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A NEW LOWER BOUND FOR THE NUMBER OF ROOTS
OF MAPS BETWEEN GRAPHS

Xuezhi Zhao

Abstract. We shall present a new lower bound for the number of roots

of maps between graphs in any given homotopy class. We also give an

example showing that our new lower bound can be arbitrary larger than
the number of essential root classes.

1. Introduction

Let f :Y → X be a map, and x∗ a given point in X. The points in the set
f−1(x∗) are said to be roots of f at x∗. A natural question is how to describe the
set f−1(x∗). This topic is discussed in root theory, which is a branch of Nielsen
fixed point theory (see [3] and [6]). It is well-known that a non-zero degree map
between closed manifolds must be surjective. In other word, such maps always
has a root at any point in the target manifold. Root theory provides much more
information about the root set. There exists an estimation for the number of
roots. The detail relation between root theory and degree can be found in [4].

Here, we give a brief account of root theory (see [8] for the details). Choose
y∗ in Y as a base point of Y and a base path w from x∗ to f(y∗) in X. The
map f induces a homomorphism f̃π,w:π1(Y, y∗) → π1(X, x∗), which is given by
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f̃π,w(〈b〉) = 〈wf(b)w−1〉, where b is a loop at y∗.
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For any root y of f at x∗, pick a path c from y∗ to y, we can define an
element 〈wf(c)〉 ∈ π1(X, x∗). The corresponding element in the right coset of
Imf̃π,w(π1(Y, y∗)) in π1(X, x∗) is independent of the choice of the path c, because
another path d from y∗ to y will lead to the element

〈wf(d)〉 = 〈wf(d)f(c−1)w−1〉〈wf(c)〉 = f̃π,w(〈dc−1〉)〈wf(c)〉.

Such a correspondence is written as

φw: f−1(x∗)→ π1(X, x∗)/Imf̃π,w.

Two roots y1 and y2 are said to be in the same root class if φw(y1) = φw(y2). This
correspondence does depend on the choice of w, but the induced classification of
the roots of f−1(x∗) is independent of the choice of w. It can be proved that the
root set f−1(x∗) is divided into a disjoint union of finitely many root classes.

Consider a homotopy H:Y × I → X from f to f ′, i.e. f(y) = H(y, 0) and
f ′(y) = H(y, 1) for all y ∈ Y . It gives a natural correspondence from the set
of base paths of map f to the set of base paths of map f ′, which is given by
w 7→ w′ = w{H(y∗, t)}1t=0. Notice that

f ′(c) ' ({H(y∗, t)}1t=0)
−1f(c){H(y∗, t)}1t=0 rel {0, 1}

for any loop c at y∗ in Y . We have that

f̃ ′π,w′(〈c〉) = 〈w′f ′(c)w′−1〉 = 〈wf(c)w−1〉 = f̃π,w(〈c〉).

Thus, any homotopy H from f to f ′ induces a natural correspondence from root
classes of f to root classes of f ′. Two root classes under this correspondence are
said to be H-related.

Each root class R of f :Y → X has an index homomorphism composed by

H∗(Y )
j∗−→ H∗(Y, Y −R) e∗←− H∗(N,N −R)

f∗−→ H∗(X, X − x∗),

where N is a neighbourhood of R with cl(N) ∩ f−1(x∗) = R, j∗ comes from the
homology long exact sequence of (Y, Y −R), and e∗ is the excision isomorphism.
This homomorphism is a homotopy invariant in the sense that homotopy-related
root classes have the same index homomorphism. Since any empty root set has
a zero index homomorphism, a root class with non-zero index homomorphism
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can not be removed by any homotopy. Thus, the number of roots which have
non-zero index homomorphism is a lower bound for the number of roots of maps
in the homotopy class of f .

It is natural to ask whether the number of roots which have non-zero index
homomorphism is the best possible lower bound for the number of roots of maps
in the homotopy class of give map f :Y → X. The answer to this question is
known to be “Yes” if X and Y are closed manifolds with dim X = dim Y 6= 2 (see
[9] or [10]). It is easy to shown that both numbers are zero if the target manifold
X has boundary, and hence we have a positive answer. As in Nielsen fixed point
theory, such a question is more delicate for maps between closed surfaces ([2]
and [5]). The sets of root of some special maps between the interval are also
interesting, see [1].

In this paper, we study the roots of maps between graphs (1-dimensional
polyhedra). The key point is the following phenomenon: some root classes will
always have more than one roots. The number of roots in a given root class
can be derived from the information about 1-dimensional index homomorphism.
Hence, we give a new lower bound for the number of root of maps in any given
homotopy class. We shall show, by using some examples, that our new lower
bound is much better than existed ones.

We make following conventions:

(1) By a root, we mean the root of f :Y → X at the given point x∗.

(2) Either Y or X admits a triangulation, and x∗ is a vertex of X.

(3) All homology groups are simplicial ones in integer coefficients.

(4) By using the notation in graph theory, 0- and 1-dimensional simplexes
are said here to be vertices and edges respectively.

(5) If v1, . . . , vn are the vertices such that there is a unique edge from vj−1

to vj for all possible j, we write [v1, . . . , vn] for the union of edges [v1, v2], . . . ,

[vn−1, vn], and also for the element [v1, v2] + . . . + [vn−1, vn] in 1-dimensional
chain.

(6) For a vertex v, we write Stv for the sub-complex consisting of all edges
containing v, the number of edges in Stv is said to be the degree deg(v) of v in
the underlying graph.

The paper is organized as follows. In section 2, we shall define special kinds of
bases for H1(Y ) and H1(X, X − x∗). A norm derived from a matrix expressing
index homomorphism will be obtained in Section 3. Our main results lie in
Section 4, we present a new lower bound for the number of roots for maps
between graphs. Some examples will be given in the last section, and we show
by an example our new lower bound is much better than existing ones.
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2. Simple bases and standard bases

For a map f :Y → X between graphs, as in [11], we focus on the 1-dimensional
part of the index homomorphism, i.e. the composition:

H1(Y )
j∗−→ H1(Y, Y −R) e∗←− H1(N,N −R)

f∗−→ H1(X, X − x∗),

which keeps all the information of the original index homomorphism because
H∗(X, X − x∗) is almost trivial except for dimension one. In this section, we
shall define special kinds of bases for H1(Y ) and H1(X, X − x∗).

Since the 2-dimensional chain group of any graph is trivial, the 1-dimensional
homology group is the same as its 1-cycle, and hence any element in 1-dimen-
sional homology group has unique expression of the formal sum of some edges.
So, we can define:

Definition 2.1. Let Z be a graph. An element α in H1(Z) is said to be
simple if it is written as a formal sum of some edges in Z such that any vertex
in Z belongs to the boundaries of at most two edges in α.

A basis B = {β1, . . . , βn} of H1(Z) is said to be a simple basis if each element
βj in B is simple.

Note that any element of the 1-dimensional homology group is represented
by some loops consisting of edges. These loops may have intersections. By
definition, we have

Proposition 2.2. A basis B = {β1, . . . , βn} of H1(Z) is a simple basis if
and only if each βj is represented by a disjoint union of simple closed curves.

Consider a one cycle α in graph. Since the boundary of α is zero, any vertex
appears in α an even number of times, so the number of edges in α containing
a fixed vertex is even. If β is an simple element in the 1-dimensional homology
group of a graph, any vertex belongs to the boundaries of 2 or 0 edges of β.

Lemma 2.3. The 1-dimensional homology group of any graph has a simple
basis.

Proof. Let {β1, . . . , βn} be a basis of 1-dimensional homology of a graph.
If it is not simple, then there will be a non-simple element βj . Hence, there is
a vertex v so that v belongs to the boundaries of more than two edges in βj .

Let [v, vj1 ] be an edge in βj with v as its boundary. Since βj is cycle, there
must be another edge, say [vj1 , vj2 ], with vj1 as its boundary. Repeat this step,
we shall have a vertex vjk

= v such that vj1 , vj2 , and vjk−1 are different from v.
Denote β′j = [v, vj1 ] + . . . + [vjk−1 , v]. Because βj − β′j contains edges bounded
by v, we get that βj 6= β′j .

A simple argument shows that either {β′j} ∪ ({β1, . . . , βn} − {βj}) or {βj −
β′j}∪({β1, . . . , βn}−{βj}) is linearly independent. Thus, we can find a new basis
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of homology so that the number of edges containing v as one of their boundary
points is decreased.

Repeat this procedure until it can not work further. This implies that for
any vertex v and any element βi in the basis, v belongs to the boundaries of at
most two edges in βi. At this time, we already get a simple basis. �

Example 2.4. Let Y be the graph below.
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Clearly, H1(Y ) = Z ⊕ Z. We denote α = [v1, v2] − [v1, v3] + [v2, v3] and β =
[v4, v5]− [v4, v6] + [v5, v6]}. It is obvious that the set of all bases of H1(X) is:

{{pα + qβ, rα + sβ} : ps + rq = ±1, p, q, r, s are integers}.

Notice that the number of edges in mα + nβ containing vi is 0 if i = 0, is 2|m|
if 1 ≤ i ≤ 3, and is 2|n| if 4 ≤ i ≤ 6. It follows that {pα + qβ, rα + sβ} is a
simple basis if and only if each of p, q, r and s (with ps + rq = ±1) is either ±1
or 0. Hence, there are 20 simple bases, which are {±α,±β}, {±α± β,±β} and
{±α± β,±α}.

Let us consider the bases of H1(X, X − x∗). Note that x∗ is chosen as a
vertex of the simplicial complex X. By excision theorem of relative homology
groups, H1(X, X−x∗) is isomorphic to H1(X, X−Stx∗), which is a free abelian
group of rank deg(x∗)− 1. Thanks to this isomorphism, we can define

Definition 2.5. A basis of H1(X, X − x∗) is said to be a standard basis if
it has the form {[vji0

, x∗, vji ] : 1 ≤ i ≤ k = deg(x∗), i 6= i0}, where {vj1 , . . . , vjk
}

is the set of vertices of Stx∗ other than x∗.

It is obvious that H1(X, X − x∗) has deg(x∗) distinct standard bases.

3. Index matrix and its norm of an isolated root set

In this section, we shall present some invariants derived from the 1-dimen-
sional index homomorphism.

Definition 3.1. Let −→m = {m1, . . . , mq} be a vector. A norm of −→m is
defined by:

‖−→m‖∗ = max
{ q∑

i=1

|mi|+ mi

2
,

q∑
i=1

|mi| −mi

2

}
.
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By definition, ‖−→m‖∗ is the maximum of the sum of positive entries in −→m and
the absolute value of the sum of negative entries in it. It is easy to check that
‖ · ‖∗ is a norm on Euclidian spaces.

Definition 3.2. Let M = (mij) be a (p× q)-matrix. Its norm is defined to
be:

‖M‖∗ = max
1≤i≤p

{‖{mi1, . . . , miq}‖∗}.

From the definition, we get immediately that

Proposition 3.3. The norm ‖ · ‖∗ satisfies the following the properties:

(a) ‖M‖∗ ≥ 0 for any matrix M , and ‖M‖∗ = 0 if and only if M is a zero
matrix;

(b) ‖M + M ′‖∗ ≤ ‖M‖∗ + ‖M ′‖∗ for any two matrices M and M ′ of the
same size;

(c) ‖tM‖∗ = |t|‖M‖∗ for any real number t.

Let R be an isolated root set of f :Y → X. Then there is a 1-dimensional
index homomorphism (f∗e−1

∗ j∗)R:H1(Y ) → H1(X, X − x∗). Choose a ba-
sis BY = {βY,1, . . . , βY,m} of H1(Y ) and a basis BX = {βX,1, . . . , βX,n} of
H1(X, X − x∗), this index homomorphism is represented by a matrix, which is
said to be the index matrix with respect to BY and BX , denoted M(R;BY ,BX),
i.e.

(f∗e−1
∗ j∗)R

 βY,1

...
βY,m

 = M(R;BY ,BX)

 βX,1

...
βX,n

 .

Definition 3.4. The norm of an isolated root set R of f :Y → X at x∗ is
defined to be:

‖R‖∗ = max
BY ,BX

‖M(R;BY ,BX)‖∗,

where BY ranges over all simple bases of H1(Y ) and BX ranges over all standard
bases of H1(X, X − x∗).

The homotopy invariance of the index homomorphism implies

Proposition 3.5. Let R and R′ be root classes, respectively, of maps f and
f ′ between graphs Y and X. If R and R′ are homotopy-related, then

‖R‖∗ = ‖R′‖∗.

By additivity of index homomorphism and Proposition 3.3, we have

Proposition 3.6. Let R = R′ tR′′ be a disjoint union of two isolated root
sets R′ and R′′. Then ‖R‖∗ ≤ ‖R′‖∗ + ‖R′′‖∗.
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4. A new lower bound

In this section, we shall give a new lower bound for the number of roots for
maps between graphs.

Lenmma 4.1. Let BY be a simple basis of H1(Y ) and BX a standard basis
of H1(X, X −x∗). Then ‖M({y};BY ,BX)‖∗ = 0 or 1 for any isolated root y of
f :Y → X at x∗.

Proof. Pick a small contractible neighbourhood Ny of y in Y such that
either Ny is contained in the edge containing y if y is not a vertex, or Ny is
contained in Sty if y is a vertex of Y . Then Ny − {y} is a disjoint union of
line segments N1

y , . . . , Nk
y whose closures have endpoint y. Since Ny can be

chosen arbitrary small, we may assume that f(Ny) ⊂ Stx∗ . Since the index
homomorphism is a homotopy invariant, we may assume that f is a piece-wise
linear map. Thus, for each N j

y , f(N j
y ) lies in a unique edge of X starting at x∗.

Consider an arbitrary element γ in the simple basis BY of H1(Y ), we know
that γ can be represented by a formal sum of some distinct edges. Then, under
j∗:H1(Y )→ H1(Y, Y −y) and the excision e−1

∗ :H1(Y, Y −y)→ H1(Ny, Ny−y),
we have that e−1

∗ ◦j∗(γ) = γ ∩Ny. Here, γ ∩Ny is the sub path of γ in Ny.
Let {m1, . . . , mq} be the row in M({y};BY ,BX) corresponding to γ, i.e.

(f∗e−1
∗ j∗){y}(γ) =

∑q
i=1 miβi, where BX = {β1, . . . , βq}. It is sufficient to show

that the norm ‖{m1, . . . , mp}‖∗ ≤ 1.
(1) γ ∩ Ny = ∅. We have that ‖{m1, . . . , mq}‖∗ = 0 because m1 = m2 =

· · · = mq = 0.
(2) γ ∩ Ny 6= ∅. Since each edge of Y appears at most once in γ, γ ∩ Ny

contains exactly two components of Ny − y, say N i+

y and N i−

y . We have that
γ ∩Ny = N i+

y t {y} tN i−

y . There are two edges [x∗, vi′ ] and [x∗, vi′′ ] such that
f(N i+

y ) ⊂ [x∗, vi′ ] and f(N i−

y ) ⊂ [x∗, vi′′ ]. Thus, f∗◦e
−1
∗ ◦j∗(γ) = ±[vi′ , x∗, vi′′ ].

By the definition of the standard basis, we can assume that

BX = {[vi0 , x∗, vi1 ], . . . , [vi0 , x∗, vip
]}.

We have

f∗◦e
−1
∗ ◦j∗(γ) =


±[vi0 , x∗, vi′′ ]∓ [vi0 , x∗, vi′ ] if i′ 6= i0, i

′′ 6= i0,

±[vi0 , x∗, vi′′ ] if i′ = i0, i
′′ 6= i0,

∓[vi0 , x∗, vi′ ] if i′ 6= i0, i
′′ = i0,

0 if i′ = i′′ = i0.

Thus, the vector {m1, . . . , mp} has at most one entry which is 1 and has at
most one entry which is −1. The other entries are all zero. So, we have that
‖{m1, . . . , mp}‖∗ = 1 if i′ 6= i′′; ‖{m1, . . . , mp}‖∗ = 0 if i′ = i′′. �
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Lemma 4.2. Let BY be a simple basis of H1(Y ) and BX a standard basis of
H1(X, X − x∗). If R is an isolated root set of f :Y → X at x∗, then R contains
at least ‖M(R;BY ,BX)‖∗ roots.

Proof. If R contains infinitely many points, the conclusion is true automat-
ically. If R contains s roots, say y1, . . . , ys, by Proposition 3.6 and the lemma
above, we that

‖M(R;BY ,BX)‖∗ ≤
s∑

j=1

‖{yj}‖∗ ≤ s. �

By the homotopy invariance of the norm of root classes, we get

Proposition 4.3 (Main theorem). Let f :Y → X be a map between graphs.
Then any map homotopic to f has at least

∑
R ‖R‖∗ roots at x∗, where R ranges

over all root classes of f at x∗.

With the same reason, we can prove

Proposition 4.4. Let BY be a simple basis of H1(Y ) and BX a standard
basis of H1(X, X − x∗). Then any map homotopic to f has at least

∑
R ‖M(R;

BY ,BX)‖∗ roots at x∗, where R ranges over all root classes of f at x∗.

5. Examples

In this section, we shall present some examples to show how to compute the
norm ‖ · ‖∗ and our lower bound for a map between graphs.

The following example comes from [7, §4].

Example 5.1. Let X be a graph shown as below.

�
•

•

•

•

•

v2

v1 v4

v3

v0

A self map f :X → X is defined by

f([v0, v1]) = [v0, v2, v1], f([v0, v2, v1]) = [v0, v1],

f([v0, v3]) = [v0, v2, v1, v0], f([v3, v4]) = [v0, v3, v4, v0],

f([v0, v4]) = [v0, v4, v3, v0].

The base point x∗ is chosen as v0.
Note that π1(X, x∗) is a free group of rank 2 with generators

α = 〈[v0, v1, v2, v0]〉 and β = 〈[v0, v3, v4, v0]〉.
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By a suitable homotopy, we can assume that f−1(x∗) = {v0, v3, v4}. Pick
the constant path w at x∗ as base path from x∗ to f(x∗). We have that
f̃π,w = fπ:π1(X, x∗) → π1(X, x∗). Then the elements in the right coset of
Im f̃π,w(π1(Y, y∗)) in π1(X, x∗) corresponding to the three roots are:

φw(v0) = 〈f(w)〉 = 1,

φw(v3) = 〈f([v0, v3])〉 = [v0, v2, v1, v0] = α−1,

φw(v4) = 〈f([v0, v4])〉 = [v0, v4, v3, v0] = β−1.

Notice that

fπ(α) = 〈f([v0, v1, v2, v0])〉 = 〈[v0, v2, v1, v0]〉 = α−1,

fπ(β) = 〈f([v0, v3, v4, v0])〉 = 〈[v0, v2, v1, v0, v3, v4, v0, v3, v4, v0]〉 = α−1β2,

we have that α−1 = fπ(α) ∈ fπ(π1(X, x∗)), and that β−1 6∈ fπ(π1(X, x∗)). Thus,
α−1 belongs to the right coset containing 1, but β−1 does not belong to it. This
implies that v0 and v3 are in the same root class and v4 lies in another root class.

Project down α and β into H1(X). We still write them as α and β. They are
generators of the free abelian group H1(X). Any basis of H1(X) has the form
{pα+ qβ, rα+ sβ} where p, q, r, s are integers with ps+ rq = ±1. Note that the
number of edges in pα+qβ and rα+sβ containing the vertex v0 are |p|+ |q| and
|r|+ |s| respectively. We conclude that there are only 4 simple bases of H1(X),
which are: {α, β}, {α,−β}, {−α, β} and {−α,−β}.

The standard bases of H1(X, X − x∗) are

B1 = {[v1, v0, v2], [v1, v0, v3], [v1, v0, v4]},
B2 = {[v2, v0, v1], [v2, v0, v3], [v2, v0, v4]},
B3 = {[v3, v0, v1], [v3, v0, v2], [v3, v0, v4]},
B4 = {[v4, v0, v1], [v4, v0, v2], [v4, v0, v3]}.

Let us consider 1-dimensional index homomorphisms of the two root classes
{v0, v3} and {v4}.

For the root v0, we choose a small regular neighbourhood U0 such that U0 ∪
f(U0) ⊂ Stx∗ . We then have

α = [v0, v1, v2, v0]
j∗7−→ [v0, v1, v2, v0]

e−1
∗7−→ [v0, v1, v2, v0] ∩ U0 = [v2, v0, v1] ∩ U0

f∗7−→ [v1, v0, v2] ∈ H1(X, X − x∗),

β = [v0, v3, v4, v0]
j∗7−→ [v0, v3, v4, v0]

e−1
∗7−→ [v0, v3, v4, v0] ∩ U0 = [v4, v0, v3] ∩ U0

f∗7−→ [v4, v0, v2] ∈ H1(X, X − x∗).
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For the root v3, we choose a small regular neighbourhood U3 such that U3 ⊂
[v0, v3, v4] and f(U3) ⊂ Stx∗ . Then

α = [v0, v1, v2, v0]
j∗7−→ [v0, v1, v2, v0]

e−1
∗7−→ [v0, v1, v2, v0] ∩ U3 = 0,

f∗7−→ 0 ∈ H1(X, X − x∗),

β = [v0, v3, v4, v0]
j∗7−→ [v0, v3, v4, v0]

e−1
∗7−→ [v0, v3, v4, v0] ∩ U3 = [v0, v3, v4] ∩ U0

f∗7−→ [v1, v0, v3] ∈ H1(X, X − x∗).

Combining the two index homomorphisms, we get that

(f∗e−1
∗ j∗){v0,v3}(α) = [v1, v0, v2],

(f∗e−1
∗ j∗){v0,v3}(β) = [v4, v0, v2] + [v1, v0, v3].

Under simple bases {εαα, εββ}, where εα, εβ = ±1, of H1(X) and standard bases
Bi, we can compute the index matrices

M({v0, v3}, {εαα, εββ},B1) =
(

εα 0 0
εβ εβ −εβ

)
,

M({v0, v3}, {εαα, εββ},B2) =
(
−εα 0 0
−εβ εβ −εβ

)
,

M({v0, v3}, {εαα, εββ},B3) =
(
−εα εα 0
−εβ εβ −εβ

)
,

M({v0, v3}, {εαα, εββ},B4) =
(
−εα εα 0
−εβ εβ εβ

)
.

It follows that ‖{v0, v3}‖∗ = 2.
For the root v4, we choose a small regular neighbourhood U4 such that

U4 ⊂ [v3, v4, v0] and f(U4) ⊂ Stx∗ . Then, under the index homomorphism
(f∗e−1

∗ j∗){v4},

α = [v0, v1, v2, v0]
j∗7−→ [v0, v1, v2, v0]

e−1
∗7−→ [v0, v1, v2, v0] ∩ U4 = 0

f∗7−→ 0 ∈ H1(X, X − x∗),

β = [v0, v3, v4, v0]
j∗7−→ [v0, v3, v4, v0]

e−1
∗7−→ [v0, v3, v4, v0] ∩ U4 = [v3, v4, v0] ∩ U0

f∗7−→ [v4, v0, v3] ∈ H1(X, X − x∗).

So, with respect to the simple bases {εαα, εββ}, where εα, εβ = ±1, of H1(X)
and standard bases Bi, we can compute the index matrices

M({v4}, {εαα, εββ},B1) =
(

0 0 0
0 εβ −εβ

)
,

M({v4}, {εαα, εββ},B2) =
(

0 0 0
0 εβ −εβ

)
,
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M({v4}, {εαα, εββ},B3) =
(

0 0 0
0 0 −εβ

)
,

M({v4}, {εαα, εββ},B4) =
(

0 0 0
0 0 εβ

)
.

It follows that ‖{v4}‖∗ = 1.
From our main theorem (Theorem 4.3), any map homotopic to f has at least

‖{v0, v3}‖∗ + ‖{v4}‖∗ = 3 roots at x∗.

Compare with the graph Y in Example 2.4 with the graph X in this example,
we know that they have the same homotopy type. But, the simple bases are
different. So, the norm of roots is not a homotopy type invariant. It follows that
our new lower bound is not a homotopy type invariant even in the category of
maps between graphs.

Example 5.2. Let Y be the graph as in Example 2.4, and let X be a com-
plete graph with 3 vertices, i.e. a triangle with vertices u0, u1 and u2. A map
f :Y → X is defined by

f([v4, v0, v1]) = u0, f([v1, v2]) = f([v4, v5]) = [u0, u1],

f([v2, v3]) = f([v5, v6]) = [u1, u2], f([v1, v3]) = f([v4, v6]) = [u0, u2].

The point x∗ is chosen as u1.
Using the notations in Example 2.4, H1(Y ) is a free abelian group generated

by α = [v1, v2, v3, v1] and β = [v4, v5, v6, v4]. Note that f−1(x∗) = {v2, v5}. Pick
a neighbourhood Stv2 = [v1, v2, v3] of v2, the behavior of the 1-dimensional index
homomorphism (f∗e−1

∗ j∗){v2}:H1(Y )→ H1(X, X − x∗) is given by

α
j∗7−→ [v1, v2, v3, v1]

e−1
∗7−→ [v1, v2, v3, v1] ∩ Stv2 = [v1, v2, v3]

f∗7−→ [u0, u1, u2],

β
j∗7−→ [v4, v5, v6, v4]

e−1
∗7−→ [v4, v5, v6, v4] ∩ Stv2 = 0

f∗7−→ 0.

Similarly, pick a neighbourhood Stv5 = [v4, v5, v6] of v6, the behavior of the
1-dimensional index homomorphism (f∗e−1

∗ j∗){v5}:H1(Y ) → H1(X, X − x∗) is
given by

α
j∗7−→ [v1, v2, v3, v1]

e−1
∗7−→ [v1, v2, v3, v1] ∩ Stv5 = 0

f∗7−→ 0,

β
j∗7−→ [v4, v5, v6, v4]

e−1
∗7−→ [v4, v5, v6, v4] ∩ Stv5 = [v4, v5, v6]

f∗7−→ [u0, u1, u2].

Take y∗ = v0. The base path w form x∗ to f(y∗) is chosen as [u1, u0]. Thus,
f̃π,w:π1(Y, y∗)→ π1(X, x∗) is surjective. It follows that f has unique root class,
which is {v2, v5}. From the computation above and its additivity, the index
homomorphism of this root class is given by (f∗e−1

∗ j∗){v2,v5}(α) = [u0, u1, u2]
and (f∗e−1

∗ j∗){v2,v5}(β) = [u0, u1, u2].
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Let γ = [w0, w1, w2] ∈ H1(X, X−x∗). Then its basis of is either {γ} or {−γ},
both are standard. We can compute easily the index matrices with respect to
the bases of H1(Y ) and H1(X, X − x∗):

M({v2, v5}, {pα + qβ, rα + sβ}, {±γ}) = ±
(

p + q

r + s

)
.

When the bases of H1(Y ) are simple (cf. Example 2.4) and the bases of
H1(X, X − x∗) are standard, any corresponding index matrix will have one of
the following 40:

±
(
±1
±1

)
, ±

(
±1± 1
±1

)
, ±

(
±1
±1± 1

)
.

It follows that ‖{v2, v5}‖∗ = 2. Thus, any map homotopic to f has at least two
roots at x∗ = u1.

Example 5.3. Let Yn be a graph with n + 1 loops and let X be a triangle
with vertices u0, u1 and u2.

�• • • • • • • •

• • • •

• • •· · ·

v2 v3 v6 v7 v4n+2 v4n+3 u1 u2

v1 v5 v4n+1
u0· · ·

v0 v4 v4n

Yn

X

Let f :Yn → X be the piece-wise linear map such that for 0 ≤ k ≤ n, the edges
[v4k+1, v4k+2], [v4k+2, v4k+3] and [v4k+1, v4k+3] are mapped into [u0, u1], [u1, u2]
and [u0, u2] respectively, and f(Yn − ∪n

i=0[v4i+1, v4i+2, v4i+3, v4i+1]) = u0. The
point x∗ is chosen as u1.

Clearly, f−1(x∗) = {v2, v6, . . . , v4n+2}. The homology H1(Yn) is a free
abelian group of rank n + 1 with generators αi = [v4i+1, v4i+2, v4i+3, v4i+1],
i = 0, 1, . . . , n. Using the same argument as in last example, we can prove that
f has one root class, and that for any root v4k+2,

(f∗e−1
∗ j∗){v4k+2}(αi) =

{
[u0, u1, u2] if i = k,

0 if i 6= k.

Notice that B = {(
∑n

i=0 αi), α1, . . . , αn} is a simple basis of H1(Yn). The index
matrix of this unique root class with respect to the simple basis B and the
standard basis {[u0, u1, u2]} of H1(X, X − x∗) is:

M({v2, v6, . . . , v4n+2};B, {[u0, u1, u2]}) =


n + 1

1
...
1

 .
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As its norm is n + 1, we have that ‖{v2, v6, . . . , v4n+2}‖∗ ≥ n + 1. On the other
hand, by Proposition 4.4, ‖{v2, v6, . . . , v4n+2}‖∗ is less or equal to the number
of roots of f , that is n + 1. It follows that ‖{v2, v6, . . . , v4n+2}‖∗ = n + 1.

Note that n can be an arbitrary positive integer, thus the difference between
our new lower bound and the number of root classes can be arbitrary large. It
implies that the difference between the minimal root number in a given homotopy
class and the number of root classes can also be arbitrary large.
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