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APPLICATION OF HOMOTOPY PERTURBATION METHOD
TO REGULARIZATION OF SCALAR IMAGES

Qin Ma — Ru-Yi Xing — Shu-Li Mei

Abstract. The homotopy perturbation method is implemented to solve
nonlinear equations. Based on this method, a multi-step scheme is con-

structed for a kind of Hamilton–Jacobi formulations by assuming the ho-

motopy parameter is a linear function of time. Using this multi-step scheme,
a minimal surface regularization equation is solved, which designates a reg-

ularization process that doesn’t smooth the image with the same weight

in all the spatial directions. Some image denoisying examples illustrate its
effectiveness and convenience.

1. Introduction

For several years, regularization algorithms have attracted a growing interest
in the computer vision community. Isotropic linear regularization is a natural
way to smooth and simplify data and has consequently been reached by several
mathematical formulations: from the restoration scheme to the classical linear
filtering of images, all these methods lead to the same regularization behavior,
e.g. the signal is blurred little by little in an isotropic way during the PDE evolu-
tion. To overcome the limitations of linear methods leading to isotropic smooth-
ing, several nonlinear extensions of the heat equations are proposed, which can
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be classified as the Hamilton–Jacobi formulation. Comparing with other image
processing methods, the PDE based method becomes one of the major tools in
computer vision and image processing [4]. In recent years, many excellent algo-
rithms were developed such as TVD schemes, ENO and WENO schemes [14],
but almost all of these methods were based on the finite difference method. The
usual finite difference method can be executed with a narrow band-width, but
have to face the problems of numerical stability and precision [25].

The homotopy perturbation method (HPM) proposed by He [9], [11] is con-
stantly being developed and applied to solve various nonlinear problems by Ji-
Huan He [7], [17] and by others [1], [2], [5], [6], [8], [10], [12], [15], [16], [18]–[22].
Unlike other analytical perturbation methods, HPM does not depend on small
parameter which is difficult to be found. The variational iteration method was
another simple and effective method for nonlinear equations proposed by He [8],
[12], which can provide analytical approximations to a rather wide class of nonlin-
ear equations [24], [25], [3] without linearization, perturbation, or discretization
which can result in massive numerical computation.

In fact, the Hamilton–Jacobi formulation could be transformed to matrix
differential equations derived by the semi-analytical method from the PDEs. In
this paper, we try use the coupling technique of He’s VIM and HPM to solve
the matrix differential equation. The corresponding numerical result could be
obtained by the precise integration method (PIM) proposed by Zhong [25]. In
contrast to the traditional finite difference approximation, the numerical results
of PIM for a set of simultaneous linear time-invariant ODEs have computer
precision and also are free from the stiff problem.

2. Fundamental theory of coupling technique of VIM and HPM

Consider the nonlinear matrix differential equation as follows

(2.1) L(V̇,V, t) + N(V̇,V, t) = G(t)

where L is a linear operator, N a nonlinear operator and G an inhomogeneous
term, V is an n-dimensional unknown vector, the dot stands for the differential
with respect to the time t. For convenience, (2.1) can be rewritten as

(2.2) V̇−HV− F(V̇,V, t) = 0

Here H is a given n×n constant matrix, and F(V̇,V, t) is a n-dimensional non-
linear external force vector. According to the variational iteration method [24],
we can write down a correction functional as follows

Vn+1(t) = Vn(t) +
∫ t

0

λ[V̇n(τ)−HVn(τ)− F( ˙̃Vn, Ṽn, τ)] dτ
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where λ is a general Lagrange vector multiplier [24] which can be identified opti-
mally via the variational theory. The subscript n denotes the nth approximation
and Ṽn is considered as a restricted variation, i.e. δṼn = 0.

Taking the exact analytic solution of V̇−HV = 0 as the initial approxima-
tion, we have:

Vn+1(t) = Vn(t) +
∫ t

0

eH (t−τ)F( ˙̃Vn, Ṽn, τ) dτ

where the exponential matrix eHt can be calculated accurately by PIM. A linear
homotopy function for (2.2) can be constructed as

(2.3) V̇−HV− F(V̇,V, t) + ε[f0 − F(V̇,V, t)] = 0

where f0 is a known initial value vector, and ε ∈ [0, 1] is the homotopy parameter.
According to the perturbation theory, the solution of (2.3) can be expressed as
the power series expansion of ε

(2.4) V = V0 + εV1 + ε2V2 + . . .

Substituting equation (2.4) into (2.3), we have:

ε0 : V̇0 = HV0 + f0,(2.5)

ε1 : V̇1 = HV1 − f0 + f1,(2.6)

ε2 : V̇2 = HV2 + f2(2.7)

where f1 and f2 are the terms containing ε1 and ε2, respectively in the expansion
of εF(V̇,V, t). According to VIM, taking the iteration once and setting the
initial values of V1 and V2 as 0, the general solutions of (2.5)–(2.7) could be
obtained exactly. Substituting solutions of (2.5)–(2.7) into (2.4), and assuming
ε = 1, the approximate analytic solution of (2.1) can be obtained subsequently.
As the exponential matrix eHt can be calculated accurately by PIM [25], the
numerical solution of (2.1) can be obtained lastly.

3. The application of HPM in regularization
of scalar images with PDEs

A scalar image can be defined as

I :

{
Ω ⊂ Rp → R,

x→ I(x),

where x= x when p = 1, x= (x, y) when p = 2, Ω ⊂ Rp is a closed spatial
domain of dimension p, Ω is the defined domain of images. The derivative of
the image I with respect to the variable a is written as Ia = ∂I/∂a, and the
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second derivative of a scalar image I with respect to a then to b is denoted by
Iab = ∂2I/(∂a∂b).

Consider the diffusion PDE as follows

(3.1)


It=0 = Inoisy,

∂I

∂t
= div

(
φ′(‖∇I‖)
‖∇I‖

∇I

)
,

where φ = 2
√

1 + s2−2, which called Hyper-surface schemes. Of course, different
choices of function φ lead to different regularization methods.

According definitions of the image gradient ∇I and the image gradient norms
‖∇I‖, (3.1) can be rewritten as

(3.2)

{
It=0 = Inoisy,

∂I

∂t
= a(Ix, Iy)Ixx + b(Ix, Iy)Ixy + c(Ix, Iy)Iyy,

where

(3.3)



a(Ix, Iy) = 2
1 + Iy

2

(Ix
2 + Iy

2)
√

Ix
2 + Iy

2
,

b(Ix, Iy) = − 4IxIyIxy

(Ix
2 + Iy

2)
√

Ix
2 + Iy

2
,

c(Ix, Iy) = 2
1 + Ix

2

(Ix
2 + Iy

2)
√

Ix
2 + Iy

2
.

It is easy to see that a(Ix, Iy), b(Ix, Iy) and c(Ix, Iy) are decreasing functions
vanishing on edges in order to stop the diffusion. So, we can linearize these
functions with respect to the time t approximately, and the influence of this
approximation on the regularization of scalar images should be small.

Using the central difference scheme, we have

(3.4)



Ix =
I(xi+1, yj)− I(xi−1, yj)

2h
,

Iy =
I(xi, yj+1)− I(xi, yj−1)

2k
,

Ixx =
I(xi+1, yj)− 2I(xi, yj) + I(xi−1, yj)

h2
,

Iyy =
I(xi, yj+1)− 2I(xi, yj) + I(xi, yj−1)

k2
,

Ixy =
I(xi+1, yj+1)− I(xi−1, yj+1)− I(xi+1, yj−1) + I(xi−1, yj−1)

4hk
,
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where xi = x0 + ih, yj = y0 + jk. Substituting (3.4) into (3.2), a system of
nonlinear ODEs can be obtained as follows:

(3.5)
dI(xi, yj , t)

dt
= ai,j

Ii+1,j − 2Ii,j + Ii−1,j

h2

+ bi,j
Ii+1,j+1 − Ii−1,j+1 − Ii+1,j−1 + Ii−1,j−1

4hk
+ ci,j

Ii,j+1 − 2Ii,j + Ii,j−1

k2

where t ∈ [t0, t1], Ii,j denotes I(xi, yj , t0); ai,j , bi,j , ci,j denote a(Ix(xi, yj , t),
Iy(xi, yj , t)), b(Ix(xi, yj , t), Iy(xi, yj , t)) and c(Ix(xi, yj , t), Iy(xi, yj , t)), respec-
tively. Let

I =((I(x0, y0), . . . , I(xn, y0)), . . . ,

(I(x0, yj), . . . , I(xi, yj), . . . , I(xn, yj)), . . . , I(xn, ym))T ,

A =diag((a0,0, a1,0, . . . , an,0), (a0,1, a1,1, . . . , an,1), . . . , (a0,m, a1,m, . . . , an,m)),

B =diag((b0,0, b1,0, . . . , bn,0), (b0,1, b1,1, . . . , bn,1), . . . , (b0,m, b1,m, . . . , bn,m)),

C =diag((c0,0, c1,0, . . . , cn,0), (c0,1, c1,1, . . . , cn,1), . . . , (c0,m, c1,m, . . . , cn,m)),

M1 =
1
h2



−2 1 0 0 . . . 0
1 −2 1 0 . . . 0
0 1 −2 1 . . . 0
0 . . . 0 1 −2 1
...

. . . . . .
...

. . .
...

0 0 . . . 0 1 −2


(n×m)×(n×m)

M2 =
1

4hk


n−1︷ ︸︸ ︷

0 −1 0 ... 0

1 0 −1 0 ...

0 1 0 −1 0

...
. . . . . . . . .

...
0 ... 0 1 0

n︷ ︸︸ ︷
0 ... 0

0 ... 0

0 ... 0
...
. . .

...
1 0 ...

−1 0 1 0 ... 0

0 −1 0 1 0 ...

0 0 −1 0 1 0

...
...

...
. . . . . .

...
0 0 0 ... −1 0


(n×m)×(n×m)

M3 =
1
k2


n︷ ︸︸ ︷

1 0 ... 0

0 1 0 ...
...
. . .

...
. . .

0 ... 0 1

n︷ ︸︸ ︷
−2 0 ... 0

0 −2 0 ...

...
. . .

...
. . .

0 ... 0 −2

1 0 ... 0

0 1 0 ...
...
. . .

...
...

0 ... 0 1


(n×m)×(n×m)

.

And then (3.5) can be rewritten as the matrix differential equation:

d

dt
I = (AM1 + BM2 + CM3)I.
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According to HPM, we can construct the linear homotopy function as follows

(3.6)
[
dI
dt
− (A0M1 + B0M2 + C0M3)I

]
+ ε

[
dI
dt
− ((A0 −A)M1 + (B0 −B)M2 + (C0 −C)M3)I

]
= 0

where A0, B0, C0 are the known initial values, ε ∈ [0, 1] is the homotopy pa-
rameter. According to the homotopy perturbation theory, the solution of (3.6)
can be expressed as the power series expansion of ε:

(3.7) I = I0 + εI1 + ε2I2 + . . .

Substituting (3.7) into (3.6), we have:

ε0 :
dI0

dt
= (A0M1 + B0M2 + C0M3)I0,(3.8)

ε1 :
dI1

dt
= [(A−A0)M1 + (B−B0)M2 + (C−C0)M3] I1.(3.9)

Assuming ε = t/τ , t ∈ [0, τ ], A in (3.9) can be identified as [A(I0)](n×m)×(n×m)

by the definition of Taylor series. So, the solution can be obtained by multi-
step scheme, that is, we can calculate I0 from (3.8) firstly, and then obtaine the
matrix A in (3.9). Secondly, we solve (3.9) and obtain I1 by PIM. Letting ε = 1,
and substituting I0 and I1 into (3.7), the regularization image I can be obtained.

The comparison of HPM with the common difference method is shown in
Figure 1. As this system has no exact analytic solution, the solution obtained by
the Adams–Bashforth–Moulton method (ABM) which is built into Matlab 7.0
is taken as the exact solution. In the options of ABM, the scalar relative error
tolerance ’RelTol’ (1e-3 by default) is taken as 1e-6, and the vector of absolute
error tolerances ’AbsTol’ (all components 1e-6 by default) is taken as 1e-12.
Solutions obtained by ABM at specific times 3, 6, 9 are shown in Figure 1
(c1)–(c3), respectively. The corresponding solutions obtained by HPM and the
difference method (DM) are shown in Figure 1 (d1)–(d3) and Figure 1 (e1)–(e3),
respectively. It should be noted that the time step τ in HPM is the same as
in DM. Obviously, regularization results of a noisy image obtained by HPM and
ABM are similar. But in the results with the difference method, a large amount
of noise doesn’t vanish and even is enhanced. This indicates that the difference
method is invalid if a larger time step is taken.

4. Conclusion

The multi-step scheme based on HPM developed in this paper can solve non-
linear diffusion differential equations successfully. Comparison of scalar images
regularization with the hyper-surfaces schemes reveals that HPM can obtain
higher accuracy than the common difference method. Otherwise, HPM is not
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(a) (b)

(c1) (c2) (c3)

(d1) (d2) (d3)

(e1) (e2) (e3)

Figure 1. HPM and the difference method applied in regularization of
a noisy scalar image. (a) Scalar image, (b) noisy image, (c1) t = 30, (c2) t =

60, (c3) t = 90, (d1) HPM, τ = 30, 1 iteration, (d2) τ = 30, 2 iterations,
(d3) τ = 30, 3 iterations, (e1) DM, τ = 30, 1 iteration, (e2) τ = 30,

2 iterations, (e3) τ = 30, 3 iterations.
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sensitive to the time step and possesses better stability. Actually, HPM for ma-
trix differential equations has the uniform analytic solution format, and so it can
be easily used to solve various nonlinear problems.
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