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COMBINATORIAL LEMMAS FOR ORIENTED COMPLEXES

Adam Idzik — Konstanty Junosza-Szaniawski

80 years of the Sperner lemma

Abstract. A solid combinatorial theory is presented. The generalized
Sperner lemma for chains is derived from the combinatorial Stokes for-

mula. Many other generalizations follow from applications of an n-index of

a labelling defined on chains with values in primoids. Primoids appear as
the most general structure for which Sperner type theorems can be formu-

lated. Their properties and various examples are given. New combinatorial

theorems for primoids are proved. Applying them to different primoids
the well-known classic results of Sperner, Fan, Shapley, Lee and Shih are

obtained.

1. Introduction

In 1928 Emanuel Sperner [29] published a very simple and useful combina-
torial lemma. This lemma establishes the existence of a simplex in triangulation
of the n-dimensional simplex with vertices labelled by numbers from 0 to n,
if some boundary conditions are satisfied. The Sperner theorem on a covering
of the simplex directly follows from this lemma. Through almost eighty years
this combinatorial lemma found lots of applications in various fields of mathema-
tics, among others in nonlinear analysis, combinatorics, mathematical economics,
game theory and topology. Many of its generalizations also appeared.
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One of the well-known applications of the Sperner lemma and a generaliza-
tion of the Sperner covering theorem is the Knaster, Kuratowski and Mazur-
kiewicz [17] covering lemma published in 1929. It gives a simple proof of the
Brouwer fixed point theorem.

Another version of the Sperner lemma is based on an orientation of a simplex.
If the assumptions of the classic Sperner lemma are satisfied, then there exists
not only a completely labelled simplex, but the difference between a number of
positively oriented and negatively oriented completely labelled simplexes equals
to one.

Most of generalizations went in two directions: one is due to a set of labels
and the other is due to a labelled set.

Shapley [26] labelled vertices of triangulation of the simplex by subsets
of the set of vertices of the simplex. His theorem was generalized by Ichi-
ishi and Idzik [10]–[12] for labelling by vectors. Lovász [23] labelled vertices
of triangulation of the simplex by elements of the matroid. Idzik [13] proved
a theorem on covering of the simplex, which follows from the Lovász theorem.
Tucker [35] labelled vertices of triangulation of the n-dimensional cube by num-
bers: −n, . . . ,−1, 1, . . . , n. His lemma allowed to present a simple proof of the
Borsuk–Ulam theorem [4]. In a similar way Kulpa, Turzański i Socha [19], [20]
used numbers: −n, . . . ,−1, 1, . . . , n, to label vertices of triangulation of the n-
cube, but with different boundary conditions. A parametric generalization of
the Poincaré theorem follows from their result. Ky Fan [5]–[7] used the same
labels to label pseudomanifolds and van der Laan, Talman and Yang [21] labelled
vertices of triangulation of polyhedrons by vectors. Todd [32], [33] and Bapat [1]
used primoids to label n-pseudomanifolds.

Further generalizations involved not only pseudomanifolds, but also chains
(Lindström [22]). At the conference organized to celebrate fifty years of publi-
cation of the classic Sperner lemma in Amsterdam, Sperner [30], [31] presented
a generalized Sperner lemma for chains. All these previous theorems on labellings
follow from this lemma.

Another step in development of this theory was made by Bapat [2]. He
introduced a multilabelling by numbers. Lee and Shih [27] also studied a multi-
labelling. They used vectors for labels.

Many generalizations of the Sperner lemma follow from an index theory of
a labelling of chains with values in primoids. New combinatorial theorems, which
generalize the well-known results of Bapat [1], [2], Ichiishi and Idzik [10]–[12],
Lee and Shih [27], [28], Linström [22], Lovász [23], Shapley [26], Todd [32], [33]
are presented in this paper.
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Related problems are considered in the paper of Björner [3]. Some proofs
of related theorems known in the literature are presented for convenience of the
reader.

2. Preliminaries

By N, Z, R we denote the set of natural numbers, integer numbers and reals
respectively and by Z2 we denote the ring ({0, 1},+mod 2, · ). For n ∈ N, let
In = {0, . . . , n}. Let V be a finite set. P(V ) is the family of all subsets of V
and Pn(V ) is the family of all subsets of V of the cardinality n+1 (n ∈ N). An
element of Pn(V ) is called an n-simplex on the set V and a nonempty family
Cn ⊂ Pn(V ) of n-simplexes on V is called an n-complex on the set V . For a
set A, we write (A)n+1 to denote the Cartesian product

∏
i∈In Ai, where Ai = A

for i ∈ In (for (R)n, we write Rn).
Let R be a commutative ring with the unity, τ be a permutation of the

set In and sgn τ = 1 (sgn τ = −1) if the permutation τ is even (odd) (1 is
the unity in R). For an n-simplex Sn = {v0, . . . , vn} ∈ Pn(V ), let loSn =
{(ν(0), . . . , ν(n)) : ν: In → Sn is a one-to-one function} denote the set of all
linear orders of the set Sn and for an n-complex Cn ⊂ Pn(V ) let loCn =⋃
Sn∈Cn loS

n. An orientation of an n-simplex Sn = {v0, . . . , vn} ∈ Pn(V ) is
a function orSn : (Sn)n+1 → {−1, 0, 1} fulfilling the condition orSn(w0, . . . , wn) =
sgn τ ·orSn(wτ(0), . . . , wτ(n)) for a permutation τ (wi ∈ Sn for i ∈ In, {−1, 0, 1} ⊂
R). In fact there are only two such functions except the zero function if the ring R
has at least three elements. If the ring R = Z2, then there is exactly one nonzero
orientation. Notice that orSn(v0, . . . , vn) = 0 if vi = vj for some i 6= j, i, j ∈ In.
An orientation of an n-complex Cn is a function orCn : (V )n+1 → {−1, 0, 1} such
that orCn |(Sn)n+1 is an orientation of each Sn ∈ Cn and orCn(v0, . . . , vn) = 0
for {v0, . . . , vn} /∈ Cn. We call a pair (Sn, orSn), (Cn, orCn) an oriented n-
simplex, an oriented n-complex, respectively.
There are many ways to define an orientation of an n-complex Cn. One of

them is to choose a linear order S
n ∈ loSn for every Sn ∈ Cn. Let Cn = {Sn :

Sn ∈ Cn}. A function defined by

orCn(w0, . . . , wn) =


sgn τ if there exists S

n ∈ Cn and a permutation τ
of In such that (wτ(0), . . . , wτ(n)) = S

n
,

0 if {w0, . . . , wn} /∈ Cn,

is well-defined and it is an orientation of the n-complex Cn. We say that the set
Cn defines the orientation orCn and it is a representation of the orientation orCn .
And we say that Cn is oriented by Cn instead of orCn . For an orientation orCn
of an n-complex Cn we may choose a representation Cn such that orCn = orCn .
The choice of the representation is not necessarily unique.
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From now on, for Sn ∈ Cn we denote the unique element in Cn∩loSn by Sn.
Let Sn ∈ Pn(V ), v ∈ Sn and Sn−1 = Sn \ {v}. The (n − 1)-simplex

Sn−1 is called a facet of the n-simplex Sn opposite to the vertex v. A function
orSn,v: (Sn−1)n → {−1, 0, 1} defined by

orSn,v(w1, . . . , wn) = orSn(v, w1, . . . , wn)

for (w1, . . . , wn) ∈ (Sn−1)n is an induced orientation of the (n−1)-simplex Sn−1

by an orientation orSn . If the orientation orSn is defined by S
n
, then we write

orSn,v instead of orSn,v.
An n-complex Cn on V is called an n-pseudomanifold if any (n− 1)-simplex

on V is contained in at most two n-simplexes of Cn. An n-pseudo-manifold can
be also defined as n-complex on the set V fulfilling the condition: for every n-
simplex Sn ∈ Cn and for every v ∈ Sn there exists at most one v′ ∈ V \Sn such
that an n-simplex Sn \ {v} ∪ {v′} ∈ Cn. An n-pseudomanifold Cn is coherently
oriented by an orientation orCn if for (v, v1, . . . , vn), (v′, v1, . . . , vn) ∈ loCn,
(v 6= v′) we have

orCn(v, v1, . . . , vn) = −orCn(v′, v1, . . . , vn).

Notice that the condition above is equivalent to the condition: for i ∈ In and for
(v0, . . . , vi−1, v, vi+1, . . . , vn), (v0, . . . , vi−1, v′, vi+1, . . . , un) ∈ loCn (v 6= v′) we
have

orCn(v0, . . . , vi−1, v, vi+1, . . . , vn) = −orCn(v0, . . . , vi−1, v′, vi+1, . . . , vn).

In other words, for any two n-simplexes of Cn with a common facet, orCn
induce the opposite orientation on their common facet. Observe that an n-
pseudomanifold may be not coherently orientable if the ring R has at least three
elements. In the case R = Z2 every n-pseudomanifold is coherently orientable
since 1 = −1 in Z2.

Example 2.1 (discrete Möbius strip). The family

{{1, 2, 4}, {1, 3, 4}, {3, 4, 6}, {3, 5, 6}, {1, 5, 6}, {1, 2, 5}}

is 2-pseudomanifold and there is no coherent orientation of it if the ring R has
at least three elements.

For a set A ⊂ Rn, coA = {α0a0 + . . .+ αmam : ai ∈ A,
∑m
i=0 αi = 1, αi ≥

0 for i ∈ Im, m ∈ N} is the convex hull of A, affA = {α0a0 + . . . + αmam :∑m
i=0 αi = 1, ai ∈ A, αi ∈ R for i ∈ Im, m ∈ N} is the affine hull of A,
cone(A, b) = {α0(a0− b)+ . . .+αm(am− b) : ai ∈ A, αi ≥ 0 for i ∈ Im, m ∈ N}
is the cone pointed at b ∈ Rn and span by the set A, riA is the relative interior
of A, bdA is the boundary of A and clA is the closure of A. Observe that affA
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is a linear subspace of Rn. A finite set A = {a0, . . . , am} ⊂ Rn is an affinely
independent set if the dimension of affA is m (m ≤ n).

3. Chains

Let (R,+, · , 1) be a commutative ring with the unity, V be a finite set
and Pn(V ), Pn−1(V ) be oriented by representations Vn, Vn−1, respectively.
A function `n: (V )n+1 → R fulfilling the condition `n(v0, . . . , vn) = sgn τ ·
`n(vτ(0), . . . , vτ(n)) for all (v0, . . . , vn) ∈ (V )n+1 and for all permutations τ of
the set In is called an n-chain on the set V . All n-chains considered in this paper
have values in the ring R. The n-chain on V is a generalization of the orientation
of Pn(V ).
We define operations of the sum and the multiplication by an element of

the ring R for n-chains in the following way: for n-chains `n1 , `
n
2 , α ∈ R and

(v0, . . . , vn) ∈ (V )n+1

(`n1 ⊕ `n2 )(v0, . . . , vn) = `n1 (v0, . . . , vn) + `n2 (v0, . . . , vn),
(α� `n1 )(v0, . . . , vn) = α · `n1 (v0, . . . , vn).

Any n-chain on V can be formally written in the form

`n =
⊕
S
n∈Vn

αSn � χSn ,

whereVn is the representation of an orientation of Pn(V ), αSn ∈ R, for S
n ∈ Vn

and χSn : (V )
n+1 → {−1, 0, 1} ({−1, 0, 1} ⊂ R) is an n-chain defined by

χSn(v0, . . . , vn) =


sgn τ if there exists a permutation τ of the set In,

such that (vτ(0), . . . , vτ(n)) = S
n
,

0 in other cases.

The set of all n-chains on V is denoted by Ln(V ).
It is easy to prove that (Ln(V ),⊕,�, R) is a module over the ring R.
Notice that a function 1Vn :=

⊕
S
n∈Vn 1� χSn is the orientation orVn and

more generally a function 1Cn :=
⊕
S
n∈Cn 1 � χSn is the orientation orCn for

any representation Cn (Cn ⊂ Pn(V ), 1 ∈ R).

Definition 3.1. An n-index of n-chains `n =
⊕
S
n∈Vn αS

n � χSn , `n2 =⊕
S
n∈Vn βS

n � χSn on the set V is an element of the ring R and it is equal to

`n •n `n2 =
∑
S
n∈Vn

αSn · βSn ,

where Vn is a representation of an orientation of Pn(V ).

The n-index is a generalization of the Kronecker index (see [9, p. 301]).
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For
−→
S n ∈ (V )n+1 and −→S n−1 ∈ (V )n an incidence number [−→S n:−→S n−1] is an

element of R defined by

[
−→
S n :

−→
S n−1] =


sgn τ if

−→
Sn = (v0, . . . , vn) ∈ loPn(V ) and there exists
a permutation τ of the set In such that
−→
S n−1 = (vτ(1), . . . , vτ(n));

0 in other cases.

Proposition 3.2. If Sn ∈ Pn(V ), v ∈ Sn, Sn−1 = Sn \ {v},
−→
Sn ∈ loSn

and
−→
S n−1 ∈ loSn−1, then the incidence number [−→S n:−→S n−1] defines whether

the orientation given by
−→
S n−1 is the same or opposite to the induced ori-

entation or−→
S n,v
. Notice, that if orientations of Sn and Sn−1 are given by

S
n ∈ Vn and S

n−1
= (w1, . . . , wn) ∈ Vn−1, respectively, then [S

n
: S
n−1
] =

orVn(v, w1, . . . , wn).

A boundary operator ∂n:Ln(V ) → Ln−1(V ) is defined in the following way:
for S

n ∈ Vn we define ∂nχSn =
⊕
S
n−1∈Vn−1

[S
n
: S
n−1
] � χ

S
n−1 and for an

n-chain `n ∈ Ln(V ) we define

∂n`
n = ∂n

( ⊕
S
n∈Vn

αSn � χSn
)
=
⊕
S
n∈Vn

αSn � ∂nχSn .

Observe that the boundary operator ∂n is linear and that it does not depend
on the representation Vn−1 nor the representation Vn.
A coboundary operator δVn−1:Ln−1(V ) → Ln(V ) is defined in the following

way:

δVn−1χSn−1 =
⊕
S
n∈Vn

[S
n
: S
n−1
]� χSn ,

δVn−1`
n−1 = δVn−1

( ⊕
S
n−1∈Vn−1

α
S
n−1 � χ

S
n−1

)
=

⊕
S
n−1∈Vn−1

α
S
n−1 � δVn−1χSn−1 .

Observe that the coboundary operator δn is linear and that it does not depend
on the orientation orVn nor representation of the orientation orVn−1 . We write
δn−1 instead of δVn−1 for brevity.
Now, the combinatorial Stokes theorem can be formulated as

Theorem 3.3 (see J. G. Hocking, G. S. Young [9, p. 301]). For an n-chain
`n and an (n − 1)-chain `n−12 having values in the same ring R, the following
equality is true

(∂n`n) •n−1 `n−12 = `n •n (δn−1`n−12 ).

Proof. Let V be a finite set and Pn(V ) and Pn−1(V ) be complexes oriented
by Vn and Vn−1, respectively. Because of the linearity of the boundary operator
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∂n it is sufficient to prove the theorem for the n-chain of the form `n = χSn0 ,

where S
n

0 ∈ Vn is fixed. For `n−12 =
⊕
S
n−1∈Vn−1

β
S
n−1 � χ

S
n−1 the left-hand

side of the equality is

(∂nχSn0 ) •n−1
( ⊕
S
n−1∈Vn−1

β
S
n−1 � χ

S
n−1

)

=
( ⊕
S
n−1∈Vn−1

[S
n

0 : S
n−1
]� χ

S
n−1

)
•n−1

( ⊕
S
n−1∈Vn−1

β
S
n−1 � χ

S
n−1

)
=

∑
S
n−1∈Vn−1

[S
n

0 : S
n−1
] · β
S
n−1 .

And the right-hand side of the equality is

χSn0
•n
(
δn−1

⊕
S
n−1∈Vn−1

β
S
n−1 � χ

S
n−1

)

=χSn0 •n
( ⊕
S
n−1∈Vn−1

β
S
n−1 � δn−1χSn−1

)

=χSn0 •n
( ⊕
S
n−1∈Vn−1

β
S
n−1 �

( ⊕
S
n∈Vn

[S
n
: S
n−1
]� χSn

))

=χSn0 •n
( ⊕
S
n∈Vn

⊕
S
n−1∈Vn−1

β
S
n−1 � ([Sn : Sn−1]� χSn)

)
=

∑
S
n−1∈Vn−1

β
S
n−1 · [Sn0 : S

n−1
]. �

Let U be a finite set, Pn(U) be oriented by a representation Un and l:V →
U be a function. The function l is called a labelling. For each n ∈ N, let
−→
ln: (V )n+1 → (U)n+1 be a function defined by

−→
ln(v0, . . . , vn) = (l(v0), . . . , l(vn)).

Proposition 3.4. For the finite sets V and U , let Sn ∈ Pn(V ), S
n ∈ Vn,

Sn−1 ∈ Pn−1(V ), S
n−1 ∈ Vn−1, Tn ∈ Pn(U). If Sn−1 ⊂ Sn and a labelling

l:Sn → Tn is one-to-one, then

[S
n
: S
n−1
] = [
−→
ln(S

n
) :
−→
ln−1(S

n−1
)].

Definition 3.5. Let }n =
⊕
T
n∈Un βT

n � χTn be an n-chain on U , where
Un is some representation of an orientation of Pn(U). We define an operator
l̃n:Ln(U)→ Ln(V ) by

l̃n(}n) =
⊕
S
n∈Vn

}n(
−→
ln(S

n
))� χSn .
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Observe that the operator l̃n does not depend on the representations Vn and
Un. The operator l̃n is linear, i.e. for n-chains }n1 , }n2 on U and α ∈ R we have:

l̃n(}n1 ⊕ }n2 ) = l̃n(}n1 )⊕ l̃n(}n2 ) and l̃n(α� }n1 ) = α� l̃n(}n1 ).

Lemma 3.6. Let l:V → U be a labelling and }n−1 be an (n−1)-chain on U .
Then

l̃n(δUn−1}n−1) = δVn−1 l̃n−1(}n−1).

Proof. For finite sets V and U , let Pn(V ), Pn−1(V ), Pn(U), Pn−1(U) be
oriented by representations Vn, Vn−1, Un, Un−1, respectively. Because of the
linearity of operators l̃n, l̃n−1, δVn−1 and δ

U
n−1 it is enough to prove our theorem

for the case }n−1 = χ
T
n−1
0
, where T

n−1
0 ∈ Un−1 only.

l̃n(δUn−1χTn−10
) = l̃n

( ⊕
T
n∈Un

[T
n
: T
n−1
0 ]� χTn

)

=
⊕
S
n∈Vn

(( ⊕
T
n∈Un

[T
n
: T
n−1
0 ]� χTn

)
(
−→
ln(S

n
))
)
� χSn

=
⊕
S
n∈Vn

( ⊕
T
n∈Un

[T
n
: T
n−1
0 ] · χTn(

−→
ln(S

n
))
)
� χSn

=
⊕
S
n∈Vn

[
−→
ln(S

n
) : T

n−1
0 ]� χSn .

And for the right-hand side of the equality we have

δVn−1 l̃n−1(χTn−10
) = δVn−1

( ⊕
S
n−1∈Vn−1

χ
T
n−1
0
(
−→
ln−1(S

n−1
))� χ

S
n−1

)
=

⊕
S
n−1∈Vn−1

χ
T
n−1
0
(
−→
ln−1(S

n−1
))� δVn−1χSn−1

=
⊕

S
n−1∈Vn−1

χ
T
n−1
0
(
−→
ln−1(S

n−1
))�
( ⊕
S
n∈Vn

[S
n
: S
n−1
]� χSn

)
=
⊕
S
n∈Vn

⊕
S
n−1∈Vn−1

χ
T
n−1
0
(
−→
ln−1(S

n−1
))� ([Sn : Sn−1]� χSn)

=
⊕
S
n∈Vn

( ∑
S
n−1∈Vn−1

χ
T
n−1
0
(
−→
ln−1(S

n−1
)
)
· [Sn : Sn−1])� χSn .

Now we show that:

(3.1) [
−→
ln(S

n
) : T

n−1
0 ] =

∑
S
n−1∈Vn−1

χ
T
n−1
0
(
−→
ln−1(S

n−1
)) · [Sn : Sn−1].

There are three cases:
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Case 1. If Tn−10 6⊂ l(Sn), then [−→ln(S
n
) : T

n−1
0 ] = 0. And if∑

S
n−1∈Vn−1

χ
T
n−1
0
(
−→
ln−1(S

n−1
)) · [Sn : Sn−1] 6= 0,

then there exists Sn−11 ⊂ Sn such that Tn−10 = l(Sn−11 ), but l(Sn−11 ) ⊂ l(Sn)
and Tn−10 would be contained in l(Sn).

Case 2. If Tn−10 = l(Sn), then the left-hand side of (3.1) is equal to zero.
There exists v0, v1 ∈ Sn such that l(v0) = l(v1) and thus for Sn−10 = Sn \ {v0}
and Sn−11 = Sn \ {v1} the right-hand side of (3.1) is

χ
T
n−1
0
(
−→
ln−1(S

n−1
0 )) · [S

n
: S
n−1
0 ] + χTn−10

(
−→
ln−1(S

n−1
1 )) · [S

n
: S
n−1
1 ].

Let S
n−1
0 = (v1, . . . , vn). Therefore, by Proposition 3.2

[S
n
: S
n−1
0 ] = orVn(v0, v1, . . . , vn)

= −orVn(v1, v0, v2, . . . , vn) = −ε · [S
n
: S
n−1
1 ],

where ε = 1 (−1) if Sn−11 is even (odd) permutation of (v0, v2, . . . , vn) and
l(S
n−1
1 ) = ε · l(S

n−1
0 ). Thus the right-hand-side of (3.1) is

ε · χ
T
n−1
0
(
−→
ln−1(S

n−1
1 )) · (−ε · [S

n
: S
n−1
1 ])

+ χ
T
n−1
0
(
−→
ln−1(S

n−1
1 )) · [S

n
: S
n−1
1 ] = 0.

Case 3. If Tn−10 ⊂ l(Sn) and Tn−10 6= l(Sn), then there exists v0 ∈ Sn

such that Sn−10 = Sn \ {v0} and l(Sn−10 ) = Tn−10 . By Proposition 3.4 on the
right-hand side of (3.1), we have

χ
T
n−1
0
(
−→
ln−1(S

n−1
0 )) · [S

n
: S
n−1
0 ]

= χ
T
n−1
0
(
−→
ln−1(S

n−1
0 ))·[

−→
ln(S

n
) :
−→
ln−1(S

n−1
0 )] = [

−→
ln(S

n
) : T

n−1
0 ]. �

Let Cn ⊂ Pn(V ) be an n-complex oriented by a representation Cn ⊂ Vn.
For an n-chain `n: (V )n+1 → R on V if `(−→S n) = 0 for all −→S n /∈ loCn, then we
say that the n-chain `n is defined on the n-complex Cn. Let Kn ⊂ Pn(U) be an
n-complex oriented by a representation K

n ⊂ Un.

Definition 3.7. Let `n be an n-chain on V and }n be an n-chain on U . An
n-index of a function l:V → U for an n-chain `n and an n-chain }n is defined
by

indnln(`n, }n) = `n •n l̃n(}n),

where l̃n:Ln(V )→ Ln(V ) is defined by Definition 3.5.
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Definition 3.8. An n-index of a function l:V → U for oriented n-comp-
lexes Cn and K

n
is considered as the index of the function l for the chains 1Cn

and 1Kn , and it is equal to

indnl(1Cn , 1Kn) = 1Cn •n l̃n(1Kn).

The combinatorial Stokes theorem (Theorem 3.3) and the n-index of the
function l are closely related to the generalized Sperner lemma, which was in-
troduced by Sperner at the conference in Hamburg 1980. This conference was
organized on the occasion of fifty years of the classic Sperner lemma.

Theorem 3.9 (Sperner, [31]). For finite sets V and U , let Pn(V ), Pn−1(V ),
Pn(U), Pn−1(U) be oriented by representations Vn, Vn−1, Un, Un−1, respec-
tively. Let l:V → U be a labelling. Let `n be an n-chain on V and }n−1 be an
(n− 1)-chain on U . Then

indn−1l(∂n`n, }n−1) = indnl(`n, δUn−1}n−1).

Proof. The theorem directly follows from Theorem 3.3 and Lemma 3.6. �

In the case the function l is the identity function the generalized Sperner
lemma reduces to the combinatorial Stokes theorem. Tompkins [34] defined the
index of a labelling function in case Kn−1={{v1, . . . , vn}}, Kn={{v0, . . . , vn}}
and Cn is an n-pseudomanifold, only. For this case Theorem 3.9 says that
indnl(`n, 1Kn) = indn−1l(∂n`

n, 1Kn−1), for some representations K
n
and K

n−1

of orientations of Kn and Kn−1, respectively.

4. Primoids

Let U be a finite set. An n-primoid LUn on U is a nonempty n-complex on
U fulfilling the following condition: for every n-simplex Tn ∈ LUn and for every
u ∈ U there exists exactly one u′ ∈ Tn such that an n-simplex Tn \ {u′}∪ {u} ∈
LUn . An n-simplex belonging to L

U
n is called a complete n-simplex. For brevity

we write Ln instead of LUn .
An n-primoid Ln can be also defined as the family of n-simplexes on U such

that every (n+1)-simplex on U contains either none or two n-simplexes belonging
to the n-primoid Ln.
An n-primoid Ln is properly oriented by an orientation orLn : (U)

n+1 →
{−1, 0, 1} if for (u, u1, . . . , un), (u′, u1, . . . , un) ∈ loLn we have

orLn(u, u1, . . . , un) = orLn(u
′, u1, . . . , un).

Notice that the above condition is equivalent to the condition: for i ∈ In and for
(u0, . . . , ui−1, u, ui+1, . . . , un), (u0, . . . , ui−1, u′, ui+1, . . . , un) ∈ loLn we have

orLn(u0, . . . , ui−1, u, ui+1, . . . , un) = orLn(u0, . . . , ui−1, u
′, ui+1, . . . un).
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In other words any two n-simplexes of Ln induce the same orientation on their
common facet. It is exactly the opposite situation to the case of a coherent orien-
tation of the n-pseudomanifold. An n-primoid need not be properly orientable
if the ring R has at least three elements. If R is isomorphic to Z2, then any
n-primoid is properly oriented since 1 = −1 in this ring.

Example 4.1. The family {{1, 2, 6}, {2, 3, 6}, {3, 4, 6}, {4, 5, 6}, {1, 5, 6}, {1,
2, 4}, {2, 3, 5}, {1, 3, 4}, {2, 4, 5}, {1, 3, 5}} is a 2-primoid on {1, 2, 3, 4, 5, 6} and
there is no proper orientation of it.

Example 4.2. Let U = In. LInn = {{0, . . . , n}} is an n-primoid on In
properly oriented by Ln = {(0, . . . , n)}.

Theorem 4.3. Let U and U ′ be finite sets, let Ln be an n-primoid on U
properly oriented by orLn and let g:U

′ → U be an onto function. Then a fam-
ily L(Ln, g) = {{u0, . . . , un} ⊂ U ′ : g({u0, . . . , un}) ∈ Ln} is nonempty and
it is an n-primoid on U ′ properly oriented by a function orL(Ln,g) defined by
orL(Ln,g)(u

′
0, . . . , u

′
n) = orLn(g(u

′
0), . . . , g(u

′
n)).

Proof. We proved ([14, Theorem 3.2]) that L(Ln, g) is an n-primoid on U ′.
Now we prove that it is properly oriented by orL(Ln,g).
Take (x, u′1, . . . , u

′
n), (y, u

′
1, . . . , u

′
n) ∈ loL(Ln, g). By the proper orientation

of Ln we have

orL(Ln,g)(x, u
′
1, . . . , u

′
n) = orLn(g(x), g(u

′
1), . . . , g(u

′
n))

= orLn(g(y), g(u
′
1), . . . , g(u

′
n)) = orL(Ln,g)(y, u

′
1, . . . , u

′
n). �

Corollary 4.4. Let Md be a matroid with a fixed base {v0, . . . , vn}. Let r
be the rank function of the matroid Md and denote spanA = {x ∈ Md : r(A ∪
{x}) = r(A)}. Let F0 = span{v0} and Fi = span{v0, . . . , vi}\span{v0, . . . , vi−1}
for i ∈ In. Observe, thatMd =

⋃n
i=0 Fi and Fi∩Fj = ∅ for i 6= j. Let g:Md → In

be a function defined by g(a) = i for a ∈ Fi. The function g is well-defined
and the family LMdn = {{u0, . . . , un} : g({u0, . . . , un}) = In} is an n-primoid
on Md properly oriented by a function orLMdn defined by orLMdn (u0, . . . , un) =
orLInn (g(u0), . . . , g(un)).

Proof. From Theorem 4.3 and Example 4.2 we have LMdn = L(L
In
n , g). �

Proposition 4.5. Let U be a finite set and L1 be a 1-primoid on U . There
exists a function g:U → I1 such that L1 = L(LI11 , g).

Proof. Notice that 1-complexes are graphs. Our thesis states that 1-primo-
ids are complete bipartite graphs. Any graph is bipartite if and only if it contains
no cycles of odd length. We show that 1-primoids contains no odd cycles. Assume
that there is an odd cycle in 1-primoid L1. Let C be the shortest odd cycle in L1.
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The cycle C cannot be a triangle in the primoid: for {u1, u2} ∈ L1 and u ∈ U
exactly one of two possibilities is true: {u, u1} ∈ L1 or {u, u2} ∈ L1. Consider
{u1, u2} ⊂ C and u ∈ U such that {u, u1} and {u, u2} do not belong to the cycle
C. Such vertex u exists since C is of length at least 5. Exactly one of the edges
{u, u1} or {u, u2} belongs to L1. This edge creates two cycles in L1 and one of
them would be an odd cycle and shorter than C.
Now we prove that L1 is a complete bipartite graph. Consider {u1, u2} ∈ L1.

Let X = {u ∈ U : {u, u2} ∈ L1} and Y = {u ∈ U : {u, u1} ∈ L1}. The sets X
and Y are nonempty by definition and disjoint since L1 is bipartite. We show
that for u3 ∈ X and u4 ∈ Y {u3, u4} ∈ L1. If u1 = u3 or u2 = u4, then it is
obvious. Otherwise, by definition of the primoid, for {u1, u4} ∈ L1 and u3 ∈ U
exactly one of the possibilities holds: {u3, u4} ∈ L1 or {u1, u3} ∈ L1. The second
one is impossible because u1, u2, u3 would form a triangle. �

Let
−→
U nk = {(u0, . . . , un) : {u0, . . . , un} ⊂ {−k, . . . ,−1, 1, . . . k} : |u0| ≤

|u1| ≤ . . . ≤ |un|, ui · ui+1 < 0 and if |ui| = |ui+1|, then ui < 0 for i ∈ In−1} for
n, k ∈ N, 2k > n ≥ 1.

Example 4.6 (Bapat, [1, Lemma 4.1]). Let U = {−k, . . . ,−1, 1, . . . , k} for
some k, 2k > n ≥ 1. We define an n-primoid Lkn on U as follows: {u0, . . . , un} ∈
Lkn if and only if there exists a permutation τ such that (uτ(0), . . . , uτ(n)) ∈

−→
U nk .

The n-primoid Lkn is properly oriented by a function

orLkn(u0, . . . , un) =


sgn τ if {u0, . . . , un} ∈ Lkn and uτ(0) > 0,
(−1)n · sgn τ if {u0, . . . , un} ∈ Lkn and uτ(0) < 0,
0 if {u0, . . . , un} /∈ Lkn,

where the permutation τ is such, that (uτ(0), . . . , uτ(n)) ∈
−→
U nk .

Proof. Take {u0, . . . , un} ∈ Lkn and u ∈ U . Without loss of generality we
assume that (u0, . . . , un) ∈

−→
U nk . If there exists such k ∈ In that u = uk, then

{u0, . . . , uk−1, u, uk+1, . . . , un} ∈ Lkn. Otherwise we have three cases:

Case 1. |u| ≤ |u0|. If u and u0 have the same signs, then {u, u1, . . . , un−1, un}
∈ Lkn and orLkn(u0, u1, . . . , un−1, un) = orLkn(u, u1, . . . , un−1, un). If they have
opposite signs, then {u, u0, u1, . . . , un−1} ∈ Lkn and orLkn(u0, u1, . . . , un−1, un)
= (−1)n · orLkn(u, u0, u1, . . . , un−1) = orLkn(u0, u1, . . . , un−1, u).

Case 2. There exists i ∈ {0, . . . , n − 1} such that |ui| < |u| ≤ |ui+1|. If u
and ui have the same signs, then {u0, . . . , ui−1, u, ui+1, . . . , un−1, un} ∈ Lkn and
orLkn(u0, . . . , un) = orLkn(u0, . . . , ui−1, u, ui+1, . . . , un−1, un). If they have the
opposite signs, then {u0, u1, . . . , ui, u, ui+2, . . . , un} ∈ Lkn and
orLkn(u0, . . . , un) = orLkn(u0, . . . , ui, u, ui+2, . . . , un−1, un).

Case 3. The case |un| < |u| is analogous to the Case 1. �
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From Example 4.6 and Theorem 4.3 we have the following

Corollary 4.7. Let U be a finite set and let for some k, 2k > n ≥ 1
g:U → {−k, . . . ,−1, 1, . . . , k} be an onto function. We define an n-complex
Lg,kn as follows: {u0, . . . , un} ∈ Lg,kn if and only if there exists a permutation
τ such that (g(uτ(0)), . . . , g(uτ(n))) ∈

−→
U nk . Then L

g,k
n is an n-primoid on the

set U . The n-primoid Lg,kn is properly oriented by a function

orLg,kn (u0, . . . , un) =


sgn τ if {u0, . . . , un} ∈ Lg,kn and g(uτ(0)) > 0,
(−1)n · sgn τ if {u0, . . . , un} ∈ Lg,kn and g(uτ(0)) < 0,
0 if {u0, . . . , un} /∈ Lg,kn ,

where the permutation τ is such that (g(uτ(0)), . . . , g(uτ(n))) ∈
−→
U nk .

Proof. Observe that Lg,kn = L(L
k
n, g). �

Example 4.8 (Bapat, [1, Lemma 4.2]). Let U ⊂ Rn be a finite set with
|U | ≥ n+1 and let b ∈ Rn be a point, which is not a convex combination of less
than n+1 elements of U . If the family Lbn = {{u0, . . . , un} : b ∈ co {u0, . . . , un}}
is nonempty, then it is an n-primoid on U . The n-primoid Lbn is properly oriented
by

orLbn(u0, . . . , un) = det


u10 . . . u

1
i . . . u

1
n

...
. . .

...
. . .

...
un0 . . . u

n
i . . . u

n
n

1 . . . 1 . . . 1

,
where uji is an j-th coordinate of the vector ui.

Definition 4.9. Let A = {a0, . . . , an} ⊂ Rn be a set of affinely independent
points. Let mA =

∑
a∈A a/|A|. We say that a function π:P(A) → Rn is in a

general position if:

(a) π(B) ∈ ri co {ai : i ∈ B} for each B ⊂ A,
(b) mA /∈ aff {π(D)} for each D ⊂ P(A) such that |D| < |A|.

A family D ⊂ P(A) is said to be π-balanced if |D| = |A|, mA ∈ co {π(D)} and
π is in the general position.

Proposition 4.10. The set of all π-balanced families is an n-primoid on
P(A), we denote it by Lπn.

Proof. This follows from Theorem 4.3 and Example 4.8, because Lπn =
L(Lbn, π) for b = mA. The primoid L

π
n is properly oriented by orLπn(A0, . . . , An)

= orLbn(π(A0), . . . , π(An)) where Ai ⊂ A for i ∈ In. �

Let Ln be an n-primoid on a set U (|U | ≥ n + 1). A function ρ:P(U) →
{0, . . . , n+ 1} defined by ρ(A) = max{|A ∩ T | : T ∈ Ln} for A ∈ P(U) is called
a rank function of Ln.



392 A. Idzik — K. Junosza-Szaniawski

Notice that the number k = n + 1 − ρ(A) is the minimal number such that
there exists a set {u1, . . . , uk} ⊂ U and the set A∪{u1, . . . , uk} contains a com-
plete n-simplex.
Observe that a function defined by:

• ρ(A) = |A| for A ⊂ U is the rank function of LInn (see Example 4.2),
• ρ(A) = |{g(u) : u ∈ A}| for A ⊂ U is the rank function of the n-primoid
L(LInn , g) on U (see Theorem 4.3),
• ρL(Ln,g)(A) = ρLn({g(u) : u ∈ A}) (A ⊂ U) is the rank function of the
n-primoid L(Ln, g) for the rank function ρLn of the n-primoid Ln (see
Theorem 4.3).

The rank function ρ of Ln has the following

Properties 4.11. For A,B ∈ P(U):

(a) ρ(B) = |B| for B ⊂ A ∈ Ln,
(b) ρ(A) ≤ |A| for A ⊂ U ,
(c) ρ(A) ≤ ρ(B) for A ⊂ B,
(d) ρ(A ∪B) ≤ ρ(A) + ρ(B),
(e) ρ({u}) = 1 for u ∈ U .

Proof. Properties (a)–(c) follow directly from the definition of n-primoid.
For the proof of property (d) see [14, Properties 4.1]. The property (e) says
that any element of the set U belongs to some complete n-simplex. Consider
T ∈ Ln. If u /∈ T , then by definition of the n-primoid there exists u′ ∈ T such
that T \ {u′} ∪ {u} ∈ Ln. �

Let ρ be the rank function of Ln. A set B ⊂ U is a maximal set of the
rank k (k ∈ N) if ρ(B) = k and for each u ∈ U \ B, ρ(B ∪ {u}) = k + 1. Now
we define a subset spA ⊂ U spanned by elements of A ⊂ U in the sense of the
n-primoid Ln. For A ⊂ U a spanned set by a set A is spA =

⋂
{B : A ⊂ B ⊂

U and B is a maximal set of the rank ρ(A)}.
Observe that the spanned set by a set A is defined:

• spA = A for the n-primoid LInn (see Example 4.2),
• spA = {u : g(u) ∈ g(A)} for the n-primoid L(LInn , g) (see Theorem 4.3),
• spL(Ln,g)A = {u : g(u) ∈ spLng(A)} for the n-primoid L(Ln, g), where
spLn is in the sense of the n-primoid Ln (see Theorem 4.3).

Theorem 4.12. Let U ⊂ Rn be a finite set, b ∈ Rn a point such that it does
not belong to a convex hull of less than n+1 elements of U . For A ⊂ U we have
U ∩ cone(b, A) ⊂ spLbnA.

Proof. Let ρ(A) = k. It is enough to show, that for u ∈ U ∩ cone(b, A) we
have u ∈ spLbnA or equivalently u belongs to every maximal set of the rank k
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containing A. Assume, there exists a maximal set D of the rank k containing
A and such that ρ(D ∪ {u}) = k + 1. Thus there exists a set T ⊂ U such that
|T | = n + 1 − (k + 1) = n − k and b ∈ co (T ∪ D ∪ {u}). Since u ∈ cone(b, A)
and A ⊂ D then b ∈ co (T ∪ D). Hence ρ(T ∪ D) = n + 1 and ρ(D) = k + 1,
contradicting our assumption. �

Properties 4.13. For the n-primoid Ln and A ⊂ U :

(a) A ⊂ spA,
(b) ρ(A) = ρ(spA),
(c) if a set A contains a complete n-simplex, then spA = U .

For proofs see [14, Properties 4.2].
An m-simplex Tm ∈ Pm(U) (m < n) is called M -complete for M ⊂ U , if

Tm ∪M ∈ Ln. In the case M = {x} (x ∈ U) we write x-complete instead of
{x}-complete. Let Ln(x) denote the family of all x-complete (n− 1)-simplexes.
A function orLn(x): (U)

n → {−1, 0, 1} defined by

orLn(x)(u1, . . . , un) = orLn(x, u1, . . . , un)

is an orientation of Ln(x) and we call it an induced orientation by orLn .

Theorem 4.14. Let U be a finite set, Pn(U) be oriented by a representation
Un. Let Ln be a primoid on U properly oriented by a representation Ln ⊂ Un
and let the family Ln(x) = {Tn−1 ∈ Pn−1(U) : Tn−1 ∪{x} ∈ Ln} be oriented by
the induced orientation orLn(x). Then

δn−11Ln(x) = 1Ln .

Proof.

δn−11Ln(x) = δn−1
⊕

T
n−1∈Ln(x)

χ
T
n−1 =

⊕
T
n−1∈Ln(x)

δn−1χTn−1

=
⊕

T
n−1∈Ln(x)

⊕
T
n∈Un

[T
n
: T
n−1
]� χTn

=
⊕
T
n∈Un

( ∑
T
n−1∈Ln(x)

[T
n
: T
n−1
]
)
� χTn .

Let us count γTn =
∑
T
n−1∈Ln(x)

[T
n
: T
n−1
]. If Tn ∈ Ln, then by definition

of the primoid there is exactly one element u ∈ Tn such that Tn \{u}∪{x} ∈ Ln
hence Tn \ {u} is the only (n − 1)-simplex from Ln(x) contained in Tn and
[T
n
: T
n−1
] = 1 by definition of orLn(x). Thus in this case γTn = 1.

Consider now Tn /∈ Ln. By the definition of the primoid, the set Tn ∪ {x}
contains either no complete n-simplexes or exactly two of them. If Tn ∪ {x}
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contains no complete n-simplexes, then Tn contains no x-complete (n − 1)-
simplexes and thus γTn = 0. If T

n ∪ {x} contains two complete n-simplexes,
then Tn contains two x-complete (n − 1)-simplexes say Tn−11 , Tn−12 . In this

case we have γTn = [T
n
: T
n−1
1 ] + [T

n
: T
n−1
2 ]. We will show that [T

n
:

T
n−1
1 ] = −[T

n
: T

n−1
2 ]. Let T

n−1
1 = (u1, . . . , un), T

n−1
2 = (w1, . . . , wn)

and u0 ∈ Tn \ Tn−11 and Tn−12 = Tn \ {ui} for some i ∈ {1, . . . , n}. Thus
{w1, . . . , wn} = {u1, . . . , ui−1, u0, ui+1, . . . , un}. Since orientations of Tn−11 and
Tn−12 are induced orientations by T

n
and Ln is properly oriented by orUn we

have

orLn(x)(w1, . . . , wn) = 1 = orLn(x)(u1, . . . , un) = orUn(x, u1, . . . , un)

= orUn(x, u1, . . . , ui−1, u0, ui+1, . . . , un)

= orLn(x)(u1, . . . , ui−1, u0, ui+1, . . . , un).

So T
n−1
2 is even permutation of (u1, . . . , ui−1, u0, ui+1, . . . , un) and

[T
n
: T
n−1
1 ] = orUn(u0, u1, . . . , un)

= −orUn(ui, u1, . . . , ui−1, u0, ui+1, . . . , un)

= −orUn(ui, w1, . . . , wn) = −[T
n
: T
n−1
2 ].

Hence γTn = 1 if and only if T
n ∈ Ln. �

5. Labelling

Let V , U be finite sets, Cn be an n-complex on V oriented by some repre-
sentation Cn and let Cn−1 be a complex consisting of all facets of n-simplexes
of Cn oriented by some representation C

n−1
. Let Ln be an n-primoid on

a set U properly oriented by some representation Ln. Let x ∈ U and let
Ln(x) = {Tn−1 ∈ Pn−1(U) : Tn−1 ∪ {x} ∈ Ln} be oriented by Ln(x), where
orLn(x) is an induced orientation by orLn . Let l:V → U be a labelling.
An n-simplex Sn = {v0, . . . , vn} ∈ Cn is called completely labelled (c.l. n-

simplex for short) if l(Sn) ∈ Ln. A signum of a c.l. n-simplex Sn (denoted by
signSn) is an element of the ring R which is equal to signSn = orCn(v0, . . . , vn)·
orLn(l(v0), . . . , l(vn)).
For x ∈ U , an (n − 1)-simplex Sn−1 = {v1, . . . , vn} ∈ Cn−1 is called an x-

completely labelled (n− 1)-simplex (x-c.l. (n− 1)-simplex for short) if l(Sn−1) ∈
Ln(x). A signum of an x-c.l. (n − 1)-simplex Sn−1 is an element of the ring R
which is equal to signSn−1 = orCn−1(v1, . . . , vn) · orLn(x)(l(v1), . . . , l(vn)).
For x ∈ U , Sn ∈ Cn and v ∈ Sn a pair (Sn, v) is called an x-completely

labelled facet (x-c.l. facet for short) if l(Sn \{v}) ∈ Ln(x). A signum of an x-c.l.
facet is an element of the ring R which is equal to sign (Sn, v) = [S

n
, S
n−1
] ·

orLn(x)
−→
ln−1(S

n−1
), where S

n ∈ Cn and Sn−1 = Sn \ {v} ∈ Cn−1.
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Observe that the definition of the signum of an c.l. n-simplex Sn, an x-c.l.
(n − 1)-simplex Sn−1 and an x-c.l. facet do not depend on the linear order of
elements {v0, . . . , vn} of Sn, {v1, . . . , vn} of Sn−1, {v0, . . . , vn} of Sn, respec-
tively.
A c.l. n-simplex, an x-c.l. (n − 1)-simplex and an x-c.l. facet is called a

positive c.l. n-simplex, an x-c.l. (n − 1)-simplex and an x-c.l. facet (a negative
c.l. n-simplex, an x-c.l. (n − 1)-simplex and an x-c.l. facet) if signSn = 1,
signSn−1 = 1, sign (Sn, v) = 1 (signSn = −1, signSn−1 = −1, sign (Sn, v) =
−1), respectively.
Definitions of the c.l. labelled n-simplex and the x-c.l. facet are equivalent to

the definitions of the “matched pair” and the “unmatched pair” given by Bapat
([1, Definition 2.2]) and Todd [32], [33], respectively. The signum of the c.l.
n-simplex Sn ((n − 1)-simplex Sn−1) informs us whether labelling l transforms
Sn onto l(Sn) (Sn−1 onto l(Sn−1)) preserving or reversing the orientation.
Now we present a new proof of the Bapat theorem. This theorem is a gener-

alization of the Todd theorem ([33, Theorem 2.6]).

Theorem 5.1 (Bapat, [1, Theorem 2.6]). Let V , U be finite sets, Cn be
a nonempty n-complex on a set V oriented by Cn and let Cn−1 be a complex
consisting of all facets of n-simplexes of Cn oriented by some representation
C
n−1
. Let Ln be an n-primoid on a set U properly oriented by Ln and l:V → U ,

x ∈ U . Let α+ and α− (β+ and β−) denote the number of c.l. n-simplexes
in Cn (x-c.l. facets in Cn) that are positive and negative, respectively. Then
α+ − α− = β+ − β−.

To prove his theorem Bapat used elementary methods concerning directed
graphs. Similar methods were used by Ky Fan in [6]. We present another proof
to show how this theorem is related to theorems of the previous section.

Proof of Theorem 5.1. In the case the ring R is equal to Z the n-index
of a labelling l for Cn and Ln: indnl(1Cn , 1Ln) = 1Cn •n l̃Cn(1Ln) is equal to
α+ − α− since every positive (negative) c.l. n-simplex appears as 1 (−1) in the
sum indnl(1Cn , 1Ln) =

∑
S
n∈Cn orLn

−→
ln(S

n
).

Let Cn−1 be an (n − 1)-complex consisting of all facets of all n-simplexes
belonging to Cn oriented by some representation C

n−1
. An (n− 1)-index of the

function l for ∂n1Cn and 1Ln(x) is equal to

indn−1l(∂n1Cn , 1Ln(x)) = ∂n1Cn •n−1 l̃Cn−1(1Ln(x)) = β
+ − β−

since every positive (negative) x-c.l. facet appears as 1 (−1) in the sum

indn−1l(∂n1Cn , 1Ln(x)) =
∑

S
n−1∈Vn−1

( ∑
S
n∈Cn
[S
n
: S
n−1
]
)
� orLn(x)

−→
ln−1(S

n−1
).
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From Theorem 4.14 and from Theorem 3.9 we have

α+ − α− = indnl(1Cn , 1Ln) = indnl(1Cn , δ
U
n−11Ln(x))

= indn−1l(∂n1Cn , 1Ln(x)) = β
+ − β−. �

In the case the ring R is equal to Z2 Theorem 5.1 reduces to non-oriented
version:

Theorem 5.2 (Idzik and Junosza-Szaniawski, [14, Theorem 5.3]). Let V , U
be finite sets, Cn be an n-complex on V . Let Ln be an n-primoid on U . Let
l:V → U be a fixed labelling and let x ∈ U be a fixed element. Then the number
of c.l. simplexes is equal to the number of x-c.l. facets modulo 2.

An (n − 1)-simplex Sn−1 is a boundary (n − 1)-simplex of an n-complex
Cn if there is exactly one n-simplex Sn ∈ Cn such that Sn−1 ⊂ Sn. For an
n-pseudomanifold Cn we denote ∂nCn the (n − 1)-complex consisting of all
boundary (n − 1)-simplexes of n-simplexes of Cn. An orientation of ∂Cn is
called an induced orientation by orCn if every (n − 1)-simplex is oriented by
an induced orientation from the unique n-simplex containing it. Observe that
∂n1Cn = 1∂nCn . Now applying Theorem 5.1 to an n-complex which is an n-
pseudomanifold we get

Theorem 5.3 (Bapat, [1, Theorem 3.3]). Let V , U be finite sets, Cn be
a nonempty n-pseudomanifold on V , coherently oriented by Cn. Let Ln be an n-
primoid on a set U , Ln be properly oriented by Ln, l:V → U , x ∈ U . Let α+ and
α− (γ+ and γ−) denote the number of c.l. n-simplexes in Cn (x-c.l. boundary
(n − 1)-simplexes in ∂nCn) which are positive and negative, respectively. Then
α+ − α− = γ+ − γ−.

Proof. An n-index indnl(1Cn , 1Ln) is equal to α
+ − α− and (n− 1)-index

indn−1l(∂n1Cn , 1Ln(x)) is equal to γ
+ − γ−. From the general Sperner lemma

(Theorem 3.9) and Theorem 4.14 we have

α+ − α− = indnl(1Cn , 1Ln) = indnl(1Cn , δ
U
n−11Ln(x))

= indnl(∂n1Cn , 1Ln(x)) = γ
+ − γ−. �

In the case the ring R is equal to Z2, Theorem 5.3 reduces to a non-oriented
version:

Theorem 5.4 (Idzik and Junosza-Szaniawski [14, Theorem 6.1]). Let V , U
be finite sets, Cn be an n-pseudomanifold on V , Ln be an n-primoid on the set
U and x ∈ U be a fixed element. Let l:V → U be a labelling. Then the number
of c.l. simplexes is equal to the number of boundary x-c.l. (n − 1)-simplexes
modulo 2.
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Theorem 5.5 (Lindström [22], see also Kryński [18, Theorem 6]). Let V
be a finite set, Pn(V ) be oriented by Vn and `n be an n-chain on V such that
∂n`
n = 0, Md be a matroid on U of the rank n+1 and let l:V → U be a labelling.

If there is an n-simplex Sn ∈ Pn(V ), such that `n(S
n
) 6= 0 and l(Sn) is a

base of the matroid Md, then there is another n-simplex Sn2 ∈ Pn(V ) such that
`n(S

n

2 ) 6= 0.

Proof. From Corollary 4.4, Theorem 3.9 and Theorem 4.14 we have

indnl(`n, 1LMdn ) = indn−1l(∂n`
n, 1LMdn (x)) = 0. �

For an n-pseudomanifold Cn on V , coherently oriented by Cn, (k ≥ n)
and a labelling l:V → {−k, . . . ,−1, 1, . . . , k} let α+(j0, . . . , jn) (α−(j0, . . . , jn))
denote the number of elements (v0, . . . , vn) in loCn such that l(vi) = ji for i ∈ In
and orCn(v0, . . . , vn) = 1 (orCn(v0, . . . , vn) = −1) and let β+(j0, . . . , jn−1)
(β−(j0, . . . , jn−1)) denote the number of elements (v0, . . . , vn−1) in lo ∂Cn such
that l(vi) = ji for i ∈ In−1 and orCn(v0, . . . , vn−1) = 1 (orCn(v0, . . . , vn−1) =
−1). Let α(j0, . . . , jn) = α+(j0, . . . , jn)−α−(j0, . . . , jn) and β(j0, . . . , jn−1) =
β+(j0, . . . , jn−1)− β−(j0, . . . , jn−1).
If we apply Theorem 5.3 to the primoid Lkn (see Example 4.6), then we get

Theorem 5.6 (Fan [6, Theorem 1]). Let Cn be a coherently oriented n-
pseudomanifold on V (k ≥ n) and let a labelling l:V → {−k, . . . ,−1, 1, . . . , k}
satisfy the condition l(v) + l(v′) 6= 0 for v and v′ belonging to some n-simplex
of Cn. Then we have∑
0<k0<...<kn

(α(−k0, k1,−k2, k3, . . . , (−1)n+1kn) + α(k0,−k1, k2,−k3, . . . , (−1)nkn))

=
∑

0<k0<...<kn−1

β(k0,−k1, k2,−k3, . . . , (−1)n−1kn−1).

Corollary 5.7. Applying Theorem 5.3 to the n-primoid:

(a) L(LInn , g), we get an oriented version of the Gould and Tolle theorem
([8, Theorem 5.2.5]),

(b) LMdn , we get an oriented version of the Lovász theorem [23], (see also
Kryński [18, Theorem 3]).

6. Case of the geometric simplex

For a real number r ∈ R we define:

signum r =


1 for r > 0,

−1 for r < 0,
0 for r = 0.
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Let {d0, . . . , dn} be a fixed set of affinely independent vectors in Rn, such that

det


d10 . . . d

1
i . . . d

1
n

...
. . .

...
. . .

...
dn0 . . . d

n
i . . . d

n
n

1 . . . 1 . . . 1

 > 0,

where dji is the j-th coordinate of the vector di. For M ⊂ In we denote ∆M =
co {di : i ∈M}. Let Tr be a triangulation of ∆In . Let Tr(∆M ) (M ⊂ In) be the
induced triangulation of the face ∆M , i.e. the family of (|M | − 1)-dimensional
simplexes σ ∩∆M for σ ∈ Tr.
For every simplex σ in Tr, let V (σ) denote the set of its vertices and V =⋃
σ∈Tr V (σ). The family C

n = {V (σ) : σ ∈ Tr} is a pseudomanifold on V . An
orientation orCn defined by

orCn(v0, . . . , vn) = signumdet


v10 . . . v

1
i . . . v

1
n

...
. . .

...
. . .

...
vn0 . . . v

n
i . . . v

n
n

1 . . . 1 . . . 1

 ,

where vji is the j-th coordinate of the vector vi, is the coherent orientation since
for {v, v1, . . . , vn}, {v′, v1, . . . , vn} ∈ Cn vertices v and v′ lies on the opposite
sides of the hyperplane aff {v1, . . . , vn}. Thus

orCn(v, v1, . . . , vn) = −orCn(v
′, v1, . . . , vn).

This orientation we call a geometric orientation of the pseudomanifold Cn.

We will say that a geometric simplex σ is completely labelled (c.l. simplex
for short) or x-completely labelled (x-c.l. simplex) if the set of its vertices V (σ)
is the c.l. n-simplex or the x-c.l. (n− 1)-simplex, respectively.

Theorem 6.1. Let Tr be a triangulation of the simplex ∆In , the n-complex
Cn = {V (σ) : σ ∈ Tr} be oriented by the geometric orientation, V =

⋃
σ∈Tr V (σ),

Ln be an n-primoid on a set U , properly oriented by Ln, (u0, . . . , un) ∈ loLn and
l:V → U . If for M  In, a simplex σ ⊂ ∆M is not the {ui : i /∈M}-completely
labelled simplex, then indnl(1Cn , 1Ln) = (−1)

n · orLn(u0, . . . , un).

Proof. We embed the simplex ∆In = co {d0, . . . , dn} in a larger simplex
using the Scarf method [25, p. 192]. Without loss of generality we may assume
that 0 ∈ ri∆In . Let d̃i = −a · di for i ∈ In, where a > 0 is so large that ∆In ⊂
ri co {d̃0, . . . , d̃n}. Let us denote ∆̃In = co {d̃0, . . . , d̃n}. For every i ∈ In, d̃i and
di lie on the two different sides of the hyperplane aff {d0, . . . , di−1, di+1, . . . , dn}.
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Observe that

orCn(d̃0, . . . , d̃n) = signum det


d̃10 . . . d̃

1
i . . . d̃

1
n

...
. . .

...
. . .

...
d̃n0 . . . d̃

n
i . . . d̃

n
n

1 . . . 1 . . . 1



= signum det


−ad10 . . . −ad1i . . . −ad1n
...

. . .
...

. . .
...

−adn0 . . . −adni . . . −adnn
1 . . . 1 . . . 1



= (−1)nsignum

an det

d10 . . . d

1
i . . . d

1
n

...
. . .

...
. . .

...
dn0 . . . d

n
i . . . d

n
n

1 . . . 1 . . . 1


=(−1)n

(orCn is the geometric orientation).

Now we extend the triangulation of ∆In by joining every vertex v ∈ V ∩
∆In\{i} with the vertex d̃i and we get a triangulation of ∆̃In :

T̃r = Tr ∪
⋃
M In

⋃
σ∈Tr(∆M )

co (V (σ) ∪ {d̃i : i /∈M}).

For the case n = 2 see Picture 1.

�̃d0

d̃1d̃2

d0

d1 d2

Picture 1
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Let Cn∼ = {V (σ) : σ ∈ T̃r}. We define a labelling l̃ as an extension of l on⋃
σ∈fTr V (σ) by l̃(d̃i) = ui for all i ∈ In.
We prove that for this new triangulation T̃r of ∆̃In and the labelling l̃ there is

no c.l. n-simplexes, which do not belong to Cn. Consider an n-simplex σ ∈ T̃r \
Tr. Let S = V (σ) and let ∆M (M ⊂ In) be the smallest face of ∆In containing
the set ∆In ∩σ. The set S is of the form S = {wi ∈ ∆M : i ∈M}∪{d̃i : i /∈M}.
By our assumption S ∩∆M is not {ui : i /∈ M}-completely labelled and thus S
is not a c.l. n-simplex. Hence indn l̃(1Cn∼ , 1Ln) = indnl(1Cn , 1Ln).

By Theorem 5.3, applied to Cn∼ for x = u0 we know that indn l̃(1Cn∼ , 1Ln) is

equal to indn−1 l̃(∂1Cn∼ , 1Ln(u0)) and indn−1 l̃(∂1C
n
∼
, 1Ln(u0)) is equal to the num-

ber of positive boundary u0-c.l. (n− 1)-simplexes minus the number of negative
boundary u0-c.l. (n−1)-simplexes. Observe that the only u0-c.l. (n−1)-simplex
on the boundary of ∆̃In is {d̃1, . . . , d̃n}. The orientation of {d̃1, . . . , d̃n} is the
induced orientation by the geometric orientation and thus sign (d̃1, . . . , d̃n) =
(−1)n. Hence indnl(1Cn , 1Ln) = (−1)

n · orLn(u0, . . . , un). �

Let Ln be an n-primoid on a set U , properly oriented by Ln and ρ be the
rank of Ln.
We say that a labelling l:V → U satisfies a ρ-boundary condition for (u0, . . . ,

un) ∈ loLn if:
• l(di) = ui for i ∈ In,
• ρ(l(V ∩∆M )) = |M | for M ⊂ In.

Theorem 6.2. Let Tr be a triangulation of ∆In , the n-complex Cn={V (σ) :
σ ∈ Tr} be oriented by the geometric orientation, V =

⋃
σ∈Tr V (σ) and Ln be

an n-primoid on a set U , properly oriented by Ln and let (u0, . . . , un) ∈ loLn.
If a labelling l:V → U satisfies the ρ-boundary condition for (u0, . . . , un), then
indnl(1Cn , 1Ln) = orLn(u0, . . . , un).

Proof. It is sufficient to show that l satisfies the conditions of Theorem 6.1
for (u1, . . . un, u0), because

indnl(1Cn , 1Ln) = (−1)
norLn(u1, . . . , un, u0) = orLn(u0, . . . , un).

Assume that there exists a {ui+1 : i /∈ M}-c.l. simplex σ ⊂ ∆M for some
M  In (un+1 = u0). Hence l(V (σ)) ∪ {ui+1 : i /∈ M} ∈ Ln (un+1 = u0) and
ρ(l(V (σ))) = |M |. There exists j /∈M such that j + mod (n+1) 1 ∈M and thus

ρ(l(V (σ)) ∪ {uj+1}) = |M |+ 1.

But l(dj+1) = uj+1, l(V (σ)) ∪ {uj+1} ⊂ l(V ∩∆M ) and by Property 4.11(c)

ρ(l(V ∩∆M )) ≥ |M |+ 1.

This contradicts the ρ-boundary condition. �
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We say that l:V → U satisfies sp-boundary condition for (u0, . . . , un) ∈ loLn
if:

• l(di) = ui for i ∈ In,
• for every M ⊂ In and for every v ∈ (V ∩∆M ), l(v) ∈ sp{ui : i ∈M}.

Theorem 6.3. Let Tr be a triangulation of ∆In , the n-complex Cn={V (σ) :
σ ∈ Tr} be oriented by the geometric orientation, V =

⋃
σ∈Tr V (σ) and Ln be

an n-primoid on a set U , properly oriented by Ln and let (u0, . . . , un) ∈ loLn.
If a labelling l:V → U satisfies the sp-boundary condition for (u0, . . . un), then
indnl(1Cn , 1Ln) = orLn(u0, . . . , un).

Proof. By Property 4.13(b) we have ρ(l(∆M ∩ V )) = ρ(sp{ui : i ∈ M}) =
ρ({ui : i ∈M}) = |M | for every M ⊂ In and the conditions of Theorem 6.2 are
satisfied. �

Corollary 6.4. Applying Theorem 6.3 to the n-primoid:

(a) LInn , we get an oriented version of the Sperner lemma [29],
(b) LMdn , we get an oriented version of the Lovász corollary [23], (see also
Kryński [18, Theorem 3]),

(c) Lπn, we get an oriented version of the Shapley lemma ([26, Lemma 7.2]).

From Theorem 6.3 applied to the n-primoid Lbn and from Theorem 4.12 we
get

Theorem 6.5. Let Tr be a triangulation of ∆In , the n-complex Cn={V (σ) :
σ ∈ Tr} be oriented by the geometric orientation orCn , V =

⋃
σ∈Tr V (σ), U ⊂ Rn

be a finite set, b ∈ ri∆In be a point, which does not belong to the convex hull
of less than n + 1 elements of the set U . Let l:V → U be a labelling such
that for M ⊂ In, if v ∈ V ∩ ∆M , then l(v) ∈ cone(b, {di : i ∈ M}). Then
indnl(1Cn , 1Lbn

) = 1.

We say that l satisfies dual sp-boundary condition (dsp-boundary condition
for short) for (u0, . . . , un) ∈ loLn, if for every M  In and for every v ∈
V ∩ ri∆M , l(v) ∈ sp{ui : i /∈M}.

Theorem 6.6. Let Tr be a triangulation of ∆In , the n-complex Cn={V (σ) :
σ ∈ Tr} be oriented by the geometric orientation, V =

⋃
σ∈Tr V (σ), for M  In

and σ ⊂ ∆M there exists j ∈ M such that σ ∩ ∆M\{j} = ∅ and Ln be an n-
primoid on a set U , properly oriented by Ln. If a labelling l:V → U satisfies
the dsp-boundary condition for some (u0, . . . un) ∈ loLn, then indnl(1Cn , 1Ln) =
(−1)norLn(u0, . . . un).

Proof. It is enough to show that the conditions of Theorem 6.1 are satisfied.
ForM  In and a simplex σ ⊂ ∆M there exists j ∈M such that σ∩∆M\{j} = ∅
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and thus l(V (σ)) ⊂ sp{ui : i ∈ In, i 6= j}. Hence σ is not {ui : i /∈ M}-c.l.
simplex since l(V (σ)) ∪ {ui : i /∈ M} ⊂ sp{ui : i ∈ In, i 6= j} and in the set
sp{ui : i ∈ In, i 6= j} there is no complete n-simplex. �

A diameter of a triangulation Tr of ∆In is the maximal diameter of a simplex
in Tr. Observe that if the diameter of a triangulation is small enough, then the
condition, for each σ ⊂ ∆M (M  In) there exists j ∈ In such that σ∩∆M\{j} =
∅, is satisfied.
Observe that Theorem 6.6 applied to the ring R = Z2 and to the primoid

LInn is a generalization of the Scarf lemma ([24]; see also [21, Theorem 3.4]).

Theorem 6.7. Let Tr be a triangulation of ∆In = co {d0, . . . , dn} and the
n-complex Cn = {V (σ) : σ ∈ Tr} be oriented by the geometric orientation, V =⋃
σ∈Tr V (σ). Let l:V → Rn be a labelling such that for M ⊂ In, if v ∈ V ∩∆M ,
then l(v) ∈ aff {di : i ∈ M}. Let b ∈ ri∆In be a point which is not a convex
combination of less than n+ 1 elements of l(V ). Then indnl(1Cn , 1Lbn

) = 1.

Proof. Observe that the assumptions of Theorem 6.2 applied to the primoid
Lbn are satisfied. �

Theorem 6.8. Let Tr be a triangulation of ∆In and the complex Cn =
{V (σ) : σ ∈ Tr} be oriented by the geometric orientation, V =

⋃
σ∈Tr V (σ) and

for M ⊂ In and σ ⊂ ∆M there exists j ∈ M such that σ ∩ ∆M\{j} = ∅. Let
l:V → Rn be a labelling such that for M  In, if v ∈ V ∩ ri∆M , then l(v) ∈
aff {di : i /∈ M}. Let b ∈ ri∆In be a point which is not a convex combination of
less than n+ 1 elements of l(V ). Then indnl(1Cn , 1Lbn

) = (−1)n.

Proof. Conditions of Theorem 6.1 are satisfied and the proof proceeds in
a similar way as in the case of Theorem 6.6. �

Applying Theorem 6.1 to the primoid LInn (see Example 4.2 for definition)
and (u0, . . . , un) = (0, . . . , n) we get

Theorem 6.9. Let Tr be a triangulation of ∆In , the n-complex Cn={V (σ) :
σ ∈ Tr} be oriented by the geometric orientation, V =

⋃
σ∈Tr V (σ), l:V →

In. If for M  In and for a simplex σ ⊂ ∆M we have l(V (σ)) 6= M , then
indnl(1Cn , 1LInn

) = (−1)n.

Theorem 6.9 applied to the ring R = Z2 is equivalent to the van der Laan,
Talman and Yang theorem ([21, Theorem 3.6]).
Applying Theorem 6.1 to the primoid LInn (see Example 4.2 for definition)

and (u0, . . . , un) = (1, . . . , n, 0) we get

Theorem 6.10. Let Tr be a triangulation of ∆In , the n-complex Cn =
{V (σ) : σ ∈ Tr} be oriented by the geometric orientation, V =

⋃
σ∈Tr V (σ),
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l:V → In. If for M  In and for a simplex σ ⊂ ∆M we have l(V (σ)) 6=
{(i+ 1) mod (n+1) : i ∈M}, then indnl(1Cn , 1LInn ) = 1.

Theorem 6.10 is a generalization of the oriented version of the Sperner lemma
[29] since for every M  In, there is i ∈M such that (i+ 1) mod (n+1) /∈M .
In the case the ring R = Z2, the index indnl(1Cn , 1Ln) defines whether the

number of c.l. n-simplexes is even or odd. Hence, if we consider R = Z2 in
theorems of this section, we define an odd number of c.l. n-simplexes. This
implies the existence of at least one such simplex. Some of these theorems were
published in [14]–[16].

7. Multilabelling

Now we extend our definitions on n labellings. Let Cn be an n-complex on
a finite set V (|V | ≥ n) and let Cn−1 be an (n − 1)-complex consisting of all
(n − 1)-simplexes contained in some n-simplex of Cn. Let Ln be an n-primoid
on a finite set U (|U | ≥ n) properly oriented by Un. For i ∈ In, let li:V → U
be a labelling.

Let Sn = {v0, . . . , vn} ∈ Cn and a:Sn → In be a one-to-one function.
A pair (Sn, a) is called a completely labelled n-pair (c.l. n-pair for short) if
{la(v0)(v0), . . . , la(vn)(vn)} ∈ Ln. A signum of a c.l. n-pair (Sn, a) is an ele-
ment of the ring R equal to

sign (Sn, a) = orCn(v0, . . . , vn) · orLn(l
a(v0)(v0), . . . , la(vn)(vn)).

Let Sn−1 = {v1, . . . , vn} ∈ Cn−1 and a:Sn−1 → In be a one-to-one function.
A pair (Sn−1, a) is called an x-completely labelled (n − 1)-pair (x-c.l. (n − 1)-
pair for short) if {la(v1)(v1), . . . , la(vn)(vn)} ∈ Ln(x). A signum of an x-c.l.
(n− 1)-pair (Sn−1, a) is an element of the ring R equal to

sign (Sn−1, a) = orCn−1(v1, . . . , vn) · orLnx(l
a(v1)(v1), . . . , la(vn)(vn)).

Observe that the definition of the signum of a c.l. n-pair (Sn, a) (x-c.l. (n−1)-
pair (Sn−1, a)) does not depend on the linear order of elements {v0, . . . , vn} of
Sn ({v1, . . . , vn} of Sn−1). A c.l. n-pair and an x-c.l. (n − 1)-pair are called
a positive c.l. n-pair and a positive x-c.l. (n − 1)-pair (a negative c.l. n-pair
and a negative x-c.l. (n − 1)-pair) if sign (Sn, a) = 1 and sign (Sn−1, a) = 1
(sign (Sn, a) = −1 and sign (Sn−1, a) = −1), respectively.
An (n−1)-pair (Sn−1, a) is called a boundary (n−1)-pair if Sn−1 is a bound-

ary (n− 1)-simplex of Cn.
We formulate a generalization of the Bapat theorem (Theorem 5.3 of this

paper) on n+ 1 labellings:
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Theorem 7.1. Let Cn be a nonempty n-pseudomanifold on a set V coher-
ently oriented by Cn. Let Ln be an n-primoid on a set U properly oriented by
Ln, x ∈ U and li:V → U for i ∈ In. Let α+ and α− (γ+ and γ−) denote the
number of c.l. n-pairs in Cn (x-c.l. boundary pairs in Cn) which are positive
and negative, respectively. Then α+ − α− = γ+ − γ−.

Proof. We construct an n-complex CnIn on a set U×In in the following way
{(v0, i0), . . . , (vn, in)} ∈ CnIn if and only if S

n = {v0, . . . vn} ∈ Cn and ij 6= ik
for j 6= k, j, k ∈ In. A function orCnIn defined by

orCnIn
((v0, i0), . . . , (vn, in)) = orCn(v0, . . . , vn)

for ((v0, i0), . . . , (vn, in)) ∈ loCnIn is an orientation of C
n
In
.

Now we will show that CnIn is an n-pseudo-manifold coherently oriented
by orCnIn

. Consider {(v1, i1), . . . , (vn, in)} ∈ Pn(U × In) such that ij 6= ik
for j 6= k, j, k ∈ {1, . . . n}. If there exists an n-simplex in Cn containing
Sn−1 = {v1, . . . , vn}, then there exist at most two such n-simplexes, say Sn1 ,
Sn2 . Thus there exist at most two n-simplexes {(w1, j), (v1, i1), . . . , (vn, in)},
{(w2, j), (v1, i1), . . . , (vn, in)} ∈ CnIn , where w1 ∈ S

n
1 \ Sn−1, w2 ∈ Sn2 \ Sn−1,

j ∈ In, j 6= ik for k ∈ {1, . . . , n} that they induce opposite orientation on their
common face. Thus CnIn is a coherently oriented pseudomanifold. Now, ob-
serve that an n-pair ({v0, . . . , vn}, a), where a:Sn → In is a one-to-one function
(boundary (n − 1)-pair ({v1, . . . , vn}, a), where a:Sn−1 → In is a one-to-one
function) in Cn is an n-simplex {(v0, a(v0)), . . . , (vn, a(vn))} (boundary (n− 1)-
simplex {(v1, a(v1)), . . . , (vn, a(vn))}) in CnIn . Hence our theorem follows from
Theorem 5.3 immediately. �

If we apply Theorem 7.1 to the primoid Lkn (see Example 4.6 for definition)
we receive the Lee and Shih theorem ([28]), which is a generalization of the Fan
theorem on n+ 1 labellings (Theorem 5.6).

Theorem 7.2 (Lee, Shih [28]). Let Cn be a coherently oriented n-pseudoma-
nifold on V , k ≥ n and n+1 labellings li:V → {−k, . . . ,−1, 1, . . . , k} for i ∈ In
satisfying the condition li(v)+ lj(v′) 6= 0 for vertices v and v′ of an n-simplex of
Cn and i 6= j, i, j ∈ In. Let α+(j0, . . . , jn) (α−(j0, . . . , jn)) denotes the number
of n-pairs ({v0, . . . , vn}, a) in Cn, where a: {v0, . . . vn} → In is a one-to-one
function, such that

la(vi)(vi) = ji for i ∈ In
and orCn(v0, . . . , vn) = 1 (orCn(v0, . . . , vn) = −1)

and let β+(j0, . . . , jn−1) (β−(j0, . . . , jn−1)) denote the number of boundary (n−
1)-pairs ({v0, . . . , vn−1}, a) in loCnIn , where a: {v1, . . . , vn} → In is one-to-one
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function such that

la(vi)(vi) = ji for i ∈ In−1
and orCn(v0, . . . , vn−1) = 1 (orCn(v0, . . . , vn−1) = −1).

Let

α(j0, . . . , jn) = α+(j0, . . . , jn)− α−(j0, . . . , jn),
β(j0, . . . , jn−1) = β+(j0, . . . , jn−1)− β−(j0, . . . , jn−1).

Then we have:∑
0<k0<...<kn

(α(−k0, k1,−k2, k3, . . . , (−1)n+1kn) + α(k0,−k1, k2,−k3, . . . , (−1)nkn))

=
∑

0<k0<...<kn−1

β(k0,−k1, k2,−k3, . . . , (−1)n−1kn−1).

Now we apply Theorem 7.1 to the triangulation of the geometric simplex.

Theorem 7.3. Let Tr be a triangulation of ∆In , the n-complex Cn={V (σ) :
σ ∈ Tr} be oriented by the geometric orientation, V =

⋃
σ∈Tr V (σ), Ln be an n-

primoid on a set U , properly oriented by Ln, (u0, . . . , un) ∈ loLn and li:V → U
for i ∈ In. Let α+, α− denote the numbers of positive, negative c.l. pairs in
Cn, respectively. If for M  In, a simplex σ ⊂ ∆M , V (σ) = {v0, . . . , v|M |} and
a one-to-one function a:V (σ) → In, {la(v0)(v0), . . . , la(v|M|)(v|M |)} ∪ {ui : i /∈
M} /∈ Ln, then α+ − α− = (−1)n · orLn(u0, . . . , un) · n!.

Proof. It is analogous to the proof of Theorem 6.1. We embed the simplex
∆In in a larger simplex using the Scarf method [25, p. 192]. Without loss of
generality we may assume that 0 ∈ ri∆In . Let d̃i = −a·di for i ∈ In, where a > 0
is so large that ∆In ⊂ ri co {d̃0, . . . , d̃n}. Let us denote ∆̃In = co {d̃0, . . . , d̃n}.
Observe that orCn(d̃0, . . . , d̃n) = (−1)n (orCn is the geometric orientation).
Now we extend the triangulation of ∆In by joining every vertex v ∈ V ∩

∆In\{i} with the vertex d̃i and we get the triangulation of ∆̃In :

T̃r = Tr ∪
⋃
M In

⋃
σ∈Tr(∆M )

co (V (σ) ∪ {d̃i : i /∈M}).

Let Cn∼ = {V (σ) : σ ∈ T̃r}. For j ∈ In we define a labelling l̃j as an extension
of lj on

⋃
σ∈fTr V (σ) by l̃

j(d̃i) = ui for all i, j ∈ In.
Let α̃+, α̃− denote the numbers of positive, negative c.l. pairs in Cn∼, respec-

tively. Because of our assumption on li for i ∈ In there is no c.l. pair for this
new triangulation T̃r of ∆̃In and for the labellings l̃i (i ∈ In), which is not a c.l.
pair in Tr. Hence α̃+ − α̃− = α+ − α−.
By Theorem 7.1 applied to Cn∼ and x = u0 we know that α̃

+ − α̃− is equal
to γ̃+ − γ̃−, where γ̃+ − γ̃− is the number of x-c.l. boundary pairs in Cn∼.
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Observe that the only u0-c.l. (n − 1)-pairs on the boundary of ∆̃In are of the
type {(d̃1, a(d̃1)), . . . , (d̃n, a(d̃n))}, where a: {d̃1, . . . , d̃n} → In is a one-to-one
function and there is exactly n! such functions. The orientation of {d̃1, . . . , d̃n} is
the induced orientation by the geometric orientation and thus sign (d̃1, . . . , d̃n) =
(−1)n. Hence α+ − αn = (−1)n · orLn(u0, . . . , un) · n!. �

Theorem 7.4. Let Tr be a triangulation of ∆In , the n-complex Cn={V (σ) :
σ ∈ Tr} be oriented by the geometric orientation orCn , V =

⋃
σ∈Tr V (σ) and Ln

be an n-primoid on a set U , properly oriented by Ln, (u0, . . . , un) ∈ loLn. If for
i ∈ In a labelling li : V → U satisfies the ρ-boundary condition for (u0, . . . , un),
then the number of positive c.l. n-pairs minus the number of negative c.l. n-pairs
is equal to n!. In particular there is at least n! c.l. n-pairs.

Proof. The conditions of Theorem 7.3 are satisfied for (u1, . . . , un, u0). The
proof proceeds in a similar way as in the case of Theorem 6.2. �

Theorem 7.5. Let Tr be a triangulation of ∆In , the n-complex Cn={V (σ) :
σ ∈ Tr} be oriented by the geometric orientation, V =

⋃
σ∈Tr V (σ) and Ln be

an n-primoid on a set U , properly oriented by Ln, (u0, . . . , un) ∈ loLn. If for
i ∈ In a labelling li : V → U satisfies the sp-boundary condition for (u0, . . . , un),
then the number of positive c.l. n-pairs minus the number of negative c.l. n-pairs
is equal to n!. In particular there is at least n! c.l. n-pairs.

Proof. By Property 4.11(b) conditions of Theorem 7.4 are satisfied. �

Corollary 7.6. Applying Theorem 7.5 to the n-primoid:

(a) LInn , we get the Bapat theorem ([2, Theorem 1]),
(b) Lπn, we get the Lee and Shih theorem ([27, Theorem 2.1]).

In the case Ln = Lbn we say a b-balanced n-pair instead of a c.l. n-pair.
From Theorem 7.5 applied to the n-primoid Lbn and from Theorem 4.12 we

get

Corollary 7.7. Let Tr be a triangulation of ∆In = co {d0, . . . , dn}, the
complex Cn = {V (σ) : σ ∈ Tr} be oriented by the geometric orientation, V =⋃
σ∈Tr V (σ). Let b ∈ ri∆In be a point which is not a convex combination of less
than n+ 1 elements of

⋃
i∈In l

i(V ). Let li:V → Rn be a labelling (i ∈ In) such
that for M ⊂ In, if v ∈ V ∩∆M , then lj(v) ∈ cone({di : i ∈M}, b) for all j ∈ In.
Let α+, α− denote the numbers of positive, negative b-balanced n-pairs in Cn,
respectively. Then α+ − α− = n!.

From Theorem 7.3 we have

Corollary 7.8. Let Tr be a triangulation of ∆In , the n-complex Cn =
{V (σ) : σ ∈ Tr} be oriented by the geometric orientation and V =

⋃
σ∈Tr V (σ).



Combinatorial Lemmas for Oriented Complexes 407

Let forM  In and a simplex σ ⊂ ∆M there exists j ∈M such that σ∩∆M\{j} =
∅ and Ln be an n-primoid on a set U , properly oriented by Ln, (u0, . . . , un) ∈
loLn. Let α+, α− denote the numbers of positive, negative c.l. pairs in Cn,
respectively. If for every i ∈ In a labelling li : V → U satisfies the dsp-boundary
condition for (u0, . . . un), then α+ − α− = (−1)n · orLn(u0, . . . , un) · n!.

Corollary 7.9. Let Tr be a triangulation of ∆In = co {d0, . . . , dn} and the
complex Cn = {V (σ) : σ ∈ Tr} be oriented by the geometric orientation and
V =
⋃
σ∈Tr V (σ). Let l

i:V → Rn be a labelling (i ∈ In) such that for M ⊂ In, if
v ∈ V ∩∆M , then lj(v) ∈ aff {di : i ∈M} for all j ∈ In. Let b ∈ ri∆In be a point
which is not a convex combination of less than n + 1 elements of

⋃
i∈In l

i(V ).
Let α+, α− denote the numbers of positive, negative b-balanced n-pairs in Cn,
respectively. Then the numbers α+ − α− = n!.

Proof. Observe that the assumptions of Theorem 7.4 applied to the primoid
Lbn are satisfied. �

From Theorem 7.3 we have

Corollary 7.10. Let Tr be a triangulation of ∆In and the complex Cn =
{V (σ) : σ ∈ Tr} be oriented by the geometric orientation, V =

⋃
σ∈Tr V (σ) and

for M  In and a simplex σ ⊂ ∆M there exists j ∈M such that σ∩∆M\{j} = ∅.
Let li:V → Rn be a labelling (i ∈ In) such that for M  In, if v ∈ V ∩ ri∆M ,
then li(v) ∈ aff {di : i /∈ M} for all i ∈ In. Let b ∈ ri∆In be a point which is
not a convex combination of less than n+1 elements of

⋃
i∈In l(V ). Let α

+, α−

denote the numbers of positive, negative b-balanced n-pairs in Cn, respectively.
Then α+ − α− = (−1)n · n!.

Applying Theorem 7.3 to the primoid LInn (see Example 4.2 for definition)
and (u0, . . . , un) = (0, . . . , n) we get

Corollary 7.11. Let Tr be a triangulation of ∆In , the n-complex Cn =
{V (σ) : σ ∈ Tr} be oriented by the geometric orientation, V =

⋃
σ∈Tr V (σ),

li : V → In for i ∈ In. Let α+, α− denote the numbers of positive, negative
c.l. n-pairs in Cn, respectively. If for M  In, a simplex σ ⊂ ∆M , V (σ) =
{v1, . . . , v|M |} and a one-to-one function a:V (σ)→ In we have {la(v1)(v1), . . . ,
la(v|M|)(v|M |)} 6=M , then α+ − α− = (−1)n · n!.

Applying Theorem 7.3 to the primoid LInn and (u0, . . . , un) = (1, . . . , n, 0)
we get

Corollary 7.12. Let Tr be a triangulation of ∆In , the n-complex Cn =
{V (σ) : σ ∈ Tr} be oriented by the geometric orientation, V =

⋃
σ∈Tr V (σ),

li:V → In for i ∈ In. Let α+, α− denote the numbers of positive, negative
c.l. n-pairs in Cn, respectively. If for M  In, a simplex σ ⊂ ∆M , V (σ) =
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{v1, . . . , v|M |} and a one-to-one function a : V (σ)→ In we have {la(v1)(v1), . . . ,
la(v|M|)(v|M |)} 6= {(i+ 1) mod (n+1) : i ∈M}, then α+ − α− = n!.

If li = l0 for every i ∈ In, then Theorems and Corollaries 7.4–7.12 reduce to
Theorem 6.2, Theorem 6.3, Theorem 6.6, Theorems 6.7–6.10, respectively.
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[19] W. Kulpa, Poincaré and domain invariance theorem, Acta Univ. Carolin. Math. Phys.
39 (1998), 127–136.
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