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EQUIVARIANT PATH FIELDS
ON TOPOLOGICAL MANIFOLDS

Lućılia Borsari — Fernanda Cardona — Peter Wong

Abstract. A classical theorem of H. Hopf asserts that a closed connected
smooth manifold admits a nowhere vanishing vector field if and only if its

Euler characteristic is zero. R. Brown generalized Hopf’s result to topolog-
ical manifolds, replacing vector fields with path fields. In this note, we give
an equivariant analog of Brown’s theorem for locally smooth G-manifolds
where G is a finite group.

1. Introduction

LetM be a closed connected orientable smooth manifold. A classical theorem
of H. Hopf [13] states that M admits a non-singular vector field if and only if
the Euler characteristic, χ(M), of M is zero. R. Brown [7] gave a generalization
of Hopf’s theorem for topological manifolds, by replacing vector fields with path
fields, a concept first introduced by J. Nash [22]. In [7], R. Brown showed
that a compact topological manifold M admits a non-singular path field if and
only if χ(M) = 0. Subsequently, R. Brown and E. Fadell [8] extended [7] to
topological manifolds with boundary. It was shown by E. Fadell [10] that any
Wecken complex of zero Euler characteristic admits a non-singular simple path
field. R. Stern [24] showed the same result for topological manifolds of dimension
different from four.

2000 Mathematics Subject Classification. Primary: 55M20; Secondary: 57S99.
Key words and phrases. Equivariant Euler characteristic, equivariant path fields, locally

smooth G-manifolds.
The third author acknowledges supported by a grant from the National Science Foundation.

c©2009 Juliusz Schauder Center for Nonlinear Studies

1



2 L. Borsari — F. Cardona — P. Wong

The existence of a path field allows one to show the so-called Complete In-
variance Property (CIP) (see [17] and [23]). Recall that a topological space M
is said to have the CIP if for any non-empty closed subset A ⊂ M , there exists
a map f :M →M such that

A = Fix f := {x ∈M | f(x) = x}.

Similarly, M possesses the CIP with respect to deformation (denoted by CIPD)
if f is homotopic to the identity 1M . The non-singular path field problem is
equivalent to the fixed point free deformation problem. That is, M admits
a non-singular path field if and only if 1M is homotopic to a fixed point free
map.

In [18], [19], and [25], equivariant vector fields on compact smooth G-ma-
nifolds were studied. In particular, an equivariant analog of Hopf’s theorem
was proved in [18]. Furthermore, an equivariant analog of what was done for
path fields on Wecken complexes in [10], was given in [26] and necessary and
sufficient conditions for equivariant CIPD were given for smooth G-manifolds
(see also [3] for a certain type of equivariant CIP). Similar to the non-equivariant
case, the equivariant non-singular path field problem is closely related to finding
an equivariant fixed point free deformation. It turns out that the existence of
such a fixed point free map requires more than merely the existence of non-
equivariant fixed point free deformation on the fixed point sets MH for each
isotropy type (H) (see [11]).

The objective of this paper is to prove an equivariant analog of Brown’s the-
orem [7] for topological manifolds with locally smooth action of a finite group G.
Moreover, we extend the necessary and sufficient conditions for G-CIPD found
in [27] to this category of G-manifolds.

We would like to thank D. L. Gonçalves and G. Peschke for very helpful
conversations and suggestions.

Throughout G will always be a finite group acting on a compact manifold M
where the action is locally smooth. For the definition and basic properties of
locally smooth actions, we refer the reader to [5].

2. Equivariant Euler characteristic and G-path fields

In this section, we establish the necessary definitions of path fields and Euler
characteristic in the equivariant category.

Equivariant path fields were defined and studied in [26] and [27]. For our
purposes, we think of G-path fields as sections of certain G-fibrations.

First, given a G-map p:E → B, we say that p has the G-Covering Homotopy
Property (G-CHP) if for all G-space X the following commutative diagram has
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a solution F :X × [0, 1] → E where all maps are G-equivariant.

X × {0} f
��

incl.

��

E

p

��

X × [0, 1]
H

�� B

A G-fibration is simply a G-map p:E → B satisfying the G-CHP for all G-spaces.
Given a G-fibration p:E → B, we consider Ωp = {(e, w) ∈ E × BI | p(e) =

w(0)}. Then Ωp is a G-invariant subspace of E ×BI . Let p̃:EI → Ωp be the G-
map defined by p̃(τ) = (τ(0), p(τ)). Consider the equivariant maps F : Ωp×I → B

defined by F (e, w, t) = w(t), and f : Ωp → E by f(e, w) = e. Since p is a G-
fibration, F can be lifted to a G-map F̃ : Ωp × I → B which extends f . Then
λ: Ωp → EI , defined by λ(e, w)(t) = F̃ (e, w, t), is an equivariant lifting function
for p, that is, p̃ ◦ λ is the identity on Ωp.

A G-fibration is called regular if it admits a regular G-lifting function, mean-
ing, a G-lifting function satisfying λ(e, p(e)) = e, for all e ∈ E, where p(e)
denotes the constant path at p(e). In [14], W. Hurewicz shows that every fi-
bration over a metric space is regular. The same proof can be adapted to the
equivariant case, provided the metric d is assumed to be G-invariant, that is,
d(gx, gy) = d(x, y), for all g ∈ G and x, y ∈ B.

Lemma 2.1. Let p:E → B be a regular G-fibration over a G-manifold B.
Let (X,A) be a G-ANR pair and suppose that there are equivariant maps f :X×
0 ∪ A× I → E and h:X × I → M such that p ◦ f = h|(X×0∪A×I). Then, there
exists a G-map f̃ :X × I → E which extends f and such that p ◦ f̃ = h.

Proof. This lemma is an equivariant version of Theorem 2.4 of [1]. The
proof of this theorem in the non equivariant context is very constructive and it
is possible to verify that, in all steps, we do obtain equivariant maps, as long as
we start with the appropriate equivariant setting and make use of Corollary 2.3
of [25]. �

Given a compact topological manifold M , the Nash path space TM of M
consists of TM = {all constant paths} and the set T 0

M of all paths α on M

such that for 0 ≤ t ≤ 1, α(t) = α(0) if and only if t = 0. Consider the map
q:TM →M given by q(α) = α(0). With the compact-open topology on TM , the
triple (TM , qM ,M) is a Hurewicz fibration and the sections of q are called path
fields on M . A path field is non-singular if it is a section in (T 0

M , qM |T 0
M
,M).

A path field σ is simple if for any x ∈M , σ(x) is a simple path.
If G acts on M , then G acts on TM via g ∗ α(t) = gα(t). Since q:TM → M

is a fibration, it is straightforward to see that it is indeed a G-fibration where
the G-action on [0, 1] is trivial. Thus, we define a G-path field to be a G-section
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s:M → TM of q so that q ◦ s = 1M . Moreover, the subfibration q0M :T 0
M →M is

also a G-subfibration. The notions of non-singular and of simple G-path fields
are defined in the obvious fashion.

Given a compact topological manifold M , the classical Euler characteristic
of M is an integer and it coincides with the fixed point index of the identity
map 1M . When a finite group G acts on M , the appropriate equivariant Euler
characteristic takes the components of the various fixed point sets MH , H ≤ G,
into account.

We write |χ|(MH) =
∑
C |χ(C)|, where C ranges over the connected compo-

nents of MH = {x ∈ M | Gx = H}. Here, Gx denotes the isotropy subgroup
of x. Since M is compact, each MH = {x ∈ M | hx = x, for all h ∈ M} is also
compact so that MH has only a finite number of components.

3. Singularities of G-path fields

In this section, we prove our main results following the approach of [7]. Since
we work in the G-manifolds category, many of the techniques employed in [7]
must be modified for the equivariant setting, first of which is the following relative
equivariant domination theorem for compact G-ANRs.

Theorem 3.1 (Relative Equivariant Domination Theorem). Let M be an
n-dimensional G-manifold and A be an invariant compact submanifold of dimen-
sion k. We can find a G-complex K of dimension n, an invariant subcomplex
of dimension k and equivariant maps ϕ:K → M and ψ:M → K, so that ψ is
barycentric, ϕ|L:L→ A, ψ|A:A→ L, ϕ ◦ ψ∼=GidM and ϕ|L ◦ ψ|A∼=GidA

Proof. According to [2, Theorem 1], we can equivariantly embed M as
a closed G-neighbourhood retract of a convex G-set in a Banach G-space A(M)
in which G acts isometrically. Now we follow the proof of the G-domination
theorem (Proposition 2.3) of [20]. Let r:O → M be the G-retraction of some
G-invariant neighbourhood O. It suffices to show that O can be G-dominated
by a finite G-complex K. Let {Wα} be a covering of O by convex subsets which
are open in O. Since M is compact, we can find a finite open covering {Oα} of
O such that the convex hull of a finite union of the Oβ is contained in M . Then
there is a finite open pointed G-covering V = {Vγ , vγ}, a refinement of {Oβ}
such that vγ ∈ A if Vγ ∩ A 
= ∅. Let K = |N(V)| be the nerve of V with the
canonical G-action.

For any x ∈M , we let

ν(x) =
∑
i

d(x,M − Vi)

where d denotes the metric on M which is G-invariant since G acts isometrically.
Let {vi} be the vertices of |N(V)|. Now {∑i d(x,M − Vi)/ν(x)} is a G-partition
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of unity subordinate to V . Define the G-map ϕ:M → |N(V)| by

ϕ(x) =
∑
i

d(x,M − Vi)
ν(x)

vi.

Note that ϕ is a barycentric mapping. Consider the G-map

ψ = r ◦ η: |N(V)| →M,

where η is the map ψ as in the proof of Proposition 2.3 of [20]. It is straightfor-
ward to check that the G-maps ϕ and ψ yield the desired G-domination. Note
that K is of dimension less than or equal to n since the V is a refinement. It
follows that K must be of dimension n otherwise K has no homology in di-
mension n whereas dimM = n and M is a compact manifold of dimension n.
Finally, we let VA = {(Vi ∩A, vi)}. It follows that VA is a G-covering of A and
the nerve L = |N(VA)| is a subcomplex of K. Since A is a compact manifold
of dimension k, we conclude that L is of dimension k and that L equivariantly
dominates A. �

Remark 3.2. It has been noted by S. Antonyan in [2] that the equivariant
embedding theorem [21, Theorem 6.2] of M. Murayama is incorrect: in that the
Banach space B(M) of all bounded continuous functions onM used in [21] is not
a Banach G-space and the G-action defined there is not continuous. Likewise,
the same mistake was also committed by S. Kwasik in [20]. Nevertheless, the G-
domination theorem in both [20] and [21] is stated correctly and their proofs are
valid provided one replacesB(M) with the linear subspaceA(M) of allG-uniform
functions as in [2]. We thank M. Golasiński for bringing [2] to our attention. As
noted by Hanner in [12], in non-equivariant settings Borsuk showed in [4] that any
compact ANR is dominated by a finite polyhedron. Then, in [6], Brooks showed,
again in the non-equivariant setting, that if an n-dimensional compact ANR is
dominated by a complex then it is dominated by its n-dimensional skeleton.

In order to prove the next proposition, we will need the following non-
equivariant result.

Lemma 3.3. Let M be a n-manifold and A ⊂ M a submanifold. Consider
c an n-cell in M − A, with ∂c ⊂ A and let σ: ∂c → TA be a path field and o be
a point in the interior of c. Then, there exists a path field σ′: c→ TM , extending
σ with o being its only singularity in the interior of c. Moreover, in case σ has
singularities then we may take σ′ without singularities in the interior of c.

Proof. Let c′ be an n-cell contained in Int c, with o in its interior. We
will extend σ to c − Int c′ without creating new singularities: Let [o, bx] be the
oriented segment through x, beginning at o, ending at bx ∈ ∂c. Therefore we
could write any x ∈ c− Int c′ as x = (1 − tx)o + txbx, where tx ∈ ]0, 1].
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bx

c

c’

o

Figure 1

The extended path field σ′ will be defined for each x ∈ c− Int c′ as follows:

σ′(x)(s) =




(1 − tx − s)o + (tx + s) bx if 0 ≤ s ≤ 1 − tx,

σ(bx)
(
s+ tx − 1

tx

)
if 1 − tx ≤ s ≤ 1.

Observe that it is well defined because tx > 0, for any x ∈ c − Int c′. Also,
in the first equation, for any tx when s = 0 we have (1 − tx)o + txbx = x;
when s = 1 − tx we have (tx + 1 − tx) bx = bx. In the second equation, when
s = 1 − tx we have σ(bx)((1 − tx + tx − 1)/tx) = σ(bx)(0) = bx; when s = 1 we
have σ(bx)((1 + tx − 1)/tx) = σ(bx)(1). Therefore σ′ has no other singularities
than those of σ (if it has any, they will be in the boundary of c), so σ′ has no
singularities in the boundary of c′. By Lemma 1.5 of [7] it can be extended to
Int c′ having only o as a singularity in Int c′.

By an abuse of notation we will denote this extension of σ′ to Int c′ also
by σ′. Therefore, we constructed an extension of σ, σ′: c→ TM , which has only
one singularity in Int c and in the boundary only the singularities that σ had.

If σ does have singularities in the boundary of the cell, we will eliminate the
singularity of σ′ in its interior:

Let y ∈ ∂c be a singularity of σ (therefore a singularity of σ′); let c1 ⊂ c2 ⊂ c

be two cells such that ∂c1 ∩∂c2 = {y}, ∂ci∩∂c = {y}, for i = 1, 2 and o ∈ Int c1
(and therefore o ∈ Int c2).

Let [bx, y] be the oriented segment through x, beginning at bx ∈ ∂c2, ending
at the singularity y ∈ ∂c. Therefore we could write any x ∈ c2 as x = (1 −
tx)bx + txy, where tx ∈ [0, 1]. Also, each of these segments would determine
a point ax ∈ ∂c1 such that ax = (1 − tx)bx + txy, with tx ∈ ]0, 1[.

The new path field σ will be defined in each one of the regions represented
below, as follows:
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(a) For x ∈ Int c1, we have 0 < tx < 1 and

σ(x)(s) =




(1 − tx − s)bx + (tx + s)y if 0 ≤ s ≤ 1 − tx,

σ′(y)
(
s+ tx − 1

tx

)
if 1 − tx ≤ s ≤ 1.

Observe that it is well defined because tx > 0, for any x ∈ Int c1. Also, in
the first equation, for any tx when s = 0 we have (1 − tx)bx + txy = x; when
s = 1 − tx we have (tx + 1 − tx) y = y. In the second equation, when s = 1 − tx

we have σ′(y)((1 − tx + tx − 1)/tx) = σ′(y)(0) = y.
(b) For x ∈ c2 − Int c1, we have 0 ≤ tx ≤ tx and

σ(x)(s) =




(1 − tx − s)bx + (tx + s)y if 0 ≤ s ≤ tx
tx

− tx,

σ′
((

1 − tx
tx

)
bx +

tx
tx
y

)(
s− (tx/tx − tx)
1 − (tx/tx − tx)

)
if
tx
tx

− tx ≤ s ≤ 1.

Observe that it is well defined because tx > 0, for any x ∈ c2. Also, in
the first equation, for any tx when s = 0 we have (1 − tx)bx + txy = x; when
s = tx/tx − tx we have(

1 − tx −
(
tx
tx

− tx

))
bx +

(
tx +

tx
tx

− tx

)
y =

(
1 − tx

tx

)
bx +

tx
tx
y.

In the second equation, when s = tx/tx − tx we have

σ′
((

1 − tx
tx

)
bx +

tx
tx
y

)
(0) =

(
1 − tx

tx

)
bx +

tx
tx
y.

(c) For x ∈ c− Int c2, σ(x) = σ′(x).
Notice that if x ∈ ∂c1 then tx = tx and if x ∈ ∂c2 then tx = 0 and therefore

σ is well-defined and continuous in ∂c1 and ∂c2, the boundaries of c1 and c2.
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A simple verification will show that σ has no singularities in Int c and the fact
that σ is a path field in A guarantees that σ is in fact a path field. �

Proposition 3.4. Let M be a locally smooth G-manifold, dimM = n, A ⊂
M an invariant submanifold so that G acts freely on M−A. Given an equivariant
section σA:A → TA, with a finite number of singular orbits, it is possible to
extend σA to an equivariant section σ:M → TM in such a way the closure of
each component of M −A intersects at most one singular orbit of σ.

Proof. Consider the following diagram:

(ϕ|L)∗(TL) ��

(ϕ|L)∗

������������

qL

��

ϕ∗(TM )
ϕ∗

����
���

��
��

qK

��

TA
i∗

��

qA

��

TM

qM

��

L ��

ϕ|L

��������������

σL

��

K
ϕ

��������
����

σK

��

A
i

��ψ|L

��

σA

��

M

ψ

		
σM

��

Here, K and L are as in Theorem 3.1 and qL: (ϕ|L)∗(TL) → L and qK :ϕ∗(TM ) →
K denote the pullbacks of qA and qM by ϕ, respectively.

Now, starting with σA, a G-section of qA:TA → A, we define a G-section
σL:L → (ϕ|L)∗(TA), by σL(y) = (y, σA(ϕ(y)). A similar procedure as the one
indicated in Lemma 1.6 in [7] can be used to extend σL to a G-section σK ,
having only a finite number of singular orbits in K − L. In order to extend σL

to an m-simplex δ of K −L, we use Lemma 3.3 and extend it to gδ in the usual
equivariant way. Define σ′

M :M → TM by σ′
M (x)ϕ(σK (ψ(x)). Then σ′

M is an
equivariant map, but it is not a section. In fact, it is a homotopy section since
qM (σM (x)) = ϕ◦ψ(x). Consider h:M × I →M , the G-homotopy between ϕ◦ψ
and the identity on M , and f :A× I ∪M × 0 → TM given by the G-homotopy
between σA and (σ′

M )|A on A × I and by σ′
M in M × 0. Since M admits an

invariant metric, we may apply Lemma 2.1 to obtain an equivariant lifting f ′ of h
extending f . Define σM :M → TM by σM (x) = f ′(x, 1). Then σM is a G-section
on M extending σA.

The first step is to change σM to reduce the singular set in M −A to a finite
one. In order to do this, consider first {Gx1, . . . , Gxr} the set of singular orbits
of σK in K − L. The set of singular orbits of σM , which are not in A, lies in
the pre-image of {Gx1, . . . , Gxr} under ψ. Since ψ is equivariant, this set is
{Gψ−1(x1), . . . , Gψ−1(xr)}. Since G acts freely in M − A, for each i, the sets
gψ−1(xi), g in G, are disjoint. Following the proof of Theorem 1.10 of [7], we can
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(x )1gψ
−1
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ψ )2

1d

2d

c gc

Figure 3

assume that for a connected component C of M −A, ψ−1(x1) ∩ C is contained
in the interior of c, a closed topological n-cell (see the Figure 3).

Now, consider in M an invariant metric and let d1 be the distance between
ψ−1(x1) and

⋃
i�=1Gψ

−1(xi). Let d2 be the distance between ψ−1(x1) and the
boundary of c and d3 the distance between ψ−1(x1) and (Gψ−1(x1) − ψ−1(x1))
∩C. Finally, take d to be the minimum of {d1, d2, d3}. If we consider a finite
triangulation of c with mesh size less than d/3, then no closed simplex of c
intersecting ψ−1(x1) intersects a simplex which touches[⋃

i

(Gψ−1(xi) − ψ−1(x1))
⋃
∂c

]
∩ C = RC .

Let PC be the subpolyhedron of c consisting of simplices which do not intersect
RC and letQC be the subpolyhedron of PC consisting of those simplices which do
not intersect ψ−1(x1). Then σM |QC has no singularities and again, by the same
procedure used in Lemma 1.6 in [7], we may extend it to PC with a finite number
of singularities, say, {y1, . . . , ym}. Since the metric on M is invariant, we may
triangulate gic in the same way we triangulate c so that the complexes giPC
and giQC will be the complexes corresponding to PC and QC for giψ−1(x1)
in giQC . By doing so, the singularities of the extension of σM |giQC will be
{giy1, . . . , giym}. Finally, we extend this section to M by making it agree with
σM outside GCPC , where GC = {g ∈ G | gC = C}. Repeating this procedure for
i > 1, we end up with an equivariant section extending σA with a finite number
of singular orbits, {Gy1, . . . , Gym}, lying in the closure of various components
of M −A.
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e1

y2

1gy
1ge

gy
2

1y

e

Figure 4

The next step is to reduce the set of singularities in such a way the closure
of each component of M −A meet at most one singular orbit. For this, let C be
a component of M −A and GCy1, . . . , GCyr be all singularities in C. Consider
e a closed n-cell in C containing this entire set of singularities in its interior. Let
e1 be another closed n-cell contained in the interior of e such that y1, . . . , yr are
in e1 and gle1 ∩ gje1 = ∅, for gl and gj in GC , l 
= j, as in the Figure 4.

Applying once more Lemma 3.3 for the n-cell e1 we may reduce the set
{y1, . . . , ym} to a single singularity, say z. Doing the same for the cells gje1, we
end up with a cross section τ :M → TM with only GCz as singularities in C.
Repeating this procedure for all other components we are able to extend the
path field to M in such a way that the closure of each component C of M − A

meet at most two singular orbits, one lying in the interior of C and the other in
its boundary.

��

�
�
�
�

��
��
��
��

����

z

w

c

gz

gw

Figure 5

Now, for a component C of M −A let GCz ∪GCw be its set of singularities,
where z ∈ C and w ∈ (C) − C. Then, it is possible to find |GC | cells touching
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(C) − C only in gw, g ∈ GC and so that each of them contains only one pair of
points of the form gz, gw, g ∈ GC , as in the Figure 5.

Then applying Lemma 3.3 we see that we may change σ in the interior of
the cell containing z and w so that the only singularity left is w. Then repeating
the procedure to the other cells, equivariantly, we complete the proof. �

Proposition 3.5. Let M be a G-manifold, A ⊂Mn an invariant submani-
fold so that G acts freely on M−A. Assume that A admits a G-path field without
singularities. Then M admits a G-path field with no singular orbits if and only
if |χ|(M −A) = 0.

Proof. Assume first |χ|(M −A) = 0 and let σ be a G-path field on M with
a single singular orbit, say Gx, x in a component C of M −A. Take f :M →M ,
f(x) = σ(x)(1). Then f has only one fixed orbit in C, namely GCx. Since G
is finite and χ(C) = 0 we have that the sum of the fixed point indices of f at
gx, g in GC , must vanish. Since the action of G on M is locally smooth and
the fixed points are isolated and lie in the same orbit, it is not hard to see that
they have all the same index, and therefore index zero. Because the action is
free in M −A, we can find an Euclidean neighbourhood, U , of x in C such that
gU ∩ hU = ∅, for all g and h in GC . Applying exactly the same procedure as
in the proof of Theorem 2.3 of [7], we conclude that it is possible to construct
a path field σ′ over M so that it agrees with σ in M −U and has no singularities
in U . Define τ :M → TM to agree with σ in M − ⋃

g∈GC
gU and, for y ∈ gU ,

τ(y) = gσ′(g−1y). It is not difficult to see that τ is a G-path field overM without
singular orbits in C. The proof is complete if we repeat the same procedure for
all other components of M −A.

Now, suppose σA has no singularities and can be extended to M . Let
{C1, . . . , Cr} and {A1, . . . , Al} be the connected components of M −A and A,
respectively. Since, σ|Aj :Aj → Aj has no singularities, we have that χ(Aj) = 0,
for all j. Consider Di the union of the components of A that meet the clo-
sure of Ci. Set C̃i = Di ∪ Ci and let Ui be a tubular neighbourhood of Di in
C̃i. Then χ(Di) = 0 and χ(Ui − Di) = 0, since Ui − Di fibers over Di. Now,
χ(Ci) = χ(C̃i) − χ(Ui) + χ(Ui ∩ Ci) = χ(C̃i) − χ(Di) + χ(Ui −Di) = χ(C̃i).

Using the compactness of C̃i and the fact that σ(x) starts at x, it is possible
to find ti ∈ [0, 1] so that σ(x)([0, ti]) ⊂ C̃i, for all x in C̃i. Therefore the map
fi: C̃i → C̃i given by fi(x) = σ(x)(ti) is fixed point free, and this implies that
χ(C̃i) = 0. So we conclude that χ(Ci) = 0. This completes the proof. �

Proposition 3.6. Suppose G acts on a manifold M with only one orbit type
(H). Then it is possible to construct a G-path field on M with a single singular
orbit. Moreover, M admits a G-path field with no singular orbits if and only if
|χ|(MH) = 0.



12 L. Borsari — F. Cardona — P. Wong

Proof. Since NH/H acts freely on MH then, by Proposition 3.4, it is
possible to construct a NH/H-path field σ′:MH →MH with only one NH/H-
singular orbit. Since G acts on M with only one orbit type (H), we have that M
is G-homeomorphic to G×NH MH , where NH is the normalizer of H (see [5]).
Define σ:M → TM by, σ[g, x] = gσ′(x). It is not hard to see that σ is an
equivariant section with a single singular orbit.

Now, assume |χ|(MH) = 0. Then |χ|(MH) = 0 and the section σ′ can
be taken without singularities and so does σ. Finally, if M admits a G-path
field with no singular orbits, then f :M → M given by f(x) = σ(x)(1), has no
fixed orbits. Therefore fH :MH → MH has no fixed points, which implies that
|χ|(MH) = 0 and the proof is done. �

Theorem 3.7. Let G be a finite group and M a compact locally smooth G-
space. Then there exists a G-path field on M having at most one singular orbit
in the closure of each component of MH . Moreover, M admits a non singular
G-path field if and only if |χ|(MH) = 0, for all H ≤ G.

Proof. Consider (H1), . . . , (Hr) the orbit types of the G-action on M or-
dered in a way that (Hi) ⊂ (Hj) implies j ≤ i. For each i ∈ {1, . . . , r}, let
Mi = {x ∈ M | (Gx) = (Hj), j ≤ i}. Then M1 ⊂ . . . ⊂ Mr, M1 = M(H1),
Mr = M and Mi −Mi−1 = M(Hi). Here, M(Hj) = {x ∈M |(Gx) = (Hj)}.

To prove the first part we will use induction on r. If r = 1, then M1 has
only one orbit type, namely, (H1). Therefore, Proposition 3.6 implies that M1

admits a G-path field σ1 with only one singular orbit.

Suppose we have succeeded extending σ1 to a G-path field, σi−1, on Mi−1 so
that the closure of each component of Mi−1 −Mi−2 = MHi−1 intersects at most
one singular orbit. Take N = MHi − (Mi−1 ∩MHi) = MHi . Since NHi/Hi acts
freely on N , Proposition 3.6 implies that we are able to extend σi−1|Mi−1∩MHi

to an NHi/Hi-path field, σi:MHi → TMHi , without NHi/Hi-singular orbits.

Define σ̃i:M (Hi) → TM(Hi) by σ̃i(x) = lσi(l−1x), where l ∈ G is such that
Gx ⊃ lHil

−1. Then, σ̃i is a well defined G-path field extending σi−1|Mi−1∩MHi .

Now let σi:Mi → TMi coincide with σ̃i, on M (Hi) and with σi−1 in Mi−1. It
is not difficult to see that σi is a G-path field extending σi−1 with the desired
property.

For the second part, assume |χ|(MH) = 0, for all H ≤ G. The G-path
field σ constructed above can be taken without singular orbits by making use of
Proposition 3.5, inductively on {(H)}.

Finally, ifM admits a non-singularG-path field σ then looking atMi−1∩MHi

as an NHi-submanifold of MHi we may repeat the proof of Proposition 3.5, to
obtain that |χ|(MHi) = 0. The proof is complete. �
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4. G-Complete Invariance Property

In this section, we study related problems concerning the fixed point theory
for G-deformations. Recall that a G-space X is said to have the G-CIP for
G-deformations (G-CIPD), if for any nonempty closed invariant subset A ⊆ X ,
there exists a G-deformation λ ∼G 1X such that Fixλ = A. In [27], necessary
and sufficient conditions were given for smooth G-manifolds to possess the G-
CIPD. As an application of Theorem 3.7, we obtain the following

Theorem 4.1. Let G be a finite group and M a compact locally smooth G-
manifold. Suppose for each isotropy type (H), MH has dimension at least 2.
Let A ⊂ M be a non-empty closed invariant subset. Then the following are
equivalent:

(a) There exists a G-deformation ϕ:M →M such that A = Fixϕ.
(b) A ∩ C 
= ∅ whenever χ(C) 
= 0 for any connected component C of MH

and C denotes the closure of C in MH.

Proof. Suppose that there exists a G-deformation ϕ:M → M such that
Fixϕ = A. Let C be a connected component of MH such that χ(C) 
= 0. By
excision, we have

H∗(MH ,MH − C) = H∗(MH ,MH − C)

so that
χ(MH ,MH − C) = χ(MH ,MH − C) = χ(C) 
= 0.

Using the relative Lefschetz fixed point theorem and Proposition 2.1 of [25], we
conclude that ϕ must have a fixed point in the closure C of C in MH . Since
Fixϕ = A, it follows that A ∩ C 
= ∅.

Conversely, if χ(C) 
= 0 then by Theorem 3.7 there exists a G-path field σ

such that σ has one singular orbit in GC. If A∩C 
= ∅, this singular orbit lies in
A∩GC. If A∩C = ∅, then the singular orbit must lie in M>(H) sinceMH is open
and dense in MH and MH = MH ∪ (MH ∩M>(H)), where M>(H) denotes the
set of points of M of isotropy type (K) > (H). Now, let ϕ(x) = σ(x)(tx) where
tx = d(x,A) and d is a bounded G-invariant metric. Then, we have Fixϕ = A

and ϕ ∼ 1M . �
Remark 4.2. In the case where M is a smooth G-manifold and MH/WH is

connected for each (H), the necessary and sufficient conditions obtained in [27]
can be derived from those of Theorem 4.1. Our formulation resembles closely to
case (B) of Theorem 1 of [16] except that Jiang considered connected components
C of MH instead. According to case (B) of [16, Theorem 1], there is a fixed point
free G-deformation if MH is connected and χ(MH) = 0 for all (H). However,
counter-examples have been found by D. Ferrario [11]. Therefore, Theorem 4.1
gives the correct necessary and sufficient conditions.
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Remark 4.3. The first example of a G-spaceX in which each of the identity
maps 1XH :XH → XH is deformable to be fixed point free but 1X is not G-
deformable to be fixed point free was given by M. Izydorek and A. Vidal [15].
We would like to point out that one can easily modify their example (by taking
the cartesion product with the unit interval) to give an example of a G-Wecken
complex in the sense of [26] such that the equivariant Euler characteristic used
in [26] is nonzero, that is, the identity is not equivariantly deformable to be fixed
point free. The case for smooth G-manifolds was studied by D. Ferrario in [11]
for more general G-maps.
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