
Topological Methods in Nonlinear Analysis
Journal of the Juliusz Schauder Center
Volume 35, 2010, 1–32

CONLEY INDEX AND HOMOLOGY INDEX BRAIDS
IN SINGULAR PERTURBATION PROBLEMS

WITHOUT UNIQUENESS OF SOLUTIONS

Maria C. Carbinatto — Krzysztof P. Rybakowski

Abstract. We define the concept of a Conley index and a homology index

braid class for ordinary differential equations of the form

(E) ẋ = F1(x),

where M is a C2-manifold and F1 is the principal part of a continuous
vector field onM. This allows us to extend our previously obtained results

from [5] on singularly perturbed systems of ordinary differential equations

(Eε)
εẏ = f(y, x, ε),

ẋ = h(y, x, ε)

on Y ×M, where Y is a finite dimensional Banach space and M is a C2-
manifold, to the case where the vector field in (Eε) is continuous, but not

necessarily locally Lipschitzian.
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1. Introduction

Let M be a finite dimensional (boundaryless) second countable paracompact
differentiable manifold of class C2. Consider the ordinary differential equation

(1.1) ẋ = F1(x)

where F1 is the principal part of a vector field F :M→ T (M), i.e. for x ∈ M,
F (x) = (x, F1(x)) where F1(x) ∈ Tx(M). If F is a locally Lipschitzian vector
field on M then (1.1) generates a local flow on M and the classical Conley index
theory applies.

However, in some applications the right hand side of (1.1) is merely contin-
uous. In such cases the Cauchy problem for equation (1.1) does not necessarily
have unique solutions, so (1.1) does not generate a flow and the classical Conley
index theory cannot be applied.

In this paper we present an extension of the Conley index theory to the case
of ordinary differential equations of the type (1.1) with a merely continuous right
hand side. For every isolating neighborhood N relative to F we define an index
h(f,N) and show that all properties of the classical Conley index theory hold
in this more general setting. In addition, we show that the index depends only
on the isolated invariant set in question and not on the choice of its isolating
neighborhood. This generalizes some results from the paper [8] to the (technically
more involved) manifold case.

In addition, we also provide an extension of the (co)homology index braid
theory to this more general case.

As an application of this theory we show that all results of our previous
paper [5] continue to hold under some more general assumptions on the nonlin-
earities involved.

2. Graded module braids

In this section we recall some basic notions from the theory of graded module
braids. For more details, see [7].

Recall that a strict partial order on a set P is a relation ≺ ⊂ P × P which
is irreflexive and transitive. As usual, we write x ≺ y instead of (x, y) ∈ ≺. The
symbol < will be reserved for the less-than-relation on R.

For the rest of this paper, unless specified otherwise, let P be a fixed finite
set and ≺ be a fixed strict partial order on P .

A set I ⊂ P is called a ≺-interval if whenever i, j, k ∈ P , i, k ∈ I and
i ≺ j ≺ k, then j ∈ I. By I(≺) we denote the set of all ≺-intervals in P .

An adjacent n-tuple of ≺-intervals is a sequence (Ij)n
j=1 of pairwise disjoint

≺-intervals whose union is a ≺-interval and such that, whenever j < k, p ∈ Ij

and p′ ∈ Ik, then p′ 6≺ p (i.e. p ≺ p′ or else p and p′ are not related by ≺). By
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In(≺) we denote the set of all adjacent n-tuples of ≺-intervals. If I, J ∈ I(≺)
are such that (I, J), (J, I) ∈ I2(≺), we say that I and J are noncomparable.

For the rest of t his paper we fix a (commutative) ring Γ. We write IJ instead
of I ∪ J and similarly for more than two intervals.

Definition 2.1. For each J ∈ I(≺) and q ∈ Z, let Gq(J) be a Γ-module
and for each (I, J) ∈ I2(≺) and q ∈ Z let

iI,J,q:Gq(I) → Gq(IJ), pI,J,q:Gq(IJ) → Gq(J), ∂I,J,q:Gq(J) → Gq−1(I)

be given maps. The family G(≺) of all these modules Gq(I) and all these maps
iI,J,q, pI,J,q and ∂I,J,q is called a graded homology Γ-module braid over ≺ if the
following conditions are satisfied:

(a) the sequence

// Gq(I)
iI,J,q

// Gq(IJ)
pI,J,q

// Gq(J)
∂I,J,q

// Gq−1(I) //

is exact;
(b) whenever I, J ∈ I(≺) are noncomparable, then pJ,I,q ◦ iI,J,q = Id |Gq(I);
(c) whenever (I, J,K) ∈ I3(≺), the following diagram

�� 		++XXXXXXXXXXX
ssggggggggggg

Gq(I)
iI,J,q

**UUUUUUUU

iI,JK,q

��

Gq+1(K)
∂IJ,K,q+1

tthhhhhhhh

∂J,K,q+1





Gq(IJ)
pI,J,q

**VVVVVVVVViIJ,K,q

ttiiiiiii

Gq(IJK)
pI,JK,q

**UUUUUU

pIJ,K,q

��

Gq(J)
iJ,K,q

tthhhhhhhhh

∂I,J,q





Gq(JK)
∂I,JK,q

**VVVVVVVVpJ,K,q

ttiiiiiii

Gq(K)
∂IJ,K,q

**UUUUUUU

∂J,K,q

��

Gq−1(I)
iI,J,q−1

tthhhhhhh

iI,JK,q−1





Gq−1(IJ)
iIJ,K,q−1

**VVVVVVpI,J,q−1

ttiiiiii

Gq−1(J)
++WWWWWWWWWW

��

Gq−1(IJK)
ssffffffffff

��

commutes.

Let G(≺) be a graded homology Γ-module braid over ≺ and k ∈ N0. The
collection Gk(≺) of the Γ-modules

Gq−k(J), q ∈ Z, J ∈ I(≺),

and the maps iI,J,q−k, pI,J,q−k and ∂I,J,q−k, for (I, J) ∈ I2(≺) and q ∈ Z, is a
graded homology Γ-module braid over ≺ called the shift to the left by k of G(≺).
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Let G = G(≺) and G̃ = G̃(≺) be graded homology Γ-module braids over ≺.
Suppose θ := (θq(J))q∈Z,J∈I(≺) is a family θq(J):Gq(J) → G̃q(J) of Γ-module
homomorphisms such that, for all (I, J) ∈ I2(≺), the diagram

//Gq(I)
iI,J,q

//

θq(I)

��

Gq(IJ)
pI,J,q

//

θq(IJ)

��

Gq(J)
∂I,J,q

//

θq(J)

��

Gq−1(I) //

θq−1(I)

��
//G̃q(I)

eiI,J,q

//G̃q(IJ)
epI,J,q

//G̃q(J)
e∂I,J,q

//G̃q−1(I) //

commutes. Then we say that θ is a morphism from G to G̃ and we write θ:G → G̃.
If each θq(J) is an isomorphism, then we say that θ is an isomorphism and that
G and G̃ are isomorphic graded homology Γ-module braids over ≺.

Definition 2.2. For each J ∈ I(≺) and q ∈ Z, let Gq(J) be a Γ-module
and for each (I, J) ∈ I2(≺) and q ∈ Z let

iI,J,q:Gq(I) → Gq(IJ), pI,J,q:Gq(IJ) → Gq(J), ∂I,J,q:Gq(J) → Gq+1(I)

be given maps. The family G(≺) of all these modules Gq(I) and all these maps
iI,J,q, pI,J,q and ∂I,J,q is called a graded cohomology Γ-module braid over ≺ if the
following conditions are satisfied:

(a) the sequence

// Gq(I)
iI,J,q

// Gq(IJ)
pI,J,q

// Gq(J)
∂I,J,q

// Gq+1(I) //

is exact;
(b) whenever I, J ∈ I(≺) are noncomparable, then pJ,I,q ◦ iI,J,q = Id |Gq(I);
(c) whenever (I, J,K) ∈ I3(≺), the following diagram

�� 


,,XXXXXXXXXXX

ssfffffffffff

Gq(I) iI,J,q

**VVVVVVVV

iI,JK,q

��

Gq−1(K)∂IJ,K,q−1

sshhhhhhhh

∂J,K,q−1

		

Gq(IJ) pI,J,q

++WWWWWWWWWiIJ,K,q

tthhhhhhh

Gq(IJK) pI,JK,q

**VVVVVV

pIJ,K,q

��

Gq(J)iJ,K,q

ssggggggggg

∂I,J,q

		

Gq(JK) ∂I,JK,q

++VVVVVVVVpJ,K,q

tthhhhhhh

Gq(K) ∂IJ,K,q

**VVVVVVV

∂J,K,q

��

Gq+1(I)iI,J,q+1

sshhhhhhh

iI,JK,q+1





Gq+1(IJ) iIJ,K,q+1
++VVVVVpI,J,q+1

tthhhhhh

Gq+1(J)
,,XXXXXXXXXX

��

Gq+1(IJK)
rrffffffffff

��

commutes.
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Let G(≺) be a graded cohomology Γ-module braid over ≺ and k ∈ N0. The
collection Gk(≺) of the Γ-modules

Gq−k(J), q ∈ Z, J ∈ I(≺),

and the maps iI,J,q−k, pI,J,q−k and ∂I,J,q−k, for (I, J) ∈ I2(≺) and q ∈ Z, is
a graded cohomology Γ-module braid over ≺ called the shift to the left by k of
G(≺).

Let G = G(≺) and G̃ = G̃(≺) be graded cohomology Γ-module braids over
≺. Suppose θ := (θq(J))q∈Z,J∈I(≺) is a family θq(J):G(J) → G̃(J) of Γ-module
homomorphisms such that, for all (I, J) ∈ I2(≺), the diagram

//Gq(I)
iI,J,q

//

θq(I)

��

Gq(IJ)
pI,J,q

//

θq(IJ)

��

Gq(J)
∂I,J,q

//

θq(J)

��

Gq+1(I) //

θq+1(I)

��
//G̃q(I)

eiI,J,q

//G̃q(IJ)
epI,J,q

//G̃q(J)
e∂I,J,q

//G̃q+1(I) //

commutes. Then we say that θ is a morphism from G to G̃ and we write θ:G → G̃.
If each θq(J) is an isomorphism, then we say that θ is an isomorphism and that
G and G̃ are isomorphic graded cohomology Γ-module braids over ≺.

We define a category B whose objects are all the graded homology (resp. co-
homology) Γ-modules braids over ≺. Given objects G and G̃ in B let MorB(G, G̃)
be the set of all morphisms from G to G̃.

Given objects G and G̃ in B we say G is related to G̃, and write G ∼ G̃, if and
only if G and G̃ are isomorphic graded (co)homology Γ-module braids over ≺. It
is obvious that ∼ is a equivalence relation in B. Given G in B let [G] denote the
equivalence class of G.

Note that if G and G̃ are isomorphic graded homology (resp. cohomology)
braids then so are Gk and G̃k (resp. Gk and G̃k) for all k ∈ N0. Thus the shift
operation

(2.1) [G]k = [Gk],

resp.

(2.2) [G]k = [Gk]

is well defined on isomorphism classes of graded homology (resp. cohomology)
braids.

3. Approximation of continuous vector field on manifolds

Throughout this paper let M be a (boundaryless) second countable para-
compact differentiable manifold of class C2 modeled on some finite-dimensional
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Banach space E. Let T (M) denote the tangent bundle of M. Whitney Imbed-
ding Theorem implies that there is a finite dimensional normed space E and an
imbedding e:M→ E of class C2. We define the metric dM on M such that e
is an isometry.

Using the notation from [5] let Γ = ΓM:T (M) → E be the map given by
Γ(x, u) = DMe(x)(u), (x, u) ∈ T (M). [5, Subsections 3.1, 3.3 and Section 4]
imply that Γ is continuous.

We now state the following basic approximation result.

Proposition 3.1. Let F :M → T (M) be a continuous vector field. Then
for every ε ∈ ]0,∞[ there is a C1-vector field G:M→ T (M) such that

sup
x∈M

|Γ(G(x))− Γ(F (x))|E < ε.

Proof. For every chart α:U → V ⊂ E of M the map

U → L(E,E), x 7→ D(e ◦ α−1)(α(x))

is continuous, therefore locally bounded. It follows that there exists an atlas
(αi:Ui → Vi)i∈I of M such

(3.1) Ci := sup
x∈Ui

‖D(e ◦ α−1
i )(αi(x))‖L(E,E) < ∞, i ∈ I.

Moreover, we may assume that the covering (Ui)i∈I is locally finite and that
there is a C2-partition of unity (φi:M → R)i∈I subordinated to the covering
(Ui)i∈I .

Let i ∈ I be arbitrary and set F i = F |Ui
. The set T (M)|Ui

=
⋃

x∈Ui
{x} ×

Tx(M) is open in T (M) and the map χαi given by

χαi
:

⋃
x∈Ui

({x} × Tx(M)) → αi(Ui)× E, (x, u) 7→ (αi(x), u(αi))

is a homeomorphism from T (M)|Ui
to Vi × E. Actually χαi

is a C1-diffeomor-
phism in the sense that χαi

is a C1-map from T (M)|Ui
to Vi × E and χ−1

αi
is

a C1-map from Vi × E to T (M). Analogous remarks apply to αi:Ui → Vi.
In particular, the map F̃ i := π2 ◦ χαi

◦ F i ◦ α−1
i :Vi → E is continuous, where

π2:Vi×E → E is the projection on the second component. It follows that there
is a C1-map G̃i:Vi → E such that

sup
y∈Vi

|G̃i(y)− F̃ i(y)|E < ε/(2Ci).

For every x ∈ Ui let Gi
1(x) be the uniquely defined element u of Tx(M) such

that u(αi) = G̃i(αi(x)). This defines a map Gi
1:Ui → T (M) such that Gi

1(x) ∈
Tx(M) for each x ∈ Ui.
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For each x ∈M define

G1(x) =
∑
i∈I

φi(x)Gi
1(x).

This is actually a finite sum in Tx(M) and so G1(x) is a well-defined element
of Tx(M). Now define the map G:M→ T (M) by G(x) = (x,G1(x)), x ∈ M.
It follows that G is a vector field on M. We will prove that G is of class C1.
Let x0 ∈M be arbitrary. Then there is an open neighbourhood W of x0 in M,
a chart γ:W → W̃ and a finite subset J of I such that φi(x) = 0 for all i ∈ I \J

and all x ∈ W . It is enough to prove that Hγ := χγ ◦G|W ◦ γ−1: W̃ → W̃ × E

is of class C1. However, for y ∈ W̃ ,

Hγ(y) =
(

y,
∑
i∈J

φi(γ−1(y))D(γ ◦ α−1
i )(αi(γ−1(y))).G̃i(αi(γ−1(y)))

)
and this expression clearly shows that Hγ is of class C1.

Note that, for every x ∈ M, F (x) = (x, F1(x)) where F1(x) ∈ Tx(M). For
every i ∈ I the definition of F̃ i implies that, for every x ∈ Ui,

F1(x)(αi) = F̃ i(αi(x)).

It follows that

Γ(F (x)) = DMe(x).F1(x) = D(e ◦ α−1
i )(αi(x)).F1(x)(αi)

= D(e ◦ α−1
i )(αi(x)).F̃ i(αi(x))

so

Γ(F (x)) = D(e ◦ α−1
i )(αi(x)).F̃ i(αi(x)).

Analogously,

Γ(G(x)) = D(e ◦ α−1
i )(αi(x)).G̃i(αi(x)).

It follows that, for every x ∈M,

|Γ(G(x))− Γ(F (x))|E =
∣∣∣∣ ∑

i∈I

φi(x)D(e ◦ α−1
i )(αi(x)).(G̃i(αi(x))− F̃ i(αi(x)))|E

≤
∑
i∈I

φi(x)|D(e ◦ α−1
i )(αi(x)).(G̃i(αi(x))− F̃ i(αi(x)))|E

≤
∑
i∈I

φi(x)Ci · ε/(2Ci) = ε/2.

Thus

sup
x∈M

|Γ(G(x))− Γ(F (x))|E < ε.

The proposition is proved. �
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Lemma 3.2. Let N be a compact subset of M and F and Fκ, κ ∈ N, be
continuous vector fields on M. Assume that supx∈N |Γ(Fκ(x))−Γ(F (x))|E → 0
as κ →∞. Let J ⊂ R be an arbitrary interval. For every κ ∈ N, let xκ: J → N

satisfy the equation

ẋκ(t) = ẋMκ (t) = Fκ
1 (xκ(t)), t ∈ J.

Then a subsequence of (xκ)κ∈N converges in M, uniformly on compact subsets
of J , to a function x: J → N satisfying the equation

ẋ(t) = F1(x(t)), t ∈ J.

Proof. For κ ∈ N let yκ = e ◦ xκ. It follows that

y′κ(t) = Γ(Fκ(xκ(t))), t ∈ J.

An application of the Arzelà–Ascoli theorem shows that a subsequence of (yκ)κ∈N,
again denoted by (yκ)κ∈N, converges in E, uniformly on compact subsets of J ,
to a continuous function y: J → e(N). Since e is a homeomorphism of M onto
e(M) there is a unique map x: J → N with y = e ◦ x, x is continuous into M
and (xκ)κ∈N converges to x in M, uniformly on compact subsets of J .

For κ ∈ N and t, t0 ∈ J we have

yκ(t) = yκ(t0) +
∫ t

t0

Γ(Fκ(xκ(s))) ds.

Letting κ →∞ we conclude that

y(t) = y(t0) +
∫ t

t0

Γ(F (x(s))) ds.

Proceeding as in the proof of [5, Proposition 4.6] we obtain that x is differentiable
into M and

ẋ(t) = F1(x(t)), t ∈ J.

This completes the proof. �

An ordinary differential equation

ẋ = F1(x)

generates a local (semi)flow on M, provided the vector field F :M → TM
is locally Lipschitzian. However, even merely continuous vector fields can still
define local (semi)flows. This is e.g. the case for a continuous vector field obtained
from an originally locally Lipschitzian vector field by a transformation via a C1-
diffeomorphism.

Therefore the following definition is natural:
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Definition 3.3. Let F be a continuous vector field on M and π be a local
semiflow on M. We say that π is generated by F if for every intervall J ⊂ R and
every function x: J →M, x is a solution of π if and only if x is differentiable on
J and

ẋ(t) = F1(x(t)), t ∈ J.

Given x ∈ M and α ∈ ]0,∞[ we denote by Bα(x) the set of all y ∈ M with
dM(y, x) ≤ α. Since (M, dM) is locally compact, Bα(x) is compact for α small
enough (depending on x).

Lemma 3.4. Let a ∈M be arbitrary and δ ∈ ]0,∞[ be such that N := B2δ(a)
is compact. Let π be a local semiflow on M generated by the continuous vector
field F on M. Let C ∈ ]0,∞[ be arbitrary with C ≥ supx∈N |Γ(F (x))|E. Define
τ = δ/C. Let x ∈ M be arbitrary with dM(x, a) ≤ δ. Then xπτ is defined and
xπ [0, τ ] ⊂ N .

Proof. Since N is compact, π does not explode in N . Thus if the assertion
of the lemma does not hold, then there exists a smallest r ∈ [0, τ ] such that xπr

is defined and dM(xπr, a) = 2δ. It follows that xπ [0, r] ⊂ N and 0 < r < τ . Let
y(t) = e(xπt) for t ∈ [0, r]. It follows that

dM(xπr, x) = |y(r)− y(0)|E =
∣∣∣∣ ∫ r

0

Γ(F (xπs)) ds

∣∣∣∣
E

≤ Cr < Cτ = δ

and so

2δ = dM(xπr, a) ≤ dM(xπr, x) + dM(x, a) < δ + δ = 2δ.

This contradiction concludes the proof. �

We now obtain the basic

Theorem 3.5. Let Fκ, κ ∈ N0, be continuous vector fields on M and πκ,
κ ∈ N0, be local semiflows on M. Suppose that πκ is generated by Fκ for κ ∈ N0.
In addition, assume that, for every compact subset N of M,

sup
x∈N

|Γ(Fκ(x))− Γ(F 0(x))|E → 0 as κ →∞.

Under these hypotheses, πκ → π0 as κ →∞.

We need the following lemmas:

Lemma 3.6. Assume the hypotheses of Theorem 3.5. Let κ0 ∈ N be arbitrary
and (aκ)κ≥κ0 be a sequence in M and a0 ∈M with aκ → a0 in M as κ →∞. Let
N be compact in M and τ ∈ ]0,∞[ be such that aκπκτ is defined and aκπκ [0, τ ] ⊂
N for all κ ≥ κ0. Then a0π0τ is defined and supt∈[0,τ ] dM(aκπκt, a0π0t) → 0 as
κ →∞.
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Proof. Define xκ(t) = aκπκt for κ ≥ κ0 and t ∈ [0, τ ]. By Lemma 3.2
a subsequence of (xκ)κ≥κ0 converges in M, uniformly on [0, τ ], to a function
x: [0, τ ] → N satisfying the equation

ẋ(t) = F 0
1 (x(t)), t ∈ J.

It follows from our assumption that x is a solution of π0. Since x(0) = a0 we see
that a0π0t is defined and a0π0t = x(t) for all t ∈ [0, τ ].

This argument also proves that every subsequence of (xκ)κ≥κ0 converges to
x in M, uniformly on [0, τ ]. Therefore the full sequence (xκ)κ≥κ0 converges to
x in M, uniformly on [0, τ ]. This proves the lemma. �

Lemma 3.7. Assume the hypotheses of Theorem 3.5. For every a ∈M there
are δ, τ ∈ ]0,∞[ such that for every a0 ∈ M with dM(a0, a) < δ and every
sequence (aκ)κ converging to a0 in M there is a κ0 ∈ N such that both a0π0τ

and aκπκτ , κ ≥ κ0, are defined and supt∈[0,τ ] dM(aκπκt, a0π0t) → 0 as κ →∞.

Proof. Let a ∈ M be arbitrary and δ ∈ ]0,∞[ be such N := B2δ(a) is
compact. By our assumption there is a C ∈ ]0,∞[ such that

C ≥ sup
κ∈N0

sup
x∈N

|Γ(Fκ(x))|E.

Let τ = δ/C. For every a0 ∈ M with dM(a0, a) < δ and every sequence
(aκ)κ converging to a0 in M there is a κ0 ∈ N with dM(aκ, a) < δ for κ ≥
κ0. Lemma 3.4 implies that both a0π0τ and aκπκτ , κ ≥ κ0, are defined and
a0π0 [0, τ ] ⊂ N and aκπκ [0, τ ] ⊂ N for κ ≥ κ0. Lemma 3.6 implies that
supt∈[0,τ ] dM(aκπκt, a0π0t) → 0 as κ →∞. �

We can now give a

Proof of Theorem 3.5. We must prove that whenever xκ → x0 in M,
tκ → t0 in [0,∞[ as κ → ∞ and x0π0t0 is defined, then xκπκtκ is defined for κ

large enough and xκπκtκ → x0π0t0 in M as κ →∞.
Now, as x0π0t0 is defined, there is a b > t0, b ∈ ]0,∞[, such that x0π0r is

defined for all r ∈ [0, b[. Define

I := { r ∈ [0, b[ | there exists an κ0 ∈ N such that xκπκr is defined for κ ≥ κ0

and sup
s∈[0,r]

dM(xκπκs, x0π0s) → 0, as κ →∞}.

It is clear that 0 ∈ I. Furthermore if 0 ≤ r′ < r and r ∈ I, then r′ ∈ I. Let

r := sup I.

It follows that r ≤ b and [0, r[ ⊂ I. An application of Lemma 3.7 with a := x0

shows that r > 0. We claim that r = b. Suppose, on the contrary, that r < b.
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It follows that x0π0r is defined. Let δ > 0 and τ > 0 be as in Lemma 3.7 with
a := x0π0r.

Choose r ∈ R with 0 < r < r < r + τ and dM(x0π0r, x0π0r) < δ. We have
that r ∈ I so there exists an κ0 ∈ N such that xκπκr is defined for all κ ≥ κ0

and

(3.2) sup
s∈[0,r]

dM(xκπκs, x0π0s) → 0, as κ →∞.

Set a0 = x0π0r, aκ = a0 for κ < κ0 and aκ := xκπκr for κ ≥ κ0. Applying
Lemma 3.7 and choosing κ0 larger if necessary we see that both a0π0τ and aκπκτ ,
κ ≥ κ0, are defined and

(3.3) sup
t∈[0,τ ]

dM(aκπκt, a0π0t) → 0 as κ →∞.

Formulas (3.2) and (3.3) imply that x0π0(r + τ) and xκπκ(r + τ), κ ≥ κ0, are
defined and

sup
s∈[0,r+τ ]

dM(xκπκs, x0π0s) → 0, as κ →∞.

Thus r + τ ∈ I, but r + τ > r, a contradiction, which proves that r = b.
Since t0 ∈ [0, b[, it follows that there is an r ∈ [0, b[ with t0 < r and tκ < r

for all κ large enough. In particular x0π0tκ and xκπκtκ are defined for κ large
enough and

dM(xκπκtκ, x0π0tκ) → 0 as κ →∞.

Since
dM(x0π0tκ, x0π0t0) → 0 as κ →∞,

we have that
dM(xκπκtκ, x0π0t0) → 0 as κ →∞.

The proposition is proved. �

Given a continuous vector field F on M and N ⊂ M let Sol(F,N) be the
set of all functions x: R → N satisfying the equation

ẋM(t) = F1(x(t)), t ∈ R.

Lemma 3.2 immediately implies the following result.

Proposition 3.8. Let N be a compact subset of M and F and Fκ, κ ∈ N,
be continuous vector fields on M such that

sup
x∈N

|Γ(Fκ(x))− Γ(F (x))|E → 0, as κ →∞.

Set Tκ := Sol(Fκ, N), κ ∈ N, and T := Sol(F,N). Then Tκ → T (in C(R,M))
as κ →∞ (in the sense of [1]).

We conclude this section with the following result.
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Corollary 3.9. Let F be a continuous vector field on M and N be a com-
pact subset of M such that InvT (N) ⊂ IntM(N), where T = Sol(F,N). Then
there is an ε ∈ ]0,∞[ such that whenever F̃ is a continuous vector field on
M with supx∈N |Γ(F (x)) − Γ(F̃ (x))|E < ε then Inv

eT (N) ⊂ IntM(N), where
T̃ = Sol(F̃ , N). Let ε(F,N) be the supremum of all such numbers ε.

Proof. This follows from Proposition 3.8 and [1, Proposition 2.14]. �

4. Conley index in the absence of uniqueness

We assume that the reader is familiar with the classical Conley index theory,
as expounded in the monographs [6], [9] or [10].

In this section we give an extension of Conley index theory to the case of
ordinary differential equations on M with a merely continuous right hand side.
This extends some results from [8] to the manifold case.

Definition 4.1. Given a continuous vector field F on M and a compact
subset N of M with InvT (N) ⊂ IntM(N), where T = Sol(F,N), we define the
Conley index h(F,N) of N relative to F by

h(F,N) := h(πG, InvπG
(N))

where G is any C1-vector field on M with supx∈N |Γ(G(x)) − Γ(F (x))|E <

ε(F,N) and πG is the local (semi)flow on M generated by G.

A vector field G satisfying the above assumptions exists in view of Proposi-
tion 3.1. In view of Corollary 3.9, InvπG

(N) ⊂ IntM(N), so h(πG, InvπG
(N)) is

defined.
The following result shows that the above definition is independent of the

choice of G:

Proposition 4.2. Let N be a compact subset of M. If G and G′ are C1-
vector fields on M with

sup
x∈N

|Γ(G(x))− Γ(F (x))|E < ε(F,N) and sup
x∈N

|Γ(G′(x))− Γ(F (x))|E < ε(F,N),

then
h(πG, InvπG

(N)) = h(πG′ , InvπG′ (N)).

Proof. For θ ∈ [0, 1] set Gθ
1 := (1 − θ)G1 + θG′1. It follows that Gθ:M→

T (M), x 7→ (x,Gθ
1(x)) is a C1-vector field on M and supx∈N |Γ(Gθ(x)) −

Γ(F (x))|E < ε(F,N) for all θ ∈ [0, 1].
For θ ∈ [0, 1] let πθ be the local (semi)flow on M generated by Gθ and let

(θn)n be an arbitrary sequence in [0, 1] converging to some θ ∈ [0, 1]. We claim
that πθn

→ πθ as n → ∞. Since the map M× R → T (M), (x, θ) 7→ Gθ(x) is
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continuous (even of class C1), it follows that the map M× R → E, (x, θ) 7→
Γ(Gθ(x)) is continuous. In particular, for every compact subset M of M

sup
x∈M

|Γ(Gθn(x))− Γ(Gθ(x))|E → 0 as n →∞.

Hence Theorem 3.5 proves our claim. Now compactness of N and Conley index
continuation principle, see, e.g. [10, Theorem I.12.2], imply that the Conley
index h(πθ, Invπ

Gθ
(N)) is defined and independent of θ ∈ [0, 1]. This proves the

proposition. �

The number ε(F,N) also depends on the Banach space E and the embedding
e:M → E and we should write ε(F,N,E, e) instead of ε(F,N) to stress this
dependence. However, we claim that the Conley index h(F,N) is independent
of E or e. This follows from the following

Proposition 4.3. Let E and Ẽ be Banach spaces and e:M → E and
ẽ:M → Ẽ be C2-embeddings. Let N be compact in M. Then there is a C =
C(N) ∈ ]0,∞[ such that for all x ∈ N and all v ∈ Tx(M)

|DMẽ(x).v|
eE ≤ C|DMe(x).v|E.

Let F and N be as in Definition 4.1 and define

ε̃ := min{ε(F,N,E, e), C−1ε(F,N, Ẽ, ẽ)}.

By Proposition 3.1 there is a C1-vector field G on M such that

sup
x∈N

|DMe(x).G1(x)−DMe(x).F1(x)|E < ε̃ ≤ ε(F,N,E, e).

Proposition 4.3 implies that

sup
x∈N

|DMẽ(x).G1(x)−DMẽ(x).F1(x)|
eE < ε(F,N, Ẽ, ẽ)

so that, according to Definition 4.1, h(F,N) is equal to h(G, InvπG
(N)) both

relative to the pair (E, e) and to the pair (Ẽ, ẽ). This shows our claim.

Proof of Proposition 4.3. Since e−1 is a C2-map from the submanifold
e(M) to M it follows that h: e(M) → Ẽ, h = ẽ ◦ e−1 is of class C2. Thus, by
well known results there is an open set U in E containing e(M) and an extension
of h to a C2-map from U to Ẽ, denoted h again. Let

(4.1) C = C(N) = sup
y∈e(N)

|Dh(y)|L(E,eE) + 1.

Since e(N) is compact in E it follows that C ∈ ]0,∞[. Now let x ∈ N and
v ∈ Tx(M) be arbitrary. Let α:V → Ṽ ⊂ E be an arbitrary chart at x. By
definition of DMe we have

DMe(x).v = D(e ◦ α−1)(y).v(α).
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Here, y = α(x). In the same way

DMẽ(x).v = D(ẽ ◦ α−1)(y).v(α).

Since ẽ ◦ α−1 = h ◦ (e ◦ α−1) the chain rule shows that

D(ẽ ◦ α−1)(y).v(α) = Dh(e(x))(D(e ◦ α−1)(y).v(α))

so

(4.2) DMẽ(x).v = Dh(e(x))(DMe(x).v).

Now (4.1) and (4.2) imply the assertion of the proposition. �

The index h(F,N) depends only on the isolated invariant set InvT (N).

Proposition 4.4. Let F be a continuous vector field on M and let N ′, N ′′

be a compact subsets of M such that InvT ′(N ′) ⊂ IntM(N ′), InvT ′′(N ′′) ⊂
IntM(N ′′) and InvT ′(N ′) = InvT ′′(N ′′), where T ′ = Sol(F,N ′) and T ′′ =
Sol(F,N ′′). Then

h(F,N ′) = h(F,N ′′).

Proof. Suppose h(F,N ′) 6= h(F,N ′′). Choose a sequence (Gκ)κ∈N of C1-
vector fields on M such that supx∈M |Γ(Gκ(x)) − Γ(F (x))|E → 0 as κ → ∞.
Let πκ := πGκ . Definition 4.1 implies that

h(πκ, Invπκ
(N ′)) 6= h(πκ, Invπκ

(N ′′)) for all κ large enough.

Taking a subsequence and exchanging N ′ with N ′′, if necessary, we may thus
assume that

Invπκ
(N ′) \ Invπκ

(N ′′) 6= ∅ for all κ ∈ N.

Therefore for every κ ∈ N there is an xκ ∈ Sol(Gκ, N ′) with xκ(0) /∈ IntM(N ′′).
An application of Lemma 3.2 yields an x ∈ Sol(F,N ′) with x(0) /∈ IntM(N ′′).
Hence InvT (N ′) 6= InvT (N ′′), a contradiction. �

Recall that 0 is the homotopy type of any pointed one-point set. The index
just defined is nontrivial:

Proposition 4.5. Let F be a continuous vector field on M and N be a com-
pact subset of M such that InvT (N) ⊂ IntM(N), where T = Sol(F,N). Suppose
that h(F,N) 6= 0. Then InvT (N) 6= ∅.

Proof. Choose a sequence (Gκ)κ∈N of C1-vector fields on M such that

sup
x∈N

|Γ(Gκ(x))− Γ(F (x))|E → 0 as κ →∞.

By Definition 4.1, h(πGκ , InvπGκ (N)) 6= 0 for all κ large enough, so by Conley
index theory InvπGκ (N) 6= ∅ for all such κ. An application of Lemma 3.2 now
shows that InvT (N) 6= ∅. �



Conley Index 15

We also have the following property:

Proposition 4.6. Let F and F ′ be continuous vector fields on M and N

be a compact subset of M such that InvT (N) ⊂ IntM(N), where T = Sol(F,N).
Assume that supx∈N |Γ(F ′(x))− Γ(F (x))|E < ε(F,N). Then

h(F,N) = h(F ′, N).

Proof. By Corollary 3.9, InvT ′(N) ⊂ IntM(N), where T ′ = Sol(F ′, N).
Thus ε(F ′, N) is defined (and positive). Choose a C1-vector field G on M such
that

sup
x∈N

|Γ(G(x))− Γ(F ′(x))|E < min(ε(F ′, N), ε(F,N)− ε̃),

where ε̃ := supx∈N |Γ(F (x))− Γ(F ′(x))|E. Hence

sup
x∈N

|Γ(G(x))−Γ(F ′(x))|E < ε(F ′, N) and sup
x∈N

|Γ(G(x))−Γ(F (x))|E < ε(F,N),

so

h(F ′, N) = h(πG, InvπG
(N)) = h(F,N).

The proposition follows. �

As a corollary to Proposition 4.6 we obtain the following version of Conley
index continuation property:

Corollary 4.7. Let (Λ, d) be a metric space, N be a compact subset of M
and (Fλ)λ∈Λ be a family of continuous vector fields on M such that the map

Λ×N → E, (λ, x) 7→ Γ(Fλ(x))

is continuous. For each λ ∈ Λ assume that InvTλ
(N) ⊂ IntM(N), where Tλ =

Sol(Fλ, N). Then the map λ 7→ h(Fλ, N) is locally constant. In particular, if Λ
is connected then the Conley index h(Fλ, N) is independent of λ ∈ Λ.

Proof. Let C(N,E) be the space of all continuous functions from N to
E endowed with the supremum norm. Since N is compact, our hypotheses
imply that the map Φ: Λ → C(N,E), λ 7→ (Γ ◦ Fλ)|N , is continuous. Thus,
for every λ0 ∈ Λ there exists an δ ∈ ]0,∞[ such that d(λ, λ0) < δ implies
supx∈N |Γ(Fλ(x))−Γ(Fλ0(x))|E < ε(Fλ0 , N), i.e., by Proposition 4.6, h(Fλ, N) =
h(Fλ0 , N). In other words, the map λ 7→ h(Fλ, N) is locally constant. The proof
is complete. �

If a local semiflow π on M is generated by a continuous vector field F , then
we have two definitions of Conley index: the classical definition and the one we
have defined in this paper. We now show that these definitions coincide:
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Proposition 4.8. Let π be a local semiflow on M and F be a continuous
vector field on M. Suppose that π is generated by F . A compact set N ⊂M is
an isolating neighborhood relative to π if and only if InvT (N) ⊂ IntM(N), where
T = Sol(F,N). In this case,

h(π, Invπ(N)) = h(F,N).

Proof. The first assertion of the proposition is clear. To prove the second
assertion note that, by Proposition 3.1 there is a sequence (Fκ)κ of C1-vector
fields on M such that supx∈M |Γ(Fκ(x)−Γ(F (x)))|E → 0 as κ →∞. Therefore,
by Proposition 4.6, h(Fκ, N) = h(F,N) for κ large enough. By Definition 4.1
and Proposition 4.2 we have that h(Fκ, N) = h(πF κ , InvπF κ (N)) for all κ ∈ N.
Finally, by Theorem 3.5, compactness of N and Conley index continuation prin-
ciple, we have that h(πF κ , InvπF κ (N)) = h(π, Invπ(N)) for all κ large enough.
All this implies the second assertion of the proposition. �

We now show that the Conley index just defined is invariant with respect to
conjugation. More precisely, let M̃ be a finite dimensional (boundaryless) second
countable paracompact differentiable manifold of class C2 modeled on a Banach
space Ẽ and Φ:M → M̃ be a C1-diffeomorphism with inverse Φ−1:M̃ → M.
Let F be a continuous vector field on M. Whenever x: I ⊂ R → M is a solu-
tion of

ẋ = F1(x),

then, by the chain rule, x̃ = Φ ◦ x: I → M̃ is a solution of

˙̃x = F̃1(x̃),

where F̃ is the continuous vector field on M̃ given by

F̃ = TΦ ◦ F ◦ Φ−1.

This implies that whenever N is a compact subset of M such that InvT (N) ⊂
IntM(N), where T = Sol(F,N), then Ñ := Φ(N) is a compact subset of M̃ such
that Inv

eT (Ñ) ⊂ Int
fM(Ñ), where T̃ = Sol(F̃ , Ñ).

Proposition 4.9. Under the above assumptions on Φ, F and N ,

(4.3) h(F,N) = h(F̃ , Ñ).

Proof. By [5, Subsection 3.1], whenever N is a C1-manifold, Y is a Banach
space and f :N → Y is a C1-map, then for all x ∈ N and all u ∈ Tx(N ),

(4.4) Txf(u)(β) = DN f(x).u

where β = IdY is the identity chart on Y .
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Define ε̃ := min(ε(F,N,E, e), ε(F̃ , Ñ ,E, ẽ)), where ẽ:M̃ → E is given by
ẽ := e ◦ Φ−1. Let G be a C1-vector field on M with

sup
x∈N

|Γ(G(x))− Γ(F (x))|E < ε̃

and let πG be the local (semi)flow on M generated by G. Since ε̃ ≤ ε(F,N), it
follows that

(4.5) h(F,N) = h(πG, InvπG
(N)).

Define
x̃π̃t := Φ((Φ−1(x̃))πGt),

where x̃ ∈ M̃ and t ∈ [0,∞[ are such that (Φ−1(x̃))πGt is defined. It follows
that π̃ is the local (semi)flow generated on M̃ by the equation

˙̃x = G̃1(x̃)

where G̃ is the (in general, merely) continuous vector field on M̃ given by

G̃ = TΦ ◦G ◦ Φ−1.

Since Conley index is invariant under (semi)flow conjugation, we have

(4.6) h(πG, InvπG
(N)) = h(π̃, Inv

eπ(Ñ)).

Proposition 4.8 implies that

(4.7) h(π̃, Inv
eπ(Ñ)) = h(G̃, Ñ).

Note that T ẽ ◦ F̃ = Te ◦ T (Φ−1) ◦ TΦ ◦ F ◦ Φ−1 so

(4.8) T ẽ ◦ F̃ = Te ◦ F ◦ Φ−1.

In the same way

(4.9) T ẽ ◦ G̃ = Te ◦G ◦ Φ−1.

Defining Γ̃:T (M̃) → E by Γ̃(x̃, ũ) = D
fMẽ(x̃)(ũ) for (x̃, ũ) ∈ T (M̃) we thus

obtain from (4.4), (4.8) and (4.9) that

(4.10) Γ̃ ◦ F̃ = Γ ◦ F ◦ Φ−1

and

(4.11) Γ̃ ◦ G̃ = Γ ◦G ◦ Φ−1.

Thus
sup
ex∈ eN

|Γ̃(G̃(x̃))− Γ̃(F̃ (x̃))|E = sup
x∈N

|Γ(G(x))− Γ(F (x))|E < ε̃

and so Proposition 4.6 implies

(4.12) h(G̃, Ñ) = h(F̃ , Ñ).
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Now (4.5)–(4.7) and (4.12) imply (4.3). �

5. (Co)homology index braids in the absence of uniqueness

In this section will assume that the reader is familiar with the papers [2], [3],
[4], [11].

We will now present an extension of the (co)homology index braid theory to
the case considered in Section 4.

Proposition 5.1. Let F be a continuous vector field on M and N be a com-
pact subset of M such that InvT (N) ⊂ IntM(N), where T := Sol(F,N). Let
Fκ, κ ∈ N, be continuous vector fields on M such that

sup
x∈N

|Γ(Fκ(x))− Γ(F (x))|E → 0 as κ →∞

and set Tκ := Sol(Fκ, N), κ ∈ N. Suppose (Mp)p∈P be a ≺-ordered T -Morse
decomposition. For each p ∈ P , let Vp be a closed subset of N such that Mp =
InvT (Vp) ⊂ IntM(Vp). Moreover, for every I ∈ I(≺), let VI be a closed subset
of N such that

M(I) =
⋃

(i,j)∈I×I

CST (Mi,Mj) = InvT (VI) ⊂ IntM(VI).

Then there exists a κ0 ∈ N such that for all κ ≥ κ0,

Mκ,p := InvTκ
(Vp) ⊂ IntM(Vp)

and (Mκ,p)p∈P is a ≺-ordered Tκ-Morse decomposition. Moreover, for every
I ∈ I(≺),

Mκ(I) :=
⋃

(i,j)∈I×I

CSTκ
(Mκ,i,Mκ,j) = InvTκ

(VI) ⊂ IntM(VI).

Proof. Since T and Tκ, κ ∈ N, are compact, translation and cut-and-glue
invariant, an application of Proposition 3.8 and [2, Theorem 3.3] completes the
proof. �

The last result clearly implies the following proposition.

Proposition 5.2. Let F be a continuous vector field on M and N be a com-
pact subset of M such that InvT (N) ⊂ IntM(N), where T := Sol(F,N). Sup-
pose (Mp)p∈P is a ≺-ordered T -Morse decomposition. For each p ∈ P , let Vp be
a closed subset of N such that Mp = InvT (Vp) ⊂ IntM(Vp). Moreover, for every
I ∈ I(≺), let VI be a closed subset of N such that

M(I) :=
⋃

(i,j)∈I×I

CST (Mi,Mj) = InvT (VI) ⊂ IntM(VI).
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Then there is an ε ∈ ]0,∞[ such that whenever F̃ is a continuous vector field on
M with supx∈N |Γ(F (x))− Γ(F̃ (x))|E < ε then Inv

eT (N) ⊂ IntM(N),

M̃p := Inv
eT (Vp) ⊂ IntM(Vp) for every p ∈ P

and (M̃p)p∈P is a ≺-ordered T̃ -Morse decomposition. For every I ∈ I(≺),

M̃(I) :=
⋃

(i,j)∈I×I

CS
eT (M̃i, M̃j) = Inv

eT (VI) ⊂ IntM(VI),

where T̃ = Sol(F̃ , N). By ε(F,N, (Vp)p∈P ) we denote the supremum of all such
numbers ε.

Proposition 5.3. Under the assumptions and notations of Proposition 5.2
let G and G′ be C1-vector fields on M with

sup
x∈N

|Γ(G(x))− Γ(F (x))|E < ε(F,N, (Vp)p∈P ),

sup
x∈N

|Γ(G′(x))− Γ(F (x))|E < ε(F,N, (Vp)p∈P ).

Let πG (resp. πG′) be the local (semi)flow on M generated by G (resp. G′) and
KG = InvπG

(N) (resp. KG′ = InvπG′ (N)). For each p ∈ P , define Mp,G =
InvπG

(Vp) (resp. Mp,G′ = InvπG′ (Vp)). Then the homology index braids H(πG,

KG, (Mp,G)p∈P ) and H(πG′ ,KG′ , (Mp,G′)p∈P ) are isomorphic and the cohomolo-
gy index braids CH(πG,KG, (Mp,G)p∈P ) and CH(πG′ ,KG′ , (Mp,G′)p∈P ) are iso-
morphic.

Proof. The proof is completely analogous to the proof of Proposition 4.2
except that, instead of Conley index continuation principle we use [3, Theo-
rem 3.7]. �

We introduce the following definition.

Definition 5.4. Given a continuous vector field F on M, a compact subset
N of M with InvT (N) ⊂ IntM(N), where T = Sol(F,N), a ≺-ordered T -Morse
decomposition (Mp)p∈P and a family (Vp)p∈P of closed subsets of N such that
Mp = InvT (Vp) ⊂ IntM(Vp), p ∈ P , we define the homology index braid class of
(F,N, (Vp)p∈P ) by

H(F,N, (Vp)p∈P ) := [H(πG,KG, (Mp,G)p∈P )]

and the cohomology index braid class of (F,N, (Vp)p∈P ) by

CH(F,N, (Vp)p∈P ) := [CH(πG,KG, (Mp,G)p∈P )],

where G is any C1-vector field on M with

sup
x∈N

|Γ(G(x))− Γ(F (x))|E < ε(F,N, (Vp)p∈P ),
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πG is the local (semi)flow on M generated by G, KG = InvπG
(N) and Mp,G =

InvπG
(Vp), p ∈ P . A vector field G satisfying the above assumptions exists in

view of Proposition 3.1.
Let k ∈ N0. We define the homology (resp. cohomology) index braid class of

(F,N, (Vp)p∈P ) shifted to left by k by

Hk(F,N, (Vp)p∈P ) := H(F,N, (Vp)p∈P )k,

resp. CHk(F,N, (Vp)p∈P ) := CH(F,N, (Vp)p∈P )k,

(cf. (2.1) and (2.2).)

Remark. Proposition 5.3 shows that the concepts defined in Definition 5.4
are independent of the choice of the vector field G. An argument analogous to
that following the statement of Proposition 4.3 shows that H(F,N, (Vp)p∈P ) and
CH(F,N, (Vp)p∈P ) are independent of E and e.

Moreover, H(F,N, (Vp)p∈P ) and CH(F,N, (Vp)p∈P ) depend only on the ≺-
ordered T -Morse decomposition (Mp)p∈P :

Proposition 5.5. Let F be a continuous vector field on M and let N ′, N ′′

be compact subsets of M and such that InvT ′(N ′) ⊂ IntM(N ′), InvT ′′(N ′′) ⊂
IntM(N ′′) and InvT ′(N ′) = InvT ′′(N ′′), where T ′ = Sol(F,N ′) and T ′′ =
Sol(F,N ′′). Let (Mp)p∈P be a ≺-ordered T -Morse decomposition and, for p ∈ P

let V ′p and V ′′p be closed subsets of N ′ and N ′′ resp. such that Mp = InvT ′(V ′p) ⊂
IntM(V ′p) and Mp = InvT ′′(V ′′p ) ⊂ IntM(V ′′p ). Then

H(F,N ′, (V ′p)p∈P ) = H(F,N ′′, (V ′′p )p∈P ),

CH(F,N ′, (V ′p)p∈P ) = CH(F,N ′′, (V ′′p )p∈P ).

Proof. Analogous to the proof of Proposition 4.4. �

We also have the following

Proposition 5.6. Let F and F ′ be continuous vector fields on M and N

be a compact subset of M such that InvT (N) ⊂ IntM(N), where T = Sol(F,N)
and let (Mp)p∈P be a ≺-ordered T -Morse decomposition. For each p ∈ P let
Vp be a closed subset of N such that Mp = InvT (Vp) ⊂ IntM(Vp). Assume that
supx∈N |Γ(F ′(x))− Γ(F (x))|E < ε(F,N, (Vp)p∈P ). Then

H(F,N, (Vp)p∈P ) = H(F ′, N, (Vp)p∈P ),

CH(F,N, (Vp)p∈P ) = CH(F ′, N, (Vp)p∈P ).

Proof. Analogous to the proof of Proposition 4.6. �

As a corollary we obtain the following version of the continuation property
for (co)homology index braids:
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Corollary 5.7. Let (Λ, d) be a metric space, N be a compact subset of M
and let (Fλ)λ∈Λ be a family of continuous vector fields on M such that the map

Λ×N → E, (λ, x) 7→ Γ(Fλ(x))

is continuous. For each λ ∈ Λ assume that InvTλ
(N) ⊂ IntM(N) and the fam-

ily (Mp,λ)p∈P is a ≺-ordered Tλ-Morse decomposition, where Tλ = Sol(Fλ, N).
For each p ∈ P let Vp be a closed subset of N such that Mp,λ = InvTλ

(Vp) ⊂
IntM(Vp). Under these assumptions, the maps λ 7→ H(Fλ, N, (Vp)p∈P ) and
λ 7→ CH(Fλ, N, (Vp)p∈P ) are locally constant. In particular, if Λ is connected
then the homology index braid class H(Fλ, N, (Vp)p∈P ) and the cohomology in-
dex braid class CH(Fλ, N, (Vp)p∈P ) are independent of λ ∈ Λ.

Proof. Analogous to the proof of Corollary 4.7, but using Proposition 5.6
instead of Proposition 4.6. �

Proposition 5.8. Let π be a local semiflow on M and F be a continuous
vector field on M. Suppose that π is generated by F . Let N ⊂M be a compact
set which is an isolating neighborhood relative to π and K := Invπ(N). Given
a ≺-ordered T -Morse decomposition (Mp)p∈P of K relative to π and a family
(Vp)p∈P of closed subsets of N such that Mp = Invπ(Vp) ⊂ IntM(Vp), p ∈ P , we
have

H(F,N, (Vp)p∈P ) = [H(π,K, (Mp)p∈P )],

CH(F,N, (Vp)p∈P ) = [CH(π,K, (Mp)p∈P )].

Proof. Analogous to the proof of Proposition 4.8. �

Proposition 5.9. Let M̃, Φ, F and N be as in Proposition 4.9. Let
(Mp)p∈P be a ≺-ordered T -Morse decomposition and for each p ∈ P let Vp be
a closed subset of N such that Mp = InvT (Vp) ⊂ IntM(Vp), p ∈ P . For each p ∈
P , define Ṽp := Φ(Vp) and M̃p := Inv

eT (Ṽp). Then M̃p = Inv
eT (Ṽp) ⊂ IntM(Ṽp)

for p ∈ P and (M̃p)p∈P is a ≺-ordered T̃ -Morse decomposition. Moreover,

H(F,N, (Vp)p∈P ) = H(F̃ , Ñ , (Ṽp)p∈P ),

CH(F,N, (Vp)p∈P ) = CH(F̃ , Ñ , (Ṽp)p∈P ).

Proof. Analogous to the proof of Proposition 4.9. �

6. A singular perturbation result in the absence of uniqueness

In this section we will apply the index theories developed in the preceding
sections to extend results from our previous paper [5].

Consider the following assumptions:
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Hypothesis 6.1.

(a) Y is a finite dimensional normed linear space, ε ∈ ]0,∞[ is arbitrary,
Z0 is open in Y ×M and W0 := Z0 × [0, ε].

(b) f :W0 → Y and h:W0 → T (M) are maps such that, for each ε ∈ ]0, ε],
f( · , ε) and h( · , ε) are continuous.

(c) For ((y, x), ε) ∈ W0, h((y, x), ε) = (x, h1((y, x), ε)) with h1((y, x), ε) ∈
Tx(M).

(d) φ:M → Y is a C1-map such that for all x ∈ M, (φ(x), x) ∈ Z0 and
f((φ(x), x), 0) = 0.

(e) The map f( · , 0) is of class C1 and the map h( · , 0) is continuous.
(f) For every (y, x) ∈ Z0 the map f is continuous at ((y, x), 0) and for every

x ∈M, the map h is continuous at ((φ(x), x), 0).

Hypothesis 6.2. a0, b0 ∈ R are such that a0 < 0 < 1 < b0 and B:M×
]a0, b0[ → L(Y, Y ) is a continuous map such that B(x, λ) is hyperbolic for every
(x, λ) ∈M×[0, 1], B(x, 0) = Df((φ(x), x), 0) and B(x, 1) = B for every x ∈M,
where B ∈ L(Y, Y ) has Morse-index k ∈ N0.

Here, for normed spaces Z1 and Z2, L(Z1, Z2) is the normed space of all
bounded linear maps from Z1 to Z2.

Remark. Note that Hypothesis 6.1 relaxes [5, Hypothesis 4.1] and Hypo-
thesis 6.2 relaxes [5, Hypothesis 4.2].

For every ε ∈ ]0, ε], consider the ordinary differential equation

(6.1) εẏ = f((y, x), ε), ẋ = h1((y, x), ε).

As in [5], for each ε ∈ ]0, ε] equation (6.1) is interpreted as the ordinary differ-
ential equation

ẇ = F ε
1 (w)

where Fε is the unique vector field on the manifold Z0 such that for every w =
(y, x) ∈ Z0 and every chart β of Z0 at (y, x) of the form β = IdU ×α, with U

open in Y , y ∈ U and α ∈ Chartx(M), the principal part F ε
1 (y, x) of Fε(y, x)

has the form
F ε

1 (y, x)(β) = ((1/ε)f(y, x, ε), h1(y, x, ε)(α)).

By our assumptions, Fε is a continuous vector field on Z0.
Consider the “limiting” ordinary differential equation

(6.2) ẋ = h1((φ(x), x), 0)

and let F0:M→ T (M) be the unique vector field on the manifold M such that
for every x ∈ M, F0(x) = (x, h1((φ(x), x), 0)). Note that F0 is a continuous
vector field on M.
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Given M ⊂M and η ∈ ]0,∞[ define

[M ]φη := {(y, x) ∈ Z0 | x ∈ M and |y − φ(x)|Y ≤ η}.

We also define

T (M) = Sol(F0,M) and T = T (M) = Sol(F0,M).

We can now state the main result of this section.

Theorem 6.3. Assume Hypotheses 6.1 and 6.2. Let N be a compact subset
of M with InvT (N) ⊂ IntM(N). Then there is an η0 ∈ ]0,∞[ such that for
every η ∈ ]0, η0], there exists an ε0 = ε0(η) ∈ ]0, ε] such that for every ε ∈ ]0, ε0],
InvTε([N ]φη ) ⊂ IntY×M([N ]φη ) and

h(Fε, [N ]φη ) = Σk ∧ h(F0, N),

where Tε = Tε,N,η := Sol(Fε, [N ]φη ). In addition, let (Mp)p∈P be a ≺-ordered
T (N)-Morse decomposition. For each p ∈ P , let Vp be a closed subset of N such
that Mp = InvT (Vp) = InvT (N)(Vp) ⊂ IntM(Vp). For every η ∈ ]0,∞[, every
ε ∈ ]0, ε] and every p ∈ P , define

Mp,ε = Mp,ε,Vp,η := InvTε
([Vp]φη ).

Then, for every η ∈ ]0, η0], there is an ε0 = ε0(η) ∈ ]0, ε] such that for every
ε ∈ ]0, ε0], the family (Mp,ε)p∈P is a ≺-ordered Tε-Morse decomposition,

H(Fε, [N ]φη , ([Vp]φη )p∈P ) = Hk(F0, N, (Vp)p∈P ),

CH(Fε, [N ]φη , ([Vp]φη )p∈P ) = CHk
(F0, N, (Vp)p∈P ).

Theorem 6.3 extends [5, Theorem 4.3] to the case of continuous vector fields.
We prove Theorem 6.3 by modifying the corresponding arguments of [5, proof

of Theorem 4.3] and using the index theory developed in the previous sections.
Actually, the arguments in [5] are somewhat flawed: they are only valid under

more stringent assumptions, e.g. that the map h:W0 → T (M), ((y, x), ε) 7→
h((y, x), ε) is locally Lipschitzian (in all variables). For this reason, we employ
here a homotopy different from the one used in [5, (4.8)], see equation (6.4)
below.

First of all, define the map τ :M→ R by

τ(x) = sup{ ρ ∈ [0,∞[ | Bρ(φ(x))× {x} ⊂ Z0 }, x ∈M.

Here Bρ(a) is the open ball in Y at a ∈ Y with radius ρ. Since Z0 is open in
Y ×M and (φ(x), x) ∈ Z0 for every x ∈ M, it follows that, for every x ∈ M,
τ(x) > 0. The definition of τ also implies that

Z1 :=
⋃

x∈M
Bτ(x)(φ(x))× {x} ⊂ Z0.
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Now the fact that Y is finite dimensional and so closed bounded subsets of Y are
compact easily implies that the map τ is lower semicontinuous. As a consequence
we obtain that Z1 is open in Y ×M.

Thus, replacing Z0 by Z1 if necessary, we may assume without loss of gener-
ality that

Hypothesis 6.4. Whenever (y, x) ∈ Z0 and µ ∈ [0, 1], then

(φ(x) + µ(y − φ(x)), x) ∈ Z0.

Proposition 6.5. Let Z̃0 be the set of all (u, x) ∈ Y ×M such that (u +
φ(x), x) ∈ Z0. Then Z̃0 is open in Y ×M. The map Φ: Z0 → Z̃0 defined by
Φ(y, x) = (u, x) := (y−φ(x), x) is a C1-diffeomorphism with inverse Φ−1: Z̃0 →
Z0 given by Φ−1(u, x) = (y, x) := (u + φ(x), x). For ε ∈ ]0, ε], consider the
differential equation:

(6.3) εu̇ = f̃((u, x), ε), ẋ = h̃1((u, x), ε),

where, for ((u, x), ε) ∈ W̃0 := Z̃0 × [0, ε],

f̃((u, x), ε) = f((u + φ(x), x), ε)− εDMφ(x).h((u + φ(x), x), ε),

h̃1((u, x), ε) = h1((u + φ(x), x), ε).

Let F̃ε denote the unique vector field on the manifold Z̃0 such that for every
(u, x) ∈ Z̃0 and every chart β of Z̃0 at (u, x) of the form β = IdU ×α, with U

open in Y , u ∈ U and α ∈ Chartx(M), the principal part F̃ ε
1 (u, x) of F̃ε(u, x)

has the form
F̃ ε

1 (u, x)(β) = ((1/ε)f̃(u, x, ε), h̃1(u, x, ε)(α)).

Then F̃ = TΦ ◦ F ◦ Φ−1.

Proof. This is a simple calculation using [5, Section 3]. �

Remark 6.6. It follows from Propositions 4.9, 5.9 and 6.5 that we may and
will assume without loss of generality that φ = 0 in Hypothesis 6.1. We will also
write [M ]η for [M ]φη , i.e.

[M ]η := {(y, x) ∈ Z0 | x ∈ M and |y|Y ≤ η}.

For each ε ∈ ]0, ε] and λ ∈ [0, 1], consider the differential equation:

(6.4)
εẏ = (1− λ)(f((y, x), ε)−Df((0, x), 0)y) + B(x, λ)y =: F (y, x, ε, λ),

ẋ = h1(((1− λ)y, x), ε).

In view of Hypothesis 6.4, for each ε ∈ ]0, ε] and λ ∈ [0, 1] the right-hand side of
equation (6.4) is defined and there is a unique vector field F̂ε,λ on Z0 such that
for every (y, x) ∈ Z0 and every chart β of Z0 at (y, x) of the form β = IdU ×α,



Conley Index 25

with U open in Y , y ∈ U and α ∈ Chartx(M), the principal part F̂ ε,λ
1 (y, x) of

F̂ε,λ(y, x) has the form

F̂ ε,λ
1 (y, x)(β) = ((1/ε)F (y, x, ε, λ), h1(((1− λ)y, x), ε)(α)).

By our assumptions, F̂ε,λ is a continuous vector field on Z0.
Furthermore, for ε ∈ [0, ε] there is a unique vector field F̂ε on M such that

for every x ∈M the principal part F̂ ε
1 (x) of F̂ε(x) has the form

F̂ ε
1 (x) = h1((0, x), ε).

Again it follows that F̂ε is a continuous vector field on M. Note that F̂0 = F0.
Let the normed space E and the imbedding e:M→ E be as in Section 3.
It follows that ê:Z0 → Y × E, (y, x) 7→ (y, e(x)) is a C2-embedding. Let

Γ̂ = ΓZ0 :T (Z0) → Y ×E be the map defined as in Section 3, but with respect
to Z0 and ê rather than M and e. In other words, Γ̂ is given by

Γ̂((y, x), w) = DZ0(ê)(y, x).w, (y, x) ∈ Z0, w ∈ T(y,x)(Z0).

Now the fact that the map r: [0, 1] × Z0 → Z0, (λ, (y, x)) 7→ ((1 − λ)y, x) is
defined and continuous implies that, for each ε ∈ ]0, ε], the map [0, 1] × Z0 →
T (Z0), (λ, (y, x)) 7→ Fε,λ(y, x) is continuous, so

(6.5) the map [0, 1]× Z0 → Y ×E, (λ, (y, x)) 7→ Γ̂(Fε,λ(y, x)) is continuous.

We will need the following result proved in [5].

Proposition 6.7 ([5, Proposition 4.6]). Let g:W0 → T (M) be a map such
that

(a) for each ε ∈ ]0, ε], g(·, ε) is continuous,
(b) g is continuous at ((0, x), 0) for every x ∈M,
(c) for each ((u, x), ε) ∈ W0,

g((u, x), ε) = (x, g1((u, x), ε)) with g1((u, x), ε) ∈ Tx(M).

Let M be compact in M. Then there is an η′1 ∈ ]0,∞[ and an ε′ ∈ ]0, ε] such
that [M ]η′1 ⊂ Z0 and

sup{|DMe(x).g1((u, x), ε))|E | |u|Y ≤ η′1, x ∈ M , ε ∈ ]0, ε′]} < ∞.

For each n ∈ N, let εn ∈ ]0, ε′], an, bn ∈ [0, 1], un: R → Y and xn: R → M

be such that εn → 0, supn∈N supt∈R |un(t)|Y ≤ η′1 and for every n ∈ N, xn is
differentiable into M and ((un(t), xn(t)), εn) ∈ W0. Moreover, assume that one
of the following alternatives holds:

(i) limn→∞ un(t) = 0 for all t ∈ R and ẋn(t) = g1((anun(t), xn(t)), bnεn)
for all n ∈ N and t ∈ R;

(ii) ẋn(t) = εng1((anun(t), xn(t)), bnεn) for all n ∈ N and t ∈ R.



26 M. C. Carbinatto — K. P. Rybakowski

Then there is a subsequence of (xn)n which converges in (M, dM), uniformly on
compact subsets of R, to a function x: R → M which is differentiable into M
and such that, in case (i),

ẋ(t) = g1((0, x(t)), 0), t ∈ R

and, in case (ii),
ẋ(t) = 0, t ∈ R.

Define the maps T1:W0 → Y and T2:Z0 → Y by

T1((y, x), ε) = f((y, x), ε)− f((y, x), 0), ((y, x), ε) ∈ W0,

T2(y, x) = f((y, x), 0)− f((0, x), 0)−Df((0, x), 0)(y), (y, x) ∈ Z0.

Since f((0, x), 0) = 0 for all x ∈M it follows that

f((y, x), ε) = T1((y, x), ε) + T2(y, x) + Df((0, x), 0)(y), ((y, x), ε) ∈ W0.

The following result is the analogue of [5, Lemma 4.8] with the same proof.

Lemma 6.8. Let M be compact in M. Then there is an η′2 ∈ ]0,∞[ such
that [M ]η′2 ⊂ Z0 and whenever x ∈ M , λ ∈ [0, 1] and y: R → Y is a solution of
the equation

ẏ = (1− λ)T2(y, x) + B(x, λ)y

lying in [M ]η′2 , then y ≡ 0.

Let M ⊂ M be compact and η = η(M) ∈ ]0,∞[ be such that [M ]η ⊂ Z0.
For ε ∈ [0, ε] let T̂ε(M) be the set of functions σ: R → Y ×M such that σ(t) =
(0, x(t)), t ∈ R where x ∈ Sol(F̂ε,M). Moreover, for η ∈ ]0, η], ε ∈ ]0, ε] and
λ ∈ [0, 1], set

T̂ (M,η, ε, λ) = Sol(F̂ε,λ, [M ]η).

Lemma 6.9. For ε ∈ [0, ε] the set T̂ε(M) is compact in C(R → Y ×M) and
translation and cut-and-glue invariant. Moreover, for η ∈ ]0, η], ε ∈ ]0, ε] and
λ ∈ [0, 1], the set T̂ (M,η, ε, λ) is compact in C(R → Y ×M) and translation
and cut-and-glue invariant.

Proof. Since Sol(F̂ε,M), ε ∈ [0, ε], and Sol(F̂ε,λ, [M ]η), η ∈ ]0, η], ε ∈ ]0, ε]
and λ ∈ [0, 1], are translation and cut-and-glue invariant sets, the result follows.�

Proposition 6.10. Let M be compact in M. Then there is an η′ = η′(M) ∈
]0, η(M)] such that whenever η ∈ ]0, η′], (εκ)κ is a sequence in ]0, ε] converging
to 0 and (λκ)κ is an arbitrary sequence in [0, 1] then Tκ → T0 = T̂0(M), where

Tκ = T̂ (M,η, εκ, λκ), κ ∈ N.

Proof. Let η′ = min(η′1, η
′
2), where η′1 and ε′ are as in Proposition 6.7 with

g = h and η′2 is as in Lemma 6.8. Let η ∈ ]0, η′] be arbitrary. It is enough to prove
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that whenever (εn)n is a sequence in ]0, ε′] converging to 0, (λn)n is a sequence in
[0, 1] converging to λ ∈ [0, 1] and (σn)n is a sequence such that, for each n ∈ N,
σn ∈ Sol(F̂εn,λn , [M ]η) and σn(t) =: (yn(t), xn(t)), t ∈ R then (i) (yn)n converges
to y ≡ 0 in Y , uniformly on R and (ii) (xn)n has a subsequence converging in
(M, dM), uniformly on compact subsets of R, to an x ∈ Sol(F0,M).

Suppose (i) is not true. Then by Lemma 6.9 and passing to a subsequence if
necessary, we may assume that there is a δ ∈ ]0,∞[ such that |yn(0)|Y ≥ δ for
all n ∈ N. Define functions vn: R → Y and ξn: R →M, n ∈ N, by

vn(t) = yn(εnt), ξn(t) = xn(εnt), t ∈ R.

It follows that

ξ̇n(t) = εnh1(((1− λn)vn(t), ξn(t)), εn), n ∈ N, t ∈ R.

An application of Proposition 6.7 (with g = h) shows that, by passing to subse-
quences if necessary, we may assume that (ξn)n converges in (M, dM), uniformly
on compact subsets of R, to a constant ξ ∈ M . We also have that

(6.6) v̇n(t) = (1− λn)T1((vn(t), ξn(t)), εn)

+ (1− λn)T2(vn(t), ξn(t)) + B(ξn(t), λn)vn(t),

for t ∈ R. By our assumptions

(6.7) lim
ε→0+

sup
(y,x)∈[M ]η

|T1((y, x), ε)|Y = 0.

Since, for each t ∈ R, { vn(t) | n ∈ N } lies in a compact subset of Y , it follows
from (6.7), (6.6) and Arzelà–Ascoli Theorem, passing to subsequences if neces-
sary, that (vn)n converges in Y , uniformly on compact subsets of R to a function
v: R → Y which is is differentiable into Y and

v̇(t) = (1− λ)T2(v(t), ξ) + B(ξ, λ)v(t), t ∈ R.

It follows from Lemma 6.8 that v = 0, a contradiction as |v(0)|Y ≥ δ. This
shows that (i) is satisfied.

Now (i) and an application of Proposition 6.7 with g = h shows that there
is a subsequence of (xn)n which converges in (M, dM), uniformly on compact
subsets of R, to a function x: R → M which is differentiable into M and such
that

ẋ(t) = h1((0, x(t)), 0), t ∈ R.

Thus x ∈ Sol(F0,M). This proves (ii). �
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Corollary 6.11. Let N be as in Theorem 6.3. Let η′ = η′(N) be as in
Proposition 6.10 with M = N . Then for every η ∈ ]0, η′] there is an ε1(η) ∈ ]0, ε]
such that for every ε ∈ ]0, ε1(η)] and for every λ ∈ [0, 1] the set [N ]η is such that
Inv

bT (N,η,ε,λ)([N ]η) ⊂ IntY×M([N ]η).

Proof. If the corollary is not true, then there is an η ∈ ]0, η′] and sequences
(εκ)κ and (λκ)κ in ]0, ε] and [0, 1] respectively such that (εκ)κ converges to zero
and [N ]η is such that

InvTκ
([N ]η) 6⊂ IntY×M([N ]η), for all κ ∈ N,

where Tκ = T̂ (N, η, εκ, λκ). Set T0 = T̂0(N).
It follows from Proposition 6.10 that Tκ → T0. Since InvT0([N ]η) = {0} ×

InvT (N) ⊂ IntY×M([N ]η), it follows from [1, Proposition 2.4] that, for all κ ∈ N
large enough, InvTκ

([N ]η) ⊂ IntY×M([N ]η), a contradiction which proves the
corollary. �

Corollary 6.12. Let N and (Vp)p∈P be as in Theorem 6.3. Let η′ = η′(N)
be as in Proposition 6.10 with M = N . For all η ∈ ]0,∞[, ε ∈ ]0, ε], λ ∈ [0, 1]
and every p ∈ P , define

Mp,ε,λ := Inv
bT (N,η,ε,λ)([Vp]η).

Then for every η ∈ ]0, η′] there is an ε2(η) ∈ ]0, ε] such that for all ε ∈ ]0, ε2(η)]
and λ ∈ [0, 1] the family (Mp,ε,λ)p∈P is a ≺-ordered T̂ (N, η, ε, λ)-Morse decom-
position and for every p ∈ P , Mp,ε,λ ⊂ IntY×M([Vp]η).

Proof. If the corollary is not true, then there is an η ∈ ]0, η′] and sequences
(εκ)κ and (λκ)κ in ]0, ε] and [0, 1] respectively such that (εκ)κ converges to
zero and, for every κ ∈ N, either the family (Mp,εκ,λκ

)p∈P is not a ≺-ordered
T̂ (N, η, εκ, λκ)-Morse decomposition or else, for some p ∈ P , the set [Vp]η is such
that Mp,εκ,λκ 6⊂ IntY×M([Vp]η).

For κ ∈ N set Tκ = T̂ (N, η, εκ, λκ). Moreover, set T0 = T̂0(N).
Our hypotheses imply that ({0} ×Mp)p∈P is a ≺-ordered T0-Morse decom-

position. Moreover, for every p ∈ P ,

InvT0([Vp]η) = {0} ×Mp ⊂ IntY×M([Vp]η).

Now, by Proposition 6.10, Tκ → T0. Therefore, it follows from [2, The-
orem 3.3] that, for all κ ∈ N large enough, the family (Mp,εκ,λκ)p∈P is a ≺-
ordered Tκ-Morse decomposition and, for all p ∈ P , the set [Vp]η is such that
Mp,εκ,λκ

⊂ IntY×M([Vp]η), a contradiction which proves the corollary. �
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Lemma 6.13. Let N be as in Theorem 6.3. Let η′(N) be as in Proposi-
tion 6.10 with M = N . For every η ∈ ]0, η′(N)], let ε1(η) be as in Corollary 6.11.
Whenever η ∈ ]0, η′(N)] and ε ∈ ]0, ε1(η)], then

(6.8) h(F̂ε,1, [N ]η) = Σk ∧ h(F̂ε, N).

Proof. By our assumptions, the map [0, ε]×M→ T (M), (ε, x) 7→ F̂ε(x),
is continuous at (0, x), for each x ∈M. Moreover, F̂0 = F0. It follows that there
an ε̂1 ∈ ]0, ε] such that, for all ε ∈ [0, ε̂1], supx∈N |ΓM(F̂ε(x))− ΓM(F0(x))|E <

ε(F0, N). Let η ∈ ]0, η′(N)] and ε ∈ ]0,min(ε1(η), ε̂1)] be arbitrary. Proposi-
tion 4.6 implies that h(F̂ε, N) is defined and

(6.9) h(F̂ε, N) = h(F0, N).

Moreover, Corollary 6.11 implies that

Inv
bT (N,η,ε,1)([N ]η) ⊂ IntY×M([N ]η).

Hence h(F̂ε,1, [N ]η) is defined. Let G be a C1-vector field on the manifold M
such that

sup
x∈N

|DMe(x).G1(x)−DMe(x).F̂ ε
1 (x)|E < min(ε(F̂ε, N), ε(F̂ε,1, [N ]η)),

where F̂ ε
1 is the principal part of F̂ε. Thus

(6.10) h(F̂ε, N) = h(πG,KG),

where πG is the local (semi)flow on M generated by G and KG = InvπG
(N).

Let G′ be the C1-vector field on the manifold Y ×M given by G′(u, x) =
(ε−1Bu, G(x)), for (u, x) ∈ Y ×M and let πG′ be the local (semi)flow on Y ×M
generated by G′. It follows that

sup
(u,x)∈[N ]η

|Γ̂(G′(x))− Γ̂(F̂ε,1(x))|Y×E < ε(F̂ε,1, [N ]η)

and so

(6.11) h(F̂ε,1, [N ]η) = h(πG′ ,KG′),

where KG′ = InvπG′ ([N ]η). Notice that πG′ = πε×πG, where πε is the (semi)flow
generated by the linear differential equation

εẏ = By.

Since B is hyperbolic with Morse-index k, it follows that {0} = Invπε(Dη), with
Dη = {y ∈ Y | |y|Y ≤ η}, and h(πε, {0}) = Σk. Thus

(6.12) h(πG′ ,KG′) = Σk ∧ h(πG,KG).

Now, formulas (6.9), (6.10), (6.11) and (6.12) imply formula (6.8). �
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We can now give a

Proof of Theorem 6.3. Let N be as in Theorem 6.3 and ε̂1 be as in the
proof of Lemma 6.13. Let η′(N) and for every η ∈ ]0, η′(N)] let η1(η) be as in
Corollary 6.11. Set η0 = η′(N) and ε0(η) = min(ε1(η), ε̂1) for η ∈ ]0, η0]. Let
η ∈ ]0, η0] and ε ∈ ]0, ε0(η)] be arbitrary.

By Corollary 6.11

(6.13) Inv
bT (N,η,ε,λ)([N ]η) ⊂ IntY×M([N ]η), for every λ ∈ [0, 1].

Now (6.13), (6.5) and Corollary 4.7 imply

h(Fε, [N ]η) = h(F̂ε,0, [N ]η) = h(F̂ε,1, [N ]η).

Lemma 6.13 implies that h(F̂ε,1, [N ]η) = Σk ∧ h(F0, N) so

h(Fε, [N ]η) = Σk ∧ h(F0, N).

This proves the first part of Theorem 6.3.
Now let Mp and Vp, p ∈ P be as in Theorem 6.3. There is an ε̂2 ∈ ]0, ε]

with ε̂2 ≤ ε̂1 such that, for ε ∈ ]0, ε̂2], supx∈N |ΓM(F̂ε(x)) − ΓM(F0(x))|E <

ε(F0, N, (Vp)p∈P ). For η ∈ ]0, η0] let ε2(η) be as in Corollary 6.12.
Set ε0(η) = min(ε0(η), ε2(η), ε̂2), η ∈ ]0, η0]. Let η ∈ ]0, η0] and ε ∈ ]0, ε0(η)]

be arbitrary.
Proposition 5.6 implies that H(F̂ε, N, (Vp)p∈P ) and CH(F̂ε, N, (Vp)p∈P ) are

defined and

(6.14)
H(F̂ε, N, (Vp)p∈P ) = H(F0, N, (Vp)p∈P )

CH(F̂ε, N, (Vp)p∈P ) = CH(F0, N, (Vp)p∈P ).

Using (6.5) together with Corollary 6.12 and Corollary 5.7 we see that

H(Fε, [N ]η , ([Vp]η)p∈P ), CH(Fε, [N ]η , ([Vp]η)p∈P ),

H(F̂ε,1, [N ]η , ([Vp]η)p∈P ) and CH(F̂ε,1, [N ]η , ([Vp]η)p∈P )

are defined and

(6.15)
H(Fε, [N ]η , ([Vp]η)p∈P ) = H(F̂ε,1, [N ]η , ([Vp]η)p∈P ),

CH(Fε, [N ]η , ([Vp]η)p∈P ) = CH(F̂ε,1, [N ]η , ([Vp]η)p∈P ).

Let ε̃ := min(ε(F̂ε, N, (Vp)p∈P ), ε(F̂ε,1, [N ]η , ([Vp]η)p∈P ) and G be a C1-vector
field on the manifold M such that

sup
x∈N

|DMe(x).G1(x)−DMe(x).F̂ ε
1 (x)|E < ε̃,

where F̂ ε
1 is the principal part of F̂ε. Thus

(6.16)
H(F0, N, (Vp)p∈P ) = [H(πG,KG, (Mp,G)p∈P )],

CH(F0, N, (Vp)p∈P ) = [CH(πG,KG, (Mp,G)p∈P )],
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where πG is the local (semi)flow on M generated by G and KG = InvπG
(N) and

Mp,G = InvπG
(Vp), p ∈ P .

Let G′ be the C1-vector field on the manifold Y ×M given by G′(u, x) =
(ε−1Bu, G(x)), for (u, x) ∈ Y ×M and let πG′ be the local (semi)flow on Y ×M
generated by G′. It follows that

sup
(u,x)∈[N ]η

|Γ̂(G′(x))− Γ̂(F̂ε,1(x))|Y×E < ε(F̂ε,1, [N ]η , ([Vp]η)p∈P )

and so

(6.17)
H(F̂ε,1, [N ]η , ([Vp]η)p∈P ) = [H(πG′ ,KG′ , (Mp,G′)p∈P )],

CH(F̂ε,1, [N ]η , ([Vp]η)p∈P ) = [CH(πG′ ,KG′ , (Mp,G′)p∈P )],

where KG′ = InvπG′ ([N ]η) and Mp,G′ = InvπG′ (Vp), p ∈ P . Notice that πG′ =
πε × πG, where πε is the (semi)flow generated by the linear differential equation

εẏ = By.

The (semi)flow πε is clearly conjugate to the product semiflow π−ε × π+
ε where

π−ε resp. π+
ε is the (semi)flow on a finite-dimensional normed space Y − resp.

Y + generated by the linear differential equation

εẏ = B−y resp. εẏ = B+y

where B− ∈ L(Y −, Y −) resp. B+ ∈ L(Y +, Y +) is a linear operator with all
eigenvalues having negative resp. positive real parts. Thus πG′ is conjugate to the
(semi)flow (πG×π+

ε )×π−ε . Now, [5, Theorem 2.2] implies that the (co)homology
index braid of (πG′ ,KG′ , (Mp,G′)p∈P ) is isomorphic to the (co)homology index
braid of (πG × π+

ε ,KG × {0Y +}, (Mp,G × {0Y +})p∈P ).
Since k = dim Y +, an application of [4, Theorem 3.1] and [11, Theorem 4.1]

implies

(6.18)
H(πG′ ,KG′ , (Mp,G′)p∈P ) = Hk(πG,KG, (Mp,G)p∈P ),

CH(πG′ ,KG′ , (Mp,G′)p∈P ) = CHk(πG,KG, (Mp,G)p∈P ).

Now, formulas (6.14)–(6.18) imply

H(Fε, [N ]η , ([Vp]η)p∈P ) = [Hk(πG,KG, (Mp,G)p∈P )] = Hk(F0, N, (Vp)p∈P ),

CH(Fε, [N ]η , ([Vp]η)p∈P ) = [CHk(πG,KG, (Mp,G)p∈P )] = CHk
(F0, N, (Vp)p∈P ).

The theorem is proved. �
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