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EXISTENCE AND MULTIPLICITY
OF NONTRIVIAL SOLUTIONS

FOR SEMILINEAR ELLIPTIC DIRICHLET PROBLEMS
ACROSS RESONANCE

Xiaojun Chang — Yong Li

Abstract. With the linear growth of the nonlinearity and a new compact-

ness condition involving the asymptotic behavior of its potential at infinity,

we establish the existence and multiplicity results of nontrivial solutions for
semilinear elliptic Dirichlet problems. The nonlinearity may cross multiple

eigenvalues.

1. Introduction

This paper concerns the existence and multiplicity of nontrivial solutions for
the following semilinear elliptic Dirichlet boundary value problem

(1.1)
−∆u = f(x, u) in Ω,

u = 0 on ∂Ω,

where Ω ⊂ Rn(n ≥ 1) is an open bounded domain with smooth boundary ∂Ω
and f ∈ C(Ω× R,R).
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Define the functional J :H1
0 (Ω) → R by

J(u) =
1
2

∫
Ω

|∇u|2 −
∫

Ω

F (x, u) dx,

where F (x, u) =
∫ u

0
f(x, s) ds. Clearly, J ∈ C1(H1

0 (Ω),R) (see [31]) and

(∇J(u), z) =
∫

Ω

(∇u∇z − f(x, u)z) dx, for all u, z ∈ H1
0 (Ω).

Thus, u is a weak solution to (1.1) if and only if u is a critical point of J . Denote
by 0 < λ1 ≤ . . . ≤ λk ≤ . . . the eigenvalues of (−∆,H1

0 (Ω)). In order to find
nontrivial critical points of the functional J , one usually uses the well known
Mountain Pass Theorem presented by Ambrosetti and Rabinowitz in [2], where
they introduced the superquadraticity condition, that is, for some θ > 2 and
M > 0,

(AR)θ 0 < θF (x, s) ≤ f(x, s)s, for all |s| ≥M, uniformly for a.e. x ∈ Ω,

to ensure that the functional J satisfies the (PS) condition. Clearly, if the (AR)θ

condition holds, we have lim|s|→∞ F (x, s)/s2 = ∞, i.e. f(x, s) is superlinear with
respect to s at infinity. However, for some physical problems (see [32] and [33]),
the nonlinear term f(x, s) is asymptotically linear with respect to s at infinity
and (AR)θ is not satisfied. In 1994, D. G. Costa and C. A. Magalhães [12]
proposed the nonquadraticity conditions, i.e.

(F1)q lim sup
|s|→∞

F (x, s)
|s|q

≤ b <∞ uniformly for a.e. x ∈ Ω,

(F+
2 )µ lim inf

|s|→∞

sf(x, s)− 2F (x, s)
|s|µ

≥ a > 0 uniformly for a.e. x ∈ Ω,

(F−2 )µ lim sup
|s|→∞

sf(x, s)− 2F (x, s)
|s|µ

≤ −a < 0 uniformly for a.e. x ∈ Ω,

where µ > n(q − 2)/2, to ensure the compactness of J . Here the assumptions
(F±2 )µ allows the nonlinearity f(x, s) to be superlinear or asymptotically linear.
Note that (F±2 )µ implies that

(F2)± lim
|s|→∞

[sf(x, s)−2F (x, s)] = ±∞ uniformly for a.e. x ∈ Ω,

which is a weaker compactness condition and ensures that J satisfies a weak
version of the (PS) condition, namely the Cerami condition. Recently, H. S. Zhou
(see [36]) obtained some existence and multiplicity results of solutions of (1.1)
by assuming that

(1.2) lim
|s|→∞

f(x, s)
s

= l uniformly for a.e. x ∈ Ω,
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where l ∈ [λ1,∞) is a constant. Some relate results can be seen in [26], [34]
and [37]. There the fact that the limit of the ratio f(x, s)/s exists at infinity is
very important in their proofs to prove the compactness of the functional J .

In this paper, we obtain some existence and multiplicity results of nontrivial
solutions for the problem (1.1) under a new compactness condition. Motivated
by some ideas in [19], we prove that if f is of linear growth at infinity and the
ratio 2F (x, s)/s2 satisfies

(1.3) λk � α∞(x) ≤ lim inf
|s|→∞

2F (x, s)
s2

≤ lim sup
|s|→∞

2F (x, s)
s2

≤ β∞(x) � λk+1,

where k is a positive integer, α∞, β∞ ∈ L∞(Ω) and a(x) � b(x) denotes that
a(x) ≤ b(x) for almost every x ∈ Ω with a(x) < b(x) holding on some subset of
Ω with positive measure, then the functional J satisfies the (PS) condition. If
imposing some additional behavior of the ratio 2F (x, s)/s2 at zero and infinity,
we shall show that some nontrivial solutions of problem (1.1) are obtained. Note
that, under our conditions, the asymptotic behavior of the ratio f(x, s)/s at zero
or at infinity can cross several eigenvalues and the nonlinearity f satisfying (1.3)
may not satisfy any of the compactness conditions previously mentioned. Note
that if the asymptotic behavior of the ratio f(x, s)/s at infinity stays between
two consecutive eigenvalues λk and λk+1, which is usually called nonresonance
or double resonance, the (PS) condition was obtained in [28] and [15], respec-
tively. However, if the asymptotic behavior of the ratio f(x, s)/s at infinity stays
between any interval [A,B] with A ∈ (0, λm), B ∈ (λk,∞) (m ≤ k), i.e. the ratio
f(x, s)/s at infinity interacts with multiple eigenvalues of −∆ on H1

0 (Ω), neither
the Landesman–Lazer type condition (see [21]) nor the Ahmad–Lazer–Paul con-
dition (see [1]) holds and hence our results can not be covered by the previous
results. In fact, if we take f to be

f(x, s) =
λk + λk+1

2
s+ C0s sin s for x ∈ Ω, |s| ≥M > 0,

where C0 > 0 is sufficiently large, then we can obtain that, for |s| ≥M ,

F (x, s) =
λk + λk+1

2
s2

2
+ C0 sin s− C0s cos s

and then

lim
|s|→∞

2F (x, s)
s2

=
λk + λk+1

2
,

which implies that (1.3) is satisfied. In addition, it is easy to see that none
of the compactness conditions (AR)θ, (F2)±, (1.2), the Landesman–Lazer type
condition and the Ahmad–Lazer–Paul condition is satisfied. Furthermore, we
have

f(x, s)s− 2F (x, s) = C0[s2 sin s− 2 sin s− 2s cos s],
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which implies that

lim sup
|s|→∞

[f(x, s)s− 2F (x, s)] = +∞,

lim inf
|s|→∞

[f(x, s)s− 2F (x, s)] = −∞.

Hence the condition (F2)± doesn’t hold and so the nonquadraticity conditions
(F1)q − (F±2 )µ are not satisfied. On the other hand, note that

f(x, s)
s

=
λk + λk+1

2
+ C0 sin s

with C0 large enough for |s| ≥M , it follows that the range of the ratio f(x, s)/s
may cross multiple eigenvalues of (−∆,H1

0 (Ω)). Our methods are based on the
variational methods and the Leray–Schauder degree theory.

The paper is organized as follows. Section 2 contains the statements of our
main results. Some preliminary lemmas are obtained in Section 3. In Section 4,
we get the proof of Theorem 2.1. In Section 5, proofs of Theorem 2.3, 2.5 and 2.7
are given.

For convenience, we introduce some denotations. The space H1
0 (Ω) denoted

by H is provided with the inner product

〈u, v〉 =
∫

Ω

∇u · ∇v dx

and associated norm ‖·‖; Lp(Ω)(1 < p ≤ ∞) is the usual Sobolev space with inner
product and norm denoted by 〈 · , · 〉p and ‖ ·‖p, respectively; W k,p(k ≥ 0, p ≥ 1)
is the Sobolev space with norm

‖u‖k,p =
( ∑
|α|≤k

∫
Ω

|Dαu(x)|p dx
)1/p

;

Ck(Ω)(k ∈ Z+) denotes the space of all k-times continuously differentiable func-
tions defined on Ω with norm

‖u‖Ck =
k∑

i=0

‖Dku‖∞.

C1, C2, . . . denote (possibly different) positive constants.

2. Main results

We make the following assumptions:

(H1) f ∈ C(Ω× R,R), |f(x, s)| ≤ C1(1 + |s|) for almost every x ∈ Ω and all
|s| ≥M > 0.

(H2) f(x, 0) = 0 for almost every x ∈ Ω.
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(H3) λk � α∞(x) ≤ lim inf
|s|→∞

2F (x, s)
s2

≤ lim sup
|s|→∞

2F (x, s)
s2

≤ β∞(x) � λk+1,

k ≥ 2 is a positive integer.
(H4) 2F (x, s) ≤ η1s

2 for almost every x ∈ Ω, |s| ≤ δ0, where δ0 > 0, η1 ∈
(λm−1, λm) (λ0 = 0), m ≥ 1 is a positive integer.

(H5) 2F (x, s) ≥ λr−1s
2 for almost every x ∈ Ω, |s| ≤ δ1, where δ1 > 0, r ≥ 1

is a positive integer.

Our main results are as follows.

Theorem 2.1. Assume that (H1)–(H4) with m = 1 hold. Then problem
(1.1) admits at least two nontrivial solutions, one of which is positive, another
one is negative. Furthermore, we have the following results.

(a) If k is even, then problem (1.1) possesses at least three nontrivial solu-
tions, one of which is positive, another one is negative.

(b) If all the critical points of the functional J are nondegenerate, then
problem (1.1) admits at least four nontrivial solutions.

(c) If f ∈ C1(Ω× R,R) and there exists µ ∈ L∞(Ω) such that

(2.1) f ′(x, s) ≤ µ(x) � λk+1

for almost every x ∈ Ω and for all s ∈ R, then problem (1.1) admits at
least four nontrivial solutions.

Remark 2.2. For f(x, u) = f(u), H. Amann and E. Zehnder [4] proved that
there exists at least one nontrivial solution whenever the interval (f ′(0), f ′(∞))∪
(f ′(∞), f ′(0)) contains at least one eigenvalue, where f ′(0) = lim|s|→0 f(s)/s
and f ′(∞) = lim|s|→∞ f(s)/s. In [11], A. Castro and A. C. Lazer obtained that
under the conditions of H. Amann and E. Zehnder and the additional condition
f ′(s) < λk+1 for all s ∈ R, problem (1.1) has at least three solutions. In 1994,
A. Castro and J. Cossio [10] extended this result and proved that if there exists
k ≥ 2 such that

(2.2) f ′(0) < λ1 < λk < f ′(∞) < λk+1

and f ′(s) ≤ γ < λk+1 for all s ∈ R, then (1.1) has at least four nontrivial
solutions. In [16], J. Cossio and C. Vélez utilized mountain pass arguments and
Leray–Schauder degree to prove the existence of at least three nontrivial solutions
of problem (1.1) when k is an even positive integer. J. Cossio and S. Herrón [9]
applied the Morse index arguments of the type Lazer–Solimini to show that
there exist at least three nontrivial solutions if (2.2) hold and all the critical
points of the functional J are nondegenerate. We should also mention the work
of T. Bartsch, K. C. Chang and Z.-Q. Wang [6] who applied the Morse theory
to obtain four nontrivial solutions of problem (1.1) under the assumption (2.2)
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and f ′(s) > f(s)/s, for all s > 0. When double resonance occurs at infinity,
V. O. V. De Paiva [18] proved the existence of at least three nontrivial solutions
by computing critical groups under the conditions

f ′(x, 0) < λ1 < λk � lim inf
|s|→∞

f(x, s)
s

≤ lim sup
|s|→∞

f(x, s)
s

� λk+1,

where k ≥ 2. Moreover, if f(x, s)/s is strictly increasing on s ≤ 0 and strictly
decreasing with respect on s ≤ 0, he obtained the existence of at least four
nontrivial solutions. Recently, S. J. Li and Z. T. Zhang [25] also dealt with the
case that resonance occur at infinity:

f ′(0) < λ1 < f∞ = lim
|s|→∞

f(s)
s

= λk,

whose result still depends on the global bound of the derivative of the nonlinear-
ity. Some related results can also be found in [24] and [27]. Involving the ratio
2F (x, s)/s2, J. Mawhin, J. R. Ward and M. Willem [29] obtained the solvability
of (1.1) by assuming the ratio 2F (x, s)/s2 to stay below the first eigenvalue λ1.
In [12], D. G. Costa and C. A. Magalhães obtained a nontrivial solution by as-
suming that f is of subcritical growth and satisfies the nonquadraticity condition
(F1)q − (F±2 )µ with the following condition

lim sup
|s|→0

2F (x, s)
s2

< λ1 < λk < lim inf
|s|→∞

2F (x, s)
s2

holds uniformly for almost every x ∈ Ω. In our results, we obtain multiple non-
trivial solutions by requiring that f is of linear growth and using the asymptotic
behavior of 2F (x, s)/s2 at infinity and zero. Thus, as shown in Section 1, the
ratio f(x, s)/s may interact with multiple eigenvalues of −∆. In addition, here
the nonquadraticity condition (F1)q–(F±2 )µ is not required.

Theorem 2.3. Assume that f ∈ C1(Ω × R,R) and (H1), (H3)–(H5) hold
with m = r < k. If there exists µ ∈ L∞(Ω) such that (2.1) holds, then problem
(1.1) admits at least two nontrivial solutions.

Remark 2.4. In [35], W. M. Zou and J. Q. Liu obtained at least two nontriv-
ial solutions of (1.1) by assuming (H3)–(H5) with m = r < k and the following
conditions:

(a) λk ≤ lim inf |s|→∞ f(x, s)/s uniformly for almost every x ∈ Ω and there
exists α ∈ C(Ω) such that f ′(x, s) ≤ α(x) � λk+1 for almost every
x ∈ Ω and s ∈ R.

(b) There exist µ ∈ (0, 2) and β ∈ C(Ω) such that

lim sup
|s|→∞

sf(x, s)− 2F (x, s)
|s|µ

≤ β(x) � 0 uniformly for a.e. x ∈ Ω.
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Comparing with their result, we don’t require the nonquadraticity condition (b)
which ensures J satisfies the (PS) condition. In addition, the condition λk ≤
lim inf |s|→∞ f(x, s)/s is replaced by the assumption that f is of linear growth
and λk � α∞(x) ≤ lim inf |s|→∞ 2F (x, s)/s2 and some crossing at infinity may
occur.

Theorem 2.5. Assume that (H1), (H3), (H4) hold with m = k. If the
following condition holds:

(2.3) 2F (x, s) ≥ λk−1s
2 for a.e. x ∈ Ω and for all s ∈ R,

then problem (1.1) admits at least one nontrivial solution u with J(u) > 0.

Remark 2.6. D. G. Costa and C. A. Magalhães [13] obtained at least
one nontrivial solution by assuming (H4) with m = k, (2.3) and λk < ν0 ≤
lim inf |s|→∞ 2F (x, s)/s2 to ensure the link geometry of J and the nonquadratic-
ity condition to ensure the compactness of J . Theorem 2.3 requires (H1), (H3)
but the nonquadraticity condition may be not satisfied.

Theorem 2.7. Assume that (H1) and (H3) hold. If there exist constants
η2 > λk+1 and δ2 > 0 such that

(2.4) 2F (x, s) ≥ η2s
2 for a.e. x ∈ Ω, |s| ≤ δ2

and

(2.5) 2F (x, s) ≤ λk+2s
2 for a.e. x ∈ Ω and for all s ∈ R,

then problem (1.1) admits at least one nontrivial solution u with J(u) < 0.

Remark 2.8. Since the work of H. Amann and E. Zehnder [4], some ex-
istence and multiplicity results were obtained by many authors (see [14], [17])
under the assumption λk < f ′(∞) < λk+1 < f ′(0) < λk+2. Here, we replace
the ratio f(x, s)/s by the ratio 2F (x, s)/s2 and some crossing of eigenvalues is
allowed.

3. Preliminary lemmas

Let φi (i = 1, 2, . . . ) denote the eigenfunction of the operator −∆ on H1
0 (Ω)

corresponding to the eigenvalue λi. Ei denotes the eigenspace corresponding to
λi (i ≥ 1) and Ni = E1⊕ . . .⊕Ei. Then H = Ni⊕N⊥

i . In addition, we indicate
by Pi the orthogonal projection in L2(Ω) onto Ei. We have the following results:

Lemma 3.1. Assume that (H1) and (H3) hold. Then the functional J satis-
fies the (PS) condition.

Proof. Assume that {un}n∈N ⊂ H be a (PS) sequence, i.e. for some M > 0,

(3.1) |J(un)| ≤M, J ′(un) → 0 as n→∞.
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It suffices to prove that {un}n∈N is bounded in H. Then a standard argument
shows that {un}n∈N has a convergent subsequence, which implies that J satisfies
the (PS) condition.

Since {un} is a (PS) sequence, there exists a sequence {εn} with εn → 0 in
H−1

0 (Ω) such that

(3.2) −∆un = f(x, un) + εn in H−1
0 (Ω).

By f is of linear growth at infinity it follows that un ∈ W 2,q(Ω) for some q > n

and by the regularity theory we can see that

‖un‖2,q ≤ C1‖un‖∞ + C2

holds for some C1, C2 > 0. Then by the Sobolev embedding W 2,q(Ω) ↪→ C1(Ω)
it follows that there exist constants C3, C4 > 0 such that

(3.3) ‖∇un‖∞ ≤ C3‖un‖∞ + C4.

Thus it suffices to prove that there exists some C5 > 0 such that

(3.4) ‖un‖∞ ≤ C5.

Assume by the contrary that there exists a sequence {un} satisfying (3.1) such
that

(3.5) ‖un‖∞ →∞ as n→∞.

Set zn = un/‖un‖∞. By the linear growth of f and the regularity theory, {zn}
remains bounded in W 2,q(Ω)(q > n) and so, passing to a subsequence if possible,
we have

zn ⇀ z0 weakly in W 2,q(Ω),(3.6)

zn → z0 strongly in C1(Ω).(3.7)

Clearly, ‖z0‖∞ = 1. On the other hand, for a further subsequence, f(un)/‖un‖∞
converges in L∞(Ω) with respect to the weak∗ topology and the limit function
can be written as m(x)z0(x), where |m(x)| ≤ C6, for almost every x ∈ Ω and
some C6 > 0. It follows that z0 satisfies

(3.8)
−∆z0 = m(x)z0 in Ω,

z0 = 0 on ∂Ω.

Moreover, we can obtain, up to a subsequence,

(3.9)
∫

Ω

∣∣∣∣f(x, un)
‖un‖∞

−m(x)z0(x)
∣∣∣∣ dx→ 0.
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Indeed, the fact that f(x, un)/‖un‖∞ converges to m(x)z0(x) in L∞(Ω) with
respect to the weak∗ topology means that∫

Ω

[
f(x, un)
‖un‖∞

−m(x)z0(x)
]
φdx→ 0 for all φ ∈ L1(Ω).

Then by the Lp theory we can see f(x, un)/‖un‖∞ converges weakly tom(x)z0(x)
in Lp(Ω) with 1 ≤ p <∞.

By the linear theory, we know that, for every h ∈ Lp(Ω)(p > 1), the problem

−∆w = h(x) in Ω,

w = 0 on ∂Ω,

has a unique classical solution w ∈ W 1,p
0 (Ω) ∩W 2,p(Ω). Furthermore, we have

‖w‖2,p ≤ C‖h‖p. Denote K as the operator mapping h onto w. It is easy to see
that K is invertible. Note that, by (H1), there exist some positive integer m and
M > 0 such that

|f(x, u)| ≤ λm|u|, for all |u| ≥M.

Then, for every ε > 0, there exists Cε > 0 such that

|f(x, u) · u| ≥ |f(x, u)|2

λm
− εu2 − Cε,

which implies that, if u is a solution of (1.1), then

(3.10)
∫

Ω

|f(x, u) · u| dx ≥
∫

Ω

|f(x, u)|2

λm
dx− ε

∫
Ω

u2 dx− Cεmeas(Ω)

=
m∑

j=1

1
λm

‖Pjf‖2
2 +

1
λm

‖(I − P )f‖2
2 − ε‖u‖2

2 − Cεmeas(Ω),

where P = P1 + . . .+ Pm.
On the other hand, we have∫

Ω

|f(x, u) · u| dx =
∫

Ω

|f(x, u) ·Kf(x, u)| dx(3.11)

≤
m∑

j=1

∫
Ω

|Pjf ·KPjf | dx+
∫

Ω

|(I − P )f ·K(I − P )f | dx

≤
m∑

j=1

1
λj

∫
Ω

|Pjf |2 dx+
1

λm+1

∫
Ω

|(I − P )f |2 dx

=
m∑

j=1

1
λj
‖Pjf‖2

2 +
1

λm+1
‖(I − P )f‖2

2.

Together (3.10) and (3.11), it follows that(
1
λm

− 1
λm+1

)
‖(I − P )f‖2

2 ≤
m∑

j=1

(
1
λj

− 1
λm

)
‖Pjf‖2

2 + ε‖u‖2
2 + Cεmeas(Ω).
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Hence, there exists constant M1 > 0 such that

(3.12) ‖f‖2 ≤M1‖Pf‖2.

Denote wn = zn − z0. Then wn satisfies

−∆wn =
f(x, un)
‖un‖∞

−m(x)z0(x) in Ω,

wn = 0 on ∂Ω,

which combing with (3.12) implies that

‖zn − z0‖2,2 = ‖wn‖2,2 ≤M1

∥∥∥∥P[
f(x, un)
un(x)

zn(x)−m(x)z0(x)
]∥∥∥∥

2

.

By the fact that f(x, un)/un(x)zn(x) converges weakly to m(x)z0(x) in L2(Ω)
and P is of finite dimensional, it follows that

zn → z0 strongly in W 2,2(Ω),

which implies that f(x, un)/‖un(x)‖∞ converges to some function %(x) in L2(Ω),
and for a subsequence,

f(x, un)
‖un(x)‖∞

→ %(x) uniformly for a.e. x ∈ Ω.

Thus it is easily seen that %(x) = m(x)z0(x) and (3.9) follows.

Claim 1. For any point x0 ∈ Ω, there exists x∗ ∈ ∂Ω, with the segment
[x0, x

∗] ⊂ Ω, such that, passing to a subsequence if possible,

(3.13)

∫ 1

0
f(x, un(x0 + t(x∗ − x0))) dt

‖un‖∞
→ 0 uniformly for a.e. x ∈ Ω,

where f(x, s) .= f(x, s)−m(x)s.

Proof. Fix x0 ∈ Ω. By (3.6), (3.7), (3.9), it follows that

(3.14)
∫

Ω

∣∣∣∣f(x, un)
‖un‖∞

∣∣∣∣ dx ≤ ∫
Ω

∣∣∣∣f(x, un)
‖un‖∞

−m(x)z0

∣∣∣∣ dx
+

∫
Ω

|m(x)zn −m(x)z0| dx→ 0.

Take

αn(x) =
f(x, un)
‖un‖∞

in Ω, αn(x) = 0 in BR0 \ Ω,

where BR0

.= {x ∈ Rn : ‖x− x0‖Rn ≤ R0}. Then by (3.14) we can see that

(3.15)
∫

B0

|αn(x)| dx→ 0.

Now we introduce spherical coordinates in Rn. Without loss of generality, we sup-
pose that x0 is the origin of Rn. We denote x ∈ BR0 as x = (x1, . . . , xn). Take
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x1 = r cos θ1, x2 = r sin θ1 cos θ2, . . . , xn−1 = r sin θ1 . . . sin θn−2 cos θn−1, xn =
r sin θ1 . . . sin θn−2 sin θn−1, where r ∈ [0, R0], θi ∈ [0, π], i = 1, . . . , n − 2,
φ ∈ [0, 2π]. From (3.15) it follows that∫

[0,π]n−2×[0,2π]

( ∫ R0

0

|αn(x(r, θ1, . . . , θn−2, φ))|

· D(x1, . . . , xn)
D(r, θ1, . . . , θn−2, φ)

dr

)
dθ1 . . . dθn−2 dφ→ 0,

where
D(x1, . . . , xn)

D(r, θ1, . . . , θn−2, φ)
= rn−1(sin θ1)n−2(sin θ2)n−3 . . . (sin θn−2).

Then, passing to a subsequence if possible, for almost every (θ1, . . . , θn−2, φ),∫ R0

0

|αn(x(r, θ1, . . . , θn−2, φ))|rn−1 dr → 0.

For a further subsequence, we obtain that, for almost every (θ1, . . . , θn−2, φ),

αn(x(r, θ1, . . . , θn−2, φ)) → 0,

for almost every r ∈ [0, R0]. Then, for almost every x ∈ ∂BR0 , there exists
a subsequence of {αn}, we still denote it by {αn}, such that

αn(x0 + t(x− x0)) → 0,

for almost every t ∈ [0, 1]. Since the functions αn are uniformly bounded almost
every in B, we obtain by the Lebesgue dominated convergence theorem that∫ 1

0

αn(x0 + t(x− x0)) dt→ 0.

Hence, taking x∗ ∈ [x0, x] ∩ ∂Ω such that

|x∗ − x0| = min{|x− x0| : x ∈ [x0, x] ∩ ∂Ω},

we can see that (3.13) holds. �

We now distinguish three cases:

(i) z0 ≥ 0 in Ω,
(ii) z0 ≤ 0 in Ω,
(iii) z0 changes sign in Ω.

It will be shown in the following that each case leads to a contradiction. For
convenience we denote sn = maxun and tn = minun.

Case (i). In this case we have sn = ‖un‖∞ → +∞ and {tn} are bounded.
By (1.3), we get

(3.16) lim inf
n→∞

2F (x, sn)
s2n

= η(x)
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with

(3.17) λk � η(x) � λk+1 for a.e. x ∈ Ω.

Define F (x, s) =
∫ s

0
f(x, t) dt. Then by (3.16) it follows that

(3.18) lim inf
n→∞

2F (x, sn)
s2n

= lim sup
n→∞

[
2F (x, sn)

s2n
−m(x)

]
= η(x)−m(x).

By (3.18), there exists some subset Ω0 of Ω with positive measure such that

(3.19) η(x)−m(x) 6= 0 for a.e. x ∈ Ω0.

Indeed, if not, we have m(x) = η(x) for a.e. x ∈ Ω. However, this together with
(3.17) implies that z0 ≡ 0, which is contrary to that ‖z0‖∞ = 1.

For all n, let xn ∈ Ω be such that un(xn) = maxx∈Ω un(x). Passing to
a subsequence if possible, we can suppose that xn → x0 ∈ Ω, and we have
v(x0) = maxx∈Ω v(x). Let x∗ ∈ ∂Ω be a point provided by Claim 1. Set

γ(t) = x∗ + t(x0 − x∗), γn(t) = x0 + t(xn − x0),

where t ∈ [0, 1]. Then by the linear growth of f , the boundedness of Ω and (3.3)
we have

|F (x, sn)| = |F (x, sn)− F (x, 0)|
= |F (x, sn)− F (x, un(x0)) + F (x, un(x0))− F (x, 0)|

=
∣∣∣∣ ∫ 1

0

f(x, un(γn(t)))(un(xn)− un(x0))

+
∫ 1

0

f(x, un(γ(t)))(un(x0)− un(x∗))
∣∣∣∣

=
∣∣∣∣ ∫ 1

0

f(x, un(γn(t)))(∇un · (xn − x0)) dt

+
∫ 1

0

f(x, un(γ(t)))(∇un · (x0 − x∗)) dt
∣∣∣∣

≤
∫ 1

0

|f(x, un(γn(t)))|
‖un‖∞

dt‖un‖∞‖∇un‖|xn − x0|

+
∣∣∣∣ ∫ 1

0

f(x, un(γ(t)))
‖un‖∞

dt‖un‖∞‖∇un‖diam(Ω)
∣∣∣∣

≤C7

(
|xn − x0|+

∣∣∣∣ ∫ 1

0

f(x, un(γ(t)))
‖un‖∞

dt

∣∣∣∣)s2n,
for some C7 > 0. Thus, by xn → x0 and Claim 1 it follows that∣∣∣∣F (x, sn)

s2n

∣∣∣∣ → 0 uniformly for a.e. x ∈ Ω,
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which leads to a contradiction with (3.18) and (3.19). Hence, (3.5) can’t hold
and so the conclusion follows.

Case (ii). In this case tn = −‖un‖∞ → −∞ and {sn} are bounded. Then
we can get a contradiction using an argument similar to the proof of Case (i).
We omit it here.

Case (iii). We first prove that there exists a constant n ∈ Z+ and 0 < κ1 <

1 < κ2 such that

(3.20) κ1 ≤
maxun

−minun
≤ κ2

for all n ≥ n. Indeed, if not, we assume by contradiction, that there exists
a subsequence of {un}, we still denote it as {un} with maxun →∞ and minun →
−∞, such that

either
maxun

−minun
→ 0 or

maxun

−minun
→∞.

By z0 changes sign in Ω and the fact that ‖z0‖∞ = 1 it follows that

max(un/‖un‖∞)
−min(un/‖un‖∞)

→ max z0
−min z0

= η ∈ (0,∞).

A contradiction. Thus (3.20) holds. Hence we have

(3.21) sn →∞ and tn → −∞.

The other parts can be treated as in Case (i).
In a word, we obtained a contradiction to (3.5). Thus by (3.3) it follows that

{un}n∈N is bounded in H and standard arguments imply that J satisfies the
(PS) condition.

The proof of Lemma 3.1 is complete. �

Lemma 3.2. Assume that f satisfies (H1) and (H4). Then there exist ρ0 > 0
and r0 > 0 such that

J(u) ≥ ρ0 for ‖u‖ = r0, u ∈ N⊥
m−1.

Proof. By (H1), there exists l > λm + 1 large enough such that

2F (x, s) ≤ ls2 for |s| ≥ δ0, a.e. x ∈ Ω.

It is easily seen that

(3.22) 2F (x, s) ≤ 2ls2 − lδ20 for |s| ≥ δ0, a.e. x ∈ Ω.

Denote N⊥
m−1 = V1 ⊕W1, where

V1 = span{φm, . . . , φγ−1}, W1 = span{φγ , . . . }.
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Here γ is large enough such that λγ > 2η2
1/(λm − η1)+ 5l+2η1. For u = N⊥

m−1,
write u = v + w, where v ∈ V1 and w ∈ W1. Since V1 is of finite dimensional,
there exists a constant Cγ−1 such that

(3.23) ‖u‖L∞ ≤ Cγ−1‖u‖ for all u ∈ V1.

Let
ϑ =

λm + η1
4

v2 +
1
4
λγw

2 − F (x, v + w).

If |v + w| ≤ δ0, then by (2.4) and the choose of γ it follows that

ϑ ≥ λm + η1
4

v2 +
1
4
λγw

2 − 1
2
η1v

2 − 1
2
η1w

2 − η1|v||w|(3.24)

≥ 1
4
(λm − η1)v2 +

1
4
(λγ − 2η1)w2 − η1|v||w|

≥
[
1
2
(λm − η1)1/2(λγ − 2η1)1/2 − η1

]
|v||w| ≥ 0.

If |v + w| > δ0, then by (3.22) and the choose of γ we get

ϑ ≥ λm + η1
4

v2 +
1
4
λγw

2 − lv2 − lw2 − lvw +
1
2
lδ20(3.25)

≥ 1
4
(λγ − 4l)w2 + lv2 +

(
λm + η1

4
− 2l

)
v2 − l|v||w|+ 1

2
lδ20

≥ [(λγ − 4l)1/2l1/2 − l]|v||w| −
(

2l − λm + η1
4

)
v2 +

1
2
lδ20

≥ −
(

2l − λm + η1
4

)
v2 +

1
2
lδ20 .

Let
Ω1

.= {x ∈ Ω : |v + w| ≤ δ0}, Ω2
.= {x ∈ Ω : |v + w| ≥ δ0}

and

ξ0
.=

3
4(Cγ−1)2(8l − λm − η1)

(
1− η1

λm

)
.

Then by (3.24)–(3.25) we have∫
Ω

ϑ dx =
∫

Ω1

ϑ dx+
∫

Ω2

ϑ dx(3.26)

≥
∫

Ω2

[
−

(
2l − λm + η1

4

)
v2 +

1
2
lδ20

]
dx.

Hence

J(u) = J(v + w) =
1
2
‖v‖2 +

1
2
‖w‖2 −

∫
Ω

F (x, v + w) dx

≥ 1
4
‖v‖2 +

1
4
‖w‖2 +

1
4
λm‖v‖2

2 +
1
4
λγ‖w‖2

2 −
∫

Ω

F (x, v + w) dx

≥ 1
4

(
1− η1

λm

)
‖v‖2 +

1
4
‖w‖2 +

∫
Ω

ϑ dx.
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If meas Ω2 ≥ ξ0, then by (3.26) and the choose of l it follows that

(3.27) J(u) ≥
[
1
4

(
1− η1

λm

)
−

(
2l − λm + η1

4

)]
‖v‖2 +

1
4
‖w‖2 +

1
2
lδ20ξ0

≥
[
1
4

(
1− η1

λm

)
−

(
2l − λm + η1

4

)]
‖u‖2 +

1
2
lδ20ξ0

≥ −δ1‖u‖2 +
1
2
lδ20ξ0,

where δ1 = (8l − λm − η1 − 1)/4 > 0.
If meas Ω2 < ξ0, then by (3.23), (3.26) and the definition of ξ0 we get

J(u) ≥ 1
4

(
1− η1

λm

)
‖v‖2 +

1
4
‖w‖2(3.28)

−
(

2l − λm + η1
4

)
C2

γ−1‖v‖2meas Ω2

≥ 1
4

(
1− η1

λm

)
‖u‖2 − 3

16

(
1− η1

λm

)
‖v‖2

≥ 1
16

(
1− η1

λm

)
‖u‖2.

By (3.27)–(3.28) we may find ρ0, r0 > 0 such that J(u) ≥ ρ0 for u ∈ N⊥
m−1 with

‖u‖ = r0. �

Lemma3.3. Assume that (H1) and (H3) hold. Then

(a) For any v ∈ Nk, J(v + w) →∞ as w ∈ N⊥
k and ‖w‖ → ∞;

(b) J(v) → −∞ as v ∈ Nk and ‖v‖ → ∞.

Proof. We just prove (a), for (b) see Proposition 2(d) in [15]. Define

ζ(w) .=
∫

Ω

[|∇w|2 − β∞(x)w2] dx, w ∈ N⊥
k .

Clearly, by
∫
Ω
|∇w|2 dx ≥ λk+1‖w‖2

2 for all w ∈ N⊥
k , we have

(3.29) ζ(w) ≥
∫

Ω

[λk+1 − µ(x)]w2 dx ≥ 0, for all w ∈ N⊥
k .

We claim that there exist µ2,M > 0 such that

(3.30) ζ(w) ≥ µ2‖w‖2 for w ∈ N⊥
k with ‖w‖ ≥M.

Indeed, we assume, by contradiction, that (3.30) doesn’t hold. Then there exists
a sequence {wn} ⊂W with ‖wn‖ → ∞ such that β(wn)/‖wn‖2 → 0 as n→∞.
Let zn = wn/‖wn‖. Then ‖zn‖ = 1. Passing, if necessary, to a subsequence we
assume that zn ⇀ z0 ∈ W weakly and zn → z0 in C(Ω) with ‖z0‖ = 1. Clearly,
z0 is not identical to 0 and hence by zn, z0 ∈W it follows that

(3.31) 0 ≤ β(z0) ≤ lim inf β(zn) = 0,
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which implies that

0 = β(z0) ≥
∫

Ω

[|∇z|2 − λk+1z
2
0 ] dx ≥ 0.

Thus z0 is an eigenfunction corresponding to λk+1. Note that (2.1), (3.29) and
(3.31) imply that z0 = 0 on the set Ω1

.= {x ∈ Ω : µ(x) < λk+1}, by the unique
continuation principle we get z0 ≡ 0. A contradiction. Thus (3.30) holds.

Let 0 < ε < µ2λk+1. Owing to (H3) there exists Mε ∈ L1(Ω) such that

F (x, s) ≤ 1
2
(β∞(x) + ε)s2 +Mε(x) for a.e. x ∈ Ω and all s ∈ R.

Hence, for u = v + w ∈ H = Nk ⊕N⊥
k , we have

J(u) =
1
2
‖v + w‖2 −

∫
Ω

[F (x, v + w)] dx

≥ 1
2
(‖v‖2 + ‖w‖2)− 1

2

∫
Ω

(β∞(x) + ε)(v2 + w2) dx−
∫

Ω

Mε(x) dx

=
1
2
ζ(w)− 1

2
ε

∫
Ω

w2 dx+
1
2
‖v‖2 − 1

2

∫
Ω

(β∞(x) + ε)v2 dx− ‖Mε‖1

≥ 1
2

(
µ2 −

ε

λi+1

)
‖w‖2 +

1
2
‖v‖2 − 1

2

∫
Ω

(β∞(x) + ε)v2 dx− ‖Mε‖1.

Obviously, (µ2 − ε/λi+1)/2 > 0. Thus it follows that for given v ∈ Nk we have
J(v + w) →∞ as w ∈ N⊥

k and ‖w‖ → ∞. �

4. Proof of Theorem 2.1

Proof of The First Part of Theorem 2.1. Consider the following
truncated problem

−∆u = f+(x, u) in Ω,

u = 0 on ∂Ω,

where f+(x, s) = f(x, s), if s ≥ 0, f+(x, s) = 0, if s < 0. Define the functional
J+:H → R by

J+(u) =
∫

Ω

[
1
2
|∇u|2 − F+(x, u)

]
dx,

where F+(x, u) =
∫ u

0
f+(x, s) ds. By (H1), J+ ∈ C1(H,R) (see [31]). Similar

arguments as in the proof of Lemma 3.1 imply that J+ satisfies the (PS) condi-
tion. In the following we shall show that the functional J+ has a mountain pass
geometry. Precisely, we shall prove that J+ satisfies:

(a) There exists r, δ > 0 such that J+(u) ≥ δ for all u ∈ H1
0 (Ω) with

‖u‖ = r.
(b) J+(tφ1) → −∞ as t→∞.
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(a) By Lemma 3.2 with m = 1, this is an immediate consequence of condition
(H4) with m = 1.

(b) By (H1) and (H3), there exists M2 ∈ R and A0 ∈ (λk, λk+1) such that

2F+(x, s) ≥ A0|s|2 +M2 for s ≥ 0.

Then we have

J+(tφ1) =
∫

Ω

t2

2
|∇φ1|2 dx−

∫
Ω

F+(x, tφ1) dx

≤ t2

2
λ1

∫
Ω

|φ1|2 dx−
t2

2
A0

∫
Ω

|φ1|2 dx−M2|Ω|

=
t2

2
[λ1 −A0]

∫
Ω

|φ1|2 dx−M2|Ω|.

By λ1 −A0 < λ1 − λk < 0 it follows that J+(tφ1) → −∞ as t→∞. Therefore,
by the Mountain Pass Theorem, J+ has a critical point u+ with J+(u+) > 0,
which implies that the functional J has a nontrivial critical point u+ ≥ 0. By
the Maximum Principle it follows that u+ > 0 in Ω. Similar arguments show
that J admits a nontrivial critical point u− < 0. �

Lemma 4.1. If P is a bounded region containing the positive solution u+ of
(1.1) and no other critical point of J then

(4.2) deg(∇J, P, 0) = −1.

If N is a bounded region containing the negative solution u− of (1.1) and no
other critical point of J then

(4.3) deg(∇J,N, 0) = −1.

Proof. Since u+ and u− are all of mountain pass type, the conclusion fol-
lows immediately by a result of H. Hofer [20]. �

Lemma 4.2. If 0 is an isolated critical point, then there exists ρ1 small such
that deg(∇J,Bρ, 0) = 1, for all 0 < ρ ≤ ρ1, where Bρ = {x ∈ Rn : |x| < ρ}.

Proof. Similar arguments as in the proof of the first part of Theorem 2.1
imply that 0 is a strict local minimizer of J . Then the conclusion is obtained by
Corollary 2 of H. Amann [3]. �

Lemma 4.3. Assume that (H1) and (H3) hold. If u is a solution of (1.1),
then there exists constant C > 0 such that ‖u‖C1 ≤ C.

Proof. Since f is of linear growth at infinity, any solution u ∈ H1
0 (Ω) of

(1.1) belongs to W 2,q(Ω) for some q > n and we obtain by the regularity theory
that ‖u‖2,q ≤ C‖u‖∞ + C. Then by the Sobolev embedding W 2,q

0 ↪→ C1(Ω) it
follows that there exists constant C8 > 0 such that, for any solution of (1.1),
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‖∇u‖∞ ≤ C8‖u‖∞ +C8. Thus it suffices to prove that any solution u of (1.1) is
bounded in L∞(Ω). This can be treated as in the proof of Lemma 3.1. We omit
it here. �

Denote µ0 = (λk + λk+1)/2. Then the following problem

−∆u = µ0u, in Ω, u = 0, on ∂Ω

has the only weak solution 0. Define

Ψ(u) =
1
2

[
‖u‖2 −

∫
Ω

µ0u
2 dx

]
, for all u ∈ H.

Then 0 is the only critical point of Ψ. By the Riesz representation theorem there
is a continuous map N on H such that, for each u ∈ H,

(N(u), v) =
∫

Ω

µ0uv dx, for all v ∈ H.

By the Sobolev embedding theorem it follows that N is compact. In view of

(∇Ψ(u), v) = (u, v)− (N(u), v), for all u, v ∈ H,

we have ∇Ψ = I −N . Denote BR = {u ∈ H : ‖u‖ ≤ R, R ∈ R+}. We have the
following result.

Lemma 4.4. There exists R0 > 0 such that deg(∇Ψ, BR, 0) = (−1)k for
R ≥ R0.

Proof. Since

deg(∇Ψ, BR, 0) = deg(id−N,B0, 0) = indexLS(id−N, 0) = (−1)β ,

where

β =
∑

λj>1, λj∈σ(N)

βj , βj = dim
∞⋃

i=1

ker(λj · id−N)i,

it suffices to compute indexLS(id−N, 0). If Nu = λu for some λ ∈ R and u 6= 0,
then we have

(Nu, v) =
∫

Ω

ρuv dx =
∫

Ω

λ∇u · ∇v dx, for all u, v ∈ H,

which implies that λ = µ0/λi for some i ∈ Z+. By λk < µ0 < λk+1, we obtain
that λ > 1 holds for all i ≤ k, which implies that deg(∇Φ, BR, 0) = (−1)k for all
R ≥ R0. �

Applying above lemma, we can obtain the following result.
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Lemma 4.5. Assume that (H1)–(H3) hold. Then there exists R1 > 0 such
that

deg(∇J,BR, 0) = (−1)k for R ≥ R1.

Proof. Consider the following auxiliary problem:

−∆u = λf(x, u) + (1− λ)µ0u ≡ fλ(x, u), for x ∈ Ω, λ ∈ [0, 1], u|∂Ω = 0.

Define

Jλ(u) =
∫

Ω

[
1
2
|∇u|2 dx− Fλ(x, u)

]
dx,

where Fλ(x, u) =
∫ u

0
fλ(x, s) ds. By (H1)–(H3) and the definition of µ0, we can

see from Lemma 4.3 that there exists R1 > 0 large enough such that,

∇Jλ|∂BR
(u) 6= 0, for all R ≥ R1,

uniformly for λ ∈ [0, 1]. Then by the homotopy invariance of the Leray–Schauder
degree and Lemma 4.4, we obtain that

deg(∇J,BR, 0)=deg(∇J1, BR, 0)=deg(∇J0, BR, 0)=deg(∇Ψ, BR, 0)=(−1)k,

for all R ≥ R1. �

Proof of Theorem 2.1(a). Suppose that the set of all critical points of
the functional J is finite. The assumptions (H1)–(H3) and Lemma 4.3 imply
that the solutions of (1.1) are bounded, so there exists C > 0 large enough such
that if u is a critical point of J then ||u|| ≤ C. Take R ≥ max{R1, C}. Then
from Lemma 4.5 and the fact that k is even it follows that

(4.6) deg(∇J,BR, 0) = 1.

By Lemmas 4.1 and 4.2, there exist ρ ∈ (0, ρ1) and r1 > 0 small sufficiently such
that

Bρ ∩Br1(u
+) = ∅, Bρ ∩Br1(u

−) = ∅, Br1(u
+) ∩Br1(u

−) = ∅,
Bρ, Br1(u

+), Br1(u
−) ⊂ BR

with

deg(∇J,Bρ, 0) = 1,(4.7)

deg(∇J,Br1(u
+), 0) = −1, deg(∇J,Br1(u

−), 0) = −1.(4.8)

By the additivity and excision properties of the Leray-Schauder degree, we have

deg(∇J,BR \ (Bρ ∪Br1(u+) ∪Br1(u−)), 0)

= deg(∇J,BR, 0)− deg(∇J,Bρ, 0)− deg(∇J,Br1(u
+), 0)

− deg(∇J,Br1(u
−), 0)− deg(∇J,BR \ (Bρ ∪Br1(u+) ∪Br1(u−)), 0).
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From (4.6)–(4.8) and the excision property of the Leray–Schauder degree we
obtain

deg(∇I,BR \ (Bρ ∪Br1(u+) ∪Br1(u−)), 0) = 2.

Hence, by the existence property of the Leray–Schauder degree we can see that
there exists u∗ ∈ BR \ (Bρ ∪Br1(u+) ∪Br1(u−)) such that ∇J(u∗) = 0, which
together with u+, u− gives the existence of at least three nontrivial solutions of
problem (1.1). This completes the proof. �

Proof of Theorem 2.1(b). Firstly we shall show that the functional J
satisfies the hypotheses of the Saddle Point Theorem. In fact, since f is con-
tinuous and satisfies (H1)–(H3) it follows that J ∈ C1(H,R). Furthermore, by
Lemma 3.1, J satisfies the (PS) condition. Consequently, it suffices to show that
the functional J satisfies the saddle point geometry. But this can be obtained
by a similar argument as in [9]. Hence, using Lemma 1.1 of [24], since J has
finite critical points which are all nondegenerate, there exists a critical u∗ with
Morse index equal to dimV = k + 1 ≥ 2. Moreover, in view of that 0 is a local
minimum of J and J(0) = 0, it follows that u∗ is nontrivial. On the other hand,
since J has a nontrivial positive solution u+ and a nontrivial negative solution
u− which are all nondegenerate and of mountain pass type, by [22] it follows
that u+ and u− are all of Morse index less that or equal to 1. Then

u∗ 6= u+ and u∗ 6= u−.

Now, similar as the arguments in the proof of Theorem 2.1(a), we can take
ρ ∈ (0, ρ1) and r2, τ > 0 small sufficiently such that

Bρ ∩Br2(u
+) = ∅, Bρ ∩Br2(u

−) = ∅, Bρ ∩Bτ (u∗) = ∅,
Br2(u

+) ∩Bτ (u∗) = ∅, Br2(u
−) ∩Bτ (u∗) = ∅, Br2(u

+) ∩Br2(u
−) = ∅,

Bρ, Br2(u
+), Br2(u

−),Bτ (u∗) ⊂ BR

with

deg(∇J,Bρ, 0) = 1,(4.9)

deg(∇J,Br2(u
+), 0) = −1, deg(∇J,Br2(u

−), 0) = −1.(4.10)

By the additivity and excision properties of the Leray–Schauder degree, we get

deg(∇J,BR, 0) = deg(∇J,Bτ (u∗), 0) + deg(∇J,Bρ, 0)

+ deg(∇J,Br2(u
+), 0) + deg(∇J,Br2(u

−), 0)

+ deg(∇J,BR \ (Bτ (u∗) ∪Bρ ∪Br2(u+) ∪Br2(u−)), 0).

Since all the critical points of I are nondegenerate, we have

(4.11) |deg(∇J,Bτ (x∗), 0)| = 1.



Semilinear Elliptic Dirichlet Problems Across Resonance 305

Then, from (4.9)–(4.11) and the excision property of the Leray–Schauder degree,
we obtain

deg(∇J,BR \ (Bτ (u∗) ∪Bρ ∪Br2(u+) ∪Br2(u−)), 0) 6= 0.

Hence by the existence property of the Leray–Schauder degree it follows that
there exists u4 ∈ BR\(Bτ (u∗) ∪Bρ ∪Br2(u+) ∪Br2(u−)) such that∇J(u4) = 0.
Thus problem (1.1) has at least four nontrivial solutions: u+, u−, u∗, u4. �

Before proving Theorem 2.1(c), we recall a global version of the Lyapunov–
Schmidt method.

Lemma 4.6 ([10]). Let H be a real separable Hilbert space. Let V and W be
closed subspaces of H such that H = V ⊕W . Assume that J ∈ C1(H,R). If
there are µ1 > 0 and τ1 > 1 such that

(∇J(v + w1)−∇J(v + w2), w1 − w2) ≥ µ1‖w1 − w2‖τ1

for all v ∈ V , w1, w2 ∈W , then we have:

(a) There exists ψ ∈ C(V,W ) such that

J(v + ψ(v)) = min
w∈W

J(v + w).

Moreover, ψ(x) is the unique member of W such that

(∇J(v + ψ(v), w) = 0 for all w ∈W.

(b) If we define J(v) = J(v + ψ(v)), then J ∈ C1(V,R) and

(∇J(v), v1) = (∇J(v + ψ(v), v1) for all v, v1 ∈ V.

(c) An element v ∈ V is a critical point of J if and only if v + ψ(v) is
a critical point of J .

(d) Let dimX < ∞ and P be the projection onto V across W . Let S ⊂ V

and D ⊂ H be open bounded regions such that

{v + ψ(v) | v ∈ S} = D ∩ {v + ψ(v) | v ∈ V }.

If ∇J(v) 6= 0 for v ∈ ∂S, then

deg(∇J, S, 0) = deg(∇J,D, 0).

(e) If x0 = v0 + w0 is a critical point of mountain pass type of J , then v0
is a critical point of mountain pass type of J .

Proof of Theorem 2.1(c). Denote V = Nk and W = N⊥
k . Define the

functional β(w):W → R by

β(w) =
∫

Ω

[|∇w|2 − µ(x)w2] dx, for all w ∈W.
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As in the proof of Lemma 2.3, we can see that there exist δ,M > 0 such that

(4.12) β(w) ≥ δ‖w‖2, ‖w‖ ≥M.

By the mean value theorem it follows that

(∇J(v + w) −∇J(v + w1), w − w1)

=
∫

Ω

[|∇w −∇w1|2 − f ′(x, ξ(x))(w − w1)2] dx

≥
∫ 2π

0

[|∇w −∇w1|2 − µ(x)(w − w1)2] dx

≥
(

1− δ

λk+1

)
‖w − w1‖2.

Then by Lemma 4.6 there exists ψ:V →W such that

J(v + ψ(v)) = min
w∈W

J(v + w).

Moreover, ψ(v) is the unique element of W such that

(∇J(v + ψ(v)), w) = 0 for all w ∈W.

Define I:V → R by
I(v) = J(v + ψ(v)).

Then I is of class C1, and

(∇I(v), v1) = (∇J(v + ψ(v))(u), u1) for all v, v1 ∈ V.

By (H3), it is easily seen that

J(v) → −∞ as ‖v‖ → ∞ and v ∈ V.

Then in view of I ≤ J(v), we can obtain that

I(v) → −∞ as ‖v‖ → ∞ and v ∈ V.

Since V is of finite dimension, there exists v0 ∈ V such that

(4.13) I(v0) = max
v∈V

J(v + ψ(v)).

Then u0 = v0 +ψ(v0) is a critical point of J , i.e. ∇J(u0) = 0. Suppose that v0 is
an isolated critical point of I, so u0 is an isolated critical point of J . By (4.13),
v0 is a strictly local maximum of the functional I. Then there exists v̂ in some
neighborhood S0 of v0 such that I(v̂) < I(v0), i.e.

J(v̂ + ψ(v̂)) < J(v0 + ψ(v0)),

which means that u0 can’t be local minimum of the functional J . Thus u0 is
nontrivial. On the other hand, if we denote u+ = v+ + ψ(v+), then by Lemma
4.6 we can see that v+ is a critical point of mountain pass type of I, which
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implies u0 6= u+. Similarly, u0 6= u−. Furthermore, denoting Bσ(u0) = {u ∈ H |
‖u− u0‖ ≤ σ}, by (4.13) there exists σ0 > 0 small such that

deg(∇I,Bσ(u0) |V , 0) = (−1)k, for all 0 < σ ≤ σ0.

Hence from Lemma 4.6 it follows that

deg(∇J,Bσ(u0), 0) = (−1)k, for all 0 < σ ≤ σ0.

Now similar arguments as in the proof of Theorem 2.1(b) implies that there
exists at least a nontrivial critical point u4 of J that different from u0, u+, u−.�

5. Proof of Theorems 2.3, 2.5 and 2.7

Proof of Theorem 2.3. As in the proof of Theorem 2.1(c), there exists
ψ:Nk → N⊥

k such that J(v + ψ(v)) = minw∈N⊥k
J(v + w). Moreover, the func-

tional I:Nk → R defined by I(v) = J(v + ψ(v)) is of class C1 and an element
v ∈ Nk is a critical point I if and only if u = v + ψ(v) is a critical point
of J . By Lemma 3.3(b), we can obtain that I(v) → −∞ as ‖v‖ → ∞ and
v ∈ Nk. Thus −I is bounded below on Nk. Denote H1 = E1 ⊕ . . . ⊕ Er−1 and
H2 = Er ⊕ . . .⊕ Ek−1. Since dimH1 <∞, there exists C9 > 0 such that

‖u‖∞ ≤ C9‖u‖, for all u ∈ H1.

Then by (2.5), there exists δ̃1 > 0 such that, for u ∈ H1 with ‖u‖ ≤ δ̃1,

(5.1) −I(u) ≥ −J(u) ≥ −1
2
‖u‖2 +

1
2

∫
Ω

λr−1u
2 dx ≥ 0.

On the other hand, by Lemma 3.2 and the fact that ψ:H1 ⊕ H2 → N⊥
k−1 is

of C1, denoting z = u + ψ(u), there exists δ̃2 > 0 such that, for u ∈ H2 with
‖u‖ ≤ δ̃2,

(5.2) −I(u) = −J(u+ ψ(u)) ≤ −1
2
‖z‖2 +

∫
Ω

F (x, z) dx ≥ 0.

Take δ∗ = min{δ̃1, δ̃2}. Then (5.1) and (5.2) imply that −I has the geometry
of local linking at 0 on H1 ⊕ H2. Since J satisfies the (PS) condition, the
functional −I also satisfies the (PS) condition (see [5]). Now, by the Local
Linking Theorem(see [8], [23]) it follows that −I and hence J has at least two
nontrivial critical points. �

Proof of Theorem 2.5. By Lemma 3.1, the functional J satisfies the (PS)
condition. By (2.3) we get

J(u) ≤
∫

Ω

1
2
[|∇u|2 dx− λk−1u

2]dx ≤ 0, for all u ∈ Nk−1.

In view of Lemma 3.3(b), there exists R sufficiently large such that J(u) < 0 for
u ∈ Nk with ‖u‖ = R. From (H1), (H3) and (H4) with m = k it follows that



308 X. Chang — Y. Li

there exist r0 > 0 such that J(u) ≥ ρ0 for ‖u‖ = r0, u ∈ N⊥
k−1. Hence by the

Benci–Rabinowitz Linking Theorem (see [7]) we can see that the functional J
admits a nontrivial critical point u ∈ H with J(u) ≥ ρ0 > 0. �

To prove Theorem 2.7, we need the following abstract result.

Lemma 5.1 ([30]). Let X = X1 ⊕ X2 be a Banach space with 0 < k =
dimX1 <∞. Suppose that J ∈ C1(X,R) satisfies

(I1) there exists ρ>0 such that supS1
ρ
J <0, where S1

ρ ={u ∈ X1 : ‖u‖=ρ},
(I2) J ≥ 0 on X2,
(I3) there exists a nonzero vector e ∈ X1 such that J is bounded below on

the half-space {se+ u2 : s ≥ 0, u2 ∈ X2}.

In addition, assume that J satisfies the (PS) condition and has only isolated
critical values with each critical value corresponding to a finite number of critical
points. Then J has two different critical points u1, u2 with J(u1) < 0 ≤ J(u2).

Proof of Theorem 2.7. Let X1 = Nk+1 and X2 = N⊥
k+1. We come to

verify the conditions of Lemma 5.1. Clearly, dimNk+1 is of finiteness. By (2.5)
it follows that

J(w) ≥
∫

Ω

1
2
[|∇w|2 dx− λk+2w

2]dx ≥ 0, for all w ∈ N⊥
k+1,

which implies (I2) holds. Lemma 3.3(a) implies that (I3) is also satisfied. In
addition, by Lemma 3.1, the functional J satisfies the (PS) condition. Now it
suffices to prove that (I1) is true. In fact, by (2.4), it follows that, for any ε > 0,
q ∈ (2, 2n/(n− 2)) if n > q or q ∈ (2,∞) if 1 ≤ n ≤ q, there exists Cε > 0 such
that

F (x, s) ≥ 1
2
η2s

2 − Cε|s|p, a.e. x ∈ Ω, for all s ∈ R.

Then, by the Poincaré inequality as well as the Sobolev inequality ‖u‖q
q ≤ K‖u‖q,

we have for u ∈ Nk+1,

J(u) ≤ 1
2
‖u‖2 − 1

2
η2

∫
Ω

|u|2dx+ Cε

∫
Ω

|u|q dx

≤ −η2 − λk+1

2λk+1
‖u‖2 +KCε‖u‖q =

[
− η2 − λk+1

2λk+1
+KCε‖u‖q−2

]
‖u‖2.

Hence, if taking ρ = ((η2 − λk+1)/(2λk+1C1Cε))
1/(q−2), we can obtain

J(u) < 0 for u ∈ Nk+1 with ‖u‖ = ρ ∈ (0, ρ),

which implies that (I1) is satisfied. Then, by Lemma 5.1, it follows that J has
at least one nontrivial critical point u with J(u) < 0. �
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