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HOMOCLINIC SOLUTIONS FOR A CLASS
OF AUTONOMOUS SECOND ORDER

HAMILTONIAN SYSTEMS
WITH A SUPERQUADRATIC POTENTIAL

Joanna Janczewska

Abstract. We will prove the existence of a nontrivial homoclinic solution

for an autonomous second order Hamiltonian system q̈+∇V (q) = 0, where
q ∈ Rn, a potential V : Rn → R is of the form V (q) = −K(q) + W (q),

K and W are C1-maps, K satisfies the pinching condition, W grows at

a superquadratic rate, as |q| → ∞ and W (q) = o(|q|2), as |q| → 0. A ho-
moclinic solution will be obtained as a weak limit in the Sobolev space

W 1,2(R, Rn) of a sequence of almost critical points of the corresponding

action functional. Before passing to a weak limit with a sequence of almost
critical points each element of this sequence has to be appropriately shifted.

1. Introduction

This paper concerns the existence of homoclinic solutions for a certain class
of autonomous second order Hamiltonian systems. Let us consider

(1.1) q̈ +∇V (q) = 0,

where q ∈ Rn and a potential V : Rn → R satisfies the following conditions:

(H1) V (q) = −K(q) + W (q), where K, W : Rn → R are C1-maps,
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(H2) there are constants b1, b2 > 0 such that for all q ∈ Rn,

b1|q|2 ≤ K(q) ≤ b2|q|2,

(H3) (q,∇K(q)) ≤ 2K(q) for all q ∈ Rn,
(H4) 2K(q)− (q,∇K(q)) = o(|q|2), as |q| → 0,
(H5) ∇K is Lipschitzian in a neighbourhood of 0 ∈ Rn,
(H6) ∇W (q) = o(|q|), as |q| → 0,
(H7) there is a constant µ > 2 such that for every q ∈ Rn \ {0},

0 < µW (q) ≤ (q,∇W (q)).

Here and subsequently, ( · , · ): Rn×Rn → R denotes the standard inner product
in Rn and | · |: Rn → [0,∞) is the induced norm.

Note that if K: Rn → R is a C2-map satisfying (H2), then (H4) takes place.
Let us also remark that (H6) and (H7) imply

(1.2) W (q) = o(|q|2), as |q| → 0.

Moreover, from (H7) it follows that for q 6= 0 a map given by

(0,∞) 3 ζ 7→ W (ζ−1q)ζµ

is nonincreasing. Hence the following inequalities hold

W (q) ≤ W

(
q

|q|

)
|q|µ if 0 < |q| ≤ 1,(1.3)

W (q) ≥ W

(
q

|q|

)
|q|µ if |q| ≥ 1.(1.4)

By (H2) and (1.4) we get that a potential V grows at a superquadratic rate, as
|q| → ∞, i.e.

V (q)
|q|2

→∞, as |q| → ∞.

Many mathematicians have written about Hamiltonian systems with a su-
perquadratic potential, for example: V. Coti Zelati, I. Ekeland and E. Séré
in [4], H. Hofer and K. Wysocki in [7], V. Coti Zelati and P. Rabinowitz in [5],
P. Rabinowitz and K. Tanaka in [14], W. Omana and M. Willem in [11]. Our
assumptions on the potential V are natural, since one can immediately produce
a lot of examples.

It is easily seen that q ≡ 0 is a solution of (1.1). In this work we are interested
in the existence of nontrivial homoclinic solutions of (1.1) that emanate from 0
and terminate at 0, i.e. limt→±∞ q(t) = q(±∞) = 0.

The existence of homoclinic orbits for first and second order Hamiltonian
systems has been studied by many authors and the literature on this subject is
vast (see [1], [2], [6], [8], [9], [12], [15]), but many questions are still open (see
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the survey [13] by P. Rabinowitz). Finding homoclinic solutions in Hamiltonian
systems can be quite difficult. In the last 20 years, a great progress was made by
applying variational methods (see the survey [3] by T. Bartsch and A. Szulkin).
For instance, the authors of [4] studied a class of first order Hamiltonian sys-
tems using a dual variational transformation and the Mountain Pass Theorem
to prove the existence of two distinct homoclinic solutions. P. Rabinowitz in [12]
examined a family of second order Hamiltonian systems applying the Mountain
Pass Theorem to get a sequence of subharmonic solutions and suitable estimates
to pass to a nontrivial limit which occurred to be a nontrivial homoclinic solution
(see also [2], [8], [9]).

The theorem which we shall prove is as follows.

Theorem 1.1. If the assumptions (H1)–(H7) are satisfied then the Hamil-
tonian system (1.1) possesses a nontrivial homoclinic solution q0 ∈ W 1,2(R, Rn)
such that q̇0(±∞) = 0.

This result is proved in Section 2 by studying the corresponding to (1.1)
action functional I:W 1,2(R, Rn) → R. Similarly to [14], by a general mini-
max principle (see Theorem 2.3) we obtain a sequence of almost critical points.
However, its weak limit has not to be nontrivial. In order to get a nontrivial
homoclinic orbit before passing to a weak limit with a sequence of almost critical
points each element of this sequence has to be appropriately shifted.

2. Proof of Theorem 1.1

The proof of Theorem 1.1 will be divided into a sequence of lemmas. Let E

be the Sobolev space W 1,2(R, Rn) with the standard norm

‖q‖E :=
( ∫ ∞

−∞
(|q(t)|2 + |q̇(t)|2) dt

)1/2

.

We first recall two elementary inequalities concerning functions in E.

Fact 2.1. If q: R → Rn is a continuous mapping such that q̇ ∈ L2
loc(R, Rn),

then for every t ∈ R,

(2.1) |q(t)| ≤
√

2
( ∫ t+1/2

t−1/2

(|q(s)|2 + |q̇(s)|2) ds

)1/2

.

The proof of Fact 2.1 can be found in [8]. (See Fact 2.8, p. 385.)

Fact 2.2. For each q ∈ E,

(2.2) ‖q‖L∞(R,Rn) ≤
√

2‖q‖E .

Fact 2.2 is a direct consequence of the inequality (2.1).
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Let I:E → R be given by

I(q) :=
∫ ∞

−∞

[
1
2
|q̇(t)|2 − V (q(t))

]
dt.

By (H5)–(H6) it is obvious that I ∈ C1(E, R). Moreover,

I ′(q)w =
∫ ∞

−∞
[(q̇(t), ẇ(t))− (∇V (q(t)), w(t))] dt

for all q, w ∈ E and any critical point of I on E is a classical solution of (1.1)
with q(±∞) = 0, as is easy to verify. In order to prove Theorem 1.1, we apply
a general minimax principle. Let us remind it.

Theorem 2.3 (see Theorem 4.3 in [10]). Let K be a compact metric space,
K0 ⊂ K a closed subset, X a Banach space and χ ∈ C(K0, X). Let M be
a complete metric space given by

M := {g ∈ C(K, X) : g(s) = χ(s) if s ∈ K0}

with the usual distance. Let ϕ ∈ C1(X, R) and let us define

c = inf
g∈M

max
s∈K

ϕ(g(s)), c1 = max
χ(K0)

ϕ.

If c > c1 then for each ε > 0 and for each h ∈M such that

max
s∈K

ϕ(h(s)) ≤ c + ε

there exists v ∈ X such that

c− ε ≤ ϕ(v) ≤ max
s∈K

ϕ(h(s)), dist(v, h(K)) ≤ ε1/2, ‖ϕ′(v)‖X∗ ≤ ε1/2.

Set b1 := min{1, 2b1}, b2 := max{1, 2b2}, where b1, b2 are the constants of
the pinching condition (H2). By definition, b1 ≤ 1 ≤ b2. From (H2) we have

(2.3) I(q) ≥ 1
2
b1‖q‖2E −

∫ ∞

−∞
W (q(t)) dt

for every q ∈ E. By (1.2), (2.2) and (2.3), we conclude that there are constants
α, % > 0 such that

(2.4) I(q) ≥ α, if ‖q‖E = %.

Take ν ∈ C∞0 (R, Rn) such that |ν(t)| = 1 for |t| ≤ 1 and ν(t) = 0 for |t| ≥ 2. Set

m := inf{W (q) : |q| = 1}.

From (1.4), for every ξ ∈ R such that |ξ| ≥ 1, we have∫ ∞

−∞
W (ξν(t)) dt ≥

∫ 1

−1

W (ξν(t)) dt ≥
∫ 1

−1

W

(
ξν(t)
|ξν(t)|

)
|ξν(t)|µ dt ≥ 2m|ξ|µ.



Homoclinic Solutions 23

Combining this with (H2) we obtain

I(ξν) ≤ 1
2
b2ξ

2‖ν‖2E − 2m|ξ|µ.

Since m > 0 and µ > 2, for |ξ| sufficiently large, I(ξν) < 0. Consequently, there
exists Q ∈ E such that

(2.5) ‖Q‖E > % and I(Q) < 0 = I(0).

From now on, let

(2.6) M := {g ∈ C([0, 1], E) : g(0) = 0 and g(1) = Q}

and

(2.7) c := inf
g∈M

max
s∈[0,1]

I(g(s)).

By (2.4)–(2.7), we get c ≥ α > 0.
Applying Theorem 2.3 we conclude that the following lemma holds.

Lemma 2.4. There exists a sequence {qk}k∈N in E such that

(2.8) I(qk) → c and I ′(qk) → 0, as k →∞.

Lemma 2.5. The sequence {qk}k∈N given by (2.8) is bounded in E.

Proof. By (2.8), for large k,

(2.9) ‖I ′(qk)‖E∗ < 2 and |I(qk)− c| < 1.

Applying (H3) and (H7) we obtain

(2.10) I(qk)− 1
2
I ′(qk)qk ≥

(
µ

2
− 1

) ∫ ∞

−∞
W (qk(t)) dt

for k ∈ N. Combining (2.10) with (2.9) we receive

c + 1 + ‖qk‖E ≥
(

µ

2
− 1

) ∫ ∞

−∞
W (qk(t)) dt

for large k, and hence

(2.11)
∫ ∞

−∞
W (qk(t)) dt ≤ 2

µ− 2
(c + 1 + ‖qk‖E).

By the use of (H2), (H3) and (H7), we get

(2.12) I ′(qk)qk ≤ b2‖qk‖2E − µ

∫ ∞

−∞
W (qk(t)) dt

for k ∈ N. From (2.3) and (2.12) it follows that

(2.13)
1
b1

I(qk)− 1
µb2

I ′(qk)qk ≥
(

1
2
− 1

µ

)
‖qk‖2E −

(
1
b1

− 1
b2

) ∫ ∞

−∞
W (qk(t)) dt
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for k ∈ N. By (2.9) and (2.13), for large k,

(2.14)
1
b1

(c + 1) + ‖qk‖E ≥
(

1
2
− 1

µ

)
‖qk‖2E −

(
1
b1

− 1
b2

) ∫ ∞

−∞
W (qk(t)) dt.

Finally, from (2.11) and (2.14), for large k,

(2.15)
(

1
2
− 1

µ

)
‖qk‖2E ≤ 1

b1

(c + 1) + ‖qk‖E +
2

µ− 2

(
1
b1

− 1
b2

)
(c + 1 + ‖qk‖E).

Since µ > 2, (2.15) shows that {qk}k∈N is bounded in E. �

For each k ∈ N there is τk ∈ R such that a map qτk
: R → Rn given by

qτk
(t) := qk(t + τk),

where t ∈ R, achieves a maximum at 0 ∈ R, i.e.

(2.16) max{|qτk
(t)|: t ∈ R} = |qτk

(0)|.

Then qτk
∈ E and it is easy to check that ‖qτk

‖E = ‖qk‖E , I(qτk
) = I(qk) and

‖I ′(qτk
)‖E∗ = ‖I ′(qk)‖E∗ . In consequence, by Lemma 2.4,

(2.17) I(qτk
) → c and I ′(qτk

) → 0,

as k →∞, and by Lemma 2.5, the sequence {qτk
}k∈N is bounded in E. Since E

is a reflexive Banach space, {qτk
}k∈N possesses a weakly convergent subsequence

in E.
Let q0 denote a weak limit of a weakly convergent subsequence of {qτk

}k∈N.
Without loss of generality, we will write

(2.18) qτk
⇀ q0 in E,

as k →∞, which implies qτk
→ q0 in L∞loc(R, Rn), as k →∞.

Lemma 2.6. q0 given by (2.18) is a homoclinic solution of (1.1).

Proof. Since q0 ∈ E, we see that q0(t) → 0, as t → ±∞, by Fact 2.1.
Therefore, it is sufficient to show that I ′(q0) = 0. Fix w ∈ C∞0 (R, Rn) and
assume that for some A > 0, supp(w) ⊂ [−A,A]. We have

I ′(qτk
)w =

∫ A

−A

[(q̇τk
(t), ẇ(t))− (∇V (qτk

(t)), w(t))] dt

for each k ∈ N. From (2.17) it follows that I ′(qτk
)w → 0, as k → ∞. On the

other hand, ∫ A

−A

(q̇τk
(t), ẇ(t)) dt →

∫ A

−A

(q̇0(t), ẇ(t)) dt,

as k →∞, by (2.18), and∫ A

−A

(∇V (qτk
(t)), w(t)) dt →

∫ A

−A

(∇V (q0(t)), w(t)) dt,
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as k → ∞, because qτk
→ q0 uniformly on [−A,A]. Thus I ′(qτk

)w → I ′(q0)w,
as k → ∞, and, in consequence, I ′(q0)w = 0. Since C∞0 (R, Rn) is dense in E,
we get I ′(q0) = 0. �

Lemma 2.7. Let q0 be given by (2.18). Then q̇0(t) → 0, as t → ±∞.

Proof. From Fact 2.1, we obtain

|q̇0(t)|2 ≤ 2
∫ t+1/2

t−1/2

|q̈0(s)|2 ds + 2
∫ t+1/2

t−1/2

(|q0(s)|2 + |q̇0(s)|2) ds.

For this reason, it suffices to notice that∫ r+1

r

|q̈0(s)|2 ds → 0,

as r → ±∞. Since q0 satisfies (1.1), we have∫ r+1

r

|q̈0(s)|2 ds =
∫ r+1

r

|∇V (q0(s))|2 ds.

Take ε > 0. By (H5) and (H6), there is η > 0 such that for |q| < η, |∇V (q)| < ε.
Moreover, there is δ > 0 such that, if |s| > δ, then |q0(s)| < η. Hence, if
|r| > δ + 1, then ∫ r+1

r

|∇V (q0(s))|2 ds < ε2,

which completes the proof. �

To finish the proof of Theorem 1.1, we have to show that q0 6= 0.
On the contrary, suppose that q0 ≡ 0. Consequently, we have qτk

(0) → 0, as
k →∞. From (2.16) it follows that qτk

→ 0 uniformly on R, as k →∞. By (2.17)
and the boundedness of {qτk

}k∈N in E, we get 2I(qτk
)− I ′(qτk

)qτk
→ 2c > 0, as

k →∞. On the other hand, by (H4), (H6) and (1.2),

2I(qτk
)− I ′(qτk

)qτk
=

∫ ∞

−∞
[(∇V (qτk

(t)), qτk
(t))− 2V (qτk

(t))] dt

=
∫ ∞

−∞
[2K(qτk

(t))− (∇K(qτk
(t)), qτk

(t))] dt

+
∫ ∞

−∞
[(∇W (qτk

(t)), qτk
(t))− 2W (qτk

(t))] dt → 0,

as k →∞. Indeed. Take ε > 0. From (H4), (H6) and (1.2), we deduce that there
is δ > 0 such that if |q| < δ, then |2K(q) − (∇K(q), q)| ≤ ε|q|2, |∇W (q)| ≤ ε|q|
and |W (q)| ≤ ε|q|2. Since qτk

→ 0 uniformly on R, there is k0 ∈ N such that for
k > k0 and for t ∈ R, |qτk

(t)| < δ. Hence |2I(qτk
) − I ′(qτk

)qτk
| ≤ 4ε‖qτk

‖2E for
k > k0, which contradicts (2.17).
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ul. Śniadeckich 8
00-956 Warsaw, POLAND

E-mail address: janczewska@mifgate.pg.gda.pl, j.janczewska@impan.pl

TMNA : Volume 36 – 2010 – No 1


