A BIFURCATION RESULT OF BÖHME-MARINO TYPE FOR QUASILINEAR ELLIPTIC EQUATIONS

Elisabetta Benincasa - Annamaria Canino

Abstract. We study a variational bifurcation problem of Böhme-Marino type associated with nonsmooth functional. The existence of two branches of bifurcation is proved.

1. Introduction

Consider the quasilinear eigenvalue problem

$$
\begin{cases}-\sum_{i, j=1}^{n} D_{j}\left(a_{i j}(x, u) D_{i} u\right) & \tag{1.1}\\ \quad+\frac{1}{2} \sum_{i, j=1}^{n} D_{s} a_{i j}(x, u) D_{i} u D_{j} u-g(x, u)=\lambda u & \text { in } \Omega, \\ u=0 & \text { on } \partial \Omega,\end{cases}
$$

where Ω is a bounded open subset of \mathbb{R}^{n} and $a_{i j}, g$ satisfy suitable assumptions that will be specified later.

If $g(x, 0)=0$, it is natural to study the bifurcation problem from the trivial branch of solutions $\{(\lambda, 0): \lambda \in \mathbb{R}\}$. Since (1.1) is formally the Euler equation

2000 Mathematics Subject Classification. 35H05, 35B32, 35J50.
Key words and phrases. Böhme-Marino theorem, bifurcation branches, nonsmooth critical point theory.
of the functional $F_{\lambda}: H_{0}^{1}(\Omega) \rightarrow \mathbb{R}$ defined as

$$
F_{\lambda}(u)=\frac{1}{2} \int_{\Omega} \sum_{i, j=1}^{n} a_{i j}(x, u) D_{i} u D_{j} u d x-\int_{\Omega} G(x, u) d x-\frac{1}{2} \lambda \int_{\Omega} u^{2} d x
$$

where $G(x, s)=\int_{0}^{s} g(x, t) d t$, it is natural to expect the well known results typical of bifurcation for potential operators (see e.g. [18], [20]).

However, the feature that the coefficients $a_{i j}$ are dependent on u causes a lack of differentiability, hence the impossibility to apply standard techniques. More precisely, it is well known (see e.g. [5], [10], [21]) that, under natural growth conditions on $a_{i j}$ and g, the functional F_{λ} is continuous on $H_{0}^{1}(\Omega)$, but not locally Lipschitz, unless the $a_{i j}$'s are independent of u or $n=1$.

In the previous paper [6], Rabinowitz's theorem [19] has been extended to (1.1). Here we are interested in the other basic description of bifurcation branches, namely Böhme-Marino theorem [2], [16]. As in [6], a key ingredient in our proof is the nonsmooth critical point theory developed independently in [9], [11] and in [12], [13]. However, while in [6] the key point was a finite dimensional reduction of (1.1), here the eigenvalue problem is directly treated in the infinite dimensional setting. This allows weaker differentiability assumptions on $a_{i j}$. More precisely, hypothesis (a.2) is weaker than the corresponding assumption in [6].

Let us recall that, while the classical Böhme-Marino theorem requires the functional to be of class C^{2}, various extensions have been considered in the literature. In particular the case in which the functional is of class $C^{1,1}$ or even C^{1} has been treated in [17] and [15], respectively, while the case of variational inequalities involving the Laplace operator has been considered in [1]. However, the techniques used in these papers cannot be applied to (1.1).

The main result. Let Ω be a bounded open subset of \mathbb{R}^{n} and $a_{i j}: \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ $(1 \leq i, j \leq n)$ be such that

$$
\begin{cases}\text { for all } s \in \mathbb{R}, & a_{i j}(x, s) \text { is measurable with respect to } x \\ \text { for a.e. } x \in \Omega, & a_{i j}(x, s) \text { is of class } C^{1} \text { with respect to } s\end{cases}
$$

Suppose also that:
(a.1) for almost every $x \in \Omega$, for all $s \in \mathbb{R}$ and all $1 \leq i, j \leq n$,

$$
a_{i j}(x, s)=a_{j i}(x, s) ;
$$

(a.2) there exists a continuous function $\alpha: \mathbb{R} \rightarrow[0, \infty[$ such that, for almost every $x \in \Omega$, for all $s \in \mathbb{R}$ and all $1 \leq i, j \leq n$,

$$
\left|a_{i j}(x, s)\right| \leq \alpha(s), \quad\left|D_{s} a_{i j}(x, s)\right| \leq \alpha(s) ;
$$

(a.3) there exists a continuous function $\nu: \mathbb{R} \rightarrow] 0, \infty[$ such that, for a.e. $x \in \Omega$, for all $s \in \mathbb{R}$ and all $\xi \in \mathbb{R}^{n}$,

$$
\sum_{i, j=1}^{n} a_{i j}(x, s) \xi_{i} \xi_{j} \geq \nu(s) \sum_{i=1}^{n} \xi_{i}^{2}
$$

(a.4) for a.e. $x \in \Omega$, for all $s \in \mathbb{R}$ and all $\xi \in \mathbb{R}^{n}$,

$$
\sum_{i, j=1}^{n} s D_{s} a_{i j}(x, s) \xi_{i} \xi_{j} \geq 0
$$

Finally, let $g: \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ be a function such that

$$
\left\{\begin{array}{l}
\text { for all } s \in \mathbb{R}, \quad g(x, s) \text { is measurable with respect to } x \\
\text { for a.e. } x \in \Omega, \quad g(x, s) \text { is of class } C^{1} \text { with respect to } s
\end{array}\right.
$$

Suppose also that:
(g.1) for a.e. $x \in \Omega, g(x, 0)=0$;
(g.2) there exists a continuous function $\beta: \mathbb{R} \rightarrow[0, \infty[$ such that, for a.e. $x \in$ Ω and for all $s \in \mathbb{R}$,

$$
\left|D_{s} g(x, s)\right| \leq \beta(s)
$$

Consider the problem

$$
\left\{\begin{array}{l}
(\lambda, u) \in \mathbb{R} \times\left(H_{0}^{1}(\Omega) \cap L^{\infty}(\Omega)\right), \tag{1.2}\\
\int_{\Omega} \sum_{i, j=1}^{n} a_{i j}(x, u) D_{i} u D_{j} v d x+\frac{1}{2} \int_{\Omega} \sum_{i, j=1}^{n} D_{s} a_{i j}(x, u) D_{i} u D_{j} u v d x \\
\quad-\int_{\Omega} g(x, u) v d x=\lambda \int_{\Omega} u v d x \quad \text { for all } v \in H_{0}^{1}(\Omega) \cap L^{\infty}(\Omega)
\end{array}\right.
$$

Remark 1.1. By assumption (g.1), $(\lambda, 0)$ is a solution of (1.1) for all $\lambda \in \mathbb{R}$.
Definition 1.2. A real number μ is said to be a bifurcation value of (1.2) if there exists a sequence $\left(\lambda_{h}, u_{h}\right)$ of solutions of (1.2) with $u_{h} \neq 0$ such that $\lambda_{h} \rightarrow \mu$ and $u_{h} \rightarrow 0$ strongly in $H_{0}^{1}(\Omega)$ and in $L^{\infty}(\Omega)$.

Let us introduce the linear operator $A: H_{0}^{1}(\Omega) \rightarrow H^{-1}(\Omega)$ such that

$$
\langle A u, v\rangle=\int_{\Omega} \sum_{i, j=1}^{n} a_{i j}(x, 0) D_{i} u D_{j} v d x-\int_{\Omega} D_{s} g(x, 0) u v d x .
$$

A real number μ is said to be an eigenvalue of A if the equation $A u=\mu u$ admits a nontrivial solution u.

Proposition 1.3. If μ is a bifurcation value of (1.2), then μ is an eigenvalue of A.

Let us state the main result of the paper.

Theorem 1.4. Suppose that μ is an eigenvalue of A. Then μ is a bifurcation value of (1.2). Moreover, there exists $\varrho_{0}>0$ such that:
(a) for each $\left.\varrho \in] 0, \varrho_{0}\right]$, there exist at least two solutions $\left(\lambda_{k}(\varrho), u_{k}(\varrho)\right)$, $k=1,2$, of (1.2) with $u_{1}(\varrho) \neq u_{2}(\varrho)$ and

$$
\int_{\Omega}\left|u_{k}(\varrho)\right|^{2} d x=\varrho^{2}
$$

(b) as $\varrho \rightarrow 0$, we have $\lambda_{k}(\varrho) \rightarrow \mu$ and $u_{k}(\varrho) \rightarrow 0$ strongly in $H_{0}^{1}(\Omega)$ and in $L^{\infty}(\Omega)$.

Proposition 1.3 and Theorem 1.4 will be proved in the last section. In the next section we recall the tools of nonsmooth critical point theory we need, while in Section 3 we prove Proposition 1.3 and Theorem 1.4 in a particular case, more suitable for a direct variational approach.

2. Recall of nonsmooth analysis

In this section we recall from [4], [7], [9], [11] some notions and results of nonsmooth critical point theory we shall use to describe the variational nature of problem (1.2).

Let X denote a metric space endowed with the metric d and $f: X \rightarrow \mathbb{R} \cup\{\infty\}$ a function. We also consider the space $X \times \mathbb{R}$ endowed with the metric

$$
d((u, s),(v, t))=\left(d(u, v)^{2}+(s-t)^{2}\right)^{1 / 2}
$$

Set epi $(f)=\{(u, s) \in X \times \mathbb{R}: f(u) \leq s\}$ and, for every $c \in \mathbb{R}, f^{c}=\{u \in X$: $f(u) \leq c\}$. Finally, we denote by $B_{r}(u)$ the open ball of center u and radius r.

The next definition is taken from [4, Definition 2.1]. For an equivalent approach, see [9], [11] and, when f is continuous, [13].

Definition 2.1. For every $u \in X$ with $f(u)<\infty$, we denote by $|d f|(u)$ the supremum of the σ 's in $[0, \infty[$ such that there exist $\delta>0$ and a continuous map

$$
H:\left(B_{\delta}(u, f(u)) \cap \operatorname{epi}(f)\right) \times[0, \delta] \rightarrow X
$$

satisfying

$$
d(H((v, s), t), v) \leq t, \quad f(H((v, s), t)) \leq s-\sigma t
$$

whenever $(v, s) \in B_{\delta}(u, f(u)) \cap \operatorname{epi}(f)$ and $t \in[0, \delta]$. The extended real number $|d f|(u)$ is called the weak slope of f at u.

Definition 2.2. A point $u \in X$ with $f(u)<\infty$ is said to be (lower) critical for f, if $|d f|(u)=0$. A real number c is said to be a (lower) critical value for f, if there exists $u \in X$ such that $f(u)=c$ and $|d f|(u)=0$. For every $c \in \mathbb{R}$, we set $K_{c}=\{u \in X: f(u)=c,|d f|(u)=0\}$.

Definition 2.3. Given $c \in \mathbb{R}$, we say that f satisfies $(\mathrm{PS})_{c}$, i.e. the PalaisSmale condition at level c, if from every sequence $\left(u_{h}\right)$ in X, with $f\left(u_{h}\right) \rightarrow c$ and $|d f|\left(u_{h}\right) \rightarrow 0$ as $h \rightarrow \infty$, it is possible to extract a subsequence $\left(u_{h_{k}}\right)$ converging in X.

Definition 2.4. Let Y be a closed subset of X. For every closed subset A of X, we denote by $\operatorname{cat}_{X, Y} A$ the least integer $n \geq 0$ such that A can be covered by $n+1$ open subsets U_{0}, \ldots, U_{n} of X with the following properties:
(a) there exists a deformation $K: X \times[0,1] \rightarrow X$ such that $K(Y \times[0,1]) \subset Y$ and $K\left(U_{0} \times\{1\}\right) \subset Y$ (if $Y=\emptyset$, we mean that U_{0} must be empty);
(b) for $1 \leq h \leq n$, each U_{h} is contractible in X.

If no such integer n exists, we set $\operatorname{cat}_{X, Y} A=\infty$. Finally, to shorten notations, we put cat $X_{X} A=\operatorname{cat}_{X, \emptyset} A$.

For the next result, we refer the reader to [7, Theorem 1.4.9].
Theorem 2.5. Assume that X is complete and that $f: X \rightarrow \mathbb{R}$ is continuous. Let $-\infty<a<b<\infty$ and let us suppose that, for every $c \in[a, b]$, the function f satisfies $(\mathrm{PS})_{c}$. If cat ${ }_{X, f^{a}} f^{b} \geq k$ with $k \in \mathbb{N}$, then there exist $a \leq c_{1} \leq \ldots \leq$ $c_{k} \leq b$ such that each c_{n} is a critical value of f. Moreover, if $c_{m}=\ldots=c_{n}$ for some $m<n$, we have cat ${ }_{X} K_{c_{m}} \geq n-m+1$.

Definition 2.6. The metric space X is said to be weakly locally contractible, if every $u \in X$ admits a neighbourhood U contractible in X.

For the next result, see [7, Theorem 1.4.11].
Proposition 2.7. Assume that X is weakly locally contractible and let A be a closed subset of X. Then A contains at least cat ${ }_{X} A$ elements.

Finally, we recall from [4] some notions and results which will help in the evaluation of the weak slope. Assume now that X is a Banach space.

Definition 2.8. Let $u \in X$ with $f(u)<\infty$. For every $v \in X$ and $\varepsilon>0$, let $f_{\varepsilon}^{0}(u ; v)$ be the infimum of the r 's in \mathbb{R} such that there exist $\delta>0$ and a continuous map

$$
\left.\left.V:\left(B_{\delta}(u, f(u)) \cap \operatorname{epi}(f)\right) \times\right] 0, \delta\right] \rightarrow B_{\varepsilon}(v)
$$

satisfying

$$
f(z+t V((z, s), t)) \leq s+r t
$$

whenever $(z, s) \in B_{\delta}(u, f(u)) \cap \operatorname{epi}(f)$ and $\left.\left.t \in\right] 0, \delta\right]$ (we agree that $\inf \emptyset=\infty$). Let also

$$
f^{0}(u ; v)=\sup _{\varepsilon>0} f_{\varepsilon}^{0}(u ; v)
$$

We say that $f^{0}(u ; v)$ is the generalized directional derivative of f at u with respect to v.

Definition 2.9. For every $u \in X$ with $f(u)<\infty$, we put

$$
\partial f(u)=\left\{w \in X^{*}:\langle w, v\rangle \leq f^{0}(u ; v) \text { for all } v \in X\right\}
$$

The set $\partial f(u)$ is called the subdifferential of f at u.
For the next result, we refer the reader to [4, Theorem 4.13].
Theorem 2.10. For every $u \in X$ with $f(u)<\infty$, we have

$$
\begin{gathered}
\text { if }|d f|(u)<\infty \text { then } \partial f(u) \neq \emptyset, \\
\text { if }|d f|(u)<\infty \text { then }|d f|(u) \geq \min \{\|w\|: w \in \partial f(u)\} .
\end{gathered}
$$

In particular, if $|d f|(u)=0$, we have $0 \in \partial f(u)$.
We end the section with a Lagrange multiplier theorem. If $C \subset X$, we denote by I_{C} the indicator function of C, namely

$$
I_{C}(u)= \begin{cases}0 & \text { if } u \in C \\ \infty & \text { if } u \in X \backslash C\end{cases}
$$

Definition 2.11. Let $u \in X$ with $f(u)<\infty$. For every $v \in X$ and $\varepsilon>0$ let $\bar{f}_{\varepsilon}^{0}(u ; v)$ be the infimum of the r 's in \mathbb{R} such that there exist $\delta>0$ and a continuous map

$$
H:\left(B_{\delta}(u, f(u)) \cap \operatorname{epi}(f)\right) \times[0, \delta] \rightarrow E
$$

satisfying $H((z, s), 0)=z$,

$$
\left\|\frac{H\left((z, s), t_{1}\right)-H\left((z, s), t_{2}\right)}{t_{1}-t_{2}}-v\right\|<\varepsilon
$$

whenever $(z, s) \in B_{\delta}(u, f(u)) \cap \operatorname{epi}(f)$ and $t, t_{1}, t_{2} \in[0, \delta]$ with $t_{1} \neq t_{2}$ (we agree that $\inf \emptyset=\infty)$. Let also

$$
\bar{f}^{0}(u ; v)=\sup _{\varepsilon>0} \bar{f}_{\varepsilon}^{0}(u ; v)
$$

Theorem 2.12. Let U be an open subset of X with ∂U of class C^{1}, let $u \in \partial U$ with $f(u)<\infty$ and let $\nu(u) \in X^{*} \backslash\{0\}$ be an outer normal vector to U at u. Then the following facts hold:
(a) if there exist $v_{-}, v_{+} \in X$ such that $\left\langle\nu(u), v_{-}\right\rangle<0<\left\langle\nu(u), v_{+}\right\rangle$and $\bar{f}^{0}\left(u ; v_{ \pm}\right)<\infty$, we have

$$
\begin{gathered}
\left(f+I_{\partial U}\right)^{0}(u ; v) \leq f^{0}(u ; v) \quad \text { for every } v \in X \text { with }\langle\nu(u), v\rangle=0 \\
\partial\left(f+I_{\partial U}\right)(u) \subset \partial f(u)+\{\lambda \nu(u): \lambda \in \mathbb{R}\}
\end{gathered}
$$

(b) if there exists $v_{0} \in X$ such that $\left\langle\nu(u), v_{0}\right\rangle<0$ and $f^{0}\left(u ; v_{0}\right)<\infty$, we have

$$
\begin{gathered}
\left(f+I_{\bar{U}}\right)^{0}(u ; v) \leq f^{0}(u ; v) \quad \text { for every } v \in X \text { with }\langle\nu(u), v\rangle \leq 0 \\
\partial\left(f+I_{\bar{U}}\right)(u) \subset \partial f(u)+\{\eta \nu(u): \eta \geq 0\}
\end{gathered}
$$

Proof. For assertion (a) we refer the reader to [4, Corollary 5.9]. Assertion (b) is a particular case of [4, Corollary 5.4].

3. The case with uniform bounds

Throughout this section, we consider the particular case in which $a_{i j}$ and g satisfy (a.1), (a.4), (g.1) and the estimates

$$
\begin{gather*}
\left|a_{i j}(x, s)\right| \leq \alpha, \quad\left|D_{s} a_{i j}(x, s)\right| \leq \alpha, \\
\sum_{i, j=1}^{n} a_{i j}(x, s) \xi_{i} \xi_{j} \geq \nu \sum_{i=1}^{n} \xi_{i}^{2}
\end{gather*}
$$

$$
\left|D_{s} g(x, s)\right| \leq \beta
$$

for some some constants $\alpha, \beta \geq 0$ and $\nu>0$.
Proposition 3.1. The assertion of Proposition 1.3 holds under these more restrictive assumptions.

Theorem 3.2. The assertion of Theorem 1.4 holds under these more restrictive assumptions.

The section will be devoted to the proofs of Proposition 3.1 and Theorem 3.2. First of all, define the continuous functionals $f, f_{\varrho}: H_{0}^{1}(\Omega) \rightarrow \mathbb{R}(\varrho>0)$ by

$$
f(u)=\int_{\Omega} \sum_{i, j=1}^{n} a_{i j}(x, u) D_{i} u D_{j} u d x-2 \int_{\Omega} G(x, u) d x, \quad f_{\varrho}(u)=\frac{f(\varrho u)}{\varrho^{2}}
$$

where $G(x, s)=\int_{0}^{s} g(x, t) d t$, and the smooth quadratic form $f_{0}: H_{0}^{1}(\Omega) \rightarrow \mathbb{R}$ by

$$
f_{0}(u)=\langle A u, u\rangle=\int_{\Omega} \sum_{i, j=1}^{n} a_{i j}(x, 0) D_{i} u D_{j} u d x-\int_{\Omega} D_{s} g(x, 0) u^{2} d x
$$

By Definition 2.1, it is easy to verify that $\left|d f_{\varrho}\right|(u)=\frac{1}{\varrho}|d f|(\varrho u)$. Moreover, by (a. 2^{\prime}) and (g. 2^{\prime}) the functionals f and f_{ϱ} are differentiable at any $u \in H_{0}^{1}(\Omega)$ with respect to any $v \in H_{0}^{1}(\Omega) \cap L^{\infty}(\Omega)$.

Let μ be an eigenvalue of A, let V_{0} be the associated eigenspace and let

$$
V=\left\{v \in H_{0}^{1}(\Omega): \int_{\Omega} v w d x=0, \text { for all } w \in V_{0}\right\}
$$

Let us decompose V as $V_{+} \oplus V_{-}$, where V_{+}is the closed subspace of $H_{0}^{1}(\Omega)$ spanned by the eigenvectors associated to the eigenvalues λ_{j} with $\lambda_{j}>\mu$ and V_{-}is the subspace of $H_{0}^{1}(\Omega)$ spanned by the eigenvectors associated to the eigenvalues λ_{j} with $\lambda_{j}<\mu$. Let us denote by P_{0}, P_{-}and P_{+}the orthogonal projections, with respect to the scalar product of $L^{2}(\Omega)$, on V_{0}, V_{-}and V_{+}, respectively. Let us recall that the decomposition $H_{0}^{1}(\Omega)=V_{-} \oplus V_{0} \oplus V_{+}$is orthogonal both with respect to the scalar product of $L^{2}(\Omega)$ and with respect to the bilinear form $\langle A u, v\rangle$. Moreover, $V_{-} \oplus V_{0}$ is finite dimensional and contained in $H_{0}^{1}(\Omega) \cap L^{\infty}(\Omega)$.

We also set

$$
S=\left\{u \in H_{0}^{1}(\Omega): \int_{\Omega}|u|^{2} d x=1\right\}, \quad M=\left\{u \in S: \int_{\Omega}\left|P_{0} u\right|^{2} d x \geq \frac{1}{4}\right\}
$$

and denote by $\widetilde{f}_{\varrho}(\varrho \geq 0)$ the restriction of f_{ϱ} to M. Clearly, M is a submanifold with boundary in $H_{0}^{1}(\Omega)$ with

$$
\partial M=\left\{u \in S: \int_{\Omega}\left|P_{0} u\right|^{2} d x=\frac{1}{4}\right\} .
$$

Lemma 3.3. The following facts hold:
(a) if $\varrho_{h} \rightarrow 0$ and $u_{h} \rightarrow u$ strongly in $H_{0}^{1}(\Omega)$, then

$$
f_{0}(u)=\lim _{h} f_{\varrho_{h}}\left(u_{h}\right)
$$

(b) if $\varrho_{h} \rightarrow 0$ and $u_{h} \rightarrow u$ weakly in $H_{0}^{1}(\Omega)$, then

$$
f_{0}(u) \leq \liminf _{h} f_{\varrho_{h}}\left(u_{h}\right)
$$

Proof. The assertions follow from [6, Theorem 2.2].
LEmma 3.4. For each $\varepsilon>0$ small enough, there exists $\varrho_{0}>0$ such that, for every $\left.\varrho \in] 0, \varrho_{0}\right]$, one has

$$
\operatorname{cat}_{\tilde{f}_{\varrho}^{\mu+2 \varepsilon}, \widetilde{f}_{\varrho}^{\mu-\varepsilon}} \widetilde{f}_{\varrho}^{\mu+\varepsilon} \geq 2
$$

Proof. If $\varepsilon>0$ is small enough, there exist $0<\varepsilon_{1}<\varepsilon_{0}$ such that $M_{0} \neq \emptyset$ and

$$
M_{0} \cap\left(V_{-} \oplus V_{0}\right) \subset \widetilde{f}_{0}^{\mu-3 \varepsilon / 2} \subset \widetilde{f}_{0}^{\mu-\varepsilon} \subset M_{1}
$$

where

$$
M_{0}=\left\{u \in M: \int_{\Omega}\left|P_{-} u\right|^{2} d x \geq \varepsilon_{0}^{2}\right\}, \quad M_{1}=\left\{u \in M: \int_{\Omega}\left|P_{-} u\right|^{2} d x>\varepsilon_{1}^{2}\right\}
$$

It is easy to check that the inclusion map

$$
i:\left(M \cap\left(V_{-} \oplus V_{0}\right), M_{0} \cap\left(V_{-} \oplus V_{0}\right)\right) \rightarrow\left(M, M_{1}\right)
$$

is a homotopy equivalence. Let π be a homotopy inverse.

We claim that, if $\varrho_{0}>0$ is small enough, then for every $\left.\left.\varrho \in\right] 0, \varrho_{0}\right]$ we have

$$
\begin{align*}
M_{0} \cap\left(V_{-} \oplus V_{0}\right) & \subset \widetilde{f}_{\varrho}^{\mu-\varepsilon} \subset M_{1} \tag{3.1}\\
M \cap\left(V_{-} \oplus V_{0}\right) & \subset \widetilde{f}_{\varrho}^{\mu+\varepsilon} \tag{3.2}
\end{align*}
$$

Actually, since $M_{0} \cap\left(V_{-} \oplus V_{0}\right)$ and $M \cap\left(V_{-} \oplus V_{0}\right)$ are compact, (3.2) and the first inclusion in (3.1) follow from (a) of Lemma 3.3.

To prove the second inclusion in (3.1), assume by contradiction that $\varrho_{h} \rightarrow 0$ and $u_{h} \in \widetilde{f}_{\varrho_{h}}^{\mu-\varepsilon} \backslash M_{1}$. Since M is bounded in $L^{2}(\Omega)$, from (g. $\left.2^{\prime}\right)$ and (a. $\left.3^{\prime}\right)$ we have that u_{h} is bounded also in $H_{0}^{1}(\Omega)$, hence weakly convergent, up to a subsequence, to some $u \in M \backslash M_{1}$. From (b) of Lemma 3.3 we deduce that $\widetilde{f}_{0}(u) \leq \mu-\varepsilon$ and a contradiction follows.

Now, if we consider the inclusion maps

$$
\begin{gathered}
i_{1}:\left(M \cap\left(V_{-} \oplus V_{0}\right), M_{0} \cap\left(V_{-} \oplus V_{0}\right)\right) \rightarrow\left(\tilde{f}_{\varrho}^{\mu+2 \varepsilon}, \widetilde{f}_{\varrho}^{\mu-\varepsilon}\right), \\
i_{2}:\left(\tilde{f}_{\varrho}^{\mu+2 \varepsilon}, \widetilde{f}_{\varrho}^{\mu-\varepsilon}\right) \rightarrow\left(M, M_{1}\right) .
\end{gathered}
$$

We have that $\left(\pi \circ i_{2}\right) \circ i_{1}$ is homotopic to the identity map of $\left(M \cap\left(V_{-} \oplus V_{0}\right), M_{0} \cap\right.$ $\left.\left(V_{-} \oplus V_{0}\right)\right)$. Since $i_{1}^{-1}\left(\widetilde{f}_{\varrho}^{\mu+\varepsilon}\right)=M \cap\left(V_{-} \oplus V_{0}\right)$, from [7, Theorem 1.4.5] it follows

$$
\operatorname{cat}_{\tilde{f}_{\varrho}^{\mu+2 \varepsilon}, \widetilde{f}_{\varrho}^{\mu-\varepsilon}} \widetilde{f}_{\varrho}^{\mu+\varepsilon} \geq \operatorname{cat}_{M \cap\left(V_{-} \oplus V_{0}\right), M_{0} \cap\left(V_{-} \oplus V_{0}\right)} M \cap\left(V_{-} \oplus V_{0}\right)
$$

On the other hand, the pair $\left(M \cap\left(V_{-} \oplus V_{0}\right), M_{0} \cap\left(V_{-} \oplus V_{0}\right)\right)$ is homotopically equivalent to the pair $\left(\mathbb{R}^{m} \times S^{n-1}, S^{m-1} \times S^{n-1}\right)$, where $m=\operatorname{dim} V_{-}$and $n=$ $\operatorname{dim} V_{0}$.

If $n \geq 2$, it is well known that there exist

$$
\begin{gathered}
z_{1} \in H_{m}\left(\mathbb{R}^{m} \times S^{n-1}, S^{m-1} \times S^{n-1}\right) \backslash\{0\} \\
z_{2} \in H_{m+n-1}\left(\mathbb{R}^{m} \times S^{n-1}, S^{m-1} \times S^{n-1}\right) \\
\omega \in H^{n-1}\left(\mathbb{R}^{m} \times S^{n-1}\right)
\end{gathered}
$$

such that $z_{1}=\omega \cap z_{2}$ (see e.g. [15, p. 347]). From [7, Theorem 1.4.8] we deduce that

$$
\begin{equation*}
\operatorname{cat}_{\mathbb{R}^{m} \times S^{n-1}, S^{m-1} \times S^{n-1}} \mathbb{R}^{m} \times S^{n-1} \geq 2 \tag{3.3}
\end{equation*}
$$

and the assertion follows. By the way, equality holds in (3.3).
If $n=1$, we have that $S^{n-1}=\{-1,1\}$ is disconnected and the fact that

$$
\operatorname{cat}_{\mathbb{R}^{m} \times S^{n-1}, S^{m-1} \times S^{n-1}} \mathbb{R}^{m} \times S^{n-1}=2
$$

can be seen directly.

Lemma 3.5. For every $u \in M$ with $\left|d \widetilde{f}_{\varrho}\right|(u)<\infty$, there exist $\lambda \in \mathbb{R}, \eta \geq 0$ and $w \in H^{-1}(\Omega)$ such that $\|w\| \leq\left|d \widetilde{f}_{\varrho}\right|(u) / 2$ and

$$
\begin{gather*}
\eta\left(\int_{\Omega}\left|P_{0} u\right|^{2} d x-\frac{1}{4}\right)=0 \tag{3.4}\\
\int_{\Omega} \sum_{i, j=1}^{n} a_{i j}(x, \varrho u) D_{i} u D_{j} v d x+\frac{1}{2} \varrho \int_{\Omega} \sum_{i, j=1}^{n} D_{s} a_{i j}(x, \varrho u) D_{i} u D_{j} u v d x \tag{3.5}\\
-\frac{1}{\varrho} \int_{\Omega} g(x, \varrho u) v d x=\lambda \int_{\Omega} u v d x+\eta \int_{\Omega} P_{0} u v d x+\langle w, v\rangle
\end{gather*}
$$

for all $v \in H_{0}^{1}(\Omega) \cap L^{\infty}(\Omega)$.
Proof. By [4, Theorem 6.1], for every $u \in H_{0}^{1}(\Omega)$, we have

$$
\begin{equation*}
f_{\varrho}^{0}(u ; v) \leq \bar{f}_{\varrho}^{0}(u ; v)<\infty \quad \text { for all } v \in C_{c}^{\infty}(\Omega) \tag{3.6}
\end{equation*}
$$

and if $\partial f_{\varrho}(u) \neq \emptyset$ then
$-\sum_{i, j=1}^{n} D_{j}\left(a_{i j}(x, \varrho u) D_{i} u\right)+\frac{1}{2} \varrho \sum_{i, j=1}^{n} D_{s} a_{i j}(x, \varrho u) D_{i} u D_{j} u-\frac{1}{\varrho} g(x, \varrho u) \in H^{-1}(\Omega)$
in the sense of distributions. If $\partial f_{\varrho}(u) \neq \emptyset$ then

$$
\begin{align*}
& \partial f_{\varrho}(u)=\left\{-2 \sum_{i, j=1}^{n} D_{j}\left(a_{i j}(x, \varrho u) D_{i} u\right)\right. \tag{3.7}\\
&\left.+\varrho \sum_{i, j=1}^{n} D_{s} a_{i j}(x, \varrho u) D_{i} u D_{j} u-\frac{2}{\varrho} g(x, \varrho u)\right\}
\end{align*}
$$

Since, for every $u \in S$, there exist $v_{-}, v_{+} \in C_{c}^{\infty}(\Omega)$ such that

$$
\int_{\Omega} u v_{-} d x>0>\int_{\Omega} u v_{+} d x
$$

from (3.6) and (a) of Theorem 2.12 we deduce that
(3.8) $\quad\left(f_{\varrho}+I_{S}\right)^{0}(u ; v) \leq f_{\varrho}^{0}(u ; v) \quad$ for every $v \in H_{0}^{1}(\Omega)$ with $\int_{\Omega} u v d x=0$,

$$
\begin{equation*}
\partial\left(f_{\varrho}+I_{S}\right)(u) \subset \partial f_{\varrho}(u)+\{-\lambda u: \lambda \in \mathbb{R}\} \tag{3.9}
\end{equation*}
$$

Finally, if we set

$$
U=\left\{u \in H_{0}^{1}(\Omega): \int_{\Omega}\left|P_{0} u\right|^{2} d x>\frac{1}{4}\right\}
$$

for every $u \in \partial M$, the open sets

$$
\begin{aligned}
& \left\{v \in H_{0}^{1}(\Omega): \int_{\Omega} P_{0} u v d x>0, \int_{\Omega} u v d x>0\right\} \\
& \left\{v \in H_{0}^{1}(\Omega): \int_{\Omega} P_{0} u v d x>0, \int_{\Omega} u v d x<0\right\}
\end{aligned}
$$

are not empty. Therefore, there exists $v_{0} \in C_{c}^{\infty}(\Omega)$ such that

$$
\int_{\Omega} P_{0} u v_{0} d x>0, \quad \int_{\Omega} u v_{0} d x=0
$$

From (3.6), (3.8) and (b) of Theorem 2.12 we deduce that, for every $u \in \partial M$,

$$
\begin{equation*}
\partial\left(f_{\varrho}+I_{S}+I_{\bar{U}}\right)(u) \subset \partial\left(f_{\varrho}+I_{S}\right)(u)+\left\{-\eta P_{0} u: \eta \geq 0\right\} . \tag{3.10}
\end{equation*}
$$

Now let $u \in M$ with $\left|d \widetilde{f}_{\varrho}\right|(u)<\infty$. From Definition 2.1 it easily follows that $\left|d \widetilde{f}_{\varrho}\right|(u)=\left|d\left(f_{\varrho}+I_{S}+I_{\bar{U}}\right)\right|(u)$. By Theorem 2.10 there exists $w \in H^{-1}(\Omega)$ with $2 w \in \partial\left(f_{\varrho}+I_{S}+I_{\bar{U}}\right)(u)$ and $\|2 w\| \leq\left|d \widetilde{f}_{\varrho}\right|(u)$. If $u \in \partial M$, by (3.7), (3.9) and (3.10) we find $\lambda \in \mathbb{R}$ and $\eta \geq 0$ such that

$$
\begin{aligned}
w= & -\sum_{i, j=1}^{n} D_{j}\left(a_{i j}(x, \varrho u) D_{i} u\right) \\
& +\frac{\varrho}{2} \sum_{i, j=1}^{n} D_{s} a_{i j}(x, \varrho u) D_{i} u D_{j} u-\frac{1}{\varrho} g(x, \varrho u)-\lambda u-\eta P_{0} u .
\end{aligned}
$$

We deduce (3.4) and (3.5), provided that $v \in C_{c}^{\infty}(\Omega)$. An easy approximation argument then shows that (3.5) holds.

If $u \notin \partial M$, we have $\partial\left(f_{\varrho}+I_{S}+I_{\bar{U}}\right)(u)=\partial\left(f_{\varrho}+I_{S}\right)(u)$, as the notion of subdifferential is local, and the assertion follows in a similar way.

Lemma 3.6. There exists $\delta>0$ such that
(3.11) for all $\varrho \in] 0, \delta]$, for all $u \in \partial M:$ if $\left|\widetilde{f}_{\varrho}(u)-\mu\right| \leq \delta$ then $\left|d \widetilde{f}_{\varrho}\right|(u) \geq \delta$.

Proof. By contradiction, let $\varrho_{h} \rightarrow 0$ and $u_{h} \in \partial M$ with $\widetilde{f}_{\varrho_{h}}\left(u_{h}\right) \rightarrow \mu$ and $\left|d \widetilde{f}_{\varrho_{h}}\right|\left(u_{h}\right) \rightarrow 0$. Since M is bounded in $L^{2}(\Omega),\left(\mathrm{g} .2^{\prime}\right)$ and (a.3') imply that (u_{h}) is bounded in $H_{0}^{1}(\Omega)$. Up to a subsequence, $\left(u_{h}\right)$ is convergent to some $u \in \partial M$ weakly in $H_{0}^{1}(\Omega)$ and strongly in $L^{2}(\Omega)$. By (b) of Lemma 3.3 we have $\widetilde{f}_{0}(u) \leq \mu$. It follows that $P_{-} u \neq 0$.

By Lemma 3.5 there exist $w_{h} \in H^{-1}(\Omega)$ with $w_{h} \rightarrow 0, \lambda_{h} \in \mathbb{R}$ and $\eta_{h} \geq 0$ satisfying

$$
\begin{align*}
& \quad \int_{\Omega} \sum_{i, j=1}^{n} a_{i j}\left(x, \varrho_{h} u_{h}\right) D_{i} u_{h} D_{j} v d x \tag{3.12}\\
& +\frac{\varrho_{h}}{2} \int_{\Omega} \sum_{i, j=1}^{n} D_{s} a_{i j}\left(x, \varrho_{h} u_{h}\right) D_{i} u_{h} D_{j} u_{h} v d x-\frac{1}{\varrho_{h}} \int_{\Omega} g\left(x, \varrho_{h} u_{h}\right) v d x \\
& =\lambda_{h} \int_{\Omega} u_{h} v d x+\eta_{h} \int_{\Omega} P_{0} u_{h} v d x+\left\langle w_{h}, v\right\rangle
\end{align*}
$$

for all $v \in H_{0}^{1}(\Omega) \cap L^{\infty}(\Omega)$. Since V_{-}is a finite dimensional subspace of $H_{0}^{1}(\Omega) \cap$ $L^{\infty}(\Omega)$, we have that $\left(P_{-} u_{h}\right)$ is strongly convergent to $P_{-} u$ both in $H_{0}^{1}(\Omega)$ and in $L^{\infty}(\Omega)$. If we put $v=P_{-} u_{h}$ in (3.12), we get that $\left(\lambda_{h}\right)$ is bounded. If we put $v=P_{0} u_{h}$ in (3.12), we deduce in a similar way that also $\left(\eta_{h}\right)$ is bounded. Up to a subsequence, we may assume that $\lambda_{h} \rightarrow \lambda$ and $\eta_{h} \rightarrow \eta \geq 0$.

By an easy adaptation of [8, Lemma 5.1] we have

$$
\begin{array}{rlr}
\lim _{h} \frac{1}{\varrho_{h}} g\left(x, \varrho_{h} u_{h}\right) & =D_{s} g(x, 0) u & \text { strongly in } L^{2}(\Omega) \\
\lim _{h} \frac{1}{\varrho_{h}^{2}} G\left(x, \varrho_{h} u_{h}\right) & =\frac{1}{2} D_{s} g(x, 0) u^{2} & \text { strongly in } L^{1}(\Omega) \tag{3.14}
\end{array}
$$

Passing to the limit in (3.12) as $h \rightarrow \infty$ and taking into account (3.13), we get

$$
\begin{aligned}
\langle A u, v\rangle & =\int_{\Omega} \sum_{i, j=1}^{n} a_{i j}(x, 0) D_{i} u D_{j} v d x-\int_{\Omega} D_{s} g(x, 0) u v d x \\
& =\lambda \int_{\Omega} u v d x+\eta \int_{\Omega} P_{0} u v d x
\end{aligned}
$$

for every $v \in H_{0}^{1}(\Omega) \cap L^{\infty}(\Omega)$, hence by density for every $v \in H_{0}^{1}(\Omega)$. If we choose $v=P_{0} u$, we obtain $\mu=\lambda+\eta$, while, if we choose $v=P_{+} u$, we get

$$
\bar{\mu} \int_{\Omega}\left|P_{+} u\right|^{2} d x \leq \lambda \int_{\Omega}\left|P_{+} u\right|^{2} d x
$$

where $\bar{\mu}$ is the minimal eigenvalue of A greater than μ. It follows that $P_{+} u=0$ and $\widetilde{f}_{0}(u)<\mu$.

By (a.4) and the result of [3], we can also put $v=u_{h}$ in (3.12). By (a.4), (3.13) and (3.14), it follows

$$
\begin{aligned}
\mu & =\lim _{h} \widetilde{f}_{\varrho_{h}}\left(u_{h}\right) \\
& =\lim _{h}\left[\int_{\Omega} \sum_{i, j=1}^{n} a_{i j}\left(x, \varrho_{h} u_{h}\right) D_{i} u_{h} D_{j} u_{h} d x-\frac{2}{\varrho_{h}^{2}} \int_{\Omega} G\left(x, \varrho_{h} u_{h}\right) d x\right] \\
& =\lim _{h}\left[\int_{\Omega} \sum_{i, j=1}^{n} a_{i j}\left(x, \varrho_{h} u_{h}\right) D_{i} u_{h} D_{j} u_{h} d x-\frac{1}{\varrho_{h}} \int_{\Omega} g\left(x, \varrho_{h} u_{h}\right) u_{h} d x\right]
\end{aligned}
$$

$$
\begin{aligned}
& \leq \lambda \int_{\Omega} u^{2} d x+\eta \int_{\Omega}\left|P_{0} u\right|^{2} d x \\
& =\int_{\Omega} \sum_{i, j=1}^{n} a_{i j}(x, 0) D_{i} u D_{j} u d x-\int_{\Omega} D_{s} g(x, 0) u^{2} d x=\widetilde{f}_{0}(u)<\mu
\end{aligned}
$$

whence a contradiction.
Lemma 3.7. There exists $\delta>0$ such that

$$
\left\{\begin{array}{l}
\text { for every } \varrho \in] 0, \delta] \text { and every } c \in[\mu-\delta, \mu+\delta] \tag{3.15}\\
\text { the functional } \widetilde{f}_{\varrho} \text { satisfies }(\mathrm{PS})_{c} .
\end{array}\right.
$$

Proof. Let $\left(u_{h}\right)$ be a sequence in M with $\widetilde{f}_{\varrho}\left(u_{h}\right) \rightarrow c$ and $\left|d \widetilde{f}_{\varrho}\right|\left(u_{h}\right) \rightarrow 0$. If δ is small enough, by Lemma 3.6 we have that $u_{h} \notin \partial M$ eventually as $h \rightarrow \infty$. As before, we have that $\left(u_{h}\right)$ is bounded in $H_{0}^{1}(\Omega)$, hence convergent, up to a subsequence, to some $u \in M$ weakly in $H_{0}^{1}(\Omega)$ and strongly in $L^{2}(\Omega)$.

By Lemma 3.5 there exist $w_{h} \in H^{-1}(\Omega)$ and $\lambda_{h} \in \mathbb{R}$ such that $w_{h} \rightarrow 0$ and

$$
\begin{array}{r}
\int_{\Omega} \sum_{i, j=1}^{n} a_{i j}\left(x, \varrho u_{h}\right) D_{i} u_{h} D_{j} v d x+\frac{\varrho}{2} \int_{\Omega} \sum_{i, j=1}^{n} D_{s} a_{i j}\left(x, \varrho u_{h}\right) D_{i} u_{h} D_{j} u_{h} v d x \tag{3.16}\\
-\frac{1}{\varrho} \int_{\Omega} g\left(x, \varrho u_{h}\right) v d x=\lambda_{h} \int_{\Omega} u_{h} v d x+\left\langle w_{h}, v\right\rangle
\end{array}
$$

for all $v \in H_{0}^{1}(\Omega) \cap L^{\infty}(\Omega)$. If we put $v=P_{0} u_{h}$ in (3.16), we find that $\left(\lambda_{h}\right)$ is bounded. The assertion then follows from [5, Lemma 2.4].

Lemma 3.8. Let $\left(\lambda_{h}, u_{h}\right)$ be a sequence of nontrivial solutions of

$$
\left\{\begin{array}{l}
(\lambda, u) \in \mathbb{R} \times H_{0}^{1}(\Omega) \tag{3.17}\\
\int_{\Omega} \sum_{i, j=1}^{n} a_{i j}(x, u) D_{i} u D_{j} v d x+\frac{1}{2} \int_{\Omega} \sum_{i, j=1}^{n} D_{s} a_{i j}(x, u) D_{i} u D_{j} u v d x \\
\quad-\int_{\Omega} g(x, u) v d x=\lambda \int_{\Omega} u v d x \quad \text { for all } v \in H_{0}^{1}(\Omega) \cap L^{\infty}(\Omega)
\end{array}\right.
$$

with $u_{h} \rightarrow 0$ strongly in $H_{0}^{1}(\Omega)$. Then the following facts hold:
(a) we have $u_{h} \in L^{\infty}(\Omega)$ and $u_{h} \rightarrow 0$ strongly in $L^{\infty}(\Omega)$;
(b) we have $\lambda_{h} \rightarrow \mu$ if and only if

$$
\lim _{h} \frac{f\left(u_{h}\right)}{\int_{\Omega} u_{h}^{2} d x}=\mu
$$

Proof. By (a. 3^{\prime}) and (a.4) we have

$$
\nu \int_{\Omega}\left|D R_{k}\left(u_{h}\right)\right|^{2} d x \leq \int_{\Omega}\left(g\left(x, u_{h}\right)+\lambda_{h} u_{h}\right) R_{k}\left(u_{h}\right) d x
$$

where $R_{k}: \mathbb{R} \rightarrow \mathbb{R}$ is the odd function such that $R_{k}(s)=(s-k)^{+}$for $s \geq 0$. Taking into account (g. 2^{\prime}), by standard techniques of regularity theory (see e.g. [14]) assertion (a) follows.

If we set $\varrho_{h}=\left(\int_{\Omega}\left|u_{h}\right|^{2} d x\right)^{1 / 2}$ and $z_{h}=u_{h} / \varrho_{h}$, we have

$$
\begin{align*}
& \int_{\Omega} \sum_{i, j=1}^{n} a_{i j}\left(x, \varrho_{h} z_{h}\right) D_{i} z_{h} D_{j} v d x \tag{3.18}\\
+ & \frac{\varrho_{h}}{2} \int_{\Omega} \sum_{i, j=1}^{n} D_{s} a_{i j}\left(x, \varrho_{h} z_{h}\right) D_{i} z_{h} D_{j} z_{h} v d x-\frac{1}{\varrho_{h}} \int_{\Omega} g\left(x, \varrho_{h} z_{h}\right) v d x \\
& =\lambda_{h} \int_{\Omega} z_{h} v d x
\end{align*}
$$

for all $v \in H_{0}^{1}(\Omega) \cap L^{\infty}(\Omega)$.
Assume that $\lambda_{h} \rightarrow \mu$. If we put $v=z_{h}$ in (3.18) and take into account (a.3'), (a.4) and (g.2'), we find that $\left(z_{h}\right)$ is bounded in $H_{0}^{1}(\Omega)$, hence weakly convergent, up to a subsequence, to some z. Combining this fact with (a. 2^{\prime}) and assertion (a), we deduce that

$$
\lim _{h} \frac{\varrho_{h}}{2} \int_{\Omega} \sum_{i, j=1}^{n} D_{s} a_{i j}\left(x, \varrho_{h} z_{h}\right) D_{i} z_{h} D_{j} z_{h} z_{h} d x=0
$$

Coming back to (3.18) with $v=z_{h}$ and taking into account (3.13), (3.14), we deduce that

$$
\begin{aligned}
\lim _{h} \frac{f\left(u_{h}\right)}{\varrho_{h}^{2}} & =\lim _{h}\left[\int_{\Omega} \sum_{i, j=1}^{n} a_{i j}\left(x, \varrho_{h} z_{h}\right) D_{i} z_{h} D_{j} z_{h} d x-\frac{2}{\varrho_{h}^{2}} \int_{\Omega} G\left(x, \varrho_{h} z_{h}\right) d x\right] \\
& =\lim _{h}\left[\int_{\Omega} \sum_{i, j=1}^{n} a_{i j}\left(x, \varrho_{h} z_{h}\right) D_{i} z_{h} D_{j} z_{h} d x-\frac{1}{\varrho_{h}} \int_{\Omega} g\left(x, \varrho_{h} z_{h}\right) z_{h} d x\right] \\
& =\lim _{h} \lambda_{h}=\mu
\end{aligned}
$$

Assume now that $f\left(u_{h}\right) / \varrho_{h}^{2} \rightarrow \mu$, namely that

$$
\lim _{h}\left[\int_{\Omega} \sum_{i, j=1}^{n} a_{i j}\left(x, \varrho_{h} z_{h}\right) D_{i} z_{h} D_{j} z_{h} d x-\frac{2}{\varrho_{h}^{2}} \int_{\Omega} G\left(x, \varrho_{h} z_{h}\right) d x\right]=\mu
$$

From (a.3') and (g.2') it follows that $\left(z_{h}\right)$ is bounded in $H_{0}^{1}(\Omega)$. As before, we find that

$$
\lim _{h} \lambda_{h}=\lim _{h} \frac{f\left(u_{h}\right)}{\varrho_{h}^{2}}
$$

and the assertion follows.
Proof of Theorem 3.2. First of all, by Lemma 3.8 the condition $\lambda_{k}(\varrho) \rightarrow$ μ is equivalent to

$$
\frac{f\left(u_{k}(\varrho)\right)}{\int_{\Omega}\left|u_{k}(\varrho)\right|^{2} d x} \rightarrow \mu
$$

In turn, it is equivalent to prove that, for every $\varepsilon>0$, there exists $\varrho_{0}>0$ such that, for every $\left.\varrho \in] 0, \varrho_{0}\right]$, there exist at least two solutions $\left(\lambda_{k}(\varrho), u_{k}(\varrho)\right)$, $k=1,2$, of (3.17) with $u_{1}(\varrho) \neq u_{2}(\varrho)$ and

$$
\int_{\Omega}\left|u_{k}(\varrho)\right|^{2} d x=\varrho^{2}, \quad \mu-\varepsilon \leq \frac{f\left(u_{k}(\varrho)\right)}{\int_{\Omega}\left|u_{k}(\varrho)\right|^{2} d x} \leq \mu+\varepsilon
$$

In fact, by (a.3') and (g. 2^{\prime}) it follows that $u_{k}(\varrho) / \varrho$ is bounded in $H_{0}^{1}(\Omega)$ as $\varrho \rightarrow 0$. Therefore $u_{k}(\varrho) \rightarrow 0$ strongly in $H_{0}^{1}(\Omega)$ as $\varrho \rightarrow 0$. From Lemma 3.8 it follows that $u_{k}(\varrho) \rightarrow 0$ also in $L^{\infty}(\Omega)$.

Now, let $\varepsilon>0$ and let $\delta>0$ be such that (3.11) and (3.15) hold. Without loss of generality, we may assume that $\varepsilon \leq \delta$ and that ε is small enough to apply Lemma 3.4. Let $\varrho_{0}>0$ be as in Lemma 3.4. Without loss of generality, we may also assume that $\varrho_{0} \leq \delta$. Let $\left.\left.\varrho \in\right] 0, \varrho_{0}\right]$.

If $u \in M$ and $\widetilde{f}_{\varrho}(u)<\mu+2 \varepsilon$, it is clear that the weak slope of $\left.\widetilde{f}_{\varrho}\right|_{\tilde{f}_{\varrho}^{\mu+2 \varepsilon}}$ at u coincides with that of \tilde{f}_{ϱ} at u. Applying Theorem 2.5 to $\left.\widetilde{f}_{\varrho}\right|_{\tilde{f}_{\varrho}^{\mu+2 \varepsilon}}$, we find two critical values $\mu-\varepsilon \leq c_{1} \leq c_{2} \leq \mu+\varepsilon$ of \tilde{f}_{ϱ}. If $c_{1}<c_{2}$, we immediately get two distinct critical points $z_{1}(\varrho), z_{2}(\varrho)$ of \widetilde{f}_{ϱ} in $\widetilde{f}_{\varrho}^{-1}([\mu-\varepsilon, \mu+\varepsilon])$. If $c_{1}=$ c_{2}, we have that $\operatorname{cat}_{\tilde{f}_{e}^{\mu+2 \varepsilon}} K_{c_{1}} \geq 2$. A fortiori we have $\operatorname{cat}_{\left\{\tilde{f}_{\varrho}<\mu+2 \varepsilon\right\}} K_{c_{1}} \geq 2$. Being an open subset of a manifold, $\left\{\widetilde{f}_{\varrho}<\mu+2 \varepsilon\right\}$ is clearly weakly locally contractible. By Proposition 2.7 we find two distinct critical points $z_{1}(\varrho), z_{2}(\varrho)$ of \widetilde{f}_{ϱ} in $\widetilde{f}_{\varrho}^{-1}([\mu-\varepsilon, \mu+\varepsilon])$ also in this case.

By (3.11) we have that $z_{k}(\varrho)$ does not belong to ∂M. From Lemma 3.5 it follows that there exist $\lambda_{1}(\varrho), \lambda_{2}(\varrho) \in \mathbb{R}$ such that

$$
\begin{aligned}
\int_{\Omega} \sum_{i, j=1}^{n} a_{i j}\left(x, \varrho z_{k}(\varrho)\right) D_{i} z_{k}(\varrho) D_{j} v d x & \\
& =\frac{1}{2} \varrho \int_{\Omega} \sum_{i, j=1}^{n} D_{s} a_{i j}\left(x, \varrho z_{k}(\varrho)\right) D_{i} z_{k}(\varrho) D_{j} z_{k}(\varrho) v d x \\
& -\frac{1}{\varrho} \int_{\Omega} g\left(x, \varrho z_{k}(\varrho)\right) v d x=\lambda \int_{\Omega} z_{k}(\varrho) v d x
\end{aligned}
$$

for all $v \in H_{0}^{1}(\Omega) \cap L^{\infty}(\Omega)$. If we set $u_{k}(\varrho)=\varrho z_{k}(\varrho)$, we have that $\left(\lambda_{k}(\varrho), u_{k}(\varrho)\right)$ has the required properties.

Proof of Proposition 3.1. Let $\left(\lambda_{h}, u_{h}\right)$ be a sequence as in Definition 1.2. If we set $\varrho_{h}=\left(\int_{\Omega}\left|u_{h}\right|^{2} d x\right)^{\frac{1}{2}}$ and $z_{h}=u_{h} / \varrho_{h}$, by Lemma 3.8 we deduce that $f\left(u_{h}\right) / \varrho_{h}^{2} \rightarrow \mu$. From (g.2') and (a. $\left.3^{\prime}\right)$ it follows that $\left(z_{h}\right)$ is bounded in $H_{0}^{1}(\Omega)$, hence weakly convergent, up to a subsequence, to some $z \in H_{0}^{1}(\Omega) \backslash\{0\}$. Since (3.18) holds also in this case, passing to the limit as $h \rightarrow \infty$ and recalling (3.13),
we find

$$
\int_{\Omega} \sum_{i, j=1}^{n} a_{i j}(x, 0) D_{i} z D_{j} v d x-\int_{\Omega} D_{s} g(x, 0) z v d x=\mu \int_{\Omega} z v d x
$$

for all $v \in H_{0}^{1}(\Omega) \cap L^{\infty}(\Omega)$ and the assertion follows.

4. Proof of Proposition 1.3 and Theorem 1.4

Let $\vartheta: \mathbb{R} \rightarrow \mathbb{R}$ be a non-decreasing smooth function such that $\vartheta(s)=s$ for $|s| \leq 1$ and ϑ is constant on $]-\infty,-2]$ and on $[2, \infty[$.

If we set $\widehat{a}_{i j}(x, s)=a_{i j}(x, \vartheta(s))$ and $\widehat{g}(x, s)=g(x, \vartheta(s))$, it is readily seen that $\widehat{a}_{i j}$ and \widehat{g} satisfy (a.1), (a.2'), (a.3'), (a.4), (g.1) and (g.2').

On the other hand, if u is small enough in $L^{\infty}(\Omega)$, we have that (λ, u) is a solution of (1.2) with respect to $\widehat{a}_{i j}$ and \widehat{g} if and only if it do it with respect to $a_{i j}$ and g. Moreover, the linear operator A associated with $\widehat{a}_{i j}$ and \widehat{g} coincides with that associated with $a_{i j}$ and g.

If we apply Proposition 3.1 and Theorem 3.2 to $\widehat{a}_{i j}$ and \widehat{g}, the assertion follows.

References

[1] C. Bertocchi and M. Degiovanni, On the existence of two branches of bifurcation for eigenvalue problems associated with variational inequalities, Scritti in Onore di Giovanni Melzi Sci. Mat. (C. F. Manara, M. Faliva and M. Marchi, eds.), vol. 11, Vita e Pensiero, Milano, 1994, pp. 35-72.
[2] R. Bӧнме, Die Lösung der Verzweigungsgleichungen für Eigenwertprobleme, Math. Z. 127 (1972), 105-126
[3] H. Brezis and F. E. Browder, Sur une propriété des espaces de Sobolev, C. R. Acad. Sci. Paris Sér. A-B 287 (1978), no. 3, A113-A115.
[4] I. Campa and M. Degiovanni, Subdifferential calculus and nonsmooth critical point theory, SIAM J. Optim. 10 (2000), no. 4, 1020-1048.
[5] A. Canino, Multiplicity of solutions for quasilinear elliptic equations, Topol. Methods Nonlinear Anal. 6 (1995), no. 2, 357-370.
\qquad , Variational bifurcation for quasilinear elliptic equations, Calc. Var. Partial Differential Equations 18 (2003), no. 3, 269-286.
[7] A. Canino and M. Degiovanni, Nonsmooth critical point theory and quasilinear elliptic equations, Topological Methods in Differential Equations and Inclusions (Montreal, 1994), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci. (A. Granas, M. Frigon and G. Sabidussi, eds.), vol. 472, Kluwer Acad. Publ., Dordrecht, 1995, pp. 1-50.
[8] J.-N. Corvellec and M. Degiovanni, Nontrivial solutions of quasilinear equations via nonsmooth Morse theory, J. Differential Equations 136 (1997), no. 2, 268-293.
[9] J.-N. Corvellec, M. Degiovanni and M. Marzocchi, Deformation properties for continuous functionals and critical point theory, Topol. Methods Nonlinear Anal. 1 (1993), no. 1, 151-171.
[10] B. Dacorogna, Direct methods in the calculus of variations, Applied Mathematical Sciences, vol. 78, Springer-Verlag, Berlin, 1989.
[11] M. Degiovanni and M. Marzocchi, A critical point theory for nonsmooth functionals, Ann. Mat. Pura Appl. 167 (1994), no. 4, 73-100.
[12] A. D. Ioffe and E. Schwartzman, Metric critical point theory. I. Morse regularity and homotopic stability of a minimum, J. Math. Pures Appl. 75 (1996), no. 9, 125-153.
[13] G. Katriel, Mountain pass theorems and global homeomorphism theorems, Ann. Inst. H. Poincaré Anal. Non Linéaire 11 (1994), no. 2, 189-209.
[14] O. A. Ladyzhenskaya and N. N. Ural'tseva, Linear and Quasilinear Elliptic Equations, Academic Press, New York-London, 1968.
[15] J.Q. Liu, Bifurcation for potential operators, Nonlinear Anal. 15 (1990), no. 4, 345-353.
[16] A. Marino, La biforcazione nel caso variazionale, Conf. Sem. Mat. Univ. Bari 132 (1973).
[17] J. B. McLeod and R. E. L. Turner, Bifurcation for non-differentiable operators with an application to elasticity, Arch. Rational Mech. Anal. 63 (1976/77), no. 1, 1-45.
[18] P. H. Rabinowitz, Variational methods for nonlinear eigenvalue problems, Eigenvalues of Non-linear Problems (C.I.M.E., III Ciclo, Varenna, 1974) (G. Prodi, ed.), Edizioni Cremonese, Roma, 1974, pp. 139-195.
[19] , A bifurcation theorem for potential operators, J. Functional Analysis 25 (1977), no. 4, 412-424.
[20] , Minimax methods in critical point theory with applications to differential equations, CBMS Regional Conf. Ser. in Math., vol. 65, Amer. Math. Soc., Providence, R.I., 1986.
[21] M. Struwe, Quasilinear elliptic eigenvalue problems, Comment. Math. Helv. 58 (1983), no. 3, 509-527.

Elisabetta Benincasa and Annamaria Canino
Department of Mathematics
University of Calabria
87036 Arcavacata di Rende (CS), ITALY
E-mail address: benincasa@mat.unical.it, canino@unical.it

