Uel. Let T be the
torus and consider its 1-skeleton T' = S} v S} = Uct Uc}. Let f': K3 — T!
be the cellular map which carries el into T' exactly as 7 carries s into F(a,b),
for s = x,y,z. Then f;& = 7, up to the identifications F(z,y,z) = m (K5) and
F(a,b) = 71 (T"). Let I: T' — T be the natural inclusion and let ly: F(a,b) —
7m1(T) =~ Z®Z be the homomorphism induced by [ on fundamental groups. (Note
that 4 is the abelianization homomorphism). We have:

(I 0 7)(a%y°2") = Ly ((ab)*(ab)*(ba) =) = 0.

Hence, [ o f': K3 — T extends to a cellular map f: Kp — T. Since m2(T) = 0,
such map is convenient (see Remark 2.4). By Theorem 7.2, f is root free if and
only if the equation
[X1ab]?[X2ab)®[X3(ba) '] = 1
has a solution over ker(lx). Now, it is easy to check that ([b,al, [b,a],1) is such
a solution, where, as usual, [b, a] = bab~'a~!. Therefore, f is root free.
Let M7: F(z,y,2) — F(a,b) = 71(T') be the homomorphism defined by

By previous results, we have the following conclusions:

e Mr is a (P,ly)-mutation of the homomorphism 7 = fj#
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e There is only one homomorphism ¢: 1 (Kp) — 71 (T*) such that ¢po§) =
M.
e The homomorphism ¢ is a lifting of fx through l..

EXAMPLE 8.2. Let P = (21,29, x3,24 | [21, 2], [21, 23], [x3,24]) De a group
presentation and let Kp be the model 2-complex of P. This complex is the
2-complex K of Example 2.5 of [4], obtained by attaching two torus T; and T,
through of the longitudinal closed 1-cell and, next, by attaching the longitudinal
closed 1-cell of a torus T3 into the meridional closed 1-cell of the torus To. Let
f:Kp — T be the map of Example 2.5 of [4], which restricted to each torus
T; € Kp, for i = 1,2,3, is a cellular homomorphism. Let p,:T — T be the
longitudinal n-fold covering. Let f: Kp — T be the composition f = p, o f
Then the restricted map

fHKp =8, VS, VS, VS, — SevS, =T

is such that fj#(xl) = f;k(u) =a" and fy(v2) = f#(l’g) = b. Now, by The-
orem 2.7 of [4], we have u(f) = 2n — 1, which means that f is not root free.
Since f is a convenient map (see Remark 2.4), Theorem 7.2 implies that the
following system on F'(a,b) has no solution over the kernel of the abelianization
ly:F(a,b) > Z & Z:
X1a"Xoba "X IR = 1
X1a"Xzba X0 TIXS =
X3bX4a"b 1 X3 a X =

L,
1.
Indeed, since ﬂqy,i is a homeomorphism for each i = 1,2,3, each map f|r, =
Pr o fl1, is not root free (in fact, u(f|r,) = n). Then, none of the equations of
the system above has a solution over ker(l4).

8.2. Maps into the Klein bottle. The Klein bottle is usually meant as
the square with identification of reciprocal sides one of them twisted, being so
given by relation aca™'c. However, by performing a cut on the diagonal of the
square, which we indexed with the letter b, and pasting properly two of the sides
of the square (exactly the sides corresponding to the letter ¢), we see that the
Klein bottle can be given by relation a2b2.

EXAMPLE 8.3. Let Kp be the model 2-complex of P = (x,y,z | 23y227).
Let 7: F(x,y,z) — F(a,b) be the group homomorphism between free groups
given by

() =a'%, 7(y)=b and 7(2)=a""
Consider the l-skeleton K, = S1 v SV S! = e®Uel Ue, Uel. Let K be
the Klein bottle and consider its 1-skeleton K! = S} v S} = P Ucl Uct. Let
f: K} — K! be the map which carries e} into K' exactly as 7 carries s into
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F(a,b), for s = z,y,z. Then, up to the identifications F(z,y,z) = m (Kp) and
F(a,b) = m(K'), we have f;& = 7. Let I:K! — K be the natural inclusion
and let ly: F(a,b) — 71 (K) be the homomorphism induced by { on fundamental
groups. Note that 71 (K) has a presentation (a, b | a*b?) and ly: F(a,b) — m (K)
is the quotient homomorphism accordingly to this group presentation. We have:

(I o 7)(2*y?2") = 14(a®0%a™ ) = 14 (a®®(a?V?)a ) = 0.

Hence, [ o f1: K} — K extends to a cellular map f: Kp — K. Since m3(K) = 0,
the map f is convenient (see Remark 2.4). Then, by Theorem 7.2, f is root free
if and only if the equation

[%1a10]3[%2b]2[%3a_4]7 =1

has a solution over ker(lx). Now, it is easy to check that (b=1%710 1,b%a?) is
such a solution. Therefore, f: Kp — K is root free.

8.3. Maps into the projective plane. The fact that the 1-skeleton RP!
of the projective plane RP? is homeomorphic to the sphere S', which has funda-
mental group isomorphic to the infinite cyclic group Z, can be used with great
advantage to study the solubility of the system {SXf} of Theorem 7.2.

We start by studying the case in which the (model) 2-complex has a single
cell of dimension two.

Let Kp be a model 2-complex having a single 2-cell. Then, the group pre-
sentation P is of the form P = (x1,... ,x, | r1). Let f: Kp — RP? be a cellular
map and let [: RP! — RP? be the natural inclusion. (RP! = S is the 1-skeleton
of RP?). We will study the solubility of the equation below, with unknowns
X1,...,Xn, over the subgroup ker(ly) of m (RP1):

(8.1) X(r1) fu(r) =1.

Let f': K, — RP! be the obvious map obtained by restriction of f and let
f}#: m(Kp) ~ F(z1,... ,2,) — F(a) ~ m (RP') be the homomorphism induced
by f! on fundamental groups. Let : F(xy,...,7,) — 71 (Kp) be the natural
quotient homomorphism, which identifies naturally with that induced by the
inclusion K3 < Kp. Then, we have the commutativity l4 o f = fy 0o Q. In
particular, l#(f;&(rl)) = 0, that is, f}(r1) € ker(ly), where, of course, ker(ly)
is the subgroup of F(a) generated by a?. It follows that f# (r1) = a®? for some
integer d.

On the other hand, for each 1 < j < n, there is an integer p; such that
f;# (x;) = aP3. Suppose that the relator ry has the following generic form:

5 FIE) 5(’61) 5k1)
r=(zy" cooxwt ) .(zt Tt )
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Then, since F'(a) is an abelian group (the infinite cyclic group), we obtain

a?d = fi,&(ﬁ) = (aP")% ... (aP")’",

where, for each 1 < j < n, we define J; to be the integer J; = Zlf\l:l 5]0‘).

Again since F'(a) is an abelian group, we have

ki n N n
x(r) h(r) = T] [Tiam 1" = T %),
A=1j=1 j=1

Thus, equation (8.1) is equivalent to
[X1aP )P .. [XpaPr]o = 1.

Now, to show that this equation has a solution over ker(l4) is equivalent to

show that there are integer ¢1,... , g, such that
[CLQ"‘“CL’“]‘;1 ... [a?maPr ] =1,
What, in turn, is equivalent to show that there are integers ¢1,... , ¢, such
that
(8.2) 01(2q1 +p1) + ...+ 00(2gn + pn) = 0.

But we know that (1) ... (aP")% = a?? and, therefore, 61p1 +. ..+, pn = 2d.
Tt follows that to find a solution for equation (8.2) is equivalent to find a solution
for

Up to this point, we can conclude at least the following:

(1) If é1,. .., 0, are relatively prime, then (8.3) has infinite many solutions.
Therefore, equation (8.1) has infinite many solutions over ker(lx).
(2) If Kp is an orientable closed surface (with minimal cellular decomposi-

tion), then the alphabet is {z1,y1,...,24,y,} and the (unique) relator
is of the form ri = [z1,42] ... |24, Yq), Where [-, -] denotes the commu-
tator and g is the genus of the surface. Thus, 6; = ... = dzy = 0.

Therefore, in accordance with (8.3), (8.1) has a solution over ker(l) if
and only if d = 0, that is, fj(r1) = 1. If this is the case, any 2g-upple
of elements in ker(l4) is a solution over ker(l4) of (8.1).

(3) If Kp is a nonorientable closed surface (with minimal cellular decom-

position), then the alphabet is {z1,,...,24} and the (unique) relator
is of the form r; = 27 ... mg, where g is the genus of the surface. Thus,
01 = ... = §; = 2. Therefore, in accordance with (8.3), (8.1) has

a solution over ker(l) if and only if d is even.
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PROPOSITION 8.4. Let f: X — RP? be a cellular map, where X is an ori-
entable (respectively, nonorientable) closed surface with canonical presentation
P = (x|m). If f is root free, then fy, is trivial and f%é(rl) = 1 (respectively,

f%t (r1) =0 mod 4). The reciprocal is true if f is a convenient map.

PRrROOF. It follows from Theorem 7.2 and items (2) and (3) above. Note that
we identified F(a) ~ 71 (RP') with Z by identifying a* € F(a) with k € Z. O

Using item (3) above, we can construct examples of maps f: Ny — RP2, from
the nonorientable closed surface of genus g > 1 into the projective plane, which
are not root free.

ExXEMPLE 8.5. The nonorientable closed surface of genus g, which we de-
note by NNy, is the model 2-complex of the (minimal) group presentation P =
(z1,...,mg | 27...22). Let 7: F(x,y) — F(a) be the homomorphism between
free groups given by

T(z;)=a® for1<j<g—1 and 7(z,) =a.

Let I: RP! — RP? be the natural inclusion. Then, up to identifications, the
homomorphism induced by [ on fundamental groups is the obvious quotient
homomorphism l4: F(a) — Za, where we consider the cyclic group Z, being
presented by (a | a?). Then ker(l4) is the normal subgroup of F(a) generated
by a?. It follows that lu(7(2%...22)) = l4(a®?97D) = 0. Therefore, there is
a cellular map f: N, — RP? such that, up to identifications, f; = 7. Now,
we have fj(z]...27) = a®9=1) and, obviously, 2(2g — 1) # 0 mod 4. By the
previous proposition, f is not root free.

Now we generalize the construction above for the case in which the (model)
2-complex has more than one cell of dimension two.

Let Kp be the model 2-complex of the group presentation P = (x | r), with
x = {x1,...,2,} and v = {rq,... 7y}, where the relation words are in the

generic form

€D e (k1) (k1)
r = (xf“ Lz )... (:vf“l ao );
5(1) 6(1> 5(km) 5(19 )
P = (@™ aym) L (29 L),

Let f: Kp — RP? be a cellular map and let f': Kp — RP! be its obvious
restriction. Then:

e For each 1 < j < n, there is an integer p; such that f#(xj) = aPi;

e For each 1 < ¢ < m, there is an integer d; such that f;é (r;) = a?di,
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e For each 1 < ¢ < m, we have §;1p1 + ... + §inpn = 2d;, where each
integer 6;; = le\:l 51(;) is the sum of the powers of the letter x; in the
relator r;.
With the same argument of the previous construction, we prove that in order
f to be root free is necessary (but not sufficient, in general) that there exists

integers q1, ... , q, satisfying the following system of diophantine equations:
611 . 6171 q1 dl

If f is a convenient map, this condition is also sufficient if, in addition, we
ask fu, to be the trivial homomorphism. If we denote Ap = (8;j)mxn and

d=(dy,...,dy,)T, where the superscript T indicates transposition of matrices,
we have:

PROPOSITION 8.6. Let f: Kp — RP? be a cellular map. If f is root free,
then fu, is trivial and the diophantine linear system ApY = d has an integer
solution. The reciprocal is true if f is a convenient map.

In [5] we proved a similar result for the case of maps from 2-complexes into
the 2-sphere. It is interesting to compare these two results.

The next example shows a not convenient map, which is root free, such that
the associated system ApY = d has an integer solution.

EXAMPLE 8.7. Let w: T — S? be the cellular map from the torus into the
2-sphere which collapses the whole 1-skeleton T' of T onto the 0-cell of S2.
Let po: S? — RP? be the universal covering map. Define the (cellular) map
f: T — RP? to be the composition f = ps o w. Then f is not convenient and
is not root free (in fact u(f) = 2). However, the diophantine linear system
ApY = cf, in this case, is simply the equation 0Y = 0, which has trivial solution.

Proposition 8.6 can be used to construct more sophisticated examples of
maps from 2-complex into the projective plane which is not root free.

ExampPLE 8.8. Let Kp be the model 2-complex of the group presentation
P = (z,y | 2®y*, 2y3). Let 7: F(x,y) — F(a) be the group homomorphism
between free groups given by 7(x) = a and 7(y) = a. Let [: RP! — RP? be the
natural inclusion and ly: F(a) = 71 (RP!) — 71 (RP?) = Z5 as in Example 8.5.
Then,

L(r(2*y?)) = lg(a®) =0 and  ly(7(zy®)) = lg(a®) = 0.

Hence, there is a cellular map f: Kp — RP? such that f#}# = 7. By Proposi-

tion 8.6, if f is root free then the diophantine linear system

HHIMEH
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should have an integer solution. But it is easy to check that this system has no

integer solution. Therefore, f is not root free.
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