
Topological Methods in Nonlinear Analysis
Journal of the Juliusz Schauder Center
Volume 35, 2010, 61–68

MULTIPLE SOLUTIONS
FOR THE MEAN CURVATURE EQUATION

Sebastián Lorca — Marcelo Montenegro

Abstract. We perturb the mean curvature operator and find multiple

critical points of functionals that are not even. As a consequence we find
infinitely many solutions for a quasilinear elliptic equation. The generality

of our results are also reflected in the relaxed hypotheses related to the

behavior of the functions around zero and at infinity.

1. Introduction

In this paper we show that the number of solutions of the mean curvature
equation

(1.1)

 −div
(

∇u√
1 + |∇u|2

)
= λf(x, u) in Ω,

u = 0 in ∂Ω.

increases as the parameter λ > 0 increases. We assume that f : Ω × R → R is
continuous and there is a constant

(1.2) c > 0 and g ∈ L∞(Ω), g > c such that

lim
u→0

f(x, u)
|u|p−1u

= g(x) uniformly in x, 1 < p <
N + 2
N − 2

.
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Our main result reads as follows.

Theorem 1.1. For every m ∈ N there is a λ0 such that problem (1.1) has
at least m solutions if λ > λ0. Moreover, the solutions tend to 0 in W 1,∞(Ω) as
λ→∞.

In [6] the authors proved the existence of only one positive solution of moun-
tain pass type for λ large under the assumption that f(s)/s is increasing in s.
There is no need to assume such an assumption here and our f may depend on x.
An interesting fact is that we use the technic that resemblances the perturba-
tion from symmetry of [8] and [12] to prove the existence of multiple solutions
for large λ, but f do not need to be odd, we just need f to be asymptotically
odd. And to fall into an appropriate functional setting, we perturb the mean
curvature operator.

There are many surfaces of constant mean curvature, which are unbounded.
The surfaces need not to be C2 up to the boundary, see [9] for a study on
convex domains. A classical assumption to yielding to C2,α(Ω) solutions is
(N/(N − 1))|H| ≤ K, where K is the mean curvature of the boundary ∂Ω and
f ≡ H, see [10]. Non-convex domains are treated in [13].

Our result should be compared with those in BV functional setting, where
critical points of the energy functional are found, but they need not to correspond
to weak solutions of the mean curvature equation, see [5], [7].

Here we adopt a truncation of the mean curvature operator, like in [6]. We
also use some ideas from [2], that allows us to find sequences of critical values of
even functionals bounding the energy functional corresponding to (1.1). These
critical values lead to weak solutions of (1.1).

The proof of our main result is splitted in a series of lemmas in the next
section.

2. Proof of Theorem 1.1

It will be convenient for our purposes to define α(t) = 1/(
√

1 + t) and the
truncation

φ(t) =

{
α(t) for t ≤M,

α(M) for t ≥M.

for some constant M > 0. We will study the truncated problem

(2.1)

{
−div (φ(|∇u|2)∇u) = λf(x, u) in Ω,

u = 0 in ∂Ω.

Let h(x, u) = f(x, u)− g(x)|u|p−1u. By condition (1.2) we have

lim
u→0

h(x, u)/|u|p = 0 uniformly in x.
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We now start by constructing the perturbative scheme to treat problem (2.1).
If a > 0 is sufficiently small then there is a constant Ca > 0 such that |h(x, u)| ≤
Ca|u|p for |u| ≤ 2a and Ca → 0 as a→ 0.

Let βa be a C∞ function such that βa(u) = 1 for |u| ≤ a, βa(u) = 0 for
|u| ≥ 2a, and 0 ≤ βa ≤ 1. Define ha(x, u) = βa(u)h(x, u) for every (x, u) ∈ Ω×R
and consider the problem

(2.2)


−div (φ(λ2/(p−1)|∇u|2)∇u)

= g(x)|u|p−1u+ λp/(p−1)ha(x, λ−1/(p−1)u) in Ω,

u = 0 in ∂Ω.

Lemma 2.1. If u is a solution of (2.2) and ‖∇u‖L∞ ≤ aλ1/(p−1), then v(x) =
λ−1/(p−1)u(x) is a solution of (2.1) and then of (1.1).

We define now our functional framework. Let

ha,λ(x, u) = λp/(p−1)ha(x, λ−1/(p−1)u)

and

Ha,λ(u) =
∫ u

0

ha,λ(x, s)ds.

Observe that

|ha,λ(x, u)| ≤ Ca|u|p, |Ha,λ(x, u)| ≤
Ca
p+ 1

|u|p+1

and

|Ha,λ(x, u)| ≤
2p+1

p+ 1
ap+1Caλ

(p+1)/(p−1).

Define

(2.3) c(a, λ) :=
Ca
p+ 1

2p+1ap+1λ(p+1)/(p−1)|Ω|.

Let Φ(s) =
∫ s
0
φ(t) dt. The following expressions define functionals over

H1
0 (Ω):

I1(u) =
α(M)

2

∫
Ω

Φ(|∇u|2)− g(x)
p+ 1

|u|p+1,

I2(u) =
1
2

∫
Ω

Φ(|∇u|2)− g(x)
p+ 1

|u|p+1

and

Jλ(u) =
1

2λ2/p−1

∫
Ω

Φ(λ2/p−1|∇u|2)−
∫

Ω

g(x)
p+ 1

|u|p+1 −
∫

Ω

Ha,λ(x, u).

Then
I1(u)− c(a, λ) ≤ Jλ(u) ≤ I2(u) + c(a, λ).

Notice that if v = α(M)1/p−1u, then I1(v) = α(M)(p+1)/(p−1)I2(u).
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Notice that I1 and I2 are even functionals. We use the minimax variational
methods to find multiple critical points of Jλ.

We define the sets

Vk = span{ϕ1, . . . , ϕk} and Zk = span{ϕk, ϕk+1, . . . }

by splitting X := H1
0 (Ω) into (ϕk)k=1,2,..., which are the eigenfunctions of the

Laplacian with ‖u‖L2 = 1. Throughout the paper, ‖ · ‖ represent the H1
0 norm.

Lemma 2.2. There are sequences rk > 0 and ρk > 0 satisfying ρk > rk,
ρk+1 > ρk, rk+1 > rk and rk →∞ as k →∞,

max
u∈Vk,‖u‖≥ρk

I2(u) < 0 and inf
u∈Zk,‖u‖=rk

I2(u) →∞.

Proof. Let βk = supu∈Zk,‖u‖=1(|∇u|p+1)1/(p+1) then( ∫
Ω

|u|p+1

)1/(p+1)

≤ βk

( ∫
Ω

|∇u|2
)1/2

.

Choose rk = (cβp+1
k )−1/(p−1) if u ∈ Zk and ‖u‖ = rk, where c was defined in

(2.3), then

I2(u) ≥
1
2

∫
Ω

|∇u|2 − c

p+ 1
βp+1
k

( ∫
Ω

|∇u|2
)(p+1)/2

and

I2(u) ≥
(

1
2
− 1
p+ 1

)
(cβp+1

k )−2/(p−1).

By Lemma 3.8 of [14], one has βk → 0. Moreover, since Vk is finite dimensional( ∫
Ω

|u|p+1

)1/p+1

≥ ck

( ∫
Ω

|∇u|2
)1/2

for all u ∈ Vk with ck → 0, we get

I2(u) ≤
1
2

∫
Ω

|∇u|2 − ccp+1
k

( ∫
Ω

|∇u|2
)(p+1)/2

dx

then we have I2(u) < 0 if( ∫
Ω

|∇u|2
)1/2

>

(
1

2ccp+1
k

)1/p−1

.

Without loss of generality we choose ρk such that ρk > rk and ρk+1 > ρk. �

Observe that

max
u∈Vk,‖u‖≥ρk(α(M)1/p−1)

I1(u) < 0, and inf
u∈Zk,‖u‖=rk(α(M)1/p−1)

I1(u) →∞
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Define

B1
k = {u ∈ Vk : ‖u‖ ≤ ρkα(M)1/p−1}, N1

k = {u ∈ Zk : ‖u‖ = rkα(M)1/p−1},
B2
k = {u ∈ Vk : ‖u‖ ≤ ρk}, N2

k = {u ∈ Zk : ‖u‖ = rk},

and

Λi1 = {ψ ∈ C(Bi1, X) : ψ is odd and ψ|∂Bi
1

= id},

Λik = {ψ ∈ C(Bik, X) : ψ is odd, ψ|∂Bi
k−1

∈ Λik−1and ψ|∂Bi
k

= id}, i = 1, 2.

The following lemma appears in [12] and [14].

Lemma 2.3. If ψ ∈ C(Bik, X), ψ is odd and ψ|∂Bi
k

= id, then ψ(Bik)∩N i
k 6= ∅

for i = 1, 2.

Define cik = infψ∈Λi
k
maxu∈Bi

k
Ii(u). Take ψ ∈ Λik, by above lemma there

exists ui ∈ Bik such that ψ(ui) ∈ N i
k. Then, for every ψ ∈ Λik,

cik ≥ max
u∈Bi

k

Ii(ψ(u)) ≥ Ii(ψ(u)) ≥ inf
v∈Ni

k

Ii(v) →∞.

implying

cik ≥ inf
v∈Ni

k

Ii(v) →∞.

For ψ ∈ Λ2
k, define ϕ(u) = α(M)1/p−1ψ(α(M)−1/p−1u) belongs to Λ1

k and
then

I1(ϕ̃(u)) = α(M)(p+1)/(p−1)I2(ψ(v))

where v = α(M)−1/p−1u. A calculation shows c1k = α(M)(p+1)/(p−1)c2k.
Define

B+
k+1 = {u = v + tϕk+1 : v ∈ Vk, t ≥ 0, ‖u‖ ≤ ρk+1},

Πk =
{
φ ∈ C(B+

k+1,H
1
0 ) : φ|B+

k+1∩Vk
is odd, φ|B+

k
∈ Λ2

k,

φ|∂B+
k+1−B

2
k

= id, max
u∈∂B+

k+1

I2(φ(u)) < c2k + 1/2
}
.

Lemma 2.4. Πk 6= ∅.

Proof. Let ψ ∈ Λ2
k such that maxu∈B2

k
I2(ψ(u)) < c2k + 1/2. Extend ψ to

a function ψ̃ such that ψ̃|B2
k+1∩Vk

is odd. This is possible since φ|∂B+
k+1−B

2
k

= id.

Therefore maxu∈∂B+
k+1

I2(φ(u)) < c2k + 1/2. Thus, ψ̃ ∈ Πk. �
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Lemma 2.5. For a given K > 0 and N ∈ N there is m ≥ N such that
cm+1 > cm +K.

Proof. By contradiction, if there is N ∈ N such that cm+1 ≤ cm + K

for every m ≥ N . This implies cN+q ≤ cN + qK for every q ≥ 1. This is
a contradiction to the fact that cN+q ≥ c(N + q)γ for some γ > 1 and every
sufficiently large q, see [1] or [12, p. 124]. �

Lemma 2.6. There is a sequence of indexes k1<k2 . . . such that c1k1+1−1>1,
c2kn+1 > c2kn

+ 3 for n ≥ 1 and c1kn+1 − 1 > dkn−1 + 1 for n ≥ 2 where

dkn = inf
φ∈Πkn

max
u∈B+

kn+1

I2(φ(u)).

Proof. The proof follows by induction and applying the previous lemma.�

Define c̃kn = infφ∈Πkn
maxu∈B+

kn+1
Jλ(φ(u)). By our construction, c̃kn <

dkn
+1 and c̃kn

> c1kn+1− 1 > dkn−1 +1 > c̃kn−1 we get c̃kn
> c̃kn−1 . We remark

that c̃ki
, depend on λ and a, but cikn

and dkn
do not.

Lemma 2.7. If a is small enough and λ is such that c(a, λ) = 1, then c̃ki
(λ)

is a critical value.

Proof. Suppose on the contrary, then by the Deformation Lemma for every
sufficiently small ε > 0 there exists η := ηε such that η(J

ecki
+ε

λ ) ⊂ J
ecki
−ε

λ , we
have used the notation Jdλ = {u : Jλ(u) ≤ d} and η = id in H1

0 − {c̃ki
− 2ε ≤

Jλ(u) ≤ c̃ki
+ 2ε}. For φ ∈ Πki

max
u∈B+

ki+1

Jλ(φ(u)) ≤ c̃ki
+ ε.

Take u ∈ ∂B+
ki+1, then I2(φ(u)) < cki

+ 1/2 and

Jλ(φ(u)) ≤ I2(φ(u)) + 1 ≤ c2ki
+ 3/2

≤ c2ki+1 + 3/2− 3 ≤ α−(p+1)/(p−1)c1ki+1 − 3/2

≤ α−(p+1)/(p−1)(c̃ki+1 − 1)− 3/2 ≤ c̃ki − 2ε

if

c̃ki

(
1

α(p+1)/(p−1)
− 1

)
<

3
2
− 1
α(p+1)/(p−1)

− 2ε.

But c̃ki < dkm + 1, then the right hand side of the expression above converges
to zero as M → 0, then there is M0 > 0 such that

Jλ(φ(u)) < c̃ki − 2ε

for M ≤ M0 and every i = 1, . . . ,m. Thus, η ◦ φ(u) = φ(u) and η ◦ φ ∈ Πki+1,
a contradiction. �

The following boundedness is standard, see e.g. [12].
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Lemma 2.8. Assume N ≥ 3. Let q ∈ C(R) and |q(u)| ≤ k|u|p−1 for every
u ∈ R and some constant k > 0. If u ∈ H1

0 (Ω) is a solution of the equation
−div (Φ(|∇u|2)∇u) = q(u) in Ω, then there are constants 0 < M < M0 and
C = C(p, k,N,M0) > 0 such that

‖u‖L∞(Ω) ≤ C‖u‖2(p+1)/((N−2)(1−p)+4)
Lp(Ω) .

If N = 2, there are constants 0 < M < M0 and C = C(Ω, p,M0) > 0 and
α = α(p) > 0 such that ‖u‖L∞(Ω) ≤ C‖u‖αLp(Ω).

Proof of Theorem 1.1. Let u := uki a solution in level c̃ki , then∫
Ω

Φ(|∇u|2λ2/p−1)|∇u|2 =
∫

Ω

|u|p+1g(x) +
∫

Ω

ha,λ(x, u)u,∫
Ω

|∇u|2 ≥
∫

Ω

|u|p+1g(x)− Ca

∫
Ω

|u|p+1,

c̃ki
=

1
2

∫
Ω

Φ(|∇u|2λ2/p−1)− 1
p+ 1

∫
Ω

|u|p+1g(x)−
∫

Ω

Ha,λ(x, u)

≥ α(M)
2

∫
Ω

|∇u|2 − 1
p+ 1

∫
Ω

|u|p+1g(x)− Ca
p+ 1

∫
Ω

|u|p+1.

Then
α(M)

2

∫
Ω

|u|p+1g(x)− Caα(M)
∫

Ω

|u|p+1

− 1
p+ 1

∫
Ω

|u|p+1g(x)− Ca
p+ 1

∫
Ω

|u|p+1 ≤ c̃ki ,(
α(M)

2
− 1
p+ 1

) ∫
Ω

|u|p+1g(x)− Ca

(
α(M) +

1
p+ 1

) ∫
Ω

|u|p+1 ≤ c̃ki ≤ dkm .

For M ≤M0,
∫
Ω
|u|p+1 ≤ c(m,M0, g).

By Lemma 2.8, ‖u‖L∞(Ω) ≤ c1(m,M0), and then ‖∇u‖L∞(Ω) ≤ c2(m,M0).
Since c(a, λ) = 1, then λa1/p−1 = (2p+1/(p+ 1)Ca)−1/p+1. Choose a suffi-

ciently small (and this implies that λ is large) such that λa1/p−1 ≥ c2(m,M0).�
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