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APPLICATION
OF HE’S FREQUENCY-AMPLITUDE FORMULATION
TO THE DUFFING-HARMONIC OSCILLATOR

JIE FAN

ABSTRACT. The work presents a derivation of frequency-amplitude of the
Duffing-harmonic oscillator from a formulation suggested by Ji-Huan He.
The obtained result is valid for all amplitudes, and its maximal error is less
than 2.2%.

1. Introduction

Consider the Duffing-harmonic oscillator [1]-[4], [12] as follows

d?u u? du
1.1 —_—t —— = =A —
(1.1) proi Rty u0) =4, —

Usually, it is difficult to find an accurate analytical approximation for (1.1).

(0) = 0.

Several new methods have been applied to dealing with (1.1), such as the vari-
ational iteration method [6], [16], the homotopy perturbation method [9]-[11],
[14], [17], the parameter-expanding method [10], [15], the exp-function method
[13], [18], [19] and harmonic balance based methods [1], [12].

In this work, He’s frequency-amplitude formulation [7], [8], [11] originated
from ancient Chinese mathematics was employed to solve the nonlinear oscillator.
It is a rather simple and relatively accurate way to get an analytical approximate
solution of the Duffing-harmonic nonlinear oscillator..
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2. Solution procedure

According to He’s frequency-amplitude formulation, we choose two trial-
functions (initial solutions) [11]:

ui(t) = Acost and wusq(t) = Acoswt.
Submitting the above trial-functions to (1.1) results in the following residuals:
Ri(t) = —Acost and Ry(t) = —Aw? coswt + (1 — w?) A3 cos® wt.

He’s frequency-amplitude formulation requires that [11]:

o WiRs(t2) —wiRi(t)
"~ Ra(ta) — Ri(t1)

where w; = 1 and we = w, are respectively the frequency of u; and us, and w is
the frequency of the Duffing-harmonic oscillator, ¢t; and ¢ are location points.
Generally we let

T T

A

where T} and T are periods of the trial solutions wu;(t) = Acost and us(t) =
Acoswt, respectively. In [11] N = 0, and in [5] N = 12. Setting N = 12, we
obtain

t1 =

T T: T
— Aw? COS% +(1—w2)A3COS3% —w2<—ACOS]\}) §A2

w = =
s 1 Pt Y2 (A D) 14042
Aw cos — + (1 —w?)A° cos ~ ( ACOSN> +4
ie.
§A2
w = 4
= 5
1+-A4
+4

The approximate period is

[ 4

The approximate analytical solution has a considerable accuracy by comparing
it with the numerical solution. See comparison of approximate solution u =
A coswt with the numerical solution in Figures 1-5 (exact solution — continued
line, approximate solution — dashed line).

Figures 1-5 show that the accuracy increases with the increase of the ampli-
tude A. In order to illustrate the accuracy of the approximate analytical result,
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FIGURE 1. A =0.001

FIGURE 2. A=0.1

we compare the approximate solution with the exact solution. The exact period

is [2], [12]
1
T.(A) = 4A/ du .
Jo \/A2(1 —u?) +log((1 + A%u?)/(1 + A?2))
When A — 0,
22K (—1) 7.4163
T, & —————— 4. = ——— +...
e a + 1 +
So we have
47T\/§
L __ 34 _
1%1210 T, = TA163 0.9783.
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FIGURE 4. A=10

The accuracy of 2.2% is a remarkable accuracy.

In the case A — oo, the original equation (1.1) can be reduced to

du

Its period is T'= 2. When A — oo, the approximate period is

. . | 4
AlgnooT:Algnoo%r w—}—l:%’.

It agrees exactly with the exact period.
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FIGURE 5. A = 1000

3. Conclusions

The He’s frequency-amplitude formulation is of remarkable convenience and

of excellent accuracy, it can be easily applied to other nonlinear oscillators with-

out any difficulty.
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