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SOME REMARKS ON THE CRITICAL POINT THEORY
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Dedicated to Professor Louis Nirenberg on the occasion of his 80th birthday

Abstract. In this paper we discuss some problems about critical point

theory. In the first part of the paper we study existence and multiplicity
results of semilinear second order elliptic equation:

(
−∆u = f(x, u) for x ∈ Ω,

u = 0 for x ∈ ∂Ω,

In [4], the authors study the contractibility of level sets of functionals asso-

ciated with some elliptic boundary value problems. In this paper by using
Morse theory and minimax method we give a more precise description of

topological construction of level set of critical value of energy functional

for mountain pass type critical point. It is well known that nondegenerate
critical point is isolated, so if a critical point is not isolated, it must be

a degenerate critical point. In the second part we will give an example

that all the critical points of functional of a class of oscillating equation
with Neumann boundary condition are isolated and the equation has only

constant solutions. Moreover, critical groups of each critical point of the

functional are trivial. The elliptic sine-Gordon equation originates from the
static case of the hyperbolic sine-Gordon equation modelling the Josephson
junction in superconductivity, which is of contemporary interest to physi-

cists. The problem is similar to the elliptic sine-Gordon equation so we
believe that it derives from profound physical backdrop.
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1. Introduction

We consider elliptic equation with Dirichlet boundary condition:

(1.1)

{
−∆u = f(x, u) for x ∈ Ω,

u = 0 for x ∈ ∂Ω,

Let Ω ⊂ RN be a bounded domain with smooth boundary ∂Ω.
Denote by σ(−∆) = {λi | 0 < λ1 < λ2 ≤ . . . ≤ λk ≤ . . . } the eigenvalues of

the following linear problem:{
−∆u = λu for x ∈ Ω,

u = 0 for x ∈ ∂Ω.

We assume that f ∈ C1(R, R) and f(0) = 0. Let

b = lim
t→0+

f(x, t)
t

, a = lim
t→0−

f(x, t)
t

, b 6= a, F (x, u) =
∫ u

0

f(x, s) ds.

In view of the variational point, solutions of (1.1) are critical points of cor-
responding functional defined on the Hilbert space E = H1

0 (Ω).

Let X = C1
0 (Ω) ∆= {u ∈ C1(Ω) | u(x) = 0, x ∈ ∂Ω}. It is a Banach space,

and define [u1, u2]
∆= {u ∈ X | u1 ≤ u ≤ u2, x ∈ Ω} be the order interval in X.

Consider the functional

J(u) =
1
2

∫
Ω

|∇u|2 dx−
∫

Ω

F (x, u) dx.

Assume the following conditions:

(i) There are constant C > 0 such that

|f ′t(x, t)| ≤ C(1 + |t|p−1), t ∈ R \ {0},

where 1 < p < 2∗ − 1, 2∗ = 2N/(N − 2), if N ≥ 3, and 2∗ = ∞, if
N = 1, 2.

(ii) There exists M1 > 0, M2 < 0 such that f(x,M1) < 0, f(x,M2) > 0 for
x ∈ Ω.

(iii) λl−1t
2 ≤ 2F (x, t) ≤ a(t−)2 + b(t+)2, |t| ≤ δ, (a, b) ∈ Cl1∩Ql, l ≥ 3, and

λl−1 ≤
f(x, t)

t
≤ b, 0 ≤ t ≤ δ,

λl−1 ≤
f(x, t)

t
≤ a, −δ ≤ t ≤ 0,

and 0 is a isolated critical point of J .
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(iv) a(t−)2 + b(t+)2 ≤ 2F (x, t) ≤ λl+1t
2, |t| ≤ δ, (a, b) ∈ Cl2 ∩Ql, and

b ≤ f(x, t)
t

≤ λl+1, 0 ≤ t ≤ δ,

a ≤ f(x, t)
t

≤ λl+1, −δ ≤ t ≤ 0,

min{a, b} ≥ λ2 and 0 is a isolated critical point of J .

Here Cl1, Cl2 are two strictly decreasing continuous curves defined in [5],
Ql = (λl−1, λl+1)2.

Now we state our main abstract theorem:

Theorem 1.1. Let E be a Banach space. Functional J is defined on E.
J ∈ C1(E, R) satisfies (PS) condition. J is bounded from below on E. And for the
mountain pass type critical points u of J , its critical group Cq(J, u) is of the form
δq1G. Assume u1, u2 and u3 are three critical points of J , where u1, u2 are local
minimizers and u3 is a mountain pass point, and J(u3) > max{J(u1), J(u2)},
J(u1) = infu∈E J(u) < ∞. Define ci = J(ui), i = 1, 2, 3. If J has only three
critical points in Jc3 , then either

(a) Hq(Jc3) ∼= δq0G;

or

(b) Hq(Jc3) =


G⊕G if q = 0,

G if q = 1,

0 if q ≥ 2.

The following proposition makes an application of Theorem 1.1:

Proposition 1.2.

(a) Under the hypothesis (i)–(iii), (1.1) admits four nontrivial solutions.
(b) Under the hypothesis (i), (ii), (iv), there exists at least four nontrivial

solutions of (1.1).

As a matter of fact, we are inclined to generalizing Proposition 1.2 to general
case. By giving the additional condition:

(v) there exists q0 ≥ 2 such that Cq0(J, 0) 6= 0,

we have:

Proposition 1.3. If there exist two pairs sub-sup solution of (1.1) nearby
0 and with the assumption (v) we could obtain at least four nontrivial solutions.

In many cases if we assume that 0 is a nondegenerate critical point of J or
J has a local linking at 0 and critical groups Cq(J, 0) is clear by some technical
methods, and also assume that there exist two pairs of sub-sup solution nearby 0,
then by mountain pass theorem in order intervals [3], we can get a sign-changing
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mountain pass point, and by degree theory we obtain the second sign-changing
solutions. In this paper we will show that if critical group Cq(J, 0) is nontrivial for
some q, then by comparing the difference of topological construction of different
level sets of energy functional J , we still verify the existence of four nontrivial
solutions even local degree of 0 is zero. However, we could not describe the
property of the fourth solution we get.

In Section 3 we give the proof of Theorem 1.1. It is well known that nonde-
generate critical point is isolated, so if a critical point is not isolated so it must be
a degenerate critical point. In Section 4 we will give an example that all the criti-
cal points of functional of a class of oscillating equation with Neumann boundary
condition are degenerate and also are isolated. Moreover, critical groups of each
critical point of the functional are trivial. First, we recall some notions and
known results on critical point theory in Section 2.

2. Preliminaries

Let E be a Banach space, J ∈ C1(E, R), K = {u ∈ E | J
′
(u) = 0},

Jc = {u ∈ E | J(u) ≤ c}, Kc = {u ∈ K | J(u) = c}, c ∈ R.

Definition 2.1. We say that J satisfies the (PS)c condition if any sequence
{uk} ⊂ E along with J(uk) → c and J ′(uk) → 0 (k → infty) possesses a
convergent subsequence. We say that J satisfies the (PS) condition if it satisfies
(PS)c for all c ∈ R.

Definition 2.2. Assume that J ∈ C1(E, R), c ∈ R. N is a closed neighbour-
hood of Kc. If for all ε∗ > 0 and all N , there exists ε ∈ (0, ε∗) and a continuous
map η: [0, 1]× E → E, such that:

(a) η(0, · ) = id,
(b) η(t, u) = u for all u /∈ J−1[c − ε∗, c + ε∗] = {u ∈ E | c − ε∗ ≤ J(u) ≤

c + ε∗},
(c) J(η( · , u)) is nonincreasing, for all u ∈ E,
(d) η(1, Jc+ε \N) ⊂ Jc−ε.

Then we say that J satisfies deformation property.

By using the famous deformation theorem, we know that J satisfies defor-
mation property when J satisfies (PS) condition.

Let E be a Hilbert space, PE is a closed convex cone of E. X is densely

imbedded to E. Assume that P = X ∩ PE and
◦
P, the interior of P is nonempty.

We assume that any order interval is bounded in any finite dimensional subspace
of X.

The functional J : E → R satisfies the following conditions:

(A) J ∈ C2(E, R) and satisfies (PS) condition in E and deformation property
in X. J only has finitely many isolated critical points.
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(B) The gradient of J is of the form ∇J = id − KE, where KE: E → E is
compact. KE(X) ⊂ X and the restriction K = KE|X: X → X is of class
C1 and strongly preserving, i.e. K(u) � K(v) if u � v, u � v if and

only if u− v ∈
◦
P.

(C) J is bounded from below on any order interval in X.

Now, we state the mountain pass theorem in order intervals (see [3]) as
follows:

Theorem 2.3 (Mountain pass theorem in order intervals). Suppose J sat-
isfies (A)–(C) and {v1, v2}, {w1, w2} are two pairs of strict sub-supsolution of
∇J = 0 in X with v1 < w2, [v1, v2] ∩ [w1, w2] = ∅. Then J has a mountain pass
point u0, u0 ∈ [v1, w2]\ ([v1, v2]∪ [w1, w2]). More precisely, let v0 be the maximal
minimizer of J in [v1, v2] and w0 be the minimal minimizer of J in [w1, w2].
Then v0 < u0 < w0. Moreover, C1(J, u0), the 1-th critical group of J at u0, is
nontrivial.

Remark 2.4. Theorem 2.3 still holds if J ∈ C1(E, R) and K is of class C0.

Remark 2.5. Theorem 2.3 still holds if J has infinitely many isolated critical
points.

Now, we recall some notions and known results on Morse theory. Assume
that E is a Hilbert space with inner product 〈 · , · 〉 and corresponding norm
‖ · ‖, functional J ∈ C1(E, R). Let u0 be an isolated critical point of J with
J(u0) = c, c ∈ R, and U be a neighbourhood of u0 such that K ∩ U = {u0}
being K = {u ∈ E | J ′(u) = 0} the critical set of J . Then we call

Cq(J, 0) = Hq(Jc ∩ U, Jc ∩ U \ {u0}, G), q = 0, 1, . . .

the q-th critical group, with coefficient group G of J at u0, where Jc = {u ∈ E |
J(u) ≤ c}. Hq(A,B;G) stands for the q-th singular relative homology group of
the topogical pair (A,B) with coefficients in an Abelian group G, from now on
we denote it by Hq(A,B).

Definition 2.6. Let u be the critical point of functional J defined on Hilbert
space E, we denote Morse index of J at u by ind(J, u),

ind(J, u) ∆= dim E−, E− = {ϕ ∈ E | 〈J ′′(u)ϕ, ϕ〉 < 0}.

3. Proofs of Theorem 1.1 and Proposition 1.2

Proof of Theorem 1.1. By using the excision property, we obtain

Cq(J, u3) ∼= Hq(Jc3∩B(u3, r), Jc3∩B(u3, r)\{u3}) ∼= Hq(Jc3 , Jc3\{u3}) ∼= δq1G.
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Since Hq(Jc3 \ {u3}) ∼= Hq(A) ∼= δq0(G ⊕ G), where A = {u1} ∪ {u2}, by the
following exactness of singular homology groups

· · · → Hq(Jc3 \ {u3})
i∗−→ Hq(Jc3)

j∗−→ Hq(Jc3 , Jc3 \ {u3})
∂−→ Hq−1(Jc3 \ {u3}) → · · ·

where i: Jc3 \ {u3} → Jc3 and j: Jc3 → (Jc3 , Jc3 \ {u3}) are the inclusions, and
∂ is the boundary operator. Then we get

Hq(Jc3) ∼= Hq(Jc3 , Jc3 \ {u3}) ∼= 0, q ≥ 2.

Notice the exactness of singular homology groups

(3.1) · · · → H1(Jc3 \ {u3})
i∗−→ H1(Jc3)

j∗−→ H1(Jc3 , Jc3 \ {u3})

−→ H0(Jc3 \ {u3})
i∗−→ H0(Jc3)

j∗−→ H0(Jc3 , Jc3 \ {u3}) → · · ·

From (3.1) we derive

rank H1(Jc3)−rank H1(Jc3 , Jc3 \{u3})+rank H0(Jc3 \{u3})−rank H0(Jc3) = 0

so we have
rank H0(Jc3) = 1 + rankH1(Jc3).

Now we will show that Jc3 is bounded in E. As a matter of fact, since J is
bounded from below on E and satisfies (PS) condition, we infer that J is coercive
on E, that is, J(un) →∞ as ‖un‖E →∞.

If Jc3 is not path-connected, we will verify that u1 and u2 are not in the same
component of Jc3 . Otherwise, we assume that they are in the same component
of Jc3 , denoted by A1. So we can find a path Γ∗ ⊂ A1 connecting u1 with u2.
We define c

∆= infh∈Γ maxt∈[0,1] J(h(t)), where Γ = {h ∈ C([0, 1],E) | h(0) =
u1, h(1) = u2}.

From the definition of c and above discussion we infer that

(3.2) c = c3 = max
u∈Γ∗

J(u).

If Jc3 is not path-connected, we can find a component of Jc3 , denoted by A2,
such that u1, u2 /∈ A2.

Consider the pseudo-gradient flow on J−1[c1, c3]:

(3.3)

{ ·
σ (t) = −η(σ(t))/‖η(σ(t))‖2,
σ(0) = u ∈ A2.

We claim that A2 ∩ K 6= ∅, where K = {u ∈ E| J ′(u) = 0}. If it is not true,
fixing u0 ∈ Å2, then for all t > 0, σ(t, u0) ∈ A2. Notice that

J(σ(t, u0))− J(u0) =
∫ t

0

〈dJ(σ(τ)),
·
σ (τ)〉 dτ < − t

4
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which contradicts J(u1) = infu∈E J(u) > −∞. So we get a critical point u4 in
A2. Obviously, by (3.2) we get u4 6= u3 this is because that Γ∗ ⊂ A1 ⊂ Jc3 such
that u3 ∈ A1. However, it is impossible since we assume that there are only
three critical points u1, u2, u3 in Jc3 . So we draw the conclusion that if Jc3 is
not path-connected then u1 and u2 are not in the same component of Jc3 .

Now we will show that rankH0(Jc3) ≤ 2. If the thesis is false, let u1 ∈ Ã1,
u2 ∈ Ã2, where Ã1, Ã2 are two components of Jc3 , so we can find the third
component of Jc3 , denoted by Ã3, such that u1, u2 /∈ Ã3. Similar to above
discussion we get a critical point û in Ã3. Obviously, u3 ∈ Ã3 and (Ã3)◦ 6= ∅,
where (Ã3)◦ denotes the interior of Ã3. Now we prove that û 6= u3. Indeed, we
can get a strong result that there exists a local minimizer of J in Ã3. Define ĉ

∆=
infu∈ eA3

J(u). We will show that there exists a minimizing sequence {un} ⊂ Ã3,
J(un) → ĉ, J ′(un) → 0, n → ∞. As a matter of fact, from the definition of ĉ,
by Ekeland variational principle, for εn > 0 and εn → 0 as n →∞, there exists
un ∈ Ã3 such that

J(un) < inf
u∈ eA3

J(u) + εn,

J(u) ≥ J(un)− εnρ(un, u), for all u ∈ Ã3

which implies J ′(un) → 0, n →∞. Since J satisfies (PS) condition on E, there
exists û ∈ Ã3 such that ĉ = J(û), J ′(û) = 0. So we infer that û is a local
minimizer of J in Ã3, which also contradicts the assumption. The proof is
complete. �

Corollary 3.1. Under the assumptions of Theorem 1.1, if (b) holds, there
exist at least five critical points of J on E.

Proof. It is easy to check that c > c3 provided that (b) holds. So we
get two local minimizers and two mountain pass points of J . We denote u4 by
another mountain pass point. Notice that E is contractible, we have β0 = 1,
β1 = β2 = . . . = 0, where βq = rankHq(E, J−a), a > 0 large enough.

(3.4)
∞∑

q=0

(−1)qMq = 1

where Mq are the Morse type numbers for K = {u ∈ E|J ′(u) = 0}. If we
assume that there are only four critical points of J on E, then Morse inequality
is applied to the bounded from below function J and (3.4) would lose the balance.
Thus, the fifth critical point arises from the contradiction and we complete the
conclusion. �

Now we are in the position to prove Proposition 1.2.
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Proof of Proposition 1.2. From the discussion of [2], we get Cdl−1(J, 0)
6= 0 under the assumptions (a)–(c) and also Cdl

(J, 0) 6= 0 by the conditions (a),
(b), (d). From the assumption we can find two pairs of sub-sup solution of (1.1),
that is, {εϕ1,M1} and {M2,−εϕ1}, ε > 0 small enough. So we get one local
minimizer u1 > 0 in order interval [εϕ1,M1], and another local minimizer u2 < 0
in order interval [M2,−εϕ1]. By mountain pass theorem in order interval, we
get a sign-changing mountain pass point u3. Now we claim that there exists
the fourth nontrivial solution in order interval [M2,M1]. We only treat the case
under (a)–(c). Otherwise, there are only three nontrivial solutions in [M2,M1].
Then we will show that J(u3) < 0. Notice that for all u ∈ E2 ∩ B(0, ρ) \ {0},
E2 = span {ϕ1, ϕ2}, ρ small enough and ρ > ε, and by (c), we have

J(u) =
1
2

∫
Ω

|∇u|2 −
∫

Ω

F (x, u)

=
1
2

∫
Ω

|∇u|2 − λ2

2

∫
Ω

u2 +
λ2

2

∫
Ω

u2 −
∫

Ω

F (x, u) < 0

So we can always find a path Γ̂ connecting −εϕ1 with εϕ1 in E2 ∩ B(0, ρ) such
that 0 /∈ Γ̂. Under the pseudo-gradient flow conrtructed by (3.3), we infer that
there exists t1 > 0 and t2 > 0, σ(t1, εϕ1) = u1, σ(t2,−εϕ1) = u2. So we find
a path Γ̃ connecting u1 with u2 such that supu∈eΓ J(u) < 0. Define c3 = J(u3).
By Theorem 1.1, we infer that Jc3 is path-connected and c = c3 < 0.

Notice that J0 is a deformation retraction of E and by Theorem 1.1 we have

Hq(J0 \ {0}) ∼= Hq(Jc3) ∼= δq0G

so, using the excision property, we get

Cq(J, 0) ∼= Hq(J0 ∩B(0, r), J0 ∩B(0, r) \ {0})
∼= Hq(J0, J0 \ {0}) ∼= Hq(E, Jc3) ∼= 0, for all q

which contradicts Cdl−1(J, 0) 6= 0. By using exactly the same techniques and
with very similar proofs, we can deal with the case (a), (b), (d). We complete
the proof. �

Proceeding along the same lines as in the argument of Proposition 1.2, it
suffices for us to treat Proposition 1.3. In [4], the authors study the contractibility
of level sets of functionals associated with some elliptic boundary value problems
by using analysis tools and also gave some application to elliptic boundary value
problems in very weak conditions. The methods used by this paper also can
discuss the case given in [4].
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4. An example of isolated degenerate critical points

In this part, we consider elliptic equation with Neumann boundary condition:

(4.1)

{ −∆u + αu = f(x, u) for x ∈ Ω,

∂u

∂n
= 0 for x ∈ ∂Ω,

Ω ⊂ RN be a bounded domain with smooth boundary ∂Ω and α > 0 is a constant.
The existence of multiple solutions of nonlinear elliptic equation has been

widely studied by many mathematicians. However, we must profess that for the
elliptic equation, the understanding of qualitative properties of the nontrivial
solutions rather than the existence of multiple nontrivial solutions seems to be
limited, at least as far as the author is concerned. In this paper we aim to arriving
at complete understanding of qualitative properties of the nontrivial solutions
of (4.1). The problem is similar to the elliptic sine-Gordon equation so we believe
that it derives from profound physical background. The elliptic sine-Gordon
equation originates from the static case of the hyperbolic sine-Gordon equation
modelling the Josephson junction in superconductivity. However, the elliptic
sine-Gordon boundary value problem as studied in the mathematical literature
actually has an opposite sign in front of the sine nonlinearity; it models not
the “usual” Josephson junction but rather the Josephson π-junction, which is of
contemporary interest to physicists.

Before giving the example, we need the following lemma:

Lemma 4.1. Under above elliptic problem, for any critical point u0 of func-
tional J , which is defined on Hilbert space E = H1(Ω), J ∈ C2(E, R), if ind(J, u0)
= 0, then dim N(u0) ≤ 1, N(u0)

∆= {ϕ ∈ E | 〈J ′′(u0)ϕ, ϕ〉 = 0}.

Proof. From the assumption, J ′(u) = u − Ku, u ∈ E, K = (−∆ + α)−1,
K: E → E is a compact operator. Let u0 be a critical point of J , ind(J, u0) = 0.
On the one hand, for all v ∈ E,

〈J ′′(u0)v, v〉 =
∫

Ω

|∇v|2 −
∫

Ω

f ′(u0)v2(4.2)

= 〈(−∆ + α)v, v〉L2 − 〈f ′(u0)v, v〉L2

= 〈v − (−∆ + α)−1f ′(u0)v, v〉H1 ≥ 0.

On the other hand, we consider the weighted equation:

(4.3)

{
(−∆ + α)u(x) = λf ′(u0)u(x) for x ∈ Ω,

∂u

∂n
= 0 for x ∈ ∂Ω,

Assume u0 is a degenerate critical point, then λ = 1 is a eigenvalue of (4.3).
Now we claim that λ = 1 is the principle eigenvalue of (4.3). Otherwise, there
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exist 0 < µ < 1 and w > 0 satisfying (4.3). So we have

1
µ

w = (−∆ + α)−1f ′(u0)w

Combining (4.2) with (4.3),

0 ≤ 〈w − (−∆ + α)−1f ′(u0)w,w〉H1 <

〈
1
µ

w − (−∆ + α)−1f ′(u0)w,w

〉
H1

= 0

A contradiction! The proof is complete. �

Given the following conditions:

(a) There is a constant C̃ > 0 such that

|g
′

t (x, t)| ≤ C̃(1 + |t|p−1), t ∈ R,

where g(x, t) = f(x, t)− αt, 1 < p < 2∗ − 1, 2∗ = 2n/(n− 2), if n ≥ 3,
and 2∗ = ∞, if n = 1, 2.

(b) f ∈ C1(R, R). There exist sequences {ai} and {bi}, where ai, bi ∈ R,
i = 0, 1, . . . , satisfying ai > 0, bi < 0, a0 = b0 = 0 and ai ↗ ∞, bi ↘
−∞ as i → ∞. Moreover, f(x, t) > αt, for t ∈ (ai, ai+1), t ∈ (bi+1, bi)
and f(x, ai) = αai, f(x, bi) = αbi, i = 0, 1, . . .

(c) f ′t(x, ai) = f ′t(x, bi) = α, i = 1, 2, . . .

We state our main result:

Theorem 4.2. Under the hypothesis (a)–(c), (4.1) has only constant solu-
tions {ai}, {bi}, i = 0, 1, . . . and Cq(J, ai) ∼= 0, Cq(J, bi) ∼= 0, for all q.

Proof. First, we will show that (4.1) has no nonconstant positive and neg-
ative solution. If the thesis is false, let u be a nonconstant positive solution. So
there exists x0 ∈ Ω, u(x0) = min

x∈Ω
u(x). If u(x0) 6= ai, we have

(4.4) αu(x0) ≥ −
N∑

i=1

∂2u

∂x2
i

∣∣∣∣
x=x0

+ αu(x0) = f(u(x0)),

which contradicts condition (b). If there exists some i such that u(x0) = ai, set
u∗ = u− ai, then we obtain{ −∆u∗ + αu∗ = f(x, u)− αai ≥ α(u− ai) ≥ 0 for x ∈ Ω,

∂u∗

∂n
= 0 for x ∈ ∂Ω.

By the strong maximum principle, we infer that u∗ is a constant. A contradiction!
Similar to above discussion, we can verify that (4.1) has also no nonconstant
negative solution.

Next we will show that (4.1) has no sign-changing solution. Otherwise, there
exists a sign-changing solution ũ, m1

∆= minx∈Ω ũ(x) < 0, m2
∆= maxx∈Ω ũ(x) >
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0. By (4.4) we infer that there exists some bi0 = m1, i0 ∈ i = 1, 2, . . . Take
aj0 > m2, j0 ∈ i = 1, 2, . . .

Notice that {bi0 , aj0} is a pair of sub-sup solution of (4.1). Then we can find
an order interval [bi0 , aj0 ] = {u ∈ C1

0 (Ω) | bi0 ≤ u(x) ≤ aj0}. Obviously, ũ ∈
∂[bi0 , aj0 ]. By the strong maximum principle we know that K = KE|X: X → X is
strongly preserving so for v ∈ ∂P \ {0} we have

bi0 + v −∇J(bi0 + v) = K(bi0 + v) � K(bi0) = bi0 .

That is

(4.5) bi0 + v −∇J(bi0 + v) ∈ bi0+
◦
P for all v ∈ ∂P \ {0}

which implies that −∇J points at bi0 + v inside the cone bi0+
◦
P. So we infer

that
[bi0 + ∂P \ {0}] ∩KJ = ∅

where KJ = {u ∈ E | J ′(u) = 0}. However, ũ ∈ ∂[bi0 , aj0 ], so ũ ∈ bi0 + ∂P \
{0}. This contradicts (4.5). Thus, we have shown that (4.1) has only constant
solutions, that is, the two sequences {ai} and {bi} are all the solutions of (4.1).

Now we claim that Cq(J, ai) ∼= 0, for all q. By the assumption (c) and using
Lemma 4.1, we derive that ind(J, ai) = 0, dim N(ai) ≤ 1. So by the shifting
theorem we infer that the critical groups Cq(J, ai) must be one of the following
three forms:

(1) Cq(J, ai) ∼= δq0G, for all q, which determines that ai is a local minimizer
of J ;

(2) ai is a mountain type critical point of J , that is, Cq(J, ai) ∼= δq1G, for
all q;

(3) Cq(J, ai) ∼= 0, for all q.

Take a constant mi such that ai−1 < mi < ai. Let

fi(x, t) =


f(x, mi) for t < mi,

f(x, t) for mi ≤ t ≤ ai+1,

f(x, ai+1) for t > ai+1.

We consider the following equation:

(4.6)

{ −∆u = fi(x, u) for x ∈ Ω,

∂u

∂n
= 0 for x ∈ ∂Ω.

It is easy to check that the solution of (4.6) is also the solution of (4.1). Take
ai < m̂i < ai+1, Mi+1 > ai+1. Obviously, {mi,Mi+1} and {m̂i,Mi+1} are two
pairs of sub-sup solution of (4.6). So we find two order intervals [mi,Mi+1] and
[m̂i,Mi+1]. By degree theory

deg(∇Ji, [mi,Mi+1], 0) = deg(∇Ji, [m̂i,Mi+1], 0) = 1
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where
Ji(u) =

1
2

∫
Ω

|∇u|2 −
∫

Ω

Fi(u), Fi(u) =
∫ u

0

fi(x, t) dt.

Since ai ∈ [mi,Mi+1] \ [m̂i,Mi+1], we can find ball Bri
(ai) ⊂ [mi,Mi+1] \

[m̂i,Mi+1] with radius ri > 0 and we infer that deg(∇Ji, Bri(ai), 0) = 0. Other-
wise, by Poincare–Hopf formula (see [1])

deg(∇Ji, Bri
(ai), 0) =

∞∑
q=0

(−1)qrank Cq(J, ai) 6= 0

so there must exist a nonconstant solution in [mi,Mi+1] \ [m̂i,Mi+1], which
contradicts the fact (4.1) has only constant solutions. We complete the proof.�
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