
Topological Methods in Nonlinear Analysis
Journal of the Juliusz Schauder Center
Volume 33, 2009, 51–64

WECKEN PROPERTY
FOR PERIODIC POINTS ON THE KLEIN BOTTLE

Jerzy Jezierski — Edward Keppelmann — Wac law Marzantowicz

Abstract. Suppose f : M →M on a compact manifold. Let m be a natu-

ral number. One of the most important questions in the topological theory

of periodic points is whether the Nielsen–Jiang periodic number NFm(f)
is a sharp lower bound on #Fix(gm) over all g ∼ f . This question has

a positive answer if dim M ≥ 3 but in general a negative answer for self

maps of compact surfaces. However, we show the answer to be positive
when M = K is the Klein bottle. As a consequence, we reconfirm a result

of Llibre and compute the set HPer(f) of homotopy minimal periods on

the Klein bottle.

1. Introduction

The Wecken theorem (see [21], and also [16] for more details) confirmed, in
dimension ≥ 3, an old conjecture of Nielsen which said that for a self-map f of
a compact manifoldM there exists a map g homotopic to f with #Fix(g) = N(f)
where N(f) is the Nielsen number of f (see [17], [16], for a definition of N(f)). In
a series of articles [8]–[11] the first author showed that a corresponding Wecken
theorem for periodic points holds for any self-map f :M → M of a compact
manifoldM of dimension ≥ 3 with the Nielsen number N(f) replaced by the full
Nielsen-Jiang periodic number NFn(f) (cf. [17], and also [16] for a definition),
where n is the specific period in consideration. For self-maps of compact surfaces
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such theorem do not hold in general. There are examples (cf. [18]) of maps of
compact oriented surfaces of genus ≥ 2 for which Wecken theorem does not hold.
In this note we prove the Wecken theorem for periodic points for self-maps

of the Klein bottle K. We use the fact that K is an Eilenberg–MacLane space of
a solvable group G. K fibres over the circle S1 with circles as fibres. Moreover,
each self-map of K is homotopic to a fibre-map.
For each natural number n and self map f there are two Nielsen type pe-

riodic numbers NPn(f) and NFn(f). Both are f homotopy invariants. The
first is a lower bound on the number of periodic points of f which have period
exactly n and the second is a lower bound on the size of Fix(fn). As a con-
sequence of our results we get a formula for the prime Nielsen–Jiang periodic
number NPn(f) used by Halpern in [4]. From it we derive a description of the
set HPer(f) of homotopy minimal periods given by Llibre in [20]. It is worth
emphasizing that our work includes a complete geometrical proof of the Wecken
theorem for periodic points for self-maps of the Klein bottle, which is in fact
slightly stronger than the main result of the unpublished work [4]. Moreover,
this lets us put the calculation of the set HPer(f) in terms of the general scheme
introduced in [19] and used in other papers of the authors (see [16, Chapter VI]
for a detailed discussion). Finally we must add, that a description of the pos-
sible sets of homotopy minimal periods of self-maps of Klein bottle, together
with the previously described cases of the circle [2], the two dimensional torus
[1], the three dimensional torus [19], three dimensional nilmanifolds [15], three
dimensional NR-solvmanifolds [14], and all other three dimensional solvamani-
folds [13] completes a study of the feasible sets of homotopy minimal periods for
all self-maps of compact solvmanifolds of dimension ≤ 3.

2. Klein bottle

Self-maps of the Klein bottle. We follow the notation of [4]. Let A,B:
R2 → R2 be given by A(x, y) = (x + 1, y), B(x, y) = (−x, y + 1) and let G be
the group of self-homeomorphisms of R2 generated by A and B. We define the
Klein bottle as the quotient space: K = G \ R2.
Let π:R2 → K denote the natural projection. The formula p:K → R/Z ,

p[x, y] = [y] defines a locally trivial fibre bundle over the circle R/Z = S1 , with
the circle as the fibre. Let ∗ = [0, 0] ∈ K be the chosen base point.
Since the natural projection π:R2 → K is a covering of the contractible

space R2, the Klein bottle is an Eilenberg–MacLane space. π1(K, ∗) ≡ G is
generated by the loops a(t) = [t, 0] , b(t) = [0, t] with subject to the single relation
ba = a−1b. In particular any element of π1(K) can be uniquely represented as
aibj , (i, j ∈ Z).
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Since K is an Eilenberg–MacLane space,

[(K, ∗), (K, ∗)] = Hom(G,G)

where [(K, ∗), (K, ∗)] denotes the set of homotopy classes of self-maps of K pre-
serving the chosen point. Now each [f ] ∈ [(K, ∗), (K, ∗)] gives the homomorphism
f#:π1(K)→ π1(K) and

f#(a) = aubz, f#(b) = avbw

for some integers u, v, w, z. Halpern [4] showed that then always z = 0 and
moreover, w even implies u = 0. See also [3].
We will give explicit formulae for a map representing each self-homomorphism

of the fundamental group, i.e. an explicit formulae for a representative of each
homotopy class of self-maps of K.
This is accomplished by picking a specific representative in each homotopy

class of self maps. A deformation of this cannonical representative then suitably
realizes the appropriate lower bound for NFn(f). Suppose f :M →M on a com-
pact manifold. Letm be a natural number. One of the most important questions
in the topological theory of periodic points is whether the Nielsen–Jiang peri-
odic number NFm(f) is a sharp lower bound on |Fix(gm)| over all g ∼ f . This
question has a positive answer if dimM ≥ 3 but in general a negative answer
for self maps of compact surfaces. However, we show the answer to be positive
when M = K is the Klein bottle.
As a consequence, we reconfirm a result of Llibre and compute the set

Hper(f) of homotopy minimal periods on the Klein bottle.

• For w odd, and 0 ≤ x, y ≤ 1, we define

f [x, y] = [ux+ vy, wy] for x ∈ R, 0 ≤ y ≤ 1.

• For w even, and 0 ≤ x, y ≤ 1, we define

f [x, y] = [vy, wy] where x, y ∈ R.

We will say that a self-map of the Klein bottle is of a standard form if it is
given by one of the above formulae.
Let us notice that any map in the standard form is a fibre map

K
f //

p

��

K
p

��
S1

f

// S1

where p([x, y]) = [y] with y ∼ y + q for any integer q and [y] denotes the
equivalence class on R which forms S1.
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Let us notice that the induced map of the base space is given by f [y] =
[wy] ∈ R/Z = S1 so its degree deg(f) = w.
The following Lemma is a consequence of [22]. However, to make the paper

more self-contained we give an easy proof in this special case.

Lemma 2.1. Let f :K→ K be a fibre map (not necessarily in standard form)
of the Klein bottle withw 6= 1. Then for some b = [y] ∈ S1 we have that fixed
points x, y lying in a fibre Kb = S1 are Nielsen related as x, y ∈ Fix(fb) if and
only if they are Nielsen related as x, y ∈ Fix(f).

Proof. Since ⇒ is obvious, we prove ⇐. Let ω: I → K be a path satisfying
ω(0) = x, ω(1) = y (rel. end points), ω ∼ fω (rel. endpoints) in K.
Since x and y are in the same fibre, pω: [0, 1] → S1 is a loop based at b.

Moreover, fpω = pfω and pω represent the same element in π1(S1) = Z. Now
f#(pω) = pω as loop classes pω represents the trivial element in π1(S

1) = Z.
This implies that there is a homotopy contracting pω to the constant loop at b.
This null homotopy lifts to a homotopy in K from ω to a path ω′ joining x and
y entirely within the fibre Kb. Now

fω′ ∼ fω ∼ ω ∼ ω′

in K. Thus fω′ ∼ ω′ in K. In remains to show that fω′ ∼ ω′ in Kb. This
follows from the fact that the inclusion Kb ⊂ K induces a monomorphism of
fundamental groups. This is a consequence of the exact homotopy sequence

· · · → 0 = π2(S1)→ π1(Kb)→ π1(K)→ · · · �

Lemma 2.2. Let f :K → K be a fibre map of the Klein bottle in standard
form with w = 1 and |u| 6= 1. Thenf is naturally fibre-preserving and the
restriction of the projection p|: Fix(f)→ S1 is a finite covering map.

Proof. If u = 0 then p| is a homeomorphism and the conclusion is imme-
diate.
Therefore we can assume that |u| ≥ 2. Since w = 1, f = idS1 and f maps

each fibre is into itself.
Suppose z ∈ Fix(f) and let p(z) = b. Since |u| ≥ 2, the restrictions of f to

the fibres are expanding so in particular the derivative D(fb) is not the identity
at the point z. Thus the Implicit Function Theorem implies that p: Fix(f)→ S1

is a local homeomorphism. Since Fix(f) is compact, p: Fix(f)→ S1 is a covering
map. �

3. Wecken Theorem

In [17] Boju Jiang defined a homotopy invariant lower bound NFn(f) on the
number of periodic points of period n for a self-map of a compact polyhedron.



Wecken Property for Periodic Points on the Klein Bottle 55

Later it was shown [8]–[11] that for manifolds of dimension ≥ 3, this lower bound
is optimal, i.e. there always exists a map g is homotopic to f with #Fix(gn) =
NFn(f).

The aim of this paper is to prove that NFn(f) is also optimal for self-maps
of the Klein bottle.

Theorem 3.1. Any map of the Klein bottle f :K→ K is homotopic to a map
realizing the number NFn(f), i.e. there is a homotopy from f to a map g satis-
fying #Fix(gn) = NFn(f).

The rest of this section is devoted to a proof of Theorem 3.1.

The definition of NFn(f), in general, is a bit complicated ([17], [6], [7] and
also [15] for longer exposition). However, for the sake of our paper it is enough
to use the following

Lemma 3.2. Let f :X → X be a self-map of an compact polyhedron. Then

#Fix(fn) ≥ NFn(f) ≥
∑
k|n

NPk(f) =
∑
k|n

(#IEOR(fk)× k) ≥
∑
k|n

#IER(fk)

(where IER(fk) (IEOR(fk)) denote the sets of irreducible essential (orbits of)
Reidemeister class of fk and NPk(f) = #IEOR(fk) × k (by definition) is
a Nielsen type homotopy invariantlower bound on the number of periodic points
of f of the minimal period k, see [6].

Proof. The first inequality is the basic property of NFn(f). The second in-
equality is a straight consequence of of the fact that when n|k then it means that
each essential irreducible Reidemeister orbit of fn makes a unique contribution
to the points of period k.

The equality is the definition of NPn(f) given above. To prove the last
inequality it is enough to notice that the length of each orbit in IER(fk) is at
most k. This means that

#IEOR(fk)× k ≥ #IER(fk). �

Thus to prove Theorem 3.1 it is enough to produce a map g homotopic to
f satisfying #Fix(gn) =

∑
k|n#IER(gk). In fact this equality and Lemma 3.2

along with the basic property of NFn imply #Fix(gn) ≥ NFn(g) ≥ #Fix(gn)
which gives the desired equality #Fix(gn) = NFn(f).

Lemma 3.3. Let f :X → X be a self-map of a finite polyhedron and n a nat-
ural number. If for each divisor l of n, and each point x ∈ Fix(fn) whose orbit
〈x〉 = {x, fx, f2x, . . . } has length l, the subset {x} ⊂ Fix(f l) is an irreducible
essential Nielsen class of f l then #Fix(fn) = NFn(f).
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Proof. First we notice that a self-map f :X → X defines a map

α: Fix(fn)→
⋃
k|n

R(fk)

(disjoint union) sendinga periodic point x to the class in R(f l) represented by x
where l denotes the length of the orbit 〈x〉 = {x, fx, f2x, . . . , f l−1(x)}. In our
case, by assumption, each class α(x) is essential. Moreover, α(x) must be also
irreducible, since if α(x) ∈ R(f l) would reduce to R(fh) , for some h < l, then
the length of the orbit 〈α(x)〉 = {α(x), α(fx), . . . } would be at most h < l. This
gives the map

α′: Fix(fn)→
⋃
k|n

IER(fk).

We will show that α′ is a bijection. Let A ∈ IER(fk). Since A is essential,
it contains a point in Fix(fs) ⊆ Fix(fn) whose orbit has length s|l. Since A is
irreducible, this must mean that s = k. This proves that α′ is onto.
On the other hand α′ is also injective, since two points x 6= x′ ∈ Fix(f l)

represent different Nielsen (and hence also Reidemeister) classes. �

Remark 3.4. The map f :S1 = R/Z → S1 given by f [t] = [kt], k ∈ Z,
k 6= ±1 satisfies the assumptions of Lemma 3.3.

Now we come back to self-maps of the Klein bottle. We start with a lemma
showing that in many cases the map given by the standard formula already
realizes the least number of periodic points.

Lemma 3.5. Let f :K → K be given by the formula f [x, y] = [ux + vy, wy]
with |u| 6= 1 and |w| 6= 1. Then f satisfies the assumptions of Lemma 3.3. In
particular,

#Fix(fn) = NFn(f).

Proof. Let x 6= y ∈ Fix(fk), k|n. It will suffice to that x, y represent
different essential singleton Nielsen classes in Fix(fk).
Suppose to the contrary that x and y are Nielsen equivalent under fk. Then

px and py are Nielsen related under fk. Since |w| 6= 1, Remark 3.4 implies that
px = py, so the points x, y belong to the same fibre x, y ∈ p−1(b0). Now the
assumption that x, y are Nielsen related in Fix(fk) and Lemma 2.1 imply that
x and y are Nielsen related in Fix((fb0)

k) and hence since |u| 6= 1 Remark 3.4
implies x = y.
The class {x} ⊂ Fix(fk) is essential by the Fixed Point Index Product For-

mula. �

Remark 3.6. The above lemma also holds if w = −1 , |u| 6= 1 and n is odd.
We may follow the same proof using the fact that then all divisors k of n will
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be odd and so wk = −1 6= 1. This tells us that all relevant Nielsen classes are
essential.

Remark 3.7. If w = −1 , |u| 6= 1 and n is even, then it follows from
Lemma 3.5 that the assumptions of the Lemma 3.3 hold for orbits of odd length.
More precisely, for each point x ∈ Fix(fn) whose orbit x, fx, f2x, . . . has odd
length l, the subset {x} ⊂ Fix(f l) is an irreducible essential Nielsen class.
Lemmas 3.3, 3.5 and Remarks 3.6, 3.7 give Theorem 3.1 for |u| 6= 1 and

|w| 6= 1. Now we consider the remaining cases in the table and discussion below.
The entries within the table indicate the number in the discussion where this

is considered.

w \ u u = −1 u = 0 u = +1 |u| ≥ 2

w = −1 2 5 2 6

w = 0 4 4 4 4

w = +1 1 1 1 1

|w| ≥ 2 3 5 3 Lemma 3.5

Case 1. w = 1. Then the base map f :S1 → S1 is the identity, hence after
a small twist of f , by an angle which is an irrational multiple of 2π, has no
periodic points. This homotopy of f lifts to a homotopy ft:K → K with no
periodic points.

Case 2. u = ±1 and w = −1. Since deg(f) = −1, after a small homotopy we
may assume that the map f has only two periodic points [0] and [1/2]. Moreover,
the fibre map over these points has degree −1 and +1 respectively. Now after
a homotopy near these fibres we get exactly two periodic points over [0] and no
periodic points, over [1/2]. It remains to notice that the fixed point index in
each of the two fixed points over [0] is (+1)(+1) 6= 0 (from Fixed Point Index
Product Formula) so from Lemma 2.1 they represent different essential Nielsen
classes in Fix(f).

Case 3. u = ±1 and |w| ≥ 2. Consider the set Fix(fn) and an orbit of points
of length l. Let b ∈∈ Fix(f) denote a point in this orbit. If deg(f lb) = +1 then
we can deform f , near a fibre over a point from the considered orbit, to make
f lb: p

−1(b)→ p−1(b) a map without periodic points. If deg(f lb) = −1 then we can
deform f as above to assure that f lb: p

−1(b) → p−1(b) is a mapwith exactly two
periodic points.
It remains to show that each of the two points z, z′ ∈ p−1(b) ∩ Fix(f l) is an

essential irreducible class in R(f l). In fact,

• the two points are not Nielsen related by Lemma 2.1,
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• the Fixed Point Index Product Formula implies that the fixed point
index for each b ∈ Fix(f) we have that equals sign(1 − wl) 6= 0, hence
these Nielsen classes are essential,
• each Nielsen {z} class is irreducible, since otherwise has the same min-
imal period as the class {p(z)} for f and hence the result follows from
Lemma 3.3.

Case 4. w = 0. Then we may assume that f(S1) = b0, Since this image is
a singleton essential fixed point class of f , we will have that NFn(f) = NFn(fb)
for all n. We may assume that, after a deformation, each point in Fix(fnb0) is an
essential Nielsen class of f

n

b0 . Then, from Lemma 2.1 and the Fixed Point Index
Product Formula, each point in Fix(fn) = Fix(fnb0) is an essential Nielsen class.

Case 5. u = 0. Then fb is constant for each b ∈ Fix(f) hence, we have that
p: Fix(fn)→ Fix(fn) is an index preserving homeomorphism.

Cases 1–5 all involved fibre preserving homotopies. This will not be possible
in the last case.

Case 6. w = −1 and |u| ≥ 2.

Now the map f is given by the formula

f [x, y] = [ux+ vy,−y]

Since the case for n is even follows from Remark 3.6, it remains to consider
the case where n is odd. Now essential classes occur only in Fix(fk) for odd k|n.
Moreover from Remark 3.6, each point z ∈ Fix(fk) with k-odd forms a singleton
essential irreducible class. This implies that

NFn(f) = #
⋃

k|n with k odd

Fix(fk).

The theorem will be shown once we remove from Fix(fn) the points whose
minimal periods are even.

As we have noticed (Lemma 2.2) the set of periodic points splits into circles

Fix(fn) = S1 ∪ · · · ∪ Sh

and f permutes these circles giving rise to the orbits of circles.
We fix neighbourhoods Ui ⊃ Si so thin that clUi ∩ clUj = ∅ for i 6= j.

Moreover, in each orbit we fix one circle and we call it as the orbit’s leading
circle. For each leading circle Si we fix another neighbourhood U ′i satisfying:
Si ⊂ U ′i ⊂ Ui and fk(Si) ⊂ Uj implies fk(U ′i) ⊂ Uj for k = 1, . . . , n.
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Let us fix an orbit of circles and let S0 be its leading circle. Let k be the
smallest number satisfying fk(S0) ⊂ S0.

(1) If k is even then we will find a homotopy ft with the carrier in U ′i so
that f0 = f and

Fix(fn1 ) = Fix(f
n) \ (S0 ∪ f(S0) ∪ f2(S0) ∪ . . . ∪ fk−1(S0)),

i.e. we remove precisely the orbit of circles represented by S0.
(2) Now let k be odd. Now Fix(fk) ∩ S0 consists of two points z1, z2. We
will find a homotopy carried by U ′0 so that

Fix(fn1 ) = Fix(f
n) \ (S0 ∪ f(S0) ∪ f2(S0) ∪ . . . ∪ fk−1(S0)

∪ {z1, f(z1), . . . , fk−1(z1); z2, f(z2), . . . , fk−1(z2)}

i.e. we remove the orbit of S0 leaving only the orbits of the points z1
and z2 (the only points of odd period).

We may do these operations to all orbits in {S1, . . . , Sh} simultaneously.
Since the orbits of points are mutually disjoint, so are the orbits of their suffi-
ciently small neighbourhoods, hence no new periodic points appear. This homo-
topy will produce the map g satisfying

Fix(gn) =
⋃
i

{z1i, f(z1i), . . . , fki−1(z1i); z2i, f(z2i), . . . , fki−1(z2i)}

where the summation runs over the set of all 1 ≤ i ≤ h for which Si is a leading
circle and the number

ki = the length of the orbit containing Si

is odd. Thus only the orbits of odd length remain and hence all the points of
even period are removed as required.

It remains two prove the above two claims. This will be done in the next
Lemma.

Lemma 3.8. Let f be a self-map of the Klein bottle given in the canonical
form with w = −1 and |u| ≥ 2. Let S be a leading circle in an orbit of length k.
Then:

(a) If k is even then there is a homotopy ft whose the carrier is in an
arbitrarily prescribed neighbourhood U ′ ⊃ S with f0 = f and

Fix(fn1 ) = Fix(f
n) \ (S ∪ f(S) ∪ f2(S) ∪ . . . ∪ fk−1(S)).

(b) If k is odd then Fix(fk)∩S consists of two points z1, z2. There is a ho-
motopy ft whose carrier is in an arbitrarily prescribed neighbourhood of
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U ′ ⊃ S that

Fix(fn1 ) = {Fix(fn) \ (S ∪ f(S) ∪ f2(S) ∪ . . . )}
∪ {z1, f(z1), . . . , fk−1(z1); z2, f(z2), . . . , fk−1(z2)}.

Proof. Let us notice that we may assume that the given neighbourhood U ′

is so small that U ′, f(U ′), . . . , fk(U ′) are disjoint from the other orbits of circles.

Case 1. Let k be even. Since f
k
= id, the restriction fk:S → S is a natural

transformation of the covering p:S → S1. Therefore either fk(z) = z for all
z ∈ S or fk(z) 6= zfor all z ∈ S. In the first case there are no periodic points
in S there is nothing to prove. Therefore, let us assume that fk(x) = x for all
x ∈ S. We can define a smooth vector field vz which is zero for z /∈ U ′ and is
such that p∗vz is nonzero, for all z ∈ U ′, and p∗vz shows an orientation of the
circle S1. Let h:K → K be a Poincare map induced by the vector field vz. We
will show that, for h sufficiently close to the identity, the map g = fh satisfies

Fix(gn) = Fix(fn) \
⋃
r

fr(S)

where the summation runs over the set of all divisors of n. It is enough to show
that gn(z) 6= z for all z ∈ U ′. We notice that

pgk(z) = p(fk−1fh)(z) = pfkh(z) = ph(z).

Here the first equality follows from the fact that g = f except on U ′ and the
following:

(1) g(z) = fh(z) ⊂ fh(U ′) = f(U ′) and successively g2(z) ∈ f2(U ′), . . . ,
gk−1(z) ∈ fk−1(U ′),

(2) the sets U ′, f(U ′), . . . , fk−1(U ′) are mutually disjoint

The last equality follows from pfk = f
k
p = idS1p. Since ph(z) = exp(φ)p(z)

for a small positive angle φ, we have that pgk(z) = exp(φ)p(z). Using the
same argument and substituting z = gk(z) we get pg2k(z) = exp(φ′)p(z) and
consequently pgn(z) = exp(φ′′)p(z) where φ′ and φ′′ are small positive angles
(which depend on n). The last equality implies that gn(z) 6= z for all z ∈ U ′.
Case 2. Let k be odd. Then the restriction fk:S → S covers the flip

map of S1, hence f is also the flip map and has exactly two fixed points z1, z2.
Now S \ {z1, z2} splits into two connected components. Let S1, S2 denote their
closures. Notice that fk permutes S1 with S2.
Let us fix a neighbourhood U ′′ satisfying

(1) U ′′ ∩ S = S1 \ {z1, z2},
(2) U ′′ ⊂ U ′,
(3) U ′′ ∩ fs(U ′′) 6= ∅ if and only if 2k|s.
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We fix a vector field vz on K, as above, but now with the carrier is in U ′′. We
denote by h a Poincare map and g = fh. We will show that Fix(gn) ∩ U ′′ = ∅.
In fact

pg2k(z) = p(f2k−1fh)(z) = pf2kh(z) = ph(z)

since g(U ′), . . . , gk−1(U ′) are mutually disjoint from U ′ and pf2k = f
2k
p =

idS1p. But ph(z) = exp(φ)p(z) for a small positive angle φ. Now we may argue
as in the previous case where k is even to get that gn(z) 6= z for all z ∈ U ′′. �

4. Homotopy minimal periods

In this section,we derive the description of the set of possible homotopy
minimal periods of a self-map f :K→ K, given in [20], using the methods of the
proof the Wecken Theorem 3.1.

Remark 4.1. Suppose that every self-map of a finite polyhedron f :K → K
is homotopic to a map satisfying the assumptions of Lemma 3.3. Then

n ∈ HPer(f) if and only if NPn(f) 6= 0

i.e. n is a homotopy period if and only if there is an essential irreducible Nielsen
class in Fix(fn).

Proof. ⇐ is obvious. Now we assume that there is no essential irreducible
Nielsen class in Fix(fn). It remains to notice that the map g homotopic to f
which satisfies the assumptions of Lemma 3.3 has no orbit of points of length n.
In fact such an orbit of points in Fix(gn) would determine an essential irreducible
orbit of Reidemeister classes of gn. �

Theorem 4.2. Let f :K→ K be a self-map of the Klein bottle inducing the
homotopy group homomorphism f#(a) = aubv , f#(b) = bw. Then

HPer(f) =



∅ for w = 1,

{1} for (w = 0) or (w = −1 and |u| ≤ 1),
N \ {2} for w = −2,
N \ 2N for w = −1 and |u| ≥ 2,
N for w ≤ −3 or w ≥ 2.

Proof. Let w be even. Then u = 0, hence every fibre map is homotopic to
a constant and we have thatHPer(f) = HPer(f) . Since f is a self-map of the
circle of (even) degree w,

HPer(f) =


{1} for w = 0,

N \ {2} for w = −2,
N for w ≤ −4 or w ≥ 2, (w is even),

see [1].
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Now we consider the case when w is odd. Let w = 1. Then the base map is
homotopic, by an irrational twist, to a map with no periodic points. This implies
HPer(f) = ∅.
Let |w| ≥ 3. We will show that in this case HPer(f) = N. First we recall

that in the homotopy exact sequence

1→ π1(S1)→ π1(K)→ π1(S1)→ 1

arising from natural fibration of the Klein bottle p:K → S1, the action α of
π1(S1) = Z on the fibre π1(S1) = Z is given by α[k] = (−1)k. Let f be
a self-map of the Klein bottle in the standard form. Let us denote εjw =
[j/|w − 1|] ∈ R/Z. Then since f is the standard map of degree w on S1,
Fix(f) = {ε0w, ε1w, . . . , ε

|w−2|
w }. Now deg(fε0w) = u implies deg(fεjw) = (−1)

j · u.
Let k be a natural number. Let us notice that then the points ε1wk , ε

2
wk

are essential irreducible classes of f
k
(|w| ≥ 3). Moreover if degfε1

wk
= u then

degfε2
wk
= −u.

Now at least one of the numbers N(fk
ε1
wk
) = |1 − u| or N(fk

ε2
wk
) = |1 + u| is

not zero, hence there are essential classes in, at least one, of the fibre maps fk
ε1
wk

or fk
ε2
wk
. Since the points ε1wk , ε

2
wk are essential irreducible classes of f

k
, the fibre

over (at least one) of these points, contains also essential irreducible classes of
fk. This proves that k ∈ HPer(f).
It remains to consider the case w = −1. First we notice that when k is

even, N(f
k
) = 0 so f has no essential classes. On the other hand, the base map

f contains two essential Reidemeister classes and the fixed points representing
these classes also represent unique essential classes of for all odd iterations f

k
of

f . Let b1, b2 ∈ S1 be the points representing these classes.
Now if |u| ≥ 2, then

HPer(fbi) =

{
N when deg(fbi) 6= −2,
N \ {2} when deg(fbi) = −2.

Because the bi are fixed points of f and we can assume that f has no other
periodic points, we have that

Hper(f) = [Hper(fb1) ∪Hper(fb2)]− 2N.

Furthermore, since the degrees of the fibre maps over b1 and b2 are opposite,
HPer(fbi) = N over at least one of these points. This implies HPer(f) = N \ 2N
Now we assume that w = −1 and |u| ≤ 1. We will show that then HPer(f) =

{1}. If u = 0 then HPer(f) = HPer(f) = {1}, since deg(f) = w = −1. If u = ±1
then the degree over one class of f is +1 and over the other one is −1. The set
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of homotopy periods of the fibre map over the first class is empty while over the
second class it is in {1}. This gives HPer(f) = {1}. �

Remark 4.3. It is interesting to note that the parameter v plays no role on
the homotopy minimal periods.

As a byproduct we get the following Sharkovski-type theorem:

Theorem 4.4. Let f :K → K be a self-map of the Klein bottle. If 2 is
a homotopy period of f then all natural numbers are homotopy periods.
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