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CONLEY INDEX IN HILBERT SPACES
AND THE LERAY–SCHAUDER DEGREE

Marcin Styborski

Abstract. Let H be a real infinite dimensional and separable Hilbert

space. With an isolated invariant set inv(N) of a flow φt generated by

an LS-vector field f : H ⊇ Ω → H, f(x) = Lx + K(x), where L: H → H
is strongly indefinite linear operator and K: H ⊇ Ω → H is completely

continuous, one can associate a homotopy invariant hLS(inv(N), φt) called

the LS-Conley index. In fact, this is a homotopy type of a finite CW-
complex. We define the Betti numbers and hence the Euler characteristic

of such index and prove the formula relating these numbers to the Leray–

Schauder degree degLS( bf, N, 0), where bf : H ⊇ Ω → H is defined as
bf(x) = x + L−1K(x).

1. Introduction

The purpose of this paper is to present certain generalization of the Poincaré–
Hopf index theorem. This generalization is concerned with the infinite dimen-
sional nonlinear analysis and occurs when we are working with infinite dimen-
sional Conley-type invariant for flows. Let H be a real, infinite dimensional
Hilbert space. With a locally Lipschitz vector field f :H ⊇ Ω→ H, which is com-
pletely continuous perturbation of an isomorphism L:H → H, f(x) = Lx+K(x)
we can associate a local flow φtf : Ω→ Ω satisfying

d

dt
φtf = −f ◦ φtf , φ0f = id.
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Under certain assumptions we prove the formula

(1.1) degLS(f̂ , int(N), 0) = χ(hLS(inv(N), φ
t
f )).

The left-hand side of above equality stands for the standard Leray–Schauder
degree with respect to a bounded set int(N) and 0. The map f̂ is defined by
f̂(x) = x+L−1K(x). On the other hand we have the Euler characteristic. Here
hLS(inv(N), φtf ) is the Conley index of an isolated invariant set inv(N) of the
flow φtf .

The extension of the classical Conley’s theory (for flows on locally compact
metric spaces) we are going to work with, was introduced by K. Gęba, M. Izy-
dorek and A. Pruszko in [6]. They considered so-called LS-vector fields i.e.
completely continuous perturbation of an isomorphism L:H → H, and have
defined Conley index for flows induced by such maps. One of the most impor-
tant facts is that this index admits situations, where L is strongly indefinite,
i.e. both stable and unstable eigenspaces of L are infinite dimensional. This
property makes this theory applicable to many variational problems occurring
in Hamiltonian dynamics.

Further development of this homotopy invariant was presented by Izydorek
in [7]. He defined a cohomological Conley index in Hilbert spaces in order to ob-
tain existance results for various strongly indefinite problems (variational prob-
lems, where gradient of action functional is LS-vector field with strongly indefi-
nite linear part). We briefly sketch out this definition. A cohomological version
of the LS-index allows us to define the Betti numbers and next the Euler char-
acteristic of the index in the most natural way.

The proof of our theorem is based on finite dimensional case of the Poincaré–
Hopf relation (1.1). It has been first proved by C. McCord [10] in terms of local
indices of zeros of a vector field. Earlier N. Dancer in [4] proved this kind of rela-
tion for considerably smaller class of isolated invariant sets, precisely for degen-
erate critical points. A simple proof can be found in the book by K. Rybakowski
[14] (See Chapter 3, Theorem 3.8). We present an elegant proof of this fact given
by M. Razvan and M. Fotouhi in [11] based on Morse inequalities and Reineck
continuation theorem [12]. Similar result was obtained by W. Kryszewski and
A. Szulkin in [8] in terms of critical groups of smooth functional Φ:H → R.
To gain insight into classical homotopy index theory we refer the reader to

famous Conley’s book [2] or Salamon’s paper [Sal].

2. Classical Conley’s theory

2.1 Finite dimensional case. First of all, we collect basic facts from Con-
ley index theory for flows on a locally compact metric space X. Recall, that



Conley Index and the Leray–Schauder Degree 133

a continuous map φ:R×X → X is called a flow on X if the following properties
are satisfied:

(Fl.1) φ(0, x) = x;
(Fl.2) φ(s, φ(t, x)) = φ(s+ t, x) for all s, t ∈ R.

We will interchangably write φt(x) and φ(t, x). Thus we have φ0 = idX and
φt+s = φt ◦ φs. The main objects of this theory are isolated invariant sets and
associated with them isolating neighbourhoods. Let φt be a flow on X. A subset
S of X is called an invariant set, if S =

⋃
t∈R φ

t(S). For N ⊂ X we define

inv(N) := {x ∈ N : φt(x) ∈ N, t ∈ R},

the maximal invariant set contained in N . If N is compact and inv(N) ⊂ int(N),
then N is called an isolating neighbourhood and S = inv(N) is an isolated in-
variant set.
Let N be a compact subset of X. We say that L⊂N is positively invariant

relative to N , if for any x∈L the inclusion φ[0,t](x)⊂N implies that φ[0,t](x)⊂L.

Definition 2.1 (Index pair). A compact pair (N,L) is called an index pair
for S, if:

(IP.1) N \ L is a neighbourhood of S and S = inv(cl(N \ L));
(IP.2) L positively invariant relative to N ;
(IP.3) if x ∈ N and there exists t > 0, such that φt(x) 6∈ N , then there exists

s ∈ [0, t], such that φs(x) ∈ L.

The next two theorems are crucial in the definition of homotopy Conley
index. The proofs can be found in Salamon’s paper [Sal].

Theorem 2.2. Every isolated invariant set S admits an index pair (N,L).

If (N,L) is a pair of spaces, L ⊂ N , then the quotient N/L is obtained from
N by collapsing L to a single point denoted by [L], the base point of N/L. A set
X ⊂ N/L is open if either X is open in L and X∩L = ∅ or the set (X∩N \L)∪L
is open in N .
Recall that f : (X,x0) → (Y, y0) is a homotopy equivalence if there exists

a map g: (Y, y0)→ (X,x0) such that g◦f is homotopic to id|X rel. x0 and f ◦g is
homotopic to id|Y rel. y0. If there is a homotopy equivalence f : (X,x0)→ (Y, y0)
we say that the pairs (X,x0) and (Y, y0) are homotopy equivalent or they have
the same homotopy type. The homotopy type of (X,x0) is denoted by [X,x0].

Theorem 2.3. Let (N0, L0) and (N1, L1) be two index pairs for the iso-
lated invariant set S. Then the pointed topological spaces N0/L0 and N1/L1 are
homotopy equivalent.
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Definition 2.4. If (N,L) is any index pair for the isolated invariant set S,
then the homotopy type h(S, φt) = [N/L] is said to be the Conley (homotopy)
index of S.

Theorem 2.3 says that h(S, φt) is independent of the choice of index pair.
Let us illustrate the concept of Conley index by the following simple example.

Example 2.5. Let Ω ⊂ Rn be an open and bounded set and f :Rn → R be
a smooth function such that ∇f−1(0) 6∈ ∂Ω. Assume that f generates a flow φtf
on Rn defined by

d

dt
φtf = ∇f ◦ φtf , φ0f = id.

The rest points of φtf are the critical points of f . They are hyperbolic if f is
a Morse function i.e. the Hessian of f is nonsingular at every x ∈ Crit(f), where
Crit(f) = {x ∈ Rn : Df(x) = 0}. In this case the number

indf (x) = #{negative eigenvalues of the Hessian ∇2f(x)}

is well defined. The Conley index of an isolated invariant set S = {x}, where
x ∈ Crit(f), is the homotopy type of pointed k-sphere, where k = n− indf (x).

A Morse decomposition of an isolated invariant set S is a finite collection

M(S) = {Mi : 1 ≤ i ≤ l}

of subsets Mi ⊂ S, which are disjoint, compact and invariant, and which can be
ordered (M1, . . . ,Ml) so that for every x ∈ S \

⋃
1≤j≤lMj there are indices i < j

such that

ω(x) ⊂Mi, α(x) ⊂Mj .

Notice that in the previous example the set Crit(f), of all critical points of f ,
forms a Morse decomposition of inv(Ω).
The formal power series

P(t, A,B) =
∑
q∈Z
rankHq(A,B) · tq

is called the Poincaré series of a pair (A,B). One can prove, that for an isolated
invariant set there is an index pair (N,L) for which the isomorphism H∗(N,L) ∼=
H∗(N/L) holds. Such an index pair is called regular (See Section 5 of [Sal]). We
can therefore define the Poincaré polynomial for S as

P(t, h(S, φt)) := P(t,N, L)

where (N,L) is any regular index pair for S. The next theorem is a generalization
of the classical Morse inequalities.
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Theorem 2.6 (cf. [3], [7]). Let S be an isolated invariant set with a Morse
decomposition M(S) = {Mi : 1 ≤ i ≤ l}. Then there is a polynomial Q with
nonnegative coefficients such that

l∑
i=1

P(t, h(Mi)) = P(t, h(S)) + (1 + t)Q(t).

2.2. Continuation to a gradient. Let φ:R×X × [0, 1]→ X be a contin-
uous family of flows on X, i.e. φtλ := φ(t, · , λ):X → X is a flow on X. Suppose
that N ⊂ X is compact and Si = inv(N,φti), i = 0, 1. We say that two isolated
invariant sets S0 and S1 are related by continuation or S0 continues to S1 if N is
an isolating neighbourhood for all φtλ for λ ∈ [0, 1]. The notion of continuation
is essential in the Conley index theory because of the following statement.

Theorem 2.7 ([2]). If S0 and S1 are related by continuation, then their
Conley indices coincide.

Recall that a Morse–Smale gradient flow is one where (i) all bounded orbits
are either critical points of the potential function or orbits connecting two critical
points; (ii) stable and unstable manifolds of the rest points intersect transversally.

Let F : Ω→ Rn be a smooth vector field with Ω ⊂ Rn open. Without loss of
generality we can assume that F generates the flow φtF : Ω→ Ω by a differential
equation ẋ(t) = −F (x(t)). Let N be an isolating neighbourhood and S =
inv(N).

Theorem 2.8 (Reineck [12]). The set S can be continued to an isolated
invariant set of a positive gradient flow of ∇f , without changing F on Ω \ N .
Moreover, this can be done that the new flow is Morse–Smale.

Remarks 2.9. The fact that such function f exists has been proved by
Robbin and Salamon in [13]. They showed that for an isolated invariant set
S = invN there exists a smooth function f :U → R defined on a neighbourhood
of N such that

(a) f(x) = 0 if and only if x ∈ S and
(b) (d/dt)|t=0f(φt(x)) < 0 for all x ∈ Ω \ S.

The function which fulfils those properties is called the Lyaponov function. In
general we cannot expect that for an isolated invariant set its Lyaponov function
would have only nondegenerate critical points, i.e. the rest points of gradient
flow are hyperbolic. But this can be obtained via arbitrary small perturbation
of ∇f . So without loss of generality we can assume that the gradient flow is
Morse–Smale.
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Following Reineck, we can explicitly write the homotopy joining −F and ∇f .
We define h: Ω× [0, 1]→ Rn as

(2.1) h(x, λ) = ρ(x)[λ∇f(x) + (λ− 1)F (x)] + (ρ(x)− 1)F (x),

where ρ: Ω → [0, 1] is smooth function equal 1 on a compact neighbourhood of
S, say M (cl(M) ⊂ int(N)) and ρ is zero on Ω \N .

2.3. Euler characteristic of h(inv(N), φt). Recall that the Euler charac-
teristic of a pair (E,E′) is defined as

χ(E,E′) =
∑
q∈Z
(−1)qrankHq(E,E′).

Notice that χ(E,E′) = P(−1, E,E′). If both Hq(E) and Hq(E′) are finitely
generated (e.g. if E and E′ are CW-complexes) the integer χ(E,E′) is well
defined. In particular if E′ is a point in E (that is, E is a pointed space), then
we have χ(E, ∗) =

∑
q∈Z(−1)qrank H̃q(E), where H̃q(E) stands for the reduced

cohomology. Note that χ is independent of principal ideal domain used for define
cohomology groups.

The Euler characteristic is defined especially for the Conley index of an iso-
lated invariant set for flows generated by equation ẋ = −F (x).
The next proposition is due to Gęba (see Proposition 5.6 of [5]).

Proposition 2.10. Let N be an isolating neighbourhood for gradient Morse–
Smale flow φt. Then h(inv(N), φt) is a homotopy type of finite CW-complex.

Corollary 2.11. Let N be an isolating neighbourhood for flow φt generated
by ẋ = −F (x). Then h(inv(N), φt) is a homotopy type of finite CW-complex.

Proof. Since inv(N) is related by continuation to some isolated invariant
set of gradient Morse–Smale flow, the result follows from Proposition 2.10. �

2.4. Mapping degree. Let Ω ⊂ Rn be an open and bounded set. If
f : clΩ→ Rn is continuous map and does not vanish on the boundary ∂Ω, then it
is well known, that there is defined an integer deg(f,Ω, 0) ∈ Z called the Brouwer
degree ([9]). Now, we will formulate only a few fundamental facts about the de-
gree:

(a) (Nontriviality) If 0 ∈ Ω then deg(I,Ω, 0) = 1;
(b) (Existence) If deg(f,Ω, 0) 6= 0 then f−1(0) ∩ Ω is nonempty;
(c) (Additivity) If Ω1,Ω2 are open, disjoint subsets of Ω and there is no
zeros of f in the completion Ω \ (Ω1 ∪ Ω2), then

deg(f,Ω, 0) = deg(f,Ω1, 0) + deg(f,Ω2, 0);
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(d) (Homotopy invariance) If h: clΩ× [0, 1]→ Rn is a continuous map such
that h(x, t) 6= 0 for all (x, t) ∈ ∂Ω× [0, 1], then

deg(h( · , 0),Ω, 0) = deg(h( · , 1),Ω, 0).

There is a generic situation, when the degree is easy to calculate. If ϕ: clΩ→ R
is a Morse function of class C1, such that deg(∇ϕ,Ω, 0) is defined, then

deg(∇ϕ,Ω, 0) =
∑

x∈∇ϕ−1(0)∩Ω

(−1)indϕ(x).

Theorem 2.12 (cf. [11]). Suppose that N is an isolating neighbourhood for
the flow φtF generated by ẋ = −F (x), where F : Ω→ Rn is locally Lipschitz map.
Then

(2.2) χ(h(inv(N), φtF )) = deg(F, int(N), 0).

Notation. Now and subsequently we will at times write deg(F,N, 0) instead
of deg(F, int(N), 0).

Proof. By the Reineck continuation theorem we can deform −F to ∇f on
N using (2.1) to obtain the isolated invariant set of gradient flow, which con-
sists of only non-degenerate critical points of f and connecting orbits between
them. Denote this set by invφtf (N). By the continuation property of the Con-
ley index we have h(inv(N), φtF ) = h(invφtf (N), φ

t
f ). The set of critical points

{x1, . . . , xm} forms a Morse decomposition of invφtf (N) and we can apply The-
orem 2.6. We know that h({xi}, φtf ) has a homotopy type of pointed k-sphere,
where k = n− indf (xi). So the Poincaré polynomial of h({xi}, φtf ) is of the form

P(t, h({xi}, φtf )) = tn−indf (xi).

From the Morse inequalities we have

(2.3) χ(h(inv(N), φtF )) = χ(h(invφtf (N), φ
t
f )) = P(−1, h(invφtf (N), φ

t
f ))

=
m∑
i=1

P(−1, h({xi}, φtf )) = (−1)n
m∑
i=1

(−1)indf (xi).

For 1 ≤ i ≤ m, let Ωi be the neighbourhood of xi i N such that Ωi ∩Ωj = ∅. By
the homotopy invariance of the Brouwer degree and additive property we can
write

(2.4) deg(−F,N, 0) = deg(∇f,N, 0) =
m∑
i=1

deg(∇f,Ωi, 0).

Now it is easy to compute deg(∇f,Ωi, 0). Since f is Morse, the hessian ∇2f(xi)
is non-degenerate linear operator. The degree of ∇f with respect to Ωi is just
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(−1)µ, where µ is the number of negative eigenvalues of ∇2f(xi). So we have
deg(∇f,Ωi, 0) = (−1)indf (xi), and by (2.4)

(2.5) deg(F,N, 0) = (−1)n deg(−F,N, 0) = (−1)n
m∑
i=1

(−1)indf (xi)

Comparing (2.3) and (2.5) we obtain the formula (2.2). �

3. LS-index

3.1. LS-flows and the index. Let H be a real, separable Hilbert space and
L:H → H be a linear bounded operator which satisfies following assumptions:

(L.1) L gives a splitting H =
⊕∞
n=0Hn onto finite dimensional, mutually

orthogonal L-invariant subspaces;
(L.2) dimH0 < ∞, where H0 is subspace corresponding to the part of spec-

trum on imaginary axis, i.e. σ0(L) := σ(L|H0) = σ(L) ∩ iR;
(L.3) σ0(L) is isolated in σ(L).

We do not preclude the case dimH± =∞, where H− (resp. H+) is invariant
subspace corresponding to those part of spectrum of L which lies on the left (resp.
right) half complex plane. Operators with above property are called strongly
indefinite.
Let Λ be a compact metric space. A family of flows indexed by Λ is a con-

tinuous map φ:R×H ×Λ→ H such that φλ:R×H → H defined by φλ(t, x) =
φ(t, x, λ) is a flow on H. As before we write φt(x, λ) instead of φ(t, x, λ). If
X ⊂ H and φ is a family of flows indexed by Λ then we define

inv(X × Λ) = inv(X × Λ, φ) := {(x, λ) ∈ X × Λ : φt(x, λ) ∈ X, t ∈ R}.

Definition 3.1. A family of flows φt:H × Λ → H is called a family of
LS-flows if

φt(x, λ) = etLx+ U(t, x, λ),

where U :R×H × Λ→ H is completely continuous.

Recall, that a map is completely continuous if it is continuous and maps
bounded sets to relatively compact sets.

Definition 3.2. We say that a map f :H ×Λ→ H is a family of LS-vector
fields, if f is of the form

f(x) = Lx+K(x, λ), (x, λ) ∈ H × Λ,

where K:H × Λ→ H is completely continuous and locally Lipschitz map.

If in the above definitions Λ = {λ0}, we drop the parameter space out from
notation, and we are talking about LS-flows or LS-vector fields.
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Suppose that f :H → H is an LS-vector field, f(x) = Lx + K(x). We say
that f is subquadratic if |〈K(x), x〉| ≤ a‖x‖2+b for some a, b > 0. One can prove
that if f is subquadratic then f generates an LS-flow (see [7] and references
therein). That is for all x ∈ H, there exists a C1-curve φ(·)(x):R→ H satisfying

d

dt
φt(x) = −f ◦ φt(x), φ0(x) = x,

and is of the form φt(x) = e−tLx+ U(t, x), where U :R×H → H is completely
continuous. Without loss of generality we will restrict our consideration to sub-
quadratic LS-vector fields.
An isolating neighbourhood for a flow φt on infinite dimensional space is

defined similarly to finite dimensional case. The difference lies in the fact that
we cannot expect compactness of that set.

Definition 3.3. A bounded and closed set N is an isolating neighbourhood
for a flow φt if and only if inv(N) ⊂ int(N).

The isolating neighbourhoods are stable with respect to small perturbation
of the flow. The sense of this concept is given by the following.

Proposition 3.4 (Gęba et al. [6]). Let φ:R × H × Λ → H be a family of
LS-flows. For any bounded and closed N ⊂ H the set

Λ(N) = {λ ∈ Λ : inv(N,φλ) ⊂ int(N)}

is open in Λ.

We are going to work in the category of compact metrizable spaces with
a base point. The notion f : (X,x0)→ (Y, y0) means that f is a continuous map
preserving base points, i.e. f(x0) = y0. The product is defined in this category
by (X,x0) × (Y, y0) = (X × Y, (x0, y0)). The wedge of two pointed spaces i.e.
the space X ∨ Y = X × {y0} ∪ {x0} × Y is closed in X × Y . Hence, the smash
product X ∧ Y = (X × Y )/(X ∨ Y ) is also an object in that category.
Consider the circle as the unit interval modulo its end points S1=[0, 1]/{0, 1}.

The suspension functor is defined to be the smash product

S(X,x0) := S1 ∧ (X,x0).

For any m ∈ N we define

Sm(X,x0) := S(Sm−1(X,x0)).

LS-index is defined as a sequence of pointed spaces with an extra information
added. This leads us to a notion of spectra. Let ν:N ∪ {0} → N ∪ {0} be
a fixed map and suppose that (En)∞n=n(E) is a sequence of pointed spaces and

(εn:Sν(n)En → En+1)∞n=n(E) is a sequence of maps.
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Definition 3.5. We say that a pair E = ((En)∞n=n(E), (εn)
∞
n=n(E)) is a

spectrum if there exists n0 ≥ n(E) such that εn:Sν(n)En → En+1 is a homotopy
equivalence for all n ≥ n0.

One can define the notion of maps of spectra, homotopy of spectra, their
homotopy type etc. For us it is sufficient to know that a homotopy type [E] of
a spectrum E is uniquely determined by a homotopy type of a pointed space En
for n sufficiently large. Moreover, in order to define the homotopy type [E] one
only needs a sequence (En)∞n=n(E) such that S

ν(n)En is homotopy equivalent to
En+1 for n sufficiently large.
Assume that f :H → H is an LS-vector field, f(x) = Lx + K(x). Let

φt:H → H be the LS-flow generated by f and assume that N ⊂ H is an
isolating neighbourhood for φt. Denote by Pn:H → H the orthogonal projection
onto Hn =

⊕n
i=1Hi. Define

fn:Hn → Hn, fn(x) = Lx+ PnK(x).

Let φtn:H → H be a flow induced by fn. The definition of LS-Conley index is
based on the following.

Lemma 3.6 (Gęba et al. [6]). There exists n0 ∈ N such that Nn = N ∩Hn

is an isolating neighbourhood for a flow φtn provided that n ≥ n0.

By the above lemma the set inv(Nn, φtn) is an isolated and invariant (by
definition) and thus admits an index pair (Yn, Zn) by Theorem 2.2. The Conley
index of inv(Nn) is the homotopy type [Yn/Zn]. Fix a map ν:N∪{0} → N∪{0}
by setting ν(n) := dimH−n+1. Using the continuation property of the Conley
index one can prove that the pointed space Yn+1/Zn+1 is in fact homotopy
equivalent to ν(n)-fold suspension of Yn/Zn, that is

[Yn+1/Zn+1] = [Sν(n)(Yn/Zn)]

for all n ≥ n0. In the light of earlier observation the sequence (En)∞n=n0 =
(Yn/Zn)∞n=n0 represents the spectrum, say E and uniquely determines its homo-
topy type [E]. This leads us to the definition.

Definition 3.7. Let φt be an LS-flow generated by an LS-vector field. If
N is an isolating neighbourhood for φt, then the homotopy type of spectrum

hLS(inv(N), φt) := [E]

is well defined and we call it the LS-Conley index of inv(N) with respect to φt.

Let 0 represents the homotopy type of spectrum such that for all n ≥ 0 En
is just a point and εn maps this point into the point in En+1.
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Proposition 3.8 (Gęba et al. [6]). The LS-Conley index has the following
properties:

(a) (Nontriviality) Let φt:H → H be an LS-flow and N ⊂ H be an isolating
neighbourhood for φt. If hLS(inv(N), φt) 6= 0, then inv(N,φt) 6= ∅;

(b) (Continuation) Let Λ be a compact, connected and locally contractible
metric space. Assume that φt:H ×Λ→ H is a family of LS-flows. Let
N be an isolating neighbourhood for a flow φtλ for some λ ∈ Λ. Then
there is a compact neighbourhood Uλ ⊂ Λ such that

hLS(inv(N), φtµ) = hLS(inv(N), φ
t
ν) for all µ, ν ∈ Uλ.

3.2. Cohomological LS-Conley index. The main reference for this sec-
tion is [7]. Now and subsequently H denotes the Alexander–Spanier cohomology
functor. Let E = (En, εn)∞n=n(E) be a spectrum. Define ρ:N ∪ {0} → N ∪ {0}
by setting ρ(0) = 0 and ρ(n) =

∑n−1
i=0 ν(i) for n ≥ 1. For a fixed q ∈ Z consider

a sequence of cohomology groups

Hq+ρ(n)(En), n ≥ n(E).

Define a sequence of homomorphisms hn by a composition in the following dia-
gram

Hq+ρ(n+1)(En+1)
hn //

εq+ρ(n+1)n ((QQQQQQQQQQQQ
Hq+ρ(n)(En)

Hq+ρ(n+1)(Sν(n)En)
(S∗)−ν(n)

77ooooooooooo

where S∗ denotes the suspension isomorphism. Thus we see that {Hq+ρ(n)(En),
hn} forms an inverse system and we are ready to make the following definition.

Definition 3.9. The qth cohomology group of a spectrum E is defined to
be

CHq(E) := lim
←−
{Hq+ρ(n)(En), hn}.

Since En+1 is homotopically equivalent to Sν(n)En for n ≥ n0, we see that

hn:Hq+ρ(n+1)(En+1)→ Hq+ρ(n)(En)

is an isomorphism for n ≥ n0 and the sequence of groups Hq+ρ(n)(En) stabilizes.
This simply observation implies that:

• CHq(E) ∼= Hq+ρ(n)(En) for n ≥ n0;
• the graded group CH∗(E) is finitely generated if H∗(En0) is finitely
generated;
• the spectrum E is of finite type if the space En0 is of finite type.
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These groups may be nonzero for positive and also negative integers (see [7]).
Now we are able to define Betti numbers and Euler characteristic of an LS-

Conley index represented by the spectrum E in the obvious way.

Definition 3.10. Let E be a fixed spectrum. The q-th Betti number of E
is defined as

βq(E) := rankCHq(E),

and the Euler characteristic is given by

χ(E) :=
∑
q∈Z
(−1)qβq(E).

Remark 3.11. There exist n0 such that for all n ≥ n0 we have χ(E) =
(−1)ρ(n)χ(En).

Proof. Since CHq(E) ∼= Hq+ρ(n)(En) for n ≥ n0 we have

(−1)ρ(n)χ(E) = (−1)ρ(n)
∑
q∈Z
(−1)qβq(E) =

∑
q∈Z
(−1)q+ρ(n)βq+ρ(n)(En) = χ(En).

�

4. Relationship between LS-index and degree

4.1. The Leray–Schauder degree with respect to L. Let U be an
open and bounded subset of H. Denote by degLS(f, U, 0) the Leray–Schauder
degree, defined for completely continuous perturbation of identity. For more
details about degree theory see [9]. Consider an LS-vector field f in H, f(x) =
Lx+K(x), where L is strongly indefinite linear bounded and invertible operator
and K is completely continuous map. Suppose that f does not vanish on ∂U .
We will define degree for the class of such maps in the following manner:

degL(f, U, 0) := degLS(I + L
−1K,U, 0).

Since the zero sets for both f and I+L−1K are the same and L−1K is completely
continuous map, the above definition works. The degL inherits all the properties
of the Leray–Schauder degree. In particular one has:

(a) (Nontriviality) If 0 ∈ U then degL(L,U, 0) = 1;
(b) (Existence) If degL(f, U, 0) 6= 0 then f has a zero inside U ;
(c) (Additivity) If U1, U2 are open, disjoint subsets of U and there are no
zeros of f in the completion U \ (U1 ∪ U2), then

degL(f, U, 0) = degL(f, U1, 0) + degL(f, U2, 0);

(d) (Homotopy invariance) If h:H × [0, 1] → H is an LS-vector field for
all t ∈ [0, 1] such that h(x, t) 6= 0 for all (x, t) ∈ ∂U × [0, 1], then
degL(h( · , t), U, 0)) is independent of t ∈ [0, 1].
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4.2. Main theorem.

Theorem 4.1. Let H be a real Hilbert space and L:H → H be a linear
isomorphism satisfying assumptions (L.1)–(L.4). Assume that Ω ⊆ H is open
and bounded, and f : Ω→ H is of the form f(x) = Lx+K(x), where K: Ω→ H is
completely continuous map of class C1; φt is the local flow of equation ẋ = −f(x)
and N is an isolating neighbourhood for φt. Then we have

(4.1) χ(hLS(inv(N), φt)) = degL(f, int(N), 0).

Proof. Suppose that hLS(inv(N), φt) is represented by spectrum

E = (En, εn)n≥n(E).

Assume that n0 is chosen such that χ(E) = (−1)ρ(n)χ(En) and

degLS(I + L
−1K,N, 0) = deg(I + PnL−1K,Nn, 0)

for all n ≥ n0. According to finite dimensional formula (2.2)

(−1)ρ(n)χ(En) = (−1)ρ(n) deg(L+ PnK,Nn, 0).

thus

χ(E) = (−1)ρ(n)χ(En) = (−1)ρ(n) deg(L+ PnK,Nn, 0)
= (−1)ρ(n) degL|Hn · deg(I + PnL−1K,Nn, 0)
= deg(I + PnL−1K,Nn, 0) = degLS(I + L

−1K,N, 0) = degL(f,N, 0),

since the degree of linear isomorphism L|Hn with respect to 0 is (−1)ν , where
ν is the number of negative eigenvalues of L. But in this case it is exactly
dimHn− =

∑n
i=1 dimH

−
i =
∑n−1
i=0 ν(i) = ρ(n). This completes the proof. �

4.3. L is not an isomorphism. Now consider weaker assumption about an
operator L:H → H. We would like to admit the case, when L is not invertible
operator but is selfadjoint, i.e. 〈Lx, y〉 = 〈x, Ly〉 for all x, y ∈ H. Let P0:H → H
denote the orthogonal projection onto H0, the kernel of L. Define a map L̂:H →
H by L̂x := Lx+ P0x. Since the kernel of L is orthogonal to the image of L we
see, that L̂ is an isomorphism. In particular, if L is invertible, then L̂ = L. If f
is a vector field of the form Lx +K(x), where K is completely continuous, we
can write it equivalently as

f(x) = L̂x+ K̂(x),

where K̂(x) = K(x)− P0x. Note that K̂ is completely continuous as well, since
dimH0 <∞. As before for an open bounded subset U ⊂ H and LS-vector field
f = L+K such that 0 6∈ f(∂U) we set

degL(f, U, 0) := degLS(I + L̂
−1K̂, U, 0).
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Proposition 4.2. Let assumptions of Theorem 4.1 be satisfied. Suppose
that L:H → H is selfadjoint (instead of isomorphism). Then the equality (4.1)
is valid.

Proof. If L is selfadjoint then

deg(L+ PnK,Nn, 0) = deg(L̂+ PnK̂,Nn, 0),

since PnP0 = P0 and L preserves the splitting of H =
⊕∞
n=1Hn. Next

deg(L̂+ PnK̂,Nn, 0) = deg L̂|Hn · deg(I + PnL̂−1K̂,Nn, 0).

Observe that deg L̂|Hn = (−1)ρ(n). Indeed, the number of negative eigenvalues
of L and L̂ coincide, because L̂ differs from L only on the kernel of L by identity.
That is there are only the λ = 1 of multiplicity dimH0 added to spectrum of L in
places of zeros. The deg(I+PnL̂−1K̂,Nn, 0) stabilizes for large n and represents
degLS(I + L̂

−1K̂,N, 0). In the light of the proof of preceding theorem it gives
us the required result. �

In fact this theorem can be formulated for much bigger class of operators L.
It is easy to see that L is admissible if H = kerL⊕ imL, where ⊕ means a direct
sum (not orthogonal). This condition allows us to define the degL.

5. Particular case

5.1. Finite-dimensional approximation. In this section the equality (4.1)
will be obtained via direct calculation, in the case when L = (−I, I):H−⊕H+ →
H− ⊕H+, and S is an isolated zero of a given vector field.
We say, that an operator sequence {Pn}∞n=1, Pn:H → H is strongly conver-

gent to the identity operator I:H → H, if limn→∞ Pnx = x for all x ∈ H.

Lemma 5.1. If K:H → H is compact operator and Pn:H → H, n = 1, 2, . . .
is a sequence of orthogonal projections onto Hn strongly convergent to the iden-
tity, then

(a) limn→∞ ‖PnK −K‖ = 0;
(b) limn→∞ ‖PnKPn −K‖ = 0;
(c) limn→∞ ‖QnK‖ = 0, where Qn:H → H is an orthogonal projection
onto Hn.

Proof. Statement (a) is a well known fact from the Riesz–Schauder theory.
Since

‖PnKPn −K‖ ≤ ‖PnKPn − PnK‖+ ‖PnK −K‖
and PnK is compact, in order to prove (b) it is enough to show that for any
compact A we have limn ‖APn − A‖ = 0. If A is compact, then the adjoint
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operator A∗ is compact as well and we may write ‖APn−A‖ = ‖(APn−A)∗‖ =
‖PnA∗ −A∗‖ → 0. Finally, we have an estimation

0 ≤ ‖QnK‖ ≤
∥∥∥∥( ∞∑
i=n

Qi

)
K

∥∥∥∥ = ‖(I − Pn−1)K‖ < ε
provided n ≥ n0. This proves (c). �

Definition 5.2. We say that A ∈ B(H) is hyperbolic, if

dist(σ(A), iR) := inf
λ∈σ(A), x∈iR

d(x, λ) > 0.

The set of all hyperbolic operators will be denoted by Bhip(H).

Here d( · , · ) stands for the distance function on C.
Recall, that the multivalued map B(H) 3 A 7→ σ(A) ⊂ C is upper semi

continuous, that is for all A ∈ B(H) and ε > 0, there exists δ > 0, such that
inequality ‖A−B‖ < δ implies supλ∈σ(B) dist(λ, σ(A)) < ε.

Lemma 5.3. Bhip(H) is an open subset of B(H).

Proof. Set ρ := dist(σ(A), iR). There exists δ > 0 such that for all B in
δ-neighbourhood of A

sup
λ∈σ(B)

dist(λ, σ(A)) < ρ/2.

Thus, the triangle inequality gives us the following estimation

dist(σ(B), iR) = inf
µ∈σ(B), x∈iR

d(µ, x) ≥ inf
µ∈σ(B), λ∈σ(A), x∈iR

(d(x, λ)− d(λ, µ))

≥ inf
λ∈σ(A), x∈iR

d(x, λ)− sup
µ∈σ(B)

( inf
λ∈σ(A)

d(λ, µ)) > ρ− ρ
2
=
ρ

2
> 0,

which completes the proof. �

5.2. Conley index and the LS-degree.

Theorem 5.4. Let H be a real Hilbert space and let L satisfy all the as-
sumptions (L.1)–(L.4). Moreover, assume that:

(a) L is of the form (−I, I):H− ⊕H+ → H− ⊕H+, where both H± are of
infinite dimension;

(b) Ω ⊆ H is a neighbourhood of the origin in H and f : Ω → H is an
LS-vector field, with K: Ω→ H being continuously differentiable;

(c) f(0) = 0 and Df(0) ∈ Bhip(H).

Let φt be a flow generated by equation ẋ = −f(x). Then there exists ρ > 0, such
that

(5.1) χ(hLS({0}, φt)) = degL(f,B(0, ρ), 0).
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Remark 5.5. Assumption (c) guarantees that S = {0} is an isolated invari-
ant set and x0 = 0 is isolated in the set f−1(0) (cf. Remark 1.11 of [1]).

In order to compute the index on the left-hand side of (5.1) consider a se-
quence of finite dimensional approximations fn:Hn → Hn, fn(x) = Lx +
PnK(x). Since the derivative Df(0) = L+DK(0) is a hyperbolic operator, then
by Lemmas 5.1 and 5.3 there exists n0 ∈ N such that Dfn(0) = L + PnDK(0)
is hyperbolic, provided n ≥ n0. Let us note that DK(0) is a compact linear
operator.

The set cl(B(0, ρ)) ∩Hn is an isolating neighbourhood for the invariant set
{0} ∈ Hn for n ≥ n1 (comp. Lemma 3.6). Assume that n0 is chosen such that
n0 ≥ n1. We have a splitting Hn0 = Ĥn0− ⊕ Ĥ

n0
+ where Ĥ

n0
− (resp. Ĥ

n0
+ ) stands

for unstable (resp. stable) subspace of the linear equation ẋ = −Dfn0(0)x. In
the hyperbolic case, the Conley index is exactly the homotopy type of pointed
sphere: h({0}, φtn0) = [S

dim bH
n0
− , ∗].

Denote by En0 the space that is homotopy equivalent to (S
dim bH

n0
− , ∗). In

order to establish the relation between En0 and En0+1, we have to compute the
index of the flow generated by fn0+1:H

n0+1 → Hn0+1. Note that the derivative
Dfn0+1(0) = L+ Pn0+1DK(0) preserve the splitting H

n0+1 = Hn0 ⊕Hn0+1. It
is easy to see if we write it as

L|Hn0 + Pn0DK(0) + L|Hn0+1 +Qn0+1DK(0):H
n0 ⊕Hn0+1 → Hn0 ⊕Hn0+1.

In this situation we have the formula

h({0}, φtn0+1) = h({0}, φ
t
n0) ∧ h({0}, η),

where h({0}, η) is an index of {0} with respect to flow generated by

ẋ = −L|Hn0+1x−Qn0+1DK(0)x.

Since ‖QnDK(0)‖ → 0, the maps L|Hn0+1 and L|Hn0+1 + Qn0+1DK(0) are
homotopic for sufficiently large n0 and the index h({0}, η) is determined by
dimension of the unstable subspace of linear equation

ẋ = −L|Hn0+1x.

Set Hn0+1 = H
−
n0+1 ⊕H

+
n0+1, where H

−
n0+1 (resp. H

+
n0+1) is the unstable (resp.

stable) subspace of L and define ν:N∗ → N∗ by ν(n) = dimH−n+1. We have

h({0}, φtn0+1) = [S
dim bH

n0
− , ∗] ∧ [Sν(n0), ∗] = [Sν(n0)Sdim bH

n0
− , ∗].
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Corollary 5.6. En+1 is the ν(n)-fold suspension of En, provided that n is
sufficiently large.

Define ρ:N∗ → N∗ by ρ(0) = 0 and ρ(n) =
∑n−1
i=0 ν(i). According to defini-

tion of cohomological Conley index we have an isomorphism

CHq(hLS({0}, φt)) ∼= Hq+ρ(n)(h({0}, φtn)), n ≥ n0.

It follows that CHq(hLS({0}, φt)) ∼= Hq+ρ(n)(Sdim
bHn− , ∗) ∼= Z for q = dim Ĥn− −

ρ(n) and hence

χ(hLS({0}, φt)) = (−1)dim
bHn−−ρ(n), n ≥ n0.

In particular we have χ(hLS({0}, φt)) = (−1)dim
bH
n0
− −ρ(n0).

By the stability of an LS-degree we have

degL(f,B(0, ρ), 0) = degLS(I+L
−1K,B(0, ρ), 0) = deg(I+L−1PnK,Bn(0, ρ), 0)

for n ≥ n0. From the fact that deg(L|Hn , Bn, 0) = (−1)ρ(n) and deg(L +
PnK,B

n, 0) = (−1)dim bHn− we conclude that

deg(I + PnL−1K,Bn, 0) = deg(L+ PnK,Bn, 0) · [deg(L|Hn , Bn, 0)]−1

= (−1)dim bHn−−ρ(n)

for n ≥ n0 and the proof of (5.1) is completed.
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Gdańsk University of Technology

Narutowicza 11/12

80–952 Gdańsk, POLAND
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