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GLOBAL REGULAR SOLUTIONS
TO THE NAVIER-STOKES EQUATIONS
IN AN AXTALLY SYMMETRIC DOMAIN

WOJCIECH M. ZAJACZKOWSKI

ABSTRACT. We prove the existence of global regular solutions to the Na-
vier-Stokes equations in an axially symmetric domain in R3 and with
boundary slip conditions. We assume that initial angular component of
velocity and angular component of the external force and angular deriva-
tives of the cylindrical components of initial velocity and of the external
force are sufficiently small in corresponding norms. Then there exists a
solution such that velocity belongs to W;};(QT) and gradient of pressure

to Ls g (Q7T), and we do not have restrictions on T.

1. Introduction

We examine the following problem

vy +v-Vo—divT(v,p) = f in Q7 = Q x (0,7),
divo =0 in Q7

(1.1) v =0 on ST =8 x (0,T),
D) Ta+70-Ta=0, a=1,2, onS7T,
v]t=o = v(0) in Q,
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where 2 C R? is a bounded axially symmetric domain with the boundary S.
By v = (v1,v2,v3) € R?® we denote the velocity of the fluid, p € R the
pressure, f = (f1, f2, f3) € R3 the external force, 7 is the unit outward vector
normal to S, 7o, a = 1,2, are tangent to S, v is the constant slip coefficient.
Moreover, the dot denotes the scalar product in R3.
By T(v,p) we denote the stress tensor of the form

T(v,p) = vD(v) = pl,

where v is the constant viscosity coefficient, D(v) the dilatation tensor of the
form

D) = {vi.z; + V), tij=123
and I is the unit matrix.

Let (21,22, 23) be a local Cartesian system such that the z3 axis is the axis of
symmetry of Q. Let (r, ¢, z) be the cylindrical coordinates such that 1 = r cos ¢,
To =TSNy, r3 = 2.

Let &, = (cos¢,sing,0), e, = (—sinp,cosy,0), e; = (0,0,1) be vectors
connected with cylindrical coordinates r, ¢, z, respectively. Let u be any vector.
Then cylindrical coordinates of u are denoted by w, = u €., u, = u - e,,
Uy = U - €.

Let R > 0, a > 0 be given numbers. We assume that ) is axially symmetric
and is located in the rectangle r € [0, R], z € [—a,a], S is described by the
relation (r,z) = 0 which meets the z3 axis in two points only: z = —a and
Z=a.

Now we formulate the main result of this paper. Let

9= frplr + fo0€p + [20€2, R =Urpr + Vg o€, + V; ez,

and

Xi(T) =9lla0,752652) F 19l 2o 14ey2r) + 1 follzo 0

+[AO0)[| g2 @ T ||%(0)HH},“(Q)’

(I+ex

€ (0,1), e, € (0,1) and e, can be chosen arbitrary small. The above and below
introduced spaces are defined in Section 2.
Let F =rot f, I’ = Fye,. + F.e,, a =rotv, o = a,€, + a.e,,

Xo(T) = 1F" | a0, 7516 5(2) + 1 Fr 220,752 5 @) + I (| L0007
+ 110/ (0) [ o) + lar(O)llz. oy + 0" O)llwy, _ 0)»

Yi(T) = ||FW||L2(0,T§L6/5,71(Q)) + ”Oé*"(O)Hsz*l(Q)’

do(T) = (1 +T)(Ifllz,0,7:050)) + 10(0)||y0)) = (1 + T)dy,

Y2(T) =11l a07) + 10Oy ).
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where k is the curvature of the curve SN P, where P is the plane passing through

K, =

the axis of symmetry of 2.

THEOREM 1.1 (Existence). Let X1(T) < oo, Y1(T) <00, da(T) < oo, K, < 0.
Let
A =20[g5(X0)Y) + 1 Ko (K. + 1)(d3 + XT)] + c¥a,
where o > 2, o is an increasing positive function and ¢y is the constant from
(3.56). Let X3 = X1 + X5 be so small that

250%(717 XlaA)Xg S (1 - 1>Aa
(o

where 1 s an increasing positive function. Then there exists a solution to
problem (1.1) such that v € Ws/é(QT), Vp € Ls/2(Q7) and

||U||W§/=§(QT) +|Vplsj2,0r < A,

The existence of global weak solutions to the Navier—Stokes equations for the
Cauchy problem and the Dirichlet—Cauchy problem was proved long time ago
(J. Leray [8] (1933) and E. Hopf [3] (1951)) (see [7]).

A similar result can be also proved for problem (1.1). However, up to now,
we do not know how to increase regularity of the weak solutions by assuming
sufficiently regular data. Therefore many mathematicians tried to prove the
existence of global regular solutions to the Navier—Stokes equations by impos-
ing some geometrical restrictions on solutions of the considered initial-boundary
value problems.

We recall the results:

(1) two-dimensional problems [5];
(2) axially symmetric solutions — v, = v;,, =D, = 0, v, (see notation
below)
e in axially symmetric domains [6],
e in all space [14];
(3) helically symmetric solutions [9];
(4) existence in thin domains Q = Q' x [0,¢], Q' C R?, e-small [11], [12].
In view of the above results we considered the existence of global regular solu-
tions to the Navier—Stokes equations which are close either to two-dimensional or
to axially symmetric solutions. In [17] we proved the existence of global regular
solutions to problem (1.1) by assuming that € is an axially symmetric cylinder
and

(1.2) frios Forps F2.0,00(0) 6, 05(0) 9, v2(0)  and v, (0)
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are sufficiently small in some norms.

Under (1.2) and for an axially symmetric domain we proved global regular
solutions to (1.1) in [20]. The existence of solutions in [20], [17] was proved by
the method of successive approximation. We have to underline that the main
step in proofs of existence in [6], [14], [17], [20] is the proof of estimate and
existence of solutions to problem for x = (rotwv), with appropriate boundary
conditions which are such that x|s depends on v|g only (not on v ,|s).

The appropriate boundary conditions follow from the slip boundary condi-
tions (1.1)3 4. This is the main reason why problems with slip boundary con-
ditions are only considered. We are not able to prove the existence of global
regular solutions for non-slip boundary condition: v|g = 0.

In [17] x|s = 0 because 2 is axially symmetric cylinder. Moreover, in [20] to
show a global estimate we had to assume that k — 7/2v must be small in some
norms. In this paper we were able to omit the restriction. However, we use some
estimates from [20] the proof of existence in this paper is much more simpler and
elegant because the Leray—Schauder fixed point theorem was applied. We have
to underline that the proof of existence in this paper is essentially different from
the proof from [20] however some points are the same. We should mention that
the condition: v, is small in (1.2) is not natural for axially symmetric solutions.
In [15], [18], [19], [26] we tried to understand and relax it. But the existence of
global regular axially symmetric solutions to the Navier—Stokes equations with
large swirl (large v, near the axis of symmetry) is still an open problem.

In [13], [21], [22] we proved the existence of solutions which are close to 2d
solutions. The solutions are such that Q is a cylinder with x3 axis and

V24, D,zg are small in some norms.

In [22] we proved the existence with inflow and outflow but in [21] with imper-
meable boundary.

In [13], [21], [22] the existence is proved by the Leray-Schauder fixed point
theorem. In [21], [22] the existence is proved in Besov spaces but in [4], [13], the
proofs from [21], [22] were simplified by using Sobolev spaces only.

We have to underline that the main step in proofs of global existence in [21],
[22], [13], [4] was the estimate for the component x = (rotv)s of vorticity, so the
slip boundary conditions must be also assumed.

In [25] stability of arbitrary linear combination of 2d and axially symmetric
solutions to the Navier—Stokes equations in a cylinder is proved.

The paper is organized in the following way. In Section 2 we introduce
the notation, recall the results on existence of solutions to the heat equation
and to the Stokes system in weighted Sobolev spaces and define problems for
a =rtotw, h,q (see (2.7)).
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We replace problem (1.1) by a system of problems (2.8)—(2.14) because the
Leary—Schauder fixed point theorem can not be applied directly to (1.1). Prob-
lems (2.8)—(2.14) generate a mapping ® which fixed points are solutions to prob-
lem (1.1).

The smallness restriction on k —v/2v assumed in [20] is relaxed in this paper
by applying Lemma 2.6.

In Section 3 we show all inequalities which are necessary to obtain an estimate
for a fixed point of mapping ®. However, to obtain the estimate we need that
quantity Xo(7T) (see Theorem 1.1) must be sufficiently small.

We have to underline that the crucial inequality (3.1) implies that weighted
Sobolev spaces must be used.

In Section 4 we show that ® is compact but in Section 5 that it is uniformly
continuous.

Hence the assumptions of the Leray-Schauder fixed point theorem are satis-
fied so the existence of solutions to (1.1) follows.

2. Notation and auxiliary results

By ¢ we denote the generic constant. By ¢(o) we denote the generic function
which is always positive and increasing.
To simplify considerations we introduce

‘u|P7Q = HU’”LP(Q)’ Q € {Q7S7 QT7ST}7 pe [1700]5
||U||57Q = HUHHS(Q)a Q € {st}a s € ]R—Q— U {O}a
lulls,@ = llullgssr2(q), Qe {a”, s sc R, U{0}

and [|ullo,@ = [ul2,0;

T q/p71/q
|u|p,q,m—[ / dt( /Q |u(x,t>|pdx> ] poge (L,
0

T 1/q
pancr = ([ @0l o) paclod ner

Ju
Let us introduce the energy norm
t 1/2
Jolvs oy = esssupllollaeca + ([ IV0@lar) . 0<senU ok
< 0
Now we introduce weighted spaces

1/p
lullz,,.@) = (/ Iupr”‘dQ> , p€[lo0), peR, Qe {0807 ST},
Q

where d@ is the measure connected with the set @), with the notation

‘u|p,u,Q = Hu”Lp,u(Q)'
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Let us define H;(Q) for Q € {Q,S}, s € Z; U{0}, p € R by

1/2
||u||Hﬁ(Q) = ( Z / |D§u‘2r2(ﬂ—3+‘a|) dQ) < 0,
Q

lal<s

where Ly ,(Q) = H)(€) and HE’S/Q(Q) for Q € {QT, 8T}, s € Z, U{0}, peR
by

1/2
/ | DS Q|22 (nmsHlal+20) dQ) < o0.
Q

el gz er2 ) = < >

la|4+2i<s
To simplify notation we introduce

lulls @ = llulluy @) for @ € {Q, 5}

and

[l

sQ = ||u||Hj‘3/2(Q) for Q € {QT,ST}.

Similarly we introduce spaces V,; (Q) by

Vi, (@ = < >

| <s

[[ul

1/p
/ |Dgu|Prp<~s+al>dQ> for Q € {Q, S}
Q

and

Z 1/p
Hu”‘/svf/Z(Q) = ( / ‘Dga§u|p7¢p(ﬂ_3+‘0¢|+2l) dQ)
P, Q

la|+2i<s
for Q € {QT, ST}, pe[l,00], s € Z; U{0}, p € R.
Finally, we define

1/2
WELO) = (s lullyzpon = ([ (i dar)  <ol.

and use the notation
HUHW%;(QT) = |[ulll2,2,u,07-

Moreover,

1/2
WQQ,/L(Q) = {U : ”uHWé{#(Q) = (/Q(uQM + u?)r? dx) < oo}

and
lullwz oy = lulllzz -
Now we recall inequalities and imbedding theorems used in this paper.
From [10] we have the imbedding

(2.1) [[ullvs

n
qﬁ+sfl+n/p7n/q(ﬂ) S C”u”VpL,ﬁ(Q)7 { = R ’

and s —l+n/p—n/q<0.
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Let us consider the problem
(2.2) ur—Au=f in or, u=g on ST, ul—g=up.
From [16] we have:

LEMMA 2.1. Let
(23)  fE€Lu(QT), geWYZYNST), ug € W3 ,(Q), neR,.
Then there exists a solution to problem (2.2) such that u € Wg; Q) and

elll22,m0m < e[ fl2par + [l9llls/2,2,0,57 + [luolll1,2,.0)-

Similarly, let us consider the problem

(2.4) uy—Au=f inQF, % =g on ST, uli—g = up.

From [16] we have:

LEMMA 2.2. Let (2.3) for f and ug hold and let g € W21’/H2’1/4(ST). Then

there exists a solution to problem (2.4) such that u € WQZJ(QT) and

|||u|||2,2,p,QT < c('le,y,QT + |H9H|1/2,2,H,ST + |||U0|||1,2,u,ﬂ)~

From Section 2 in [2] we have the Hardy inequality

2 P ulpr, < mlfﬁ“uxlpm

which in our case takes the form
1
ul2,u—1,0 < m|u,x|2,u,ﬂ’ p # 0.

From Lemma 3.3 [20] we have

LEMMA 2.3. Letn==¢y x T, eg = (0,0,1), T = (z1,22,23), 1 =T ,, 2 have
the axis of symmetry €y. Let v be a solution to (1.1) and let

‘/U(O)-ndz‘ f-ndxdt
Q

< 00, < 00.

‘ Qt

Then

/v-ndac—i—’y/ v-ndmdt’:/v(0)~ndx+/ f-ndxdt'.
Q St Q Qt

Lemma 3.4 [20] reads
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LEMMA 2.4. Let
I%KU)ZL/(w@j+"UJJ2d$
Q

and let | [ v-ndzx| < oo, Eq(v) < co. Then
)

LEMMA 2.5. Assume that v(0) € Ly(2), f € L21(Q7), | [o. v-ndz dt’| < oo.
Then

|U||%,Q§C<EQ('U)+‘/’U'77d$
Q

Finally Lemma 3.5 [20] implies

(2.5) lv(t)l2.0 <|fl21,00 +0(0)|2 0 =di, t<T,
and
(2.6) [vllvoey < e+ O)(fl21,0 + [0(0)|20) = da(t), t<T.

To show the existence of a global regular solution to problem (1.1) we need
the following quantities (see [20])
h =y g€r + Uy p€p + Vz0€2, =D,
(2.7) a =rotv, X=0Qu=U,—V.p, W=0, F=rotf,
9 = frelr + fo.0€p + [z p€z

From Section 1.1 [20] we obtain problems for h, g, @, w. Let v be given then
(h,q) is a solution of the problem

hy—divT(h,q) = —v-Vh—h-Vo+g=G in QT

divh =0 in Q7
(2.8)

h-m=0, vi-D(h) -To+7h-Ta=0, a=1,2, onST,

hli=o = h(0) in Q.

For given v, h, ¢ we have

1 2
w,t—l—v-Vw—F&w—qu—i—y%:7q+—12/hr+f¢ in Q7
r r r r

(2.9) vn - Vw = —yw + v on ST,
r

wli—o = w(0) in Q,
where the boundary S is described by the equation ¢(r,z) = 0 and a3 =
Yo/ /Y% + 9%, ag = Y./ /9% + 924, The cylindrical components of vortic-

ity assume the form

1 1
(210) a7 = £(0np = 1Vps) @y = Une = =X @n = [0) — )
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Then o = (., @.) is a solution to the problem

X
Oy ¢ +uv- VOLT - (Oérvr,r + azvr,z) - ;hr

2v va .
+ ﬁ(hhz —hyp) + T2T —vAo, = F, in QT
(2.11) a1 +v-Va, — (v, + v, ,) — %hz —vAa, =F, inQ7,
2
?2~0/:—ﬂw+lw on ST,
r v
(ﬁ' O/),n = Bih, + Bah. + ﬂ3w,r + ﬁ4w,z + Bsw on STa
o' |1=0 = &(0) in Q,

where To = a2€,—a1€,, T = a1€,+a2€,, T2 &' = asq,—aja,, M-/ = ajo,.+asa,,
On=m-V, B, i=1,...,5, depend on aj,as (see Lemma 3.2 from [20]).
Next, x is a solution to the problem

Xt v VX + (Vpr + 0. 2)X

X 1 X
|(r(3),), + e rxaa(F) |

2v 1
= — ( — htp,z + rhz’w)

(2.12) "
1 w 2 . T
— —|wihr —w,h, + —h, ) + —ww,. + F, in Q°,
r r r
X2(k7)v~72 on ST,
2v
Xlt=0 = x(0) in Q,

where k is the curvature of the curve S’ = {r, z : ¢(r, z) = 0} which generates S
by rotating it around the x3 axis.
Finally, v and p are calculated from the elliptic problems

rotv =a in ,

(2.13) divo =0 in Q,
v-m=0 onS
and
Ap = —-Vuv-Vv+div f in Q,
(2.14) ap

=f-n4+vin-Av—m-v-Vv onS.
on

To obtain an estimate for x we need

LEMMA 2.6. Assume that A; = 1Vrr + Qi2Vr ; + @30, » + sV, . where
aij t,7=1,...,4, depend on a1,as. Assume that

det{—a1a2 — aza1 + aaa2, —G101 + ioa + Qiaa1, —Quoa1, a3a2}i—1,... 4 # 0.
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Assume that the function B depends on ay, as and their derivatives and depends
linearly on components of v, V'(hy/r), V(v /1), where V' = (0,,0.). Then

4
(2.15) n-Vxls =Y bidsAi+ B, 0,=72-V,
i=1
where b;, i =1,...,4, depend on a; and as.

PRrROOF. From the form of y we have

(216) n- VX‘S =a1X,r+ta2x,= a1 (Ur,rz - Uz,rr) + a2(vr,zz - vz,rz)~
We want to express n - Vx|s in terms of 9;4;, ¢ =1,...,4. Performing calcula-
tions in 0sA;, i =1,...,4, we obtain the identities

(217> asailvr,r + asai2vr,z + asai3vz,r + asaiélvz,z
+ O‘il(a2vr,rr - al'UT,rz) + ay2 (a2vr,rz - alvr,zz)

+ aiS(QZUz,rT - alvz,'r'z) + ai4(a2vz,7‘z - alvz,zz) = 85141';

for i =1,...,4. Since 7 - Vx|s depends on four different second derivatives we
have to eliminate the remaining two derivatives. For this purpose we use the
continuity equation

1
(2.18) Upp + Vs, = —;(hg, + v,)

Differentiating (2.18) with respect to r and z we get

h v
© T
Ur,rr Vzrz = = dla
r T r

(2.19) 1 ,
Ur,rz + Vz,22 = _;(h@,z + Ur,z) = d2-

Calculating v, -, and v, ., from (2.19) and inserting them to (2.17) we obtain

(2.20)  (—aq1a2 — aiza1 + Qi4a2)Vz 2 + (—i101 + Qi2a2 + Q401 )V s
— Q201 Vp 2 T Q302U 1y
= asAz - (asailvr,r + asaiZUr,z + asaiSUz,r + 8sai4vz,z)

— a;102d1 + aaa1do,

for i = 1,...,4. In view of the assumptions of the lemma we can calculate the
second derivatives of v from (2.20) and insert them to (2.16). In this way we
obtain (2.15). O

From [24] we recall
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LEMMA 2.7. Let g € Ly(0,T; Lg5(2)), h(0) € La(Q), v € La(0,T; W4 (12)).
Then solutions to (2.8) satisfy
[hllve @y < CeXP(CHU,mHg,z,Qt)[|9\|6/5,2,Qt +|h(0)|2,0), fort<T.
Let 6 € (0,1) and let
(2:21) M5(Q") = Loo(0,T; La,—5(2)) N Loo (0,75 Wy _5(2)) N L (0, T W3 (€2)).

LEMMA 2.8 (see [24]). Let 6 € (0,1), v € N5(QT), g € La(0,T; Lg/5(22)) N
Ly (14e)(Q7), h(0) € H'(Q) N HY |, (), ex € (0,0). Then solutions of
(2.8) satisfy

(2.22) [1All2,—(11e.),0 + |\Q||L2(o,t;Hi(HE*)(Q))

< o([[vllms ) lgless,2.00 + [R(0)]2,0)
+clgl2,—14e.y.0 + [1RO)[[1,—(142.).2);

t <T, where ¢ is an increasing positive function.

3. Estimates

In this section we show a global a priori estimate for solutions to problem
(1.1). First for given w and h we obtain an estimate for .

LEMMA 3.1. Assume that h € L2(0,T; H2,(R)), w € Loo(0,T; H()),
Voo € L2(0,T;Ly_3/4—c(Q)), € > 0 is a small number which will be chosen
later, F, € L2(0,T; Lg/5,-1(52)). Let

7
2v

K =

1
+supri(k—7>H <cK,, ief{l,....4},
orts i T 2v /) llws)

where by, ... ,bs are introduced in (2.15). Let {p;(x,t)} be a partition of unity
near St, t <T. Then

2
dt’ < cexp(c|h|§’27717m)
0,Q

~[K(K+1)Z/S

t
20.0) / Ih(t')
0
2e

R t
2 S%PHU’”%,O,Q/O |%,z(t/)|i,—3/4—s,§zdt/

X(#)

t
(31) OB 10 +v / v

h 2
<|v7m|2 + v + ‘Vr ) dz dt’

tNsupp @

+ (1 + sup ||w |§,717Q dt’
¢

+

+ |F«9|§/5,2,71,Qt + |X(0)|319] )
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fort < T, where the constants ¢ do not depend on t.

PROOF. First we introduce the set , = {z € Q: 0 < e, < r} and add the
artificial boundary condition

(3.2) Xlr=e, = 0.
Multiplying (2.12); by x/r? and integrating over 2, we obtain

1d

(3.3) >q

X
LIXB v+ [ VX o e S da

Q.
X 1 X X
[, [(’“(r) ) TWXW”’“”(J Jrzd“‘
1 1 X
= —QV/;Z 7‘2(_h¢’z+’]"hz’¢>7"2dx
1
—/ <w72hr—w,rhz+whz>x2dx
Q. T T T
1 X
—|—2/ —WW 2da:—|—/ F¢—2da¢.
Q.. Q.. r

The second term on the Lh.s. of (3.3) equals

1 2
,/ v - n—d@ﬂ +/ (vr7,«+vz7z+w))(2dlel,
2 Q. ’I" Q. T T

where the first term in I; equals

1 1/ _x?
2/3*11 n—dS—l—Q/_av-nr—2

where S, = {z € 5:0 < e, <r} and we used (1.1)3 and (3.2).

The second term in I; assumes the form

h
—/ de
Q. rr

dz =0,

r=c,

which can be estimated by

2 2
X X
51*

+ c(1/e1)|hy |3 —1,0,

12,0,

The last term on the Lh.s. of (3.3) takes the form

GG ) 3 () ) Fareas
*”/Q* d;vu/ﬂ*2(>:>mfdrdzdsa_lg.

X,
r2v®



GLOBAL REGULAR SOLUTIONS TO THE NAVIER-STOKES EQUATIONS 245

Integrating by parts the first integral in I5 equals

2 a 2w
1// dl’*l// ﬁ~VdeS*+V/ / dgodz(x) X
Q. S, r —aJo ") or

where V' = (9,,0.).
Finally, the last integral in I, reads

2
,V/ 8r<2>d7’dzdg0
Q. r
Ay 2w 2 Ay 27 .2
= —V/ / X—Q dzdgo—i—u/ / X—Z
—a.Jo T lress —a.Jo T

where S’ = {(r,z) € [0,R] X [—a,a] : ¥(r,z) = Oandr = ¢1(z) and z =
Fio(r)}, SL = {(r,x) € 8’ : e. <1} and a. = Pa(e.) < a. Since 7 = (ay, az)
is the unit normal vector to S’, 7 = (—as2, a;) is the unit tangent vector to S’.

v
.

bl

T=Ex

dz dy,

r=e.

Assuming that S’ is described in the parametric form (r(7), z(7)), we have that
(—a2,a1) = (dr/dr,dz/dT), so dz = a;dr. Denoting dS = drdy we express the
first integral on the r.h.s. by

The first term on the r.h.s. of (3.3) is estimated by

QV/ ho (X7 _ha1OXTY N o
Q. 7“37"2 7“37“7“7@

where the last norm is estimated by [|2]|3 _; ¢,

2
<e

vX
r

+ 0(1/52)|h|§,—3,9*,
2,0.

By the Holder and Young inequalitites we estimate the second term on the
r.hs. of (3.3) by
2
S| /el o0,
" l6,9.

€3 hlg,—2,§2*7

where the imbedding
|h|3,—2.0. < c|h|l2,-1,0.
will be used.
We estimate the third term on the r.h.s. of (3.3) by

2
€4

C
+ wallio,g* Uqa,z|421,73/475f,9*7
&4

2—¢’
r 2,0,

where ¢’ > 0 is a small number which will be chosen later.
The last three cases are more explicitly described in the proof of Lemma 4.1
from [20].



246 W. M. ZAJACZKOWSKI

Finally, the last term on the r.h.s. of (3.3) is estimated by

2 2

F

¥
r

€5

r

+c(1/e5)

6, 6/5,0

Emploing the above estimates in (3.3) and using that ¢; <e/8,1=1,3,5, €2,¢4
are sufficiently small and (3.2) we obtain

d x|? x|? X’ he X°
(3.4) —|x3_ 10, +V|V= <eg|l= —|—c/ 2dS*—f—c‘/ “"Qdm'
dt =" T l2.0, T 16,0. s, T Q. T
_oX
s [ v Eas. +e/e) [+ ol oa ) IR 1.

*

2’ )
+ ?”wlll,o,ﬂ*

2 2
Vo,zlg —3/4—er 0, T |F§0|6/5,1,Q*:|7

where we used the Hardy inequality

2 2 2’ 2
1 / R
To1qera €1 Jal T '] T l2,0
In view of the Poincare inequality
X <c X +c VK
12,0, Tl2,s, Tl2.0,

and for sufficiently small € we obtain from (3.4) the inequality

h 2
/ ngx‘
Q. rr

— X
v [ mvEvas. e 0+ ol B .

2¢’

d X 2
(3.5) E'Xl%—l,ﬂ* T <clxl3 16, +c

1,0,

_|_

an %,0,9*|%,z|i,—3/4—a/,9* + |Fw|§/5,—1,§z*]-

From the boundary condition (2.12) the first term on the r.h.s. of (3.5) is
estimated by

(k— ;j)'[)"]’z

Applying the Holder and Young inequalities we estimate the second term on the
r.h.s. of (3.5) by

c

: <|k — /() P}

< csup : )|v|§,s < K2l
2,-1,8. s r

2
X

€6

+e(1/e6)lhol3 1. X3 -1.0.-

6,0,
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Using the above estimates in (3.5) and assuming that e¢ is sufficiently small
yields

2
< K sobelhol} 1, X3 a e [ w92y
1,0, s r

d X
E|X|§,f1,sz* tv ”

2¢’

+c[(1+w||f’019*) : |421,3/4s/,S2*+|F<P|§/5,1752*:|‘

Integrating the above inequality with respect to time, replacing & by e and
passing with €, to 0 we obtain, for t < T,

NGy

r

dt’
1,Q

<conl iy, 10| [ m v 2asar

t
(36) OB 10 +v /

+K2"U|§7St

t
+(1+ Slip Hw”%,O,Q)/O |\h(t')||§7_179 dt’

2¢e

R
+€2

t
suplolon | 10p )R g cad

R 5o + |x(0)|§,_1,9} .

To examine the first term on the r.h.s. of (3.6) we introduce a partition of
unity ¢;(z,t) in a neighbourhood of S7. Since > ¢j(@,t) =1 we have

Il_Z/ oj(z,t'ym-V= Xdet
%
:Z/ @j(x,t')fﬁ-VXdedt’—Z/ pj(x,t a1 =z dS dt’ = I + I.
; St r ; St r
In view of Lemma 2.4,
1o 0%
— ’
Iy = Z/ oi(x,t) ;; (b;0sA; + B) (kb>v~72det.
Integrating by parts yields
Z/ ZAB [% ( ) TQ] aS dt’
St 2v
+Z/ oinB(k— L )o-mrdSdt = I + I
gt o7 2u 2 AT

J
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where

1 Y
I <E — k- —
|4|_ j/S %r’ 2v

V2, dS dt’

fNsupp p;

4
b; v
+ / (%((p(k—)) [v.z|v|dS dt’
; StNsupp ¢; 1:21 ! r 2v
SCKZ/ V% det’—l—cKZ/ v ||v| dS dt’,
j StNsupp @; i StNsupp @;
and
h
15| < CKZ/ v <v,m| + |v] + ’vD dsdt'.
i StNsupp ¢; T
Finally,

tNsupp @

13| < cK2Z/ [v|? dS dt’.
—~ Js
J

Summarizing, we obtain

nl<erm 0y [

Using this estimate in (3.6) we obtain (3.1). O

h 2
<02w + 02 + ‘V ) ds dt'.
? r

tNsupp ¢;

To obtain a global estimate necessary for the proof of global existence we
have to estimate all norms from the r.h.s. of (3.1). First we shall examine the
second factor from the third term on the r.h.s. of (3.1). For this purpose we use
(2.10); in the form

1
(3.7) Vg, = —0p + ;hz.
By (2.1) we have

(3.8) [V 2

4,-3/4—e,0 < |arla—3/a—c0 + [Pla,—7/4—c0

<clarlli,—1/2-c0 + 1hll1,-3/2-c.0)-
To estimate the first norm on the r.h.s. of (3.8) we need energy type estimates

for o = (ay, az).
LEMMA 3.2. Assume that
v € La(Q7) N L3 (0, T; W5 () N Loo (0, T5 H'(Q)),

he Hff#(QT), w e Hffﬂ(QT), F' € Lyy,(Q7),
o (0) € Wy, ,(Q), o € Loo(0,T;L21—u(R)), ar € Lo _(14,1)(Q"), a1 € C?,
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1

<e Y ortTvEs| <6, j=1,2
s=0

T‘i

-

~
—
o)

viﬂ
r

1
r’ V8| <e¢, k=34, Zr1+3|v%5| <ec.
=0 s=0

Then solutions of problem (2.11) satisfy, for t <T,

»

(3.9) lle[ll2,21 -0t <e(lv
+ C||V’U|27oo7ﬂt ||h

1.0t | Vols a0)]a 21— 00

20t + chll2—por + lwll2a-p00)
+carle,—(4p).00 Tl F 21— 00 + ] (0)][[12,1- .0,
where ¢ is an increasing positive function.

PRrROOF. Applying [16] to problem (2.11) yields (see also Lemmas 2.1 and 2.2)

(310) |||a/|||2,271_u,9t < C<|1} . va/|271_ﬂ’ﬂt + |OéT'UT7r + azvr,z|2,1—u,ﬂt

X
+ |O[rvz,r + O‘zvz,z‘Z,lf,u,Q‘ + ‘h

2,1—p, 02t
1 Qyp
+ |z ez = hzp) +i 3
r 2,1— 1,0t "o 1—p,0t
2a; Y
/
+ [F 21— p,00 + H w—=-
r v 3/2,2,1—p,S*

+[|Bihe 4 Boh. 4 Baw , + Baw . + Bsw|[1/2,2,1—p,5¢
+Mdmmumﬂm),

where b/ = (h,, h;).
Now we estimate the terms from the r.h.s. of (3.10). The first term is esti-
mated by

IV |41 patvlaar < ellld|[|221-p0t + @(1/e1, [v|a00)] |21 0t

where ¢ is an increasing positive function.
The second and the third by

clo’ - Volz 100 < cld[g 10 Volsar
< eallla[llz,2,1-p0r + 0(1/e2, [VUl3.00) |0/ 21— p,00

where ¢ as above.
The fourth term by

t 1/2 t 1/2
</‘X@dMé;mQﬁ> sC(/Wx@Mm@rmgﬁ)
0 0

< C|‘VU|2,oo,Q* HhHLg(O,t;HEH(Q))-
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The fifth term by cHh||L2(07t;H3M(Q)). The eighth by c||wl|2,1—,,0:. Finally, the

ninth by c(||h|2,— 4,0 —u,0t). To show the last estimate see the proof of

Lemma 4.3 from [20]. From the above estimates we obtain (3.9). O
Next we have
LEMMA 3.3. Assume that
v € Ly(0,T; W3(2)) N Lo (0,T; H(2)) N L (0, T; Lo (Q)),
he Q) weH,(QF), F' € Ly(0,T;Les5(R)), o(0) € Lao(R).

Assume that

2 1
Zri Vit < c, Zr?’_“ﬁ\viﬁj\ <e j=1,2,
i=0 " i=0
1 1
r'|\V'B;| <e j=3,4, Zrlﬂ\vzﬁg,\ <ec
i=0 1=0

Si={zxe€S:a >0} and S ={x €S: az > 0}. Assume that any point of Q
can be reached by a curve from some point of S1. Assume that

2
§ 7‘2

1=0

v“

<c¢ onSs.

Then solutions to problem (2.11) satisfy the estimate

t
(311) |/ (B0 +v / ! ()2 0 dt’ + vl 2y

< cexp(clvaff 5,00 (v,
(

fort < T, where ¢ is an increasing positive function

at)
) 1 j5.2.00 +10(0)3 q),

7|U|oo,2,Q"7

PRrROOF. To show (3.11) we introduce functions &’ = (&, &) as solutions of
the problem

Gt — vAG, =0 in QT
oy —vAa, =0 in Q7
- - 2
3.12) aya, —ajo, = el Y + Yw= 1 on ST
( g ;
T v

(alar + a2az),n = ﬂlhr + ﬁth + 6370,7’ + B4w,z + /6510 =gz on STa
Qrlt=0 =0, a.lt=0=0 in Q.

Defining the functions

(3-13) QA = Qp — Qp, Q= 0, — Qz, o = (amaz) o = (araaz)
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we see that they are solutions to the problem

_ _ _ _ 2v
Qry+ - Va, — (arvr,r + azvr,z) - %hr + ﬁ(hr,z - hz,r)
a _ ~ ~ ~ Qr . AT

+ v vAa, = F, —v-Va, + (v, + Q0 ,) — vy i Qr,

A +v-Va, — (@, +00,,) — Khz —vAua,
(3.14) r

=F, —v-Va, + (@, + 0, 2) in Q7
ast, — a1, =0 on ST,
(a1@ + a2@;) n =0 on ST,
a'li—o =a'(0) in Q.

For solutions of (3.12) we have (for more details see the proof of Lemma 4.4
in [20])

(3.15) 116" ll2.21- 0 < e(llhll2,-1.00 + w

2.1-p.0t)-
Now we obtain an energy estimate for solutions to (3.14). Multiplying (3.14);
by @, (3.14)2 by @,, integrating the results over Q and adding yields

1d_,

(3.16) ——|@|5q — / [@2v, . + @, (v, + v, ) + @, ] de
2 dt N Q 5 s 3 s

1
- / X (hy@, + h.@,) do + 2v / (s = )@, do
¢ Q

T
+ a3 10— 1// (Aa,a, + Aa.a,) dz
Q
= /(FraT + F.@.)dx
Q

— [ (v-Vaya,+v-Va,a,)de —v %ET dx
Q o

+ / [(arvr,r + &zvr,z)ar + (arvz,r + azvz,z)az] dzx.
Q

The term with laplacians equals v|Va@'|3 (, (see the proof of Lemma 4.4 [20]).
The second term on the Lh.s. of (3.16) is estimated by

@+ 1/l Bald o
The third by
2 2 X2 o 2
(1 0+ B o) +e1/) [ 502 +12)do.

The fourth by

elainl3 1.0 +c(1/e)hl3 -1 -
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The first term on the r.h.s. of (3.16) is bounded by
ela'f5 0+ c(1/e)| F'[5 5.0

the second by

5|Val|§,ﬂ + 0(1/5)|U|2o,9|&/|§,97
the third by

elar 31,0 +c(l/e)larl3 10

and finally, the last by
eld]o.0 + c(1/e)|val3 old']3 0

Summarizing the above results we obtain

1d, . _ _ _
(3.17) CWT, a'50+ VIV 3o+ vlan3 1o <ella:.lfa+ la:l30)
+ 0(1/5)|U,w|§,9|a/|§,9 + 0(1/5)‘X|§,Q||h||§,71,9 + C||h||§,f1,sz

+ C|F/‘§/5,Q + C\”&,Q@’E,n + C|&r\§,—1,ﬂ +c(1/e)

U,$|§,Q|a/ %,Q-
In view of (4.25) from [20] we have
(3.18) [@zl2,0 < e([V:]2,0 + [[@r10)-

In virtue of (3.18) inequality (3.17) takes the form

d _ _ _ _
(3.19) a\a’lg,g +ul[@ g +vial3 10 < cvslialdlo

+ C|”,x|§,9|\h”§,—1,9 + C||h||§,—1,§z + C|F/|§/5,Q

+ C|U|go,9|a/|§,ﬂ + C|&r|%,—1,9 + C|”,$|§,Q|a/|§,§2~

By the energy method we obtain for solutions to problem (3.12) the inequality
(see (4.32) in [20])

(320) @B o+ VA3 00 + a3 21— par < (B3 1 e + w31 00)-
By (4.35) in [20] (see also (4.32) and (4.34) in [20]) we have

(3.21) & 21— < elllwlla,impar + 1A

2,—1,0t) =cl,
S0

(3.22) [6irll, - < ef.
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Integrating (3.19) with respect to time and using (3.20) and (3.22) yields

t
(3.23) |aw@9+ulnwwmﬁm5+wm@4ﬂt

< cexp(c|v,af3 2,00 10,03 00,0t P13, —1,0
+ (14 ol 2,00 + 0,0 2,00 (113 —1,00 + w31 -.00)
FHIF S 5,2,00 + 10/ (0)30]-

[0,

Using (3.15) and (3.22) in (3.23) we obtain (3.11). O
Finally, we have

LEMMA 3.4. Assume that

0 € Loo(0,T5 W3 () N La(0, T; WL (€2)) N Lo (0, T; W, (2))
N Ly (0, T; W3 (2)) N Ly(QT) N L3(0, T; W4 (Q)) = My (QF),

for p' < 3. Assume that

he H>(QT), we Hf’_lu(QT), F' € Ly(0,T; Le5(9)),
F, € Ly(0,T; Lg5,— (),  '(0) € La(), a,(0) € Ly, (Q),
F' € Ly1_,(QF), o(0) e Wy, (), pe(0,1).

Then, fort <T,

¥ e Sellvllo@e)lIRl3 100 + w31 0

t
(3.24) y/ o (¥)
0
+1F /s 0.0t +1F 5.0 g + 12 (0)30
+ e (0)3 o+ 1F' 13100 + 1 OIF 210l

where p is an increasing positive function.

PRrROOF. In view of (3.20), (3.22) we have to find an estimate for @, ||1,— ..ot
Multiplying (3.14); by @, 2* and integrating over Q implies

1d

(3.25) 5E|ar|§7_#7Q +/ v Va,ar 2" d:c—/(arvw+azvm)arr*2“ dx
Q Q

1
_ / Khrarr*% dx + 21// — (A — h. ., )a,r~ dx
ol ol

— 2 — -2
VI e = [ AT

= / Fa,r 2 dr — / v Va,a,r 2" dz
Q Q

~ ~ _ Oy
—|—/(a,.117.7,.—&—azv,.,z)arr 21 dx—u/ T—;a,.r 21 g,
Q Q
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Now we examine the particular terms in (3.25). The second term on the Lh.s.
equals

1 1
= / v-Varr 2 de = - / v V(@r ") de + u/ a2y . Vrder,
2 Ja 2 Ja Q

where the first term vanishes and the second is estimated by

5|ar|%,7(1+u),9 +c(1/e)|v]2, ol 3,7#,9-

The third term on the Lh.s. of (3.25) is bounded by
el 3 o + c1/e)lvaly old]7 0,
where 1/p+1/p’ =5/6, p’ < 3, p > 2, the fourth by
5|ar\3,7(1+#),9 + 0(1/5)|X\§,Q|h|§o,w,g»

the fifth by

5|5r|§,7(1+u),9 +c(1/e) h,x|§,7(1+u),9~

Integrating by parts the term with laplacian takes the form
—2 -2y : S——
1// a, v Hdr — y/ div (Va,a,r~ ") dx
Q Q
— 2;11// vVa,a,r * 'Vrde = V\VETB’?M’Q + I + I,
Q

where (see the proof of Lemma 4.5 in [20])

L] <ellfa]]

2,210 + c(1/e1)[@]1,0

and
2u

€
The first term on the r.h.s. of (3.25) is estimated by

2
@13~ (.0 |-

g _
[I2] < V|:2|amc ;-mﬂ +

el lg 0 + (/) Frlg /5 0

the second by
elVa, 5 0+ cl/e)lol% ol - a

the third by
— 12 2 ~2 L1 /
€|O[7"|6,—;,L,Q + C(l/€)|1j,l‘|p’,ﬂ|a | ,— 1,82 5 + ; = = p < 37 p> 2a
and finally, the last by

5|ar|g,7(1+u),ﬂ + 0(1/5)|&r|§,7(1+u),9~
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In view of the above estimates and for sufficiently small £ we obtain from
(3.25) the inequality

d _ _
(3.26) Elar\g,_p,n +lfa? o < cvlio

a’”g,—uﬂ
+clvaly al@ly —pa +clval3allhll3 — 0 + bl o
+ealll@ 21— +c/e)ll@ | q + clFrlg /s o

+e Va3 o+ cvaly old'lf o+ el _gi.0

where 1/p+1/p' =5/6, p' <3, p> 2.
Integrating (3.26) with respect to time yields

t
(3.27) [ g +v / @2y’

Valy oot [T 2,00 + 107

< cexp(clol p.or) - [| 2 )

_|_

%,7;1,,Qt + ||h

2
2,—p, 2t

t t
e [ OB wadt +e1/z) [ @@ od
0 0

[V.213, 00,2t 11

R 5o 180 + |ar<o>|§,_u,g].

Using (3.20)—(3.22) in (3.27) implies

t
(328) [@f3 .0 +V/ loeli - 0 dt” < o(Ivloo 2.0 10,0l 00,20 [0 22,00, 020)
0

~ [|o/ PRI 1 S W B

t t
te / & )1 ogy oy i + e(1/1) / @ ()2 o dt’
0 0

FIER s o + ar<0>|%,_u,g],

where ¢ is an increasing positive function.
Employing (3.23) in (3.28) gives

%,—M,Q dt’ < (p(|‘v|0072,9" |7],9v|p’,cx>,ﬂt y

'U,x|2¢oo,ﬂta |U,x|3,2,(2t)

(3.29) v / oo (#)

~ [hn 0l 1R a0 + IR 2

t
+1a/(0)3 o + Iar(O)Ig,_u,nge/O & )13 21— pedt'|.

Exploiting (3.9) with (3.11) in (3.29) and assuming that ¢ is sufficiently small
we get (3.24). O
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In virtue of (3.24) we obtain from (3.8) the inequality
(3.30) |Uw,z|z21,2,73/475,m
t
<e [ ot 1ot + 10 1

< @(llvll @) I3 —1.00 + lwll31 0
HIE'G 5 2.00 +1E G52, + 10/ (0)[5.0 + [0 (0)
100 + e/ O 21— 0]

2
2,—p,82

where 1/2 4+ ¢ < u, u € (0,1) and
(3.31) HUHm;(QT) = |Vl 2,07 + 0,2lpr 00,07 FV,2]2,00,07 +|V,2]32,07, p' <3

We need an estimate for ||w||2,1—, ot However, it must be shown in a differ-

ent way than in Lemma 5.1 from [20].
LEMMA 3.5. Assume that
V€ Log(0,T;Ls(), w € Ly _(14,)(27), h € Ly _(14,)(Q7),

qc L2,—H(QT)7 fgo € L271—M(QT)a w(O) € Hll—u(Q)a ne (07 1)3
[V(ai/r)| < c/rz, lay /7| < C/TI*E, e>0.

Then, fort <T,

(332) lwllz—p.0r < (vlsco.00)wl21-p00 + (w2~ (14,00
+1hl2—atw .00 +ldl2—por + 1 folza—par + lw(0)[11-pn0),
where ¢ is an increasing positive function.
PROOF. Applying [16] (see also Lemmas 2.1, 2.2) to problem (2.9) yields

VW

+ |w|21,(1+#)19t
2,1—p,Qt

(3.33) ooy gc(w Vuly o +

+1ql2,— 0t + |hl2,— (1m0t + [fol21— 00

. ||w<o>||1,1_u,n)-

ai
+ w21 —p,st + || —w
™o ll/2,1-p,st

Let us examine the particular terms from the r.h.s. of (3.33). The first term is
estimated by

sup vlap. VWl y(0,6500,0 1 (2) = 1,

where 1/p+1/p' = 1.
Using the interpolation inequality

IVwll Lo 0,752, 1 0) < Ellwlle,i—p0r + c(1/€)wla1— 07
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which holds for p’ < 3, so we can choose p = p’ = 2. Hence we obtain
I < epllwllz,1—p0r +o(1/e1, vla,00,00) w21 0,

where ¢ is an increasing positive function. The second term on the r.h.s. of
(3.33) is treated in the way
w

Vp—
r

EI27

< sup |vp|2p,0
t L2(O’t;L2p',1—u(Q))

2,1—p, 02t

where 1/p+1/p' = 1.
Using the interpolation inequality

w

. = llwllz, 0,704, _,.(2)

L2(01T;L2p/,17p,(9))

<ellwllag—por +c(1/e)|wly -, 0r,
which holds for p’ < 3, so we can choose p = p’ = 2. Hence
I < esllwll2,1-p0r +@(1/e2, [vla,00,00) w210 -
The boundary terms on the r.h.s. of (3.33) are estimated in the way

lwll1/2,1-p,st < esllwllz1—p0r +e(1/e3)|wla1—p0t,

and
a a a
= <c 2w §c<‘v<l>w
T o liy2,1—p,st r 1,1—p,Qt r 2,1—1,Qt
ay a1 _
—Vuw + | = (w)1/2,2,00,0),¢ ) = I3,
r 21— 1,0t r 21— 1,0
where

Jw() —w(t)P o\
(w >ap(0T)t—</ / |t—t’|1+ap dtdt) .
Assuming that
<(7)
r

the first term in I3 is estimated by c|lwl|2,— (14,0t Assuming,

<€
=2

c

a1
= prl—c ’

(3.34) >0

r

small positive number, the second term in I3 is bounded by
IVwla —(u—ey,0r < eallwll21—p,0r +c(1/ea)|wl21-p0ts
because

(3.35)

l\D\O‘l
M\O‘!
—
+
—
I
I
—
|
=
+
™
~—
|
[\
|
IO
A
[N}
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In view of (3.34) the last term in I3 is estimated by

(W) 1/2,2,0,6),t2,— (=), < Esllwll2,1-p,00 +c(1/e5)|wl2,1-p 0t

because (3.35) also holds.
Employing the above estimates in (3.33) implies (3.32) for sufficiently small
€1 —E&5. O

We need to estimate |w|y _(14,),0r Which appears in (3.32).
LEMMA 3.6. Assume that
v E LQ(OaTa LOO(Q))7 qc L27—M(QT)7 h e L2,7(1+M) (QT)?
f@ € Ll(O,T, LQ(Q)), w(O) € LQ,_#(Q), 12 € (O, 1), \a1/7’| S C.
Then

(3.36) |w(t)|§,—u,sz + V|Vw|g,—,¢,ﬂt + V|w|§,—(1+u),ﬂt + ’Y|w|§,—u,st

< CeXp(“U"io,Q,Qt + t)“‘]g,—u,m + |h\§,—(1+p),9t + |f¢>‘§,1,ﬂt + |w(0)‘§—uﬂ]

PROOF. Multiplying (2.9); by wr~2*, integrating over Q, (see the proof of
Lemma 3.1) and assuming the artificial boundary condition

we obtain

1d _
(3.38) §E|w|§_ug —Z//Q Awwr ™ 2H dm+u|w|§)_(1+p)y9*

- 1
= — / (v -Vw + Uw)wrz“ dx + / —qur 2 dx
Q. r Q.7
i —2p —2p
+ 2v 5 hrwr™"" dz + fowr™=tdx.
Q.7 Q.

The second term on the Lh.s. of (3.38) equals

a 2m
0
—u/ E11127‘_2“6155—1—V/ dz/ d(p—wwr_Q“'H
5. T —a 0 or

5

=7y

+ 1// |Vw|?r =2 dx + 7/ wirT2dS — Q/W/ Vwwr 2 Vrder = 1,
Q. S. Q

where S, = 9Q N O9...
In view of (3.37) the second term in I; vanishes. Assuming |a;/r| < ¢ the
first term in I is estimated by

erlwal 0 +e(l/e)wl o
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Applying the Holder and Young inequalities we estimate the last term in I; by
2
€0 2 207, o
V§|Vw|2,fﬂ,sz + V§|w|2ﬁ(1+u),sz'
The first term on the r.h.s. of (3.38) takes the form

r 1 . _
—/ (U -Vuww + vwz)r_z“ dr = —/ (v -Vuw? + UwQ)r 21 d
Qe r Q. \2 r

1 T —
= - / |:U SV (w?rTH) 4+ (1 + u)v—wQT 2“] dx
Q. 2 T

=—(1+ u)/ %w%_m‘ dr = I,
Q.

where the boundary condition (1.1)3 and (3.37) were exploited. Hence

|Io] < 52|w|§,7(1+,¢),9* +c(1/e)|vlZ g, w|§ﬁu,9*'

The last three terms on the r.h.s. of (3.38) are estimated by

eslwl3 (14,0, +c(1/e3)(lal5 _ 0, + 103 (1m0, + 1 felo10.)-

Using the above estimates in (3.38) and assuming that e; — €3 are sufficiently
small and &g € (242,2) we obtain

d
(3.39) EW\;—MQ* +v[Vw

37—;1,79* + V|w|§77(1+u)7ﬂ* + ’}/|U}|§7_M75*

< c(lolie o, + DI 0. +clla3 —pq, +1h

37—(1-‘,-;1)79* + |f¢|§,179*)~

Integrating (3.39) with respect to time and passing with e, to 0 we obtain
(3.36). O

REMARK 3.7. Let us assume that 1) = z + r**? — @ near the point (r, z) =
(0,a) (similar assumption can be set near (r, 2) = (0, —a), i.e. ¢ = 2+7r**t2 +q).
Then |¢.,.| < er®™l so |ai| < er®*! and the first integral in I; (see the proof of

Lemma 3.6) can be considered in the way

I= / r®w?r=2ds +/ row?r~2dS = I + I,
Sn{z:r<ro} Sn{z:r>ro}

Let oo < 2p. Then

] < 07'8‘|w|§,7u,s < CTS(W,H%,*#,Q + \w@,ﬂt,sz) =1

o] < er§ ™ wl3 s < ey Jullf o = 1

Hence for sufficiently small ro the term f{ can be absorbed by the Lh.s. of (3.39),
but I} can be bounded by the estimate of the weak solution.
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For a > 2u, we have |I] < cl|lw]? o, so it is estimated in terms of the weak
solutions. Then instead of (3.36) we obtain

w(t)3, 0 + Vvl e +lwl3 50 < cexplelvll, 5 o)

t
- [ [ ez aar+1q

%,w,m + |h|§,—(1+u),ﬂt + |fso|§,1,9t + |w(0)|§,_u,9 .
(|
From (3.32) and (3.36) we obtain

(3.40)  [[wll21—p,00 < @(t; 0]
lal2,—pr + b2~ im0 + [ folza—par + lw(0)]11-p0]-

4,00,0t I'U“oo,Q,Qt)

Let

[, @7y = [[Vllos @7y + V400,07 + Vlos 2,07

where the first norm on the r.h.s. is defined by (2.21) and let
(341)  Xu(T) =lgle/5,2,.07 +19l2,—(14e.).07 + | fol21—p0r
+ 120)]11,-aten .o + lw(0) 11— p0-

Then in view of (2.22) we obtain from (3.40) the inequality
(3.42) [wll2,1-p00 < @ [V]ny ) X (t), ¢ <T.
Let
(3.43)  Xao(T) = |F'le5,2,07 + |Frlo/s,2,—p0r + |F'|2.1- 07

+10/(0)]2.0 + lar(0)|2, -0 + ([l (0l 21- .0
and N(QT) = N (QT) NN(QT). Using (3.42) and (2.33) in (3.30) yields
(3.44) [ve,2la2,—37a—c.00 < o(t, [v]lmean) Xa(t),

where X35(t) = X1(t) + Xa(t). In view of (3.44), (2.22) we obtain from (3.1) the
inequality

X

(3.45) ||~

<p(X1)VE(K +1) <Z ol a0, 5)) + Xl)
J

+ o(t, [l (1 + sup [wll1,0,0) X3 + ©(X1)Y1,

V@)

where S; = S Nsupp ¢, {¢;} is the partition of unity and

(3.46) Yi(t) = [Fyloss,2, 1,00 + [x(0)]2,-1,0,

and we used that 9, (Q7) C M (Q7), where 9 (QT) is defined in assumptions
of Lemma 3.4 and 97} (Q7) by (3.31).
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Now we have to find an estimate for sup, ||w(t)|/1,0,0. In view of 5.2.22 from
[17] and (5.15) from [20] we obtain

(347)  [w(®)lI} 0,0 < cexp(clvlie 2.00)[(1 + [ol5 4.00) Sup [w(t)]3.1.0

+ ‘w@,szt + |‘Z|§,Qt + |h|3,71,szt + |f<p|§,1,s2t + e Jw(0)] %,O,Q]a

where
t

(3.48) |w(t)]2,1,0 < |w(0)\2,1,9+0/ (g 2.0+ P(t)]2,~1.0 + [ fo(t)|2,1,0) dt’.
0

Hence
[w(®)[[1.00 < @ [0l @) (X1 + [wlz2.00).
Using (3.36) gives
(w200 < @(t; [[v]lomg @) Xa-

Hence
(3.49) [w(®)ll10.0 < @, [[v]loty@0) X1
Using (3.49) in (3.45) yields

X

r

< )VREF D X lolawsersy + X1
Vzo(Qt) 7
+ @, [vllmear), X1)Xs + o(X1)Y7.
From (3.11) we get
e/ [lvoary < @(t, X1, [[v]loar) Xo

Hence, from problem (2.13) we have
(3.50)  [vlio,0t + [Voliosz,00 < @1t X1, [[v]lmar)) Xs

+ pa(X1)V1 + VK (K + 1)(2 VIl 2o 0,:m1(55)) + Xl)-

J

Finally, we obtain an a priori estimate for solutions to problem (1.1). First we

recall that

NOQT) = M (QT) NN(QT) = Lo (0, T3 Wy _5(2)) N L (0, T; WL ()
N Loo(0,T; W, (2)) N L3(0,T; W3 (2)),

where p’ € (2,3) and 6 € (0,1).
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LEMMA 3.8. Let T' < 0o be given, let X1(T') < 0o (see (3.41)), X2(T) < o0
(see (3,43)), Y1(T) < oo (see (3.46)). Let

| fls/2.0r + [[v(0)[l6/5,5/2,0 < co.

Let solutions of (1.1) satisfy estimates for the weak solutions (see (2.5), (2.6)).
Then there exists the constant

A =203 (X)Y? + cr(K + 1)(d3 + X7) + c(|f s /2,07 + [0(0)ll6/5,5/2.0)];

where o > 2, function o appears in (3.50) and c; is the constant introduced in
(3.54), such that for X3 so small that (3.58) holds we have the estimate

(3.51) lvll2,5/2,0m + [Vpls/2,0r < A.
PROOF. Let us consider problem (1.1). In view of (3.50) we have
(3.52) |lvlla,5/2,0m + [VDl5/2,0m < 1T, X1, HU||2,5/2,QT)X§ + 03(X1)Y?
+ K(K + 1)(2 10l17, 0,7501.(s,)) + X12> + (| fl5/2,07 + [v(0)ll6/5,5/2,0)

J

where we used that |[v][oqr) < cl|[v]l2,5/2,07-
To examine the third term on the r.h.s. of (3.52) we apply the interpolation
inequality
fula,s < e[ Vuly/glulyg + clul2.0,

which after integration with respect to time takes the form

1/2 1/2
(3.53) lulo,s7 < | Vuly/gr uly/oe + clulsgr.

Using (3.53) we obtain

(3.54) ||U||L2(0,T;H1(Sj)) = HU||L2(0,T;L2(S_7-)) + ||VU||L2(0,T;L2(SJ-))

1/2 1/2 1/2 1/2
< c|v2u|2{Q]T|VU|2{QJT + e[ Vol qr + c|w|2{9? Q{QJT + cfvly.ar

1/2 1/2
< Cldz/ |V2’U|2/QT + c1ds,
(]

|v]

where QT = Q" Nsupp ¢; and (2.6) was employed.
By the Holder inequality we have

(3.55) V20l 0r <197 171V 20]5 /5 0.
Utilizing (3.54) and (3.55) in (3.52) yields
(3.56) [[v]l2,5/2,07 + VD5 2,07 < 1 (T, Xq, HU||2,5/2,QT)X§ + 05(X1)Y?
+ e K (K + 1)fsup Q5[ V20]5 5 or da + d5 + X7]
J

+ | fls/2.0r + [0(0)]l6/5,5/2.0)-
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Assuming that c; sup; |Q;‘-F\1/10K(K + 1)d2 < 1/2 we obtain from (3.56) the
inequality

(3.57)  Jll2,5/2,07 + | VDl5 2,07 < 203 (T, X1, ||v 2,5/2,QT)X§ + 205 (X1) Y7
+ 201 K (K + 1)(d5 + X7) + 2¢(| fls 2,07 + [0(0)l6/5,5/2.9)-

Let us introduce the quantity
A =20[p3(X1)Y + el K (K + 1)(d3 + X7) + c(| fls /2,0 + [[0(0)ll6/5,5/2,0)]

and let [|v][25/2,07 +|VDpl5/2,0r < A. Then inequality (3.57) implies
1

(3.58) 203 (T, Xy, A)XF < (1 - )A,
o

which can be satisfied for sufficiently small X3.
In view of (3.58) estimate (3.51) holds. O

4. Existence

We prove the existence of solutions to problem (1.1) by the Leray—Schauder
fixed point theorem. Therefore we consider the problem

vy —divT(v,p) = =X0(v") - Vo (') + f in Q7
dive =0 in Q7

(4.1)
v-r=0, 7 -T(,p) Tat+1 -Ta=0, a=12 onST,

V|¢=0 = v(0) in ,

where X € [0,1], v € M(QT), v € M(Q") = {v : [v|10,07 + |VV]10/3,07 < 00}
In view of Section 3 we have the mapping ®1: () — M,(Q7T) so

NOT) 30 — &,(v) =7 € My(Q7T).
For any A € [0,1] and ¥ € 9y(Q7) problem (4.1) generates the mapping
Bo: Mo(QT) 27 — B2(0) = v € Wy /,(Q7).

Therefore we define the mapping v = ®(v', \) = ®o(P1(v’), A) such that for any
A € [0,1] we have
(4.2) : Q") — W, (QF) c NQ),

where the last imbedding is compact.
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LEMMA 4.1. The mapping ® is compact, continuous on M(QT) x [0,1] and
index ®| =0 = 1.

PrOOF. Compactness follows from imbedding (4.2). Continuity on 9(Q7T) x
[0,1] can be proved in the same way as in Lemma 5.2 from [24]. For A = 0 there
exists a unique solution to problem (4.1) (see [1]).

In view of Lemma 4.1 and (3.51), where a fixed point of mapping ® is esti-
mated we can apply the Leray—Schauder fixed point theorem. Hence Theorem 1.1

from Section 1 is proved. O

5. Continuity

In this Section we show that mappings ®; and ®5 are continuous. First we
show that ®, is continuous.

LEMMA 5.1. Let the assumptions of Lemma 3.8 hold. Then ® is continuous.
PROOF. To show continuity of ®5 we consider the problems

v — divT(vs, pi) = —Av;Vo; + f,

diV’Ui = 0,
vi g =0, (W -D(v;) Ta +7Vi Ta)ls =0, a=1,2,
'Ui|t:0 :U(O)a

where Vp; € Lz 5(Q7), 0; € Mo(QT), v; € WZ,(Q7) and i = 1,2.
Taking the differences V = vy — vg, P = p1 — pa, V= U1 — U, we see that

they are solutions to the problem

Vi —divT(V,P) = =A[V - V&, + 0y - VV],

divV =0,

(5.1)
Vnalg=0, (wn-D(V) - Toa+7V -Ta)ls =0, a=1,2
Vt—o = 0.

For solutions to problem (5.1) we have

2
(5.2)  [[Vll2,5/2,0r < cA(|V]10,0r +[VV]i0/3,07) + CZ IV - 7alls/s,s 2,57

a=1

2
< cAl[V ][y @r) + CZ IV -Talls/s,5/2,57-

a=1
To estimate the last integral on the r.h.s. of (5.2) we use the energy estimate.
Multiplying (5.1); by V, integrating over Q and using the Korn inequality we

obtain
1d 9 v 2 — 2 712 ~ |12 ~ |2 712
5@\‘/ 20t §HV||1,Q +9NV - Talzs < c(VI[30lVilz g + 0203 oI VV]3 o)
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Integrating with respect to time yields
t t

63) VWBa+v [ VO ade +7 [ V- 7al®)sa

0 0

< VB 5 e VTR a0 o + B 5.0 IVVE 10 or) < €A%V By ar:

We have the inequality
54 IVllysgzangsr) < lVliaaaar < elVwzaar + UV iz, 0o,
From (5.2)—(5.4) we obtain ||VHW52/,;(QT) < c(A)HVHng(QT). O

LEMMA 5.2. Let the assumptions of Lemma 3.8 hold. Then ®1 is continuous.

PROOF. Let v}, vh € NM(OQT). Then (2.7) takes the form

hei — divD(hs) + Vgs = —v}, - Vhy — hy - Vvl +¢g in QT

divh, =0 in QF,
-he =0, T-D(hy) Ta+vhs Ta =0 on ST,
hsli=o0 = R(0) in €2,

where s = 1,2. Let v, hs,qs, s = 1,2, be given. Then w; is a solution to the

problem
v’ w 1 2u .
ws,t +U/g . sz + %ws - VAws + VTQS = ;qs + ﬁhs + fc/: m QT7
vn - Vws = —yws + Vﬂws on ST,
r
w; =0 = w(0) in Q.

Next, o, = (s, as2), s = 1,2, is a solution to the problem

’ ’ ’ X
Qgpr,t + Vg - Vag, — (asrvsr,r + aszvsz,z) - ;hsr
2v VQgy
: T
+72(hsr,z*hsz,r)+72 7VAOLS’I" :Fr in (2 ’
r T
/ / /
szt + Vg - VOész - (aSTUsz,T + aszvsz,z)
Xs p T
- Thsz —vAa,, = Fy in Q°,
_ 2a; v
T, ol = ——ws + ~ws on ST,
r v

(ﬁ . als),n - ﬂlhsr + Bthz + 63ws,r + ﬂ4ws,z + ﬂ5ws on ST)

ali=0 = o'(0) in Q,
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where s = 1,2. Next, y, satisfies

Xs,t + U; : VXS + (v;r,r + ’ng Z)X -V |:<T<XS> )
1
+ 2Xs<p<p+stz+2 - sapz"_ hSZLp

1
- - (ws,zhsr Ws, 'r'hsz + h ) + U)Sws »+ F n QT,
r
x32<k7>v;-72 on ST,
2v
Xslt=0 = x(0) in €,

where s = 1,2. Finally, v, is a solution to the elliptic problem

rotv, = ag in €,
divoy, =0 in Q,

vs-m =0 onlS,

s =1,2. Let us introduce the quantities

Vi=vi—vy, W =w—wy, H=h—hy Q=q — ¢,

A:al_a27 N:XI_XQu V:Fﬁl_@b‘
First we have the problem for H and Q

H;—vdivD(H)+VQ = —v,-VH

~V'-Vhy —hy-VV' — H -V in QT
(5.5) divH =0 in Q7
n-H=0 vi-DH) To+7H Ta=0, a=12, onS7T,

Hli—o =0 in Q.

Then the problem for W takes the form

!

/
v
W’t—i—v’l-VW—i—V’-ng—&-U;TW—F?’"wQ

w 1 2u . T
(5.6) —vAW + Vg = ;Q + T—2H,. in Q°,
ﬁ~VW:—%W—|—%W on ST,

W|t:0 =0 in Q.
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Continuing, A" = (4,, A.) is a solution to the problem

Ari+v - VA + V' - Vay,

’ / / ’
- (alT‘/r,T + ATU27",7" + alZVz,z + AZUQZ,Z)

N 2
Mg T+ Y(H,, ~H.,)+ 2 A, —vAA, =0 inQ7,
r r r2 ’ ’ r2

Az,t + 7/1 . vAz + V/ s Qg

(57) - (ah’vz,,r + Arvéz,r + alzvz/,z + széz,z)
N
SNy N, wAA =0 in 7,
T T
2
A= 2wy Ty on ST
T T
(- A = BiH, + BoH, + B3W, + BaW., + BsW on ST,
A/‘t:() =0 in Q.

Next N satisfies
N7t + Ui VN + v’ VXQ + (Ullr,r + Uiz,z)N + (‘/T/,T + ‘/Z/,Z)XQ

N 1 N
A((5),), rves e e2(3)

2 1 1
= TV ( - Hcp,z + THZ,LP) - ; (wl,zHr + VV,thT - wl,er

(5.8) W )
- V[/,rh2z + %Hz + Th2z> + ;(wlw,z + Ww?,z) in QT7
o Y - T
N—2(k—)V~72 on S*,
2v
Nli=o =0 in Q.

Finally, V is a solution to the elliptic problem

(59) rotV=A inQ, divV=0 inQ, V-.-m=0 oné.

First we obtain an estimate for solutions to problem (5.8). Let us introduce
the set €, (see the proof of Lemma 3.1) and let us add the artificial boundary
condition N|,—., = 0. Multiplying (5.8) by N/r2, integrating the result over €,
and repeating the considerations leading to the inequality before (3.6) we obtain

2

1d
(5.10) §E|N|§,—1,Q* +v

<clhgl3 1.
1,0.

N3 10,
+ K2l g+ 7o
55tc n-VrNdS
s

N
[T Ve de
Qe
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1 N
e /Q ( ~ et H) 1z 4

w N
+c / (wl,zH'r + W,th'r' - wl,'er - W,'r'th + ﬂI{z + hQZ) ) dx
. r r r

N
+c / (W, + sz’z)ﬁ dx|.
Q.

The fourth term on the r.h.s. of (5.10) we estimate by

2 2

N

€1
r

+c(1/51)(“;/vx2

+ ‘V’V’X2

2
)
6/5,Q.

6,0, 6/5,Q,

where g1 € (0,1) and

1% 2
(5.11) —Vx2 < |VX2|3,7(175),Q*|V/|§,75,Q*7
r 6/5,9.,
2 2
(5.12) ‘V'V'X2 < |VV'3 2.0, =
T l6/5,9. T e,

where ¢ is arbitrary small positive number.
We estimate the r.h.s. of (5.11). First we examine

2 2
2 2 o
IVxal5 _(1-c)0. < ’VXTE +e2| X2yt
" l20., r 2,0,
2 22 2 2
<R=|vX| LS RpElvX2l copEvX2)
"laq, € T 12,0, T 12,0,
where in the second inequality the Hardy inequality was used.
Applying (2.1) we have
V'3 e, <AVV'E /0 0.
In view of the above estimates inequality (5.11) takes the form
v’ ? 2e ? 712
— VX2 < ceR*|V(x2/r) 44 |3/2—57Q*7
r 6/5,Q, 2,0,
where € > 0 can be chosen arbitrary small.
The fifth term on the r.h.s. of (5.10) is estimated by
N2
g2|V— + 0(1/52)|H|§,—3,Q*7
T 12,0,
where €2 € (0,1).
The sixth term on the r.h.s. of (5.10) we estimate by
N2
es| | +e/es)(lwlion [ HE 20, + Wioa. b -20.),
6,0,
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where €3 € (0,1).
Finally, the last term on the r.h.s. of (5.10) can be bounded by

2
€4

+e(1/ea)(lwallf o0, Weali —s/a—ci0, + W

|%,o79* |w2,z 5,73/478,9*)7

2—¢
r 2,0,

where 4 € (0,1) and ¢ can be chosen as arbitrary small positive number.

Using the above estimates in (5.10), and assuming that £; —ey4 are sufficiently

small, we obtain

1d 2

(5.13) §E|N|§,—1,Q* +v <clhyl3 _10.IN5 10,

1,0,

N
+ K2V |2 4 +c/ n-V—NdS
I * S* ,’n

T

2 X 2

2
— +C\H|g,—3,9*
T le,0.

+ cR%* vV’ Sy, T c|VV'|3 J2.0.

_e
;

2.0.
H 3,72,9* + HW”%,O,Q* h|§,72,9*)

+ C(”wl”io,ﬂ*|W,z|i,—3/4—a,9* + ”W”%OQ

+e(llwlf o,0.

W2,z |421,—3/4—E,Q* )-

Integrating (5.13) with respect to time, passing with ¢, to 0 and using the
inequality

NN
KZV’|§St+’/ n-V——dSdt
’ gt rr

<ck(k+1Y [
j S

o HI|?
(V,af +V7?+ ’vr >det’

tNsupp ¥

we obtain

t N |12

N(t')

G.1) INOB sa+v [ ' < cexp(dmB s 00

0 LA s}

, , H|?
-[K(K+1)Z/ <vj+v2+‘v )det’
j /S'Nsupp g; r

+ ¢(A) <Slt1p IVV'[3/2-e).0 + Sup IVV'[3/2.0

t
+ [ VHEOIE ot + s W IR o

t
- |W,z<t’>|i,3/4g,gdt’)]
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Now we estimate the last three norms under the square bracket. Applying
Lemma 2.8 to problem (5.5) yields
[H2,~1.00 + QN o0, (2)) < LUIVillons 2 102l ) ) (A IV [y
-+ C(|V’ -Vhy

2,—(14e.),0t + [P - VV ]2 _142.).00);
where ¢ is an increasing positive function and the last two terms are estimated
by
V' Vhala ey + b VV o _(14e0) 00
<V’ hals,2,—(14e.),0: [ VV]
< oAV [mear)

|2,00,2¢ 1V hal3 2, — (14¢.),00 + 2,00,Q

Hence we have

(5.15) [H|l2,~1,00 + 1@l Lyc0.1 , (2)) < LAV [ty

In view of (3.47) we obtain for solutions to problem (5.6) the inequality

2
I
2,1,Q¢

(5.16) W (B)lF 0.0 < ¢(A) sup (W ()20 + W[50

V/
+ QP + HI 100 + V' - Vual3 1 o + ’rwz

where by (3.48) applied to (5.6) we have
(5.17) |[W(t)

2,1,Q

t /
Vv
< 0/ (|Q(t')|2,sz + H ()2, 1.0+ V" Vwsla1.0 + 'T wo
0

> dt'.
2,1,Q

Next,

)

(518) |V/ . VU)2|2,1)Qt + 14

2,1,0t
<V oo 2,01 sup |wa(t) 1,00 < AV @)

Finally, inequality (3.36) in the case of problem (5.6) gives

(5.19) W < @(A)(|Q§,—H,Qt FUHE o

/

|4
+H[V' Vw3 ) o + ’TU&

2
)
2,1,0t

where p is arbitrary small positive number. Using (5.15) and (5.18) in (5.17)
and (5.19) we obtain

(5.20) Sup (W(H)l21.0 < oA D[V [lne)

(5.21) Wiz < @(A)V' [mear)-
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In view of (5.15), (5.20) and (5.21) inequality (5.16) takes the form
sup W (#H)ll0.0 < (A, DV ln@)-

Finally we estimate the last term on the r.h.s. of (5.14). Then instead of
(3.7) we consider the expression

1
V(p,z = _AT + ;HZ

Hence, we have
t
2
62 [ Worl) g et

t t
<e / VAV 1 oot +c / HEE g5t

where in view of (5.15) the last integral is bounded by ¢(A)|[V'||n(qt)-
Finally, we estimate the first integral on the r.h.s. of (5.22). Applying
Lemma 3.2 to problem (5.7) yields

(5.23) (114 Nl221omr < 0(4) [|A’|2,1_u,m N H e
+ W21t + 1Arl2,— g0 + V'V |51 a0

+ ‘a/vlvl/|271_'u79t +

)

&H'
T

2,1,u,Qt:|
where V"' = (V!,V]), V' = (0,,0,), & = (o, ).
The last three terms on the r.h.s. of (5.23) are bounded by

X1

V" 6,00,0: IV |3,2,1— .02t + [ ]2,00,1— p,020 \|‘{gf|oo,2,ﬂt + ‘r |H' |51 00

10/3,0¢
< o(A)([IV'lraty + 1H 21— p00)-

Hence, (5.23) assumes the form

A Nl2,2.1-p.0t < @A[A 21—t + [Arl2,— (14,00
F I H 2, -0t + W 21— 00 + 1V lna)]-

Lemma 3.3 applied for problem (5.7) gives
t
(5.24) (A (ORo +v / LA )2 0 dt + AL o
< (4) [Hn%,mt W B + VIR

|/ VV 5 000 + %H’

2
I
6/5,2,0
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where the last three terms under the square bracket are estimated by

V73,000t IV |20t + | ]2,00,0: | VV |32.0 + ‘)S

[H']2,6,0
3,01

< (A IVl m(ary + 1H]|

2,0t )-

Hence, (5.24) takes the form

t
(5.25) |A'(t)5.0 + V/O A ()3 o dt’ + A3 1 q
< @A) HIE 1,00 +IIWIE1— 0 + 1V 5]

To apply Lemma 3.4 to problem (5.7) we have to estimate in a different way
the term which implies |F|¢/52,—u,0t on the r.h.s. of (3.24). For this purpose
we consider the expression which appears instead of the first term on the r.h.s.
of (3.25),

’ / A, (V' Vag, — ay, Vi, — ap V. )r 2 dadt!
Ot

t
< 5/ ‘Ar(t/)‘§,7(1+u),ﬂ dt’ + 0(1/5)“// -Vag, — aerr/,r - alz‘/z/,zg,ﬂt'
0
The second norm we estimate by

V' ool Verly 2 00 + Vi3 2. 00103 s a0 < @(A)V[[5e):

where p satisfies 3/3' — 3/p = 1 where 3’ < 3 but arbitrary close to 3 so p is
arbitrary large and p’ = p/(p — 1) > 1 is close to 1.

In view of the above considerations Lemma 3.4 applied to problem (5.7) gives

(5.26) V/Ot AT~ dt < (IS 1 o + W3 10 + IV 5
Considering problem (5.6) we obtain instead of (3.40) the inequality
(5.27) Wl21—per < e(A)Ql2,—p0r + [ Hlo,— (14,0t + IV |orar)]
In view of (5.15), (5.22), (5.25)—(5.27) we obtain
[Allvs @y < @AV Ity
Then problem (5.9) implies
||‘7||£m<m) < @(A)HV/Hm(Qt)-

Hence @, is continuous. This concludes the proof. O
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