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A BIFURCATION RESULT OF BÖHME–MARINO TYPE
FOR QUASILINEAR ELLIPTIC EQUATIONS

Elisabetta Benincasa — Annamaria Canino

Abstract. We study a variational bifurcation problem of Böhme-Marino

type associated with nonsmooth functional. The existence of two branches

of bifurcation is proved.

1. Introduction

Consider the quasilinear eigenvalue problem

(1.1)



−
n∑

i,j=1

Dj(aij(x, u)Diu)

+
1
2

n∑
i,j=1

Dsaij(x, u)DiuDju− g(x, u) = λu in Ω,

u = 0 on ∂Ω,

where Ω is a bounded open subset of Rn and aij , g satisfy suitable assumptions
that will be specified later.

If g(x, 0) = 0, it is natural to study the bifurcation problem from the trivial
branch of solutions {(λ, 0) : λ ∈ R}. Since (1.1) is formally the Euler equation
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of the functional Fλ:H1
0 (Ω) → R defined as

Fλ(u) =
1
2

∫
Ω

n∑
i,j=1

aij(x, u)DiuDju dx−
∫

Ω

G(x, u) dx− 1
2

λ

∫
Ω

u2 dx,

where G(x, s) =
∫ s

0
g(x, t) dt, it is natural to expect the well known results typical

of bifurcation for potential operators (see e.g. [18], [20]).
However, the feature that the coefficients aij are dependent on u causes a lack

of differentiability, hence the impossibility to apply standard techniques. More
precisely, it is well known (see e.g. [5], [10], [21]) that, under natural growth
conditions on aij and g, the functional Fλ is continuous on H1

0 (Ω), but not
locally Lipschitz, unless the aij ’s are independent of u or n = 1.

In the previous paper [6], Rabinowitz’s theorem [19] has been extended
to (1.1). Here we are interested in the other basic description of bifurcation
branches, namely Böhme–Marino theorem [2], [16]. As in [6], a key ingredient in
our proof is the nonsmooth critical point theory developed independently in [9],
[11] and in [12], [13]. However, while in [6] the key point was a finite dimensional
reduction of (1.1), here the eigenvalue problem is directly treated in the infinite
dimensional setting. This allows weaker differentiability assumptions on aij .
More precisely, hypothesis (a.2) is weaker than the corresponding assumption
in [6].

Let us recall that, while the classical Böhme–Marino theorem requires the
functional to be of class C2, various extensions have been considered in the
literature. In particular the case in which the functional is of class C1,1 or even
C1 has been treated in [17] and [15], respectively, while the case of variational
inequalities involving the Laplace operator has been considered in [1]. However,
the techniques used in these papers cannot be applied to (1.1).

The main result. Let Ω be a bounded open subset of Rn and aij : Ω×R → R
(1 ≤ i, j ≤ n) be such that{

for all s ∈ R, aij(x, s) is measurable with respect to x,

for a.e. x ∈ Ω, aij(x, s) is of class C1 with respect to s.

Suppose also that:

(a.1) for almost every x ∈ Ω, for all s ∈ R and all 1 ≤ i, j ≤ n,

aij(x, s) = aji(x, s);

(a.2) there exists a continuous function α: R → [0,∞[ such that, for almost
every x ∈ Ω, for all s ∈ R and all 1 ≤ i, j ≤ n,

|aij(x, s)| ≤ α(s), |Dsaij(x, s)| ≤ α(s);
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(a.3) there exists a continuous function ν: R → ]0,∞[ such that, for a.e. x ∈ Ω,
for all s ∈ R and all ξ ∈ Rn,

n∑
i,j=1

aij(x, s)ξiξj ≥ ν(s)
n∑

i=1

ξ2
i ;

(a.4) for a.e. x ∈ Ω, for all s ∈ R and all ξ ∈ Rn,
n∑

i,j=1

sDsaij(x, s)ξiξj ≥ 0.

Finally, let g: Ω× R → R be a function such that{
for all s ∈ R, g(x, s) is measurable with respect to x,

for a.e. x ∈ Ω, g(x, s) is of class C1 with respect to s.

Suppose also that:

(g.1) for a.e. x ∈ Ω, g(x, 0) = 0;
(g.2) there exists a continuous function β : R → [0,∞[ such that, for a.e. x ∈

Ω and for all s ∈ R,

|Dsg(x, s)| ≤ β(s).

Consider the problem

(1.2)



(λ, u) ∈ R× (H1
0 (Ω) ∩ L∞(Ω)),∫

Ω

n∑
i,j=1

aij(x, u)DiuDjv dx +
1
2

∫
Ω

n∑
i,j=1

Dsaij(x, u)DiuDju v dx

−
∫

Ω

g(x, u)v dx = λ

∫
Ω

uv dx for all v ∈ H1
0 (Ω) ∩ L∞(Ω).

Remark 1.1. By assumption (g.1), (λ, 0) is a solution of (1.1) for all λ ∈ R.

Definition 1.2. A real number µ is said to be a bifurcation value of (1.2)
if there exists a sequence (λh, uh) of solutions of (1.2) with uh 6= 0 such that
λh → µ and uh → 0 strongly in H1

0 (Ω) and in L∞(Ω).

Let us introduce the linear operator A : H1
0 (Ω) → H−1(Ω) such that

〈Au, v〉 =
∫

Ω

n∑
i,j=1

aij(x, 0)DiuDjv dx−
∫

Ω

Dsg(x, 0)uv dx.

A real number µ is said to be an eigenvalue of A if the equation Au = µu admits
a nontrivial solution u.

Proposition 1.3. If µ is a bifurcation value of (1.2), then µ is an eigenvalue
of A.

Let us state the main result of the paper.
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Theorem 1.4. Suppose that µ is an eigenvalue of A. Then µ is a bifurcation
value of (1.2). Moreover, there exists %0 > 0 such that:

(a) for each % ∈ ]0, %0], there exist at least two solutions (λk(%), uk(%)),
k = 1, 2, of (1.2) with u1(%) 6= u2(%) and∫

Ω

|uk(%)|2 dx = %2;

(b) as % → 0, we have λk(%) → µ and uk(%) → 0 strongly in H1
0 (Ω) and in

L∞(Ω).

Proposition 1.3 and Theorem 1.4 will be proved in the last section. In the
next section we recall the tools of nonsmooth critical point theory we need, while
in Section 3 we prove Proposition 1.3 and Theorem 1.4 in a particular case, more
suitable for a direct variational approach.

2. Recall of nonsmooth analysis

In this section we recall from [4], [7], [9], [11] some notions and results of
nonsmooth critical point theory we shall use to describe the variational nature
of problem (1.2).

Let X denote a metric space endowed with the metric d and f :X → R∪{∞}
a function. We also consider the space X × R endowed with the metric

d((u, s), (v, t)) = (d(u, v)2 + (s− t)2)1/2.

Set epi(f) = {(u, s) ∈ X × R : f(u) ≤ s} and, for every c ∈ R, fc = {u ∈ X :
f(u) ≤ c}. Finally, we denote by Br(u) the open ball of center u and radius r.

The next definition is taken from [4, Definition 2.1]. For an equivalent ap-
proach, see [9], [11] and, when f is continuous, [13].

Definition 2.1. For every u ∈ X with f(u) < ∞, we denote by |df |(u) the
supremum of the σ’s in [0,∞[ such that there exist δ > 0 and a continuous map

H: (Bδ(u, f(u)) ∩ epi(f))× [0, δ] → X

satisfying
d(H((v, s), t), v) ≤ t, f(H((v, s), t)) ≤ s− σt,

whenever (v, s) ∈ Bδ(u, f(u)) ∩ epi(f) and t ∈ [0, δ]. The extended real number
|df |(u) is called the weak slope of f at u.

Definition 2.2. A point u ∈ X with f(u) < ∞ is said to be (lower) critical
for f , if |df |(u) = 0. A real number c is said to be a (lower) critical value for f ,
if there exists u ∈ X such that f(u) = c and |df |(u) = 0. For every c ∈ R, we
set Kc = {u ∈ X : f(u) = c, |df |(u) = 0}.
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Definition 2.3. Given c ∈ R, we say that f satisfies (PS)c, i.e. the Palais–
Smale condition at level c, if from every sequence (uh) in X, with f(uh) → c and
|df |(uh) → 0 as h →∞, it is possible to extract a subsequence (uhk

) converging
in X.

Definition 2.4. Let Y be a closed subset of X. For every closed subset A

of X, we denote by catX,Y A the least integer n ≥ 0 such that A can be covered
by n + 1 open subsets U0, . . . , Un of X with the following properties:

(a) there exists a deformation K:X×[0, 1] → X such that K(Y ×[0, 1]) ⊂ Y

and K(U0 × {1}) ⊂ Y (if Y = ∅, we mean that U0 must be empty);
(b) for 1 ≤ h ≤ n, each Uh is contractible in X.

If no such integer n exists, we set catX,Y A = ∞. Finally, to shorten notations,
we put catXA = catX,∅A.

For the next result, we refer the reader to [7, Theorem 1.4.9].

Theorem 2.5. Assume that X is complete and that f :X → R is continuous.
Let −∞ < a < b < ∞ and let us suppose that, for every c ∈ [a, b], the function
f satisfies (PS)c. If catX,faf b ≥ k with k ∈ N, then there exist a ≤ c1 ≤ . . . ≤
ck ≤ b such that each cn is a critical value of f . Moreover, if cm = . . . = cn for
some m < n, we have catXKcm ≥ n−m + 1.

Definition 2.6. The metric space X is said to be weakly locally contractible,
if every u ∈ X admits a neighbourhood U contractible in X.

For the next result, see [7, Theorem 1.4.11].

Proposition 2.7. Assume that X is weakly locally contractible and let A be
a closed subset of X. Then A contains at least catXA elements.

Finally, we recall from [4] some notions and results which will help in the
evaluation of the weak slope. Assume now that X is a Banach space.

Definition 2.8. Let u ∈ X with f(u) < ∞. For every v ∈ X and ε > 0,
let f0

ε (u; v) be the infimum of the r’s in R such that there exist δ > 0 and
a continuous map

V : (Bδ(u, f(u)) ∩ epi(f))× ]0, δ] → Bε(v)

satisfying
f(z + tV ((z, s), t)) ≤ s + rt,

whenever (z, s) ∈ Bδ(u, f(u)) ∩ epi(f) and t ∈ ]0, δ] (we agree that inf ∅ = ∞).
Let also

f0(u; v) = sup
ε>0

f0
ε (u; v).

We say that f0(u; v) is the generalized directional derivative of f at u with respect
to v.
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Definition 2.9. For every u ∈ X with f(u) < ∞, we put

∂f(u) = {w ∈ X∗ : 〈w, v〉 ≤ f0(u; v) for all v ∈ X}.

The set ∂f(u) is called the subdifferential of f at u.

For the next result, we refer the reader to [4, Theorem 4.13].

Theorem 2.10. For every u ∈ X with f(u) < ∞, we have

if |df |(u) < ∞ then ∂f(u) 6= ∅,
if |df |(u) < ∞ then |df |(u) ≥ min{‖w‖ : w ∈ ∂f(u)}.

In particular, if |df |(u) = 0, we have 0 ∈ ∂f(u).

We end the section with a Lagrange multiplier theorem. If C ⊂ X, we denote
by IC the indicator function of C, namely

IC(u) =

{
0 if u ∈ C,

∞ if u ∈ X \ C.

Definition 2.11. Let u ∈ X with f(u) < ∞. For every v ∈ X and ε > 0
let f0

ε(u; v) be the infimum of the r’s in R such that there exist δ > 0 and
a continuous map

H: (Bδ(u, f(u)) ∩ epi(f))× [0, δ] → E

satisfying H((z, s), 0) = z,∥∥∥∥H((z, s), t1)−H((z, s), t2)
t1 − t2

− v

∥∥∥∥ < ε,

f(H((z, s), t)) ≤ s + rt

whenever (z, s) ∈ Bδ(u, f(u)) ∩ epi(f) and t, t1, t2 ∈ [0, δ] with t1 6= t2 (we agree
that inf ∅ = ∞). Let also

f0(u; v) = sup
ε>0

f0
ε(u; v).

Theorem 2.12. Let U be an open subset of X with ∂U of class C1, let
u ∈ ∂U with f(u) < ∞ and let ν(u) ∈ X∗ \ {0} be an outer normal vector to U

at u. Then the following facts hold:

(a) if there exist v−, v+ ∈ X such that 〈ν(u), v−〉 < 0 < 〈ν(u), v+〉 and
f0(u; v±) < ∞, we have

(f + I∂U )0(u; v) ≤ f0(u; v) for every v ∈ X with 〈ν(u), v〉 = 0,

∂(f + I∂U )(u) ⊂ ∂f(u) + {λν(u) : λ ∈ R};
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(b) if there exists v0 ∈ X such that 〈ν(u), v0〉 < 0 and f0(u; v0) < ∞, we
have

(f + IU )0(u; v) ≤ f0(u; v) for every v ∈ X with 〈ν(u), v〉 ≤ 0,

∂(f + IU )(u) ⊂ ∂f(u) + {ην(u) : η ≥ 0}.

Proof. For assertion (a) we refer the reader to [4, Corollary 5.9]. Assertion
(b) is a particular case of [4, Corollary 5.4]. �

3. The case with uniform bounds

Throughout this section, we consider the particular case in which aij and g

satisfy (a.1), (a.4), (g.1) and the estimates

|aij(x, s)| ≤ α, |Dsaij(x, s)| ≤ α,(a.2′)
n∑

i,j=1

aij(x, s)ξiξj ≥ ν

n∑
i=1

ξ2
i ,(a.3′)

|Dsg(x, s)| ≤ β,(g.2′)

for some some constants α, β ≥ 0 and ν > 0.

Proposition 3.1. The assertion of Proposition 1.3 holds under these more
restrictive assumptions.

Theorem 3.2. The assertion of Theorem 1.4 holds under these more re-
strictive assumptions.

The section will be devoted to the proofs of Proposition 3.1 and Theorem 3.2.
First of all, define the continuous functionals f, f%:H1

0 (Ω) → R (% > 0) by

f(u) =
∫

Ω

n∑
i,j=1

aij(x, u)DiuDju dx− 2
∫

Ω

G(x, u) dx, f%(u) =
f(%u)

%2
,

where G(x, s) =
∫ s

0
g(x, t) dt, and the smooth quadratic form f0 : H1

0 (Ω) → R
by

f0(u) = 〈Au, u〉 =
∫

Ω

n∑
i,j=1

aij(x, 0)DiuDju dx−
∫

Ω

Dsg(x, 0)u2 dx.

By Definition 2.1, it is easy to verify that |df%|(u) = 1
% |df |(%u). Moreover, by

(a.2′) and (g.2′) the functionals f and f% are differentiable at any u ∈ H1
0 (Ω)

with respect to any v ∈ H1
0 (Ω) ∩ L∞(Ω).

Let µ be an eigenvalue of A, let V0 be the associated eigenspace and let

V =
{

v ∈ H1
0 (Ω) :

∫
Ω

vw dx = 0, for all w ∈ V0

}
.
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Let us decompose V as V+ ⊕ V−, where V+ is the closed subspace of H1
0 (Ω)

spanned by the eigenvectors associated to the eigenvalues λj with λj > µ and
V− is the subspace of H1

0 (Ω) spanned by the eigenvectors associated to the
eigenvalues λj with λj < µ. Let us denote by P0, P− and P+ the orthogonal
projections, with respect to the scalar product of L2(Ω), on V0, V− and V+,
respectively. Let us recall that the decomposition H1

0 (Ω) = V− ⊕ V0 ⊕ V+ is
orthogonal both with respect to the scalar product of L2(Ω) and with respect to
the bilinear form 〈Au, v〉. Moreover, V−⊕V0 is finite dimensional and contained
in H1

0 (Ω) ∩ L∞(Ω).
We also set

S =
{

u ∈ H1
0 (Ω) :

∫
Ω

|u|2 dx = 1
}

, M =
{

u ∈ S :
∫

Ω

|P0u|2 dx ≥ 1
4

}
,

and denote by f̃% (% ≥ 0) the restriction of f% to M . Clearly, M is a submanifold
with boundary in H1

0 (Ω) with

∂M =
{

u ∈ S :
∫

Ω

|P0u|2 dx =
1
4

}
.

Lemma 3.3. The following facts hold:

(a) if %h → 0 and uh → u strongly in H1
0 (Ω), then

f0(u) = lim
h

f%h
(uh);

(b) if %h → 0 and uh → u weakly in H1
0 (Ω), then

f0(u) ≤ lim inf
h

f%h
(uh).

Proof. The assertions follow from [6, Theorem 2.2]. �

Lemma 3.4. For each ε > 0 small enough, there exists %0 > 0 such that, for
every % ∈ ]0, %0], one has

cat
efµ+2ε
% , efµ−ε

%
f̃µ+ε

% ≥ 2.

Proof. If ε > 0 is small enough, there exist 0 < ε1 < ε0 such that M0 6= ∅
and

M0 ∩ (V− ⊕ V0) ⊂ f̃
µ−3ε/2
0 ⊂ f̃µ−ε

0 ⊂ M1,

where

M0 =
{

u ∈ M :
∫

Ω

|P−u|2 dx ≥ ε2
0

}
, M1 =

{
u ∈ M :

∫
Ω

|P−u|2 dx > ε2
1

}
.

It is easy to check that the inclusion map

i: (M ∩ (V− ⊕ V0),M0 ∩ (V− ⊕ V0)) → (M,M1)

is a homotopy equivalence. Let π be a homotopy inverse.
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We claim that, if %0 > 0 is small enough, then for every % ∈ ]0, %0] we have

M0 ∩ (V− ⊕ V0) ⊂ f̃µ−ε
% ⊂ M1,(3.1)

M ∩ (V− ⊕ V0) ⊂ f̃µ+ε
% .(3.2)

Actually, since M0 ∩ (V− ⊕ V0) and M ∩ (V− ⊕ V0) are compact, (3.2) and the
first inclusion in (3.1) follow from (a) of Lemma 3.3.

To prove the second inclusion in (3.1), assume by contradiction that %h → 0
and uh ∈ f̃µ−ε

%h
\M1. Since M is bounded in L2(Ω), from (g.2′) and (a.3′) we have

that uh is bounded also in H1
0 (Ω), hence weakly convergent, up to a subsequence,

to some u ∈ M \M1. From (b) of Lemma 3.3 we deduce that f̃0(u) ≤ µ− ε and
a contradiction follows.

Now, if we consider the inclusion maps

i1: (M ∩ (V− ⊕ V0),M0 ∩ (V− ⊕ V0)) → (f̃µ+2ε
% , f̃µ−ε

% ),

i2: (f̃µ+2ε
% , f̃µ−ε

% ) → (M,M1).

We have that (π◦i2)◦i1 is homotopic to the identity map of (M∩(V−⊕V0),M0∩
(V−⊕V0)). Since i−1

1 (f̃µ+ε
% ) = M ∩ (V−⊕V0), from [7, Theorem 1.4.5] it follows

cat
efµ+2ε
% , efµ−ε

%
f̃µ+ε

% ≥ catM∩(V−⊕V0),M0∩(V−⊕V0)M ∩ (V− ⊕ V0).

On the other hand, the pair (M ∩ (V− ⊕ V0),M0 ∩ (V− ⊕ V0)) is homotopically
equivalent to the pair (Rm × Sn−1, Sm−1 × Sn−1), where m = dim V− and n =
dim V0.

If n ≥ 2, it is well known that there exist

z1 ∈ Hm(Rm × Sn−1, Sm−1 × Sn−1) \ {0},
z2 ∈ Hm+n−1(Rm × Sn−1, Sm−1 × Sn−1),

ω ∈ Hn−1(Rm × Sn−1)

such that z1 = ω ∩ z2 (see e.g. [15, p. 347]). From [7, Theorem 1.4.8] we deduce
that

(3.3) catRm×Sn−1,Sm−1×Sn−1Rm × Sn−1 ≥ 2

and the assertion follows. By the way, equality holds in (3.3).
If n = 1, we have that Sn−1 = {−1, 1} is disconnected and the fact that

catRm×Sn−1,Sm−1×Sn−1Rm × Sn−1 = 2

can be seen directly. �
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Lemma 3.5. For every u ∈ M with |df̃%|(u) < ∞, there exist λ ∈ R, η ≥ 0
and w ∈ H−1(Ω) such that ‖w‖ ≤ |df̃%|(u)/2 and

(3.4) η

( ∫
Ω

|P0u|2 dx− 1
4

)
= 0,

(3.5)
∫

Ω

n∑
i,j=1

aij(x, %u)DiuDjv dx +
1
2

%

∫
Ω

n∑
i,j=1

Dsaij(x, %u)DiuDju v dx

− 1
%

∫
Ω

g(x, %u)v dx = λ

∫
Ω

uv dx + η

∫
Ω

P0u v dx + 〈w, v〉

for all v ∈ H1
0 (Ω) ∩ L∞(Ω).

Proof. By [4, Theorem 6.1], for every u ∈ H1
0 (Ω), we have

(3.6) f0
% (u; v) ≤ f0

%(u; v) < ∞ for all v ∈ C∞
c (Ω),

and if ∂f%(u) 6= ∅ then

−
n∑

i,j=1

Dj (aij(x, %u)Diu)+
1
2

%
n∑

i,j=1

Dsaij(x, %u)DiuDju−
1
%

g(x, %u) ∈ H−1(Ω)

in the sense of distributions. If ∂f%(u) 6= ∅ then

(3.7) ∂f%(u) =
{
− 2

n∑
i,j=1

Dj(aij(x, %u)Diu)

+ %

n∑
i,j=1

Dsaij(x, %u)DiuDju−
2
%

g(x, %u)
}

.

Since, for every u ∈ S, there exist v−, v+ ∈ C∞
c (Ω) such that∫

Ω

uv− dx > 0 >

∫
Ω

uv+ dx,

from (3.6) and (a) of Theorem 2.12 we deduce that

(3.8) (f% + IS)0(u; v) ≤ f0
% (u; v) for every v ∈ H1

0 (Ω) with
∫

Ω

uv dx = 0,

(3.9) ∂(f% + IS)(u) ⊂ ∂f%(u) + {−λu : λ ∈ R}.

Finally, if we set

U =
{

u ∈ H1
0 (Ω) :

∫
Ω

|P0u|2 dx >
1
4

}
,
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for every u ∈ ∂M , the open sets

{
v ∈ H1

0 (Ω) :
∫

Ω

P0uv dx > 0,

∫
Ω

uv dx > 0
}

,{
v ∈ H1

0 (Ω) :
∫

Ω

P0uv dx > 0,

∫
Ω

uv dx < 0
}

are not empty. Therefore, there exists v0 ∈ C∞
c (Ω) such that∫

Ω

P0uv0 dx > 0,

∫
Ω

uv0 dx = 0.

From (3.6), (3.8) and (b) of Theorem 2.12 we deduce that, for every u ∈ ∂M ,

(3.10) ∂(f% + IS + IU )(u) ⊂ ∂(f% + IS)(u) + {−ηP0u : η ≥ 0}.

Now let u ∈ M with |df̃%|(u) < ∞. From Definition 2.1 it easily follows that
|df̃%|(u) = |d (f% + IS + IU )| (u). By Theorem 2.10 there exists w ∈ H−1(Ω)
with 2w ∈ ∂ (f% + IS + IU ) (u) and ‖2w‖ ≤ |df̃%|(u). If u ∈ ∂M , by (3.7), (3.9)
and (3.10) we find λ ∈ R and η ≥ 0 such that

w = −
n∑

i,j=1

Dj(aij(x, %u)Diu)

+
%

2

n∑
i,j=1

Dsaij(x, %u)DiuDju−
1
%

g(x, %u)− λu− ηP0u.

We deduce (3.4) and (3.5), provided that v ∈ C∞
c (Ω). An easy approximation

argument then shows that (3.5) holds.

If u 6∈ ∂M , we have ∂(f% + IS + IU )(u) = ∂(f% + IS)(u), as the notion of
subdifferential is local, and the assertion follows in a similar way. �

Lemma 3.6. There exists δ > 0 such that

(3.11) for all % ∈ ]0, δ], for all u ∈ ∂M : if |f̃%(u)− µ| ≤ δ then |df̃%|(u) ≥ δ.

Proof. By contradiction, let %h → 0 and uh ∈ ∂M with f̃%h
(uh) → µ and

|df̃%h
|(uh) → 0. Since M is bounded in L2(Ω), (g.2′) and (a.3′) imply that (uh)

is bounded in H1
0 (Ω). Up to a subsequence, (uh) is convergent to some u ∈ ∂M

weakly in H1
0 (Ω) and strongly in L2(Ω). By (b) of Lemma 3.3 we have f̃0(u) ≤ µ.

It follows that P−u 6= 0.
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By Lemma 3.5 there exist wh ∈ H−1(Ω) with wh → 0, λh ∈ R and ηh ≥ 0
satisfying

(3.12)
∫

Ω

n∑
i,j=1

aij(x, %huh)DiuhDjv dx

+
%h

2

∫
Ω

n∑
i,j=1

Dsaij(x, %huh)DiuhDjuh v dx− 1
%h

∫
Ω

g(x, %huh)v dx

= λh

∫
Ω

uhv dx + ηh

∫
Ω

P0uh v dx + 〈wh, v〉

for all v ∈ H1
0 (Ω)∩L∞(Ω). Since V− is a finite dimensional subspace of H1

0 (Ω)∩
L∞(Ω), we have that (P−uh) is strongly convergent to P−u both in H1

0 (Ω) and
in L∞(Ω). If we put v = P−uh in (3.12), we get that (λh) is bounded. If we put
v = P0uh in (3.12), we deduce in a similar way that also (ηh) is bounded. Up to
a subsequence, we may assume that λh → λ and ηh → η ≥ 0.

By an easy adaptation of [8, Lemma 5.1] we have

lim
h

1
%h

g(x, %huh) = Dsg(x, 0)u strongly in L2(Ω),(3.13)

lim
h

1
%2

h

G(x, %huh) =
1
2
Dsg(x, 0)u2 strongly in L1(Ω).(3.14)

Passing to the limit in (3.12) as h →∞ and taking into account (3.13), we get

〈Au, v〉 =
∫

Ω

n∑
i,j=1

aij(x, 0)DiuDjv dx−
∫

Ω

Dsg(x, 0)uv dx

=λ

∫
Ω

uv dx + η

∫
Ω

P0uv dx

for every v ∈ H1
0 (Ω) ∩ L∞(Ω), hence by density for every v ∈ H1

0 (Ω). If we
choose v = P0u, we obtain µ = λ + η, while, if we choose v = P+u, we get

µ

∫
Ω

|P+u|2 dx ≤ λ

∫
Ω

|P+u|2 dx,

where µ is the minimal eigenvalue of A greater than µ. It follows that P+u = 0
and f̃0(u) < µ.

By (a.4) and the result of [3], we can also put v = uh in (3.12). By (a.4),
(3.13) and (3.14), it follows

µ = lim
h

f̃%h
(uh)

= lim
h

[ ∫
Ω

n∑
i,j=1

aij(x, %huh)DiuhDjuh dx− 2
%2

h

∫
Ω

G(x, %huh) dx

]

= lim
h

[ ∫
Ω

n∑
i,j=1

aij(x, %huh)DiuhDjuh dx− 1
%h

∫
Ω

g(x, %huh)uh dx

]
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≤λ

∫
Ω

u2 dx + η

∫
Ω

|P0u|2 dx

=
∫

Ω

n∑
i,j=1

aij(x, 0)DiuDju dx−
∫

Ω

Dsg(x, 0)u2 dx = f̃0(u) < µ,

whence a contradiction. �

Lemma 3.7. There exists δ > 0 such that

(3.15)

{
for every % ∈ ]0, δ] and every c ∈ [µ− δ, µ + δ],

the functional f̃% satisfies (PS)c.

Proof. Let (uh) be a sequence in M with f̃%(uh) → c and |df̃%|(uh) → 0. If
δ is small enough, by Lemma 3.6 we have that uh 6∈ ∂M eventually as h → ∞.
As before, we have that (uh) is bounded in H1

0 (Ω), hence convergent, up to
a subsequence, to some u ∈ M weakly in H1

0 (Ω) and strongly in L2(Ω).
By Lemma 3.5 there exist wh ∈ H−1(Ω) and λh ∈ R such that wh → 0 and

(3.16)
∫

Ω

n∑
i,j=1

aij(x, %uh)DiuhDjv dx+
%

2

∫
Ω

n∑
i,j=1

Dsaij(x, %uh)DiuhDjuh v dx

− 1
%

∫
Ω

g(x, %uh)v dx = λh

∫
Ω

uhv dx + 〈wh, v〉

for all v ∈ H1
0 (Ω) ∩ L∞(Ω). If we put v = P0uh in (3.16), we find that (λh) is

bounded. The assertion then follows from [5, Lemma 2.4]. �

Lemma 3.8. Let (λh, uh) be a sequence of nontrivial solutions of

(3.17)



(λ, u) ∈ R×H1
0 (Ω),∫

Ω

n∑
i,j=1

aij(x, u)DiuDjv dx +
1
2

∫
Ω

n∑
i,j=1

Dsaij(x, u)DiuDju v dx

−
∫

Ω

g(x, u)v dx = λ

∫
Ω

uv dx for all v ∈ H1
0 (Ω) ∩ L∞(Ω),

with uh → 0 strongly in H1
0 (Ω). Then the following facts hold:

(a) we have uh ∈ L∞(Ω) and uh → 0 strongly in L∞(Ω);
(b) we have λh → µ if and only if

lim
h

f(uh)∫
Ω

u2
h dx

= µ.

Proof. By (a.3′) and (a.4) we have

ν

∫
Ω

|DRk(uh)|2 dx ≤
∫

Ω

(g(x, uh) + λhuh)Rk(uh) dx,
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where Rk: R → R is the odd function such that Rk(s) = (s − k)+ for s ≥ 0.
Taking into account (g.2′), by standard techniques of regularity theory (see e.g.
[14]) assertion (a) follows.

If we set %h = (
∫
Ω
|uh|2 dx)1/2 and zh = uh/%h, we have

(3.18)
∫

Ω

n∑
i,j=1

aij(x, %hzh)DizhDjv dx

+
%h

2

∫
Ω

n∑
i,j=1

Dsaij(x, %hzh)DizhDjzh v dx− 1
%h

∫
Ω

g(x, %hzh)v dx

= λh

∫
Ω

zhv dx

for all v ∈ H1
0 (Ω) ∩ L∞(Ω).

Assume that λh → µ. If we put v = zh in (3.18) and take into account (a.3′),
(a.4) and (g.2′), we find that (zh) is bounded in H1

0 (Ω), hence weakly convergent,
up to a subsequence, to some z. Combining this fact with (a.2′) and assertion
(a), we deduce that

lim
h

%h

2

∫
Ω

n∑
i,j=1

Dsaij(x, %hzh)DizhDjzh zh dx = 0.

Coming back to (3.18) with v = zh and taking into account (3.13), (3.14), we
deduce that

lim
h

f(uh)
%2

h

= lim
h

[ ∫
Ω

n∑
i,j=1

aij(x, %hzh)DizhDjzh dx− 2
%2

h

∫
Ω

G(x, %hzh) dx

]

= lim
h

[ ∫
Ω

n∑
i,j=1

aij(x, %hzh)DizhDjzh dx− 1
%h

∫
Ω

g(x, %hzh)zh dx

]
= lim

h
λh = µ.

Assume now that f(uh)/%2
h → µ, namely that

lim
h

[ ∫
Ω

n∑
i,j=1

aij(x, %hzh)DizhDjzh dx− 2
%2

h

∫
Ω

G(x, %hzh) dx

]
= µ.

From (a.3′) and (g.2′) it follows that (zh) is bounded in H1
0 (Ω). As before, we

find that

lim
h

λh = lim
h

f(uh)
%2

h

and the assertion follows. �

Proof of Theorem 3.2. First of all, by Lemma 3.8 the condition λk(%) →
µ is equivalent to

f(uk(%))∫
Ω
|uk(%)|2 dx

→ µ.
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In turn, it is equivalent to prove that, for every ε > 0, there exists %0 > 0
such that, for every % ∈ ]0, %0], there exist at least two solutions (λk(%), uk(%)),
k = 1, 2, of (3.17) with u1(%) 6= u2(%) and∫

Ω

|uk(%)|2 dx = %2, µ− ε ≤ f(uk(%))∫
Ω
|uk(%)|2 dx

≤ µ + ε.

In fact, by (a.3′) and (g.2′) it follows that uk(%)/% is bounded in H1
0 (Ω) as % → 0.

Therefore uk(%) → 0 strongly in H1
0 (Ω) as % → 0. From Lemma 3.8 it follows

that uk(%) → 0 also in L∞(Ω).

Now, let ε > 0 and let δ > 0 be such that (3.11) and (3.15) hold. Without
loss of generality, we may assume that ε ≤ δ and that ε is small enough to apply
Lemma 3.4. Let %0 > 0 be as in Lemma 3.4. Without loss of generality, we may
also assume that %0 ≤ δ. Let % ∈ ]0, %0].

If u ∈ M and f̃%(u) < µ + 2ε, it is clear that the weak slope of f̃%

∣∣
efµ+2ε
%

at u coincides with that of f̃% at u. Applying Theorem 2.5 to f̃%| efµ+2ε
%

, we find

two critical values µ − ε ≤ c1 ≤ c2 ≤ µ + ε of f̃%. If c1 < c2, we immediately
get two distinct critical points z1(%), z2(%) of f̃% in f̃−1

% ([µ − ε, µ + ε]). If c1 =
c2, we have that cat

efµ+2ε
%

Kc1 ≥ 2. A fortiori we have cat{ ef%<µ+2ε}Kc1 ≥ 2.

Being an open subset of a manifold, {f̃% < µ + 2ε} is clearly weakly locally
contractible. By Proposition 2.7 we find two distinct critical points z1(%), z2(%)
of f̃% in f̃−1

% ([µ− ε, µ + ε]) also in this case.

By (3.11) we have that zk(%) does not belong to ∂M . From Lemma 3.5 it
follows that there exist λ1(%), λ2(%) ∈ R such that

∫
Ω

n∑
i,j=1

aij(x, %zk(%))Dizk(%)Djv dx

+
1
2

%

∫
Ω

n∑
i,j=1

Dsaij(x, %zk(%))Dizk(%)Djzk(%)v dx

− 1
%

∫
Ω

g(x, %zk(%))v dx = λ

∫
Ω

zk(%)v dx

for all v ∈ H1
0 (Ω)∩L∞(Ω). If we set uk(%) = %zk(%), we have that (λk(%), uk(%))

has the required properties. �

Proof of Proposition 3.1. Let (λh, uh) be a sequence as in Definition 1.2.
If we set %h = (

∫
Ω
|uh|2 dx)

1
2 and zh = uh/%h, by Lemma 3.8 we deduce that

f(uh)/%2
h → µ. From (g.2′) and (a.3′) it follows that (zh) is bounded in H1

0 (Ω),
hence weakly convergent, up to a subsequence, to some z ∈ H1

0 (Ω) \ {0}. Since
(3.18) holds also in this case, passing to the limit as h →∞ and recalling (3.13),
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we find ∫
Ω

n∑
i,j=1

aij(x, 0)DizDjv dx−
∫

Ω

Dsg(x, 0)zv dx = µ

∫
Ω

zv dx

for all v ∈ H1
0 (Ω) ∩ L∞(Ω) and the assertion follows. �

4. Proof of Proposition 1.3 and Theorem 1.4

Let ϑ: R → R be a non-decreasing smooth function such that ϑ(s) = s for
|s| ≤ 1 and ϑ is constant on ]−∞,−2] and on [2,∞[.

If we set âij(x, s) = aij(x, ϑ(s)) and ĝ(x, s) = g(x, ϑ(s)), it is readily seen
that âij and ĝ satisfy (a.1), (a.2′), (a.3′), (a.4), (g.1) and (g.2′).

On the other hand, if u is small enough in L∞(Ω), we have that (λ, u) is
a solution of (1.2) with respect to âij and ĝ if and only if it do it with respect to
aij and g. Moreover, the linear operator A associated with âij and ĝ coincides
with that associated with aij and g.

If we apply Proposition 3.1 and Theorem 3.2 to âij and ĝ, the assertion
follows. �
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H. Poincaré Anal. Non Linéaire 11 (1994), no. 2, 189–209.

[14] O. A. Ladyzhenskaya and N. N. Ural’tseva, Linear and Quasilinear Elliptic Equa-

tions, Academic Press, New York–London, 1968.

[15] J.Q. Liu, Bifurcation for potential operators, Nonlinear Anal. 15 (1990), no. 4, 345–353.

[16] A. Marino, La biforcazione nel caso variazionale, Conf. Sem. Mat. Univ. Bari 132

(1973).

[17] J. B. McLeod and R. E. L. Turner, Bifurcation for non-differentiable operators with

an application to elasticity, Arch. Rational Mech. Anal. 63 (1976/77), no. 1, 1–45.

[18] P. H. Rabinowitz, Variational methods for nonlinear eigenvalue problems, Eigenvalues

of Non-linear Problems (C.I.M.E., III Ciclo, Varenna, 1974) (G. Prodi, ed.), Edizioni
Cremonese, Roma, 1974, pp. 139–195.

[19] , A bifurcation theorem for potential operators, J. Functional Analysis 25 (1977),
no. 4, 412–424.

[20] , Minimax methods in critical point theory with applications to differential equa-
tions, CBMS Regional Conf. Ser. in Math., vol. 65, Amer. Math. Soc., Providence, R.I.,

1986.

[21] M. Struwe, Quasilinear elliptic eigenvalue problems, Comment. Math. Helv. 58 (1983),
no. 3, 509–527.

Manuscript received January 5, 2005

Elisabetta Benincasa and Annamaria Canino

Department of Mathematics
University of Calabria

87036 Arcavacata di Rende (CS), ITALY

E-mail address: benincasa@mat.unical.it, canino@unical.it

TMNA : Volume 31 – 2008 – No 1


