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SCHAUDER’S FIXED POINT
AND AMENABILITY OF A GROUP

Semeon A. Bogatyi — Vitaly V. Fedorchuk

Abstract. A criterion for existence of a fixed point for an affine action of
a given group on a compact convex space is presented. From this we derive

that a discrete countable group is amenable if and only if there exists an

invariant probability measure for any action of the group on a Hilbert cube.
Amenable properties of the group of all isometries of the Urysohn universal

homogeneous metric space are also discussed.

1. The Schauder fixed point theorem [42], [43] is a generalization of the
well-known Brouwer fixed point theorem, and in its turn is a subject of various
generalizations.

Theorem A (Schauder). Any continuous mapping f :X → X of a convex
compact subset of a Banach space into itself has a fixed point f(x) = x.

Schauder obtained it at first for spaces with a Schauder basis and made
it the starting point of a novel existence, uniqueness, and regularity theory for
solutions of partial differential equations [42], [43]. A. Tychonoff proved the fixed
point property for convex compact subsets of topological linear locally convex
spaces [45]. In what follows, by convex space we mean a convex subset of some
topological linear locally convex space.
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In Polish topological school much attention is being given to more general
case of multivalued mappings f and ANR-compacta X [26]. This case has im-
portant applications in functional analysis. We consider two other possible ge-
neralizations which are related to each other:

(1) a family of mappings {fα} is considered;
(2) a compactum X is an arbitrary one, but an absent fixed point is changed

by more complicated invariant object — an invariant measure.

The first step along this direction was made in 1936 by A. A. Markov and
by S. Kakutani [32], who considered a commuting family of affine mappings on
a convex compact subset of a topological linear (locally convex) space. In 1998
J. R. Jachymski published a simple proof of the Markov–Kakutani theorem [31].
We consider only the case when the family {fα} forms a group. The most impor-
tant step was done by N. N. Bogoljubov in 1939 [3], [10], [11], who understood
that the amenability property of J. von Neumann [39] plays the main role in
the existence of a fixed point (invariant measure). N. N. Bogoljubov called such
groups “Banach groups”, since they are characterized by the existence of invari-
ant Banach mean. The work of J. von Neumann was inspired by investigations
of F. Hausdorff [29], S. Banach [4], and A. Tarski [5] in the measure theory and
by the famous paradoxis in the measure theory. It was not until 20 years after
the work of N. N. Bogoljubov and 30 years after the work of J. von Neumann
passed that the importance of amenable groups was realized definitively [15],
[16], [27].

For a space X let Cb(X) be the space of all continuous bounded functions
ϕ:X → R, equipped with uniform norm ||ϕ||∞. For a compact space X we shall
denote the space Cb(X) by C(X). A linear functional m:Cb(X) → R is called
a mean, if

inf
x∈X

{ϕ(x)} ≤ m(ϕ) ≤ sup
x∈X

{ϕ(x)} for all ϕ ∈ Cb(X).

From definition of a mean m we get that ||m|| = 1 and m ≥ 0. In particular,
every mean is continuous. The set Σ(X) of all means is a convex compact
subset of topological linear locally convex space Cb(X)∗ of all continuous linear
functionals on Cb(X) with weak∗ topology, that is with pointwise convergence
topology. If a left action of a group G is given on the space X then there exist
generated left actions of G on the spaces Cb(X) and Σ(X). In order to get
a representation of a group G (instead of antirepresentation), put g̃ϕ = ϕ ◦ g−1

(we consider g−1 on the right as a map of X to itself, corresponding to the
element g−1 ∈ G; however, it is inverse for the map corresponding to the element
g ∈ G), i.e. (g̃ϕ)(x) = ϕ(g−1(x)). Since only discrete groups will be of interest
to us, the induced action is indeed the action of topological group G, and no
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requirements like uniformness of an original action appear. In this case a mean
is called left-invariant, if m(ϕ) = m(g̃ϕ) for all g ∈ G and ϕ ∈ Cb(X).

Considering X = δ(X) as a subset of Σ(X), one can extend the action of G

on X onto Σ(X) in the following way:

(1.1) gm = m ◦ g̃−1, i.e. gm(ϕ) = (m ◦ g̃−1)(ϕ) = m(g̃−1ϕ) = m(ϕ ◦ g).

We identify an element g ∈ G with the corresponding map of the space X

into itself. But to be more definite, we denote corresponding maps of the spaces
Cb(X) and Σ(X) by g̃ and g, respectively. The map g = Σ(g): Σ(X) → Σ(X) is
continuous and affine. It is a homeomorphism because there is an inverse map
(g)−1 = g−1. So, the group G has a left action on Σ(X) as a group of affine
homeomorphisms.

From definition (1.1) of induced action of G on Σ(X) we obtain that a mean
m is left-invariant if and only if it is invariant with respect to the action of G

on Σ(X), i.e. is a fixed point of the action of G on Σ(X): gm = m.

Definition 1.1. A discrete group G is called amenable if there is a left-
invariant mean on Cb(G).

Group G acts on itself not only from the left, but also from the right. An
existence of a left-invariant mean on Cb(G) is equivalent to an existence of a right-
invariant mean and is equivalent to an existence of a two-side-invariant mean [27].
It is why they say simply about an invariant mean in this case.

Theorem B (Bogoljubov–Day). For a discrete group G the following con-
ditions are equivalent.

(a) The group G is amenable.
(b) For any affine action of the group G on a compact convex space there

exists a fixed point.
(c) For any action of the group G on any compact space there exists an

invariant probability measure.

A probability measure on a Hausdorff compact space X is a function µ:B →
[0, 1], defined on σ-algebra B of all Baire subsets of X, such that:

(1) µ(X) = 1;
(2) µ is countably additive.

An equivalence of this geometric notion of a measure to a functional notion
of a mean contains an essential part of the famous Riesz theorem [23]. In our
proofs we do not use this equivalence. We need it only for understanding of
Proposition 2.9. To formulate our assertions we prefer to use the notion of
a measure as a more geometric one.
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Theorem C (Riesz). For any compact space X the integral ϕ 7→
∫

ϕ dµ

provides an isomorphism between the space of all probability measures on X and
the space Σ(X) of all means on C(X).

R. J. Zimmer has shown that for a countable group in conditions (b) and
(c) of Theorem B, the class of all compact spaces can be reduced to the class
of all metrizable compact spaces [49]. We give a topological proof of this result
for an arbitrary cardinality of an acting group. It is noteworthy to say that an
analogue of mentioned Zimmer’s result also can be obtained from the Ščepin
spectral theorem for any regular cardinal (the cardinality of the group and the
weight of compact spaces) and for any cardinal from theorem about compact
extensions possessing the extension of a given family of transformations.

R. Grigorchuk has raised a question on a possibility of a further reducing of
a class of “test” spaces. T. Giordano and P. de la Harpe [25] got an equivariant
version of the Alexandroff–Urysohn theorem: Every metrizable compact space
with an action of a countable discrete group G is an equivariant image of some
action of the group G on the Cantor perfect set C. Since an image of an invariant
measure under an equivariant mapping is an invariant measure, for a discrete
countable group G in condition (c) one may consider only the Cantor perfect
set C. T. Giordano and P. de la Harpe have also shown that it is impossible
to substitute the compactum C by a manifold of arbitrary finite dimension, and
formulated a problem to consider the n-dimensional Menger compactum µn (or
some other compactum Y ) instead of the Cantor compactum C.

It is evident that the presence of sufficiently many actions of a given group
on a zero-dimensional compactum C rejects the possibility of existence of con-
nected equivariant preimages. It shows that the problem of T. Giordano and
P. de la Harpe can not be solved by their method of construction of equivariant
preimage (with the basic space µn for n ≥ 1).

In our paper we give a criterion of an existence of a fixed point for an affine
action of a given group G on a compact convex space. From this theorem we
derive that for a discrete countable group G in condition (c) of Theorem B it is
possible to consider only the Hilbert cube Q.

We discuss amenable properties of the group of all isometries of the Urysohn
universal homogeneous metric space.

2. Since for a finite group G all statements of this paper are out of question,
let τ be an infinite cardinal.

Theorem 2.1. For an affine action of a group G on a compact convex space
the following conditions are equivalent.

(a) The action has a fixed point.
(b) The action has an invariant measure.
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Proof. Since Dirac’s measure with a support at a fixed point is invariant,
the implication (a)⇒ (b) is evident. To prove the inverse implication we need
some auxiliary facts.

For a compact subset X ⊂ E of a locally convex space E a barycenter of
a measure µ ∈ P (X) is a linear functional b(µ) ∈ E∗∗, where E∗∗ is the second
dual space of E defined by the equality b(µ)(ϕ) = µ(ϕ|X). If X is a convex
compactum, then b(µ) ∈ X (see [12, Chapter IV, §7]).

So, for a convex compactum X ⊂ E the mapping

b = bX :P (X) → X

of barycenter of probability measures is defined. This mapping is continuous
(see [12, Chapter III, §3, Corollary to Proposition 9]) and, evidently, affine.

Proposition 2.2. If X ⊂ E is a convex compactum and a group G acts
on X in affine way, then the mapping bX :P (X) → X is equivariant with respect
to the action of G on to P (X), which is defined by the equality (1.1).

Proof. We have to check the commutativity of the following diagram

P (X)
g

//

bX

��

P (X)

bX

��

X g
// X

where g ∈ G is an arbitrary element. It suffices to show that bX ◦ g = g ◦ bX

on everywhere dense set Z ⊂ P (X). As such a set Z one can take the set of all
measures µ ∈ P (X) with finite supports [12, Chapter III, §2, Theorem 1]. So,
let µ = α1δ(x1) + . . . + αnδ(xn). Then bX(µ) = α1x1 + . . . + αnxn, because bX

is affine. But the mapping g is also affine. Hence,

(2.1) gbX(µ) = α1g(x1) + . . . + αng(xn).

Further,

(2.2) g(µ) = α1δ(g(x1)) + . . . + αnδ(g(xn)).

In fact, let ϕ ∈ C(X). Then

g(µ)(ϕ)
(1.1)
= µ(ϕ ◦ g) = (α1δ(x1) + . . . + αnδ(xn))(ϕ ◦ g)

= α1δ(x1)(ϕ ◦ g) + . . . + αnδ(xn)(ϕ ◦ g)

= α1ϕ(g(x1)) + . . . + αnϕ(g(xn))

= (α1δ(g(x1)) + . . . + αnδ(g(xn)))(ϕ).
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Now the equality (2.2) yields bXg(µ) = α1g(x1) + . . . + αng(xn) (since the map-
ping bX is affine). Consequently, applying the equality (2.1) we complete the
proof of Proposition 2.2. �

End of the Proof of Theorem 2.1. We come back to a proof of the
implication (b)⇒ (a). Let µ be an invariant measure with respect to an affine
action of G on a convex compactum X. Then µ is a fixed point of the action
(1.1) of G on the compactum P (X), i.e. for arbitrary g ∈ G we have

(2.3) g(µ) = µ.

Let us show that x = bX(µ) is a fixed point of the action of G on X. The
assertion of Proposition 2.2 consists of the equality

(2.4) bX ◦ g = g ◦ bX

for arbitrary g ∈ G. Hence,

g(x) = gbX(µ)
(2.4)
= bXg(µ)

(2.3)
= bX(µ) = x.

Theorem is proved. �

In what follows we need some auxiliary results. For a mapping f :X → X,
a set A ⊂ X is called free, if its closure doesn’t meet the closure of its image,
that is A ∩ f(A) = ∅. Clearly, a closure of a free set is also free. It is easy to
verify that every free set has a free neighbourhood. A set A ⊂ X is said to be
migrating if A ∩ f(A) = ∅. Every free set is, evidently, migrating. Conversely,
if a map f is closed (in particular, if f is a homeomorphism), then every closed
migrating set is free. A mapping f is called free if every point is free, that is if
f has no fixed points.

Theorem 2.3. For a mapping f :X → X of a normal space X the following
conditions are equivalent.

(a) There is a compactification bX of X such that the mapping f can be
extended over bX, and this extension bf is free.

(b) The mapping βf :βX → βX is free.
(c) The space X has a finite covering consisting of open migrating sets.
(d) The space X has a finite covering consisting of free sets.
(e) There is a compactification bX of weight wX and of dimension dim X

(in a finite-dimensional case) such that f can be extended over bX and
this extension bf : bX → bX is free.

Proof. (a)⇒ (b) Let p:βX → bX be the natural projection. For an arbi-
trary point y ∈ βX we have p(βf(y)) = bf(p(y)) 6= p(y), i.e. y can not be a fixed
point.
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(b)⇒ (c) Since the mapping βf :βX → βX has no fixed point, for every point
y ∈ βX there exist neighbourhoods Uy and Uβf(y) such that Uy∩Uβf(y) = ∅. The
mapping βf is continuous. Hence, one may assume that βf(Uy) ⊆ Uβf(y). In an
open covering {Uy: y ∈ βX} we can find a finite subcovering {Uyi

: i = 1, . . . , k}.
Then ω = {Uyi ∩ X: i = 1, . . . , k} is the required finite covering of X by open
migrating sets.

(c)⇒ (d) Let ω = {Ui : i = 1, . . . , k} be a finite covering of X consisting
of open migrating sets. There is a combinatorial refining of the covering ω

consisting of closed sets: λ = {Ai : i = 1, . . . , k}, Ai ⊆ Ui. Since Ai = Ai ⊆ Ui

and f(Ai) ⊆ f(Ui) ⊆ X \ Ui, then f(Ai) ⊆ X \ Ui and Ai is a free set.
(d)⇒ (e) Let λ = {Ai : i = 1, . . . , k} be a finite covering of X by free

sets. As we have pointed out already, one may assume that sets Ai are closed.
For every i = 1, . . . , k we fix a continuous bounded function ϕi:X → R such
that ϕi(Ai) = 0 and ϕi(f(Ai)) = 1. In accordance with Engelking–Sklyarenko–
Zarelua theorem [20], [22], [48] there is a compactification bX of weight wX

and of dimension dim X such that f and all mappings ϕi can be extended over
bX (in a unique way). Let us show that this extension bf has no fixed point.
Since X is dense in bX, for any point y ∈ bX there is an index i such that
y ∈ Ai

bX ⊆ (bϕi)−1(0). Since bf is continuous, we have bf(y) ∈ bf(Ai)
bX

=

f(Ai)
bX

⊆ (bϕi)−1(1), which implies that y 6= bf(y). �

Remark 2.4. Theorem 2.3 holds for an arbitrary Tychonoff space X, but in
this case dimension of X is defined by functionally open coverings, i.e. dim X =
dim βX; the sets in (c) have to be functionally open, and in (d) in notion of
a free set one have to require a functional separateness of a set and its image.

Remark 2.5. An equivalence of conditions (b) and (c) was proven by E. van
Douwen [17]. A mapping which satisfies (equivalent) conditions of Theorem 2.3
is called colorable. Since every free set has a free neighbourhood, the implication
(d)⇒ (c) can be easily proved directly. In so doing, one can see that minimal
cardinalities of coverings in (c) and (d) coincide. This cardinality is called the
coloring number LS(f) of the mapping f . M. Katětov proved [33] that for every
mapping f without fixed point of a discrete set, LS(f) ≤ 3. E. van Douwen
proved [17] that every free homeomorphism f of finite-dimensional paracompact
space X is colorable and LS(f) ≤ 2 dim X + 3. In [1], [6], [28] a non-improvable
estimate was obtained: LS(f) ≤ dim X + 3. From the Katětov theorem (the
more so from van Douwen’s theorem) it follows that the action of a discrete
group G on the compactum βG is free. By the way, R. Ellis gave a direct proof
of this statement in 1960 [19, Theorem 3].

For a topological space X we denote by CO(X) the algebra (with unity) of
all clopen subsets of X. For every subset Y ⊂ X the restriction homomorphism
R: CO(X) → CO(Y ) is defined.
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Proposition 2.6. For every Tychonoff space X, the restriction homomor-
phism R: CO(X) → CO(Y ) is an isomorphism.

Proof. An inverse homomorphism is defined by the extension operator Ex
[21, Lemma 7.1.13]. �

Definition 2.7. By finitely additive normed function, defined on algebra
with unity A ⊆ 2X , we mean a function µ:A → [0, 1] such that:

(a) µ(X) = 1;
(c) for every disjoint covering A = A1 ∪ . . . ∪ Ak of a set A ∈ A by sets

Ai ∈ A we have

µ(A) =
k∑

i=1

µ(Ai).

Corollary 2.8. For every Tychonoff space X the following conditions are
equivalent.

(a) There is a finitely additive normed function with values in [0, 1] defined
on the algebra CO(X).

(b) There is a finitely additive normed function with values in [0, 1] defined
on the algebra CO(βX).

Proposition 2.9. For every finitely additive normed function µ with values
in [0, 1] defined on the algebra CO(X), where X is a zero-dimensional compact
space, there is a unique probability measure m in X such that µ(A) = m(χA) for
all A ∈ CO(X).

Proof. Let V be the linear subspace of C(X) generated by all characteristic
functions of clopen subsets. Every function from V is of the form ϕ =

∑
aiχAi

for certain finite family of clopen sets {Ai}k
i=1. Since intersection of a finite

family of clopen sets is a clopen set, one may assume that the family {Ai}k
i=1 is

disjoint. One can define a mean mV on V by the formula:

mV (ϕ) =
k∑

i=1

aiµ(Ai).

Since the space X is zero-dimensional, the set V is dense in C(X). The mean
mV is uniformly continuous. Hence, it has a unique extension m:C(X) → R.
This mean m is a probability measure according to Theorem C.

If m′ is another probability measure satisfying condition of Proposition 2.9,
then mV = m′|V , because m′ is a linear functional. Hence, m = m′. �

Remark 2.10. The possibility of extension of finitely additive function to
countably additive is not surprising and can be obtained in geometric way. Since
in compact space X no clopen subset can be represented as an infinite union
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of non-empty clopen subsets, then every finitely additive normed function µ

with values in [0, 1], defined on algebra CO(X), also can be considered as a
countably additive. Further one should apply famous theorems about extension
of countably additive measures. It can be explained in a different way. Although
by Proposition 2.6, algebras CO(X) and CO(βX) are isomorphic, for infinite
discrete space X algebras CO(X) and CO(βX) are not isomorphic as σ-algebras
already. Namely, there is an infinite operation in CO(X), but in CO(βX) there
is no countable union. It implies that probability measure in βX induces in X

only a finitely additive normed function.

Proposition 2.11. If a discrete group G acts on compact spaces X and Y ,
and f :X → Y is an equivariant mapping, then P (f):P (X) → P (Y ) is an
equivariant mapping too.

Proof. In fact, since P is a functor, for any element g ∈ G we have gY ◦
P (f) = P (gY ) ◦ P (f) = P (gY ◦ f) = P (f ◦ gX) = P (f) ◦ P (gX) = P (f) ◦ gX . �

Theorem 2.12. For a discrete group G of cardinality τ the following con-
ditions are equivalent.

(a) The group G is amenable.
(b) The action of the group G on the compact space βG has an invariant

probability measure.
(c) For any action of the group G on any compact space there exists an

invariant probability measure.
(d) For any affine action of the group G on a compact convex space there

exists a fixed point.
(e) For any affine action of the group G on a compact convex space of weight

≤ τ there exists an invariant probability measure.
(f) For any action of the group G on any compact space of weight ≤ τ there

exists an invariant probability measure.
(g) The action of the group G on the compact space βG has an invariant

finitely additive normed function, defined on the algebra of all clopen
subsets.

(h) The group G has an invariant finitely additive normed function, defined
on the algebra of all subsets.

(i) The action of the group G on any space has an invariant finitely additive
normed function, defined on the algebra of all subsets.

(j) Every zero-dimensional compact extension bG of weight ≤ τ which ad-
mits free extension of the action of the group G has an invariant finitely
additive normed function, defined on the algebra of all clopen subsets.

Proof. We shall prove this theorem by the scheme (a)⇔ (b)⇒ (c) ⇒ (d)⇒
(e)⇒ (f)⇒ (j)⇒ (b) and (b)⇔ (g)⇔ (h)⇔ (i).
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(a)⇔ (b) Let ϕ ∈ Cb(G) be an arbitrary bounded continuous function on the
Tychonoff space G. Then it can be uniquely extended to continuous (bounded)
function βϕ:βG → R on Stone–Čech compactification βG of the space G [21]. In
so doing, the correspondence ϕ → βϕ defines an isomorphism of Banach spaces
Cb(G) and C(βG). Consequently, each left-invariant mean m on Cb(G) defines
a left-invariant mean mβ on C(βG) which is a measure in βG. This measure
is, evidently, invariant (in geometric sense) with respect to the natural action of
G on βG. Conversely, every invariant measure µ in βG defines a left-invariant
mean on C(βG) and, consequently, on Cb(G).

(b)⇒ (c). Let G act on a compact space X. Fix some point x ∈ X and
define an equivariant mapping f :G → X by formula f(g) = gx. This continuous
mapping has a unique continuous extension βf :βG → X. A left-invariant mean
m on C(X) can be defined by formula m(ϕ) = mβ(ϕ ◦ βf), where mβ is some
left-invariant mean on C(βG).

The implication (c)⇒ (d) is a part of implication (b)⇒ (a) of Theorem 2.1.
The implication (d)⇒ (e) is evident.
(e)⇒ (f) Let group G act on a compact space X of weight ≤ τ . As was al-

ready mentioned, the extension of a mapping g on P (X) is denoted by g. Since
g = P (g), the group G acts from the left? on P (X) as a group of affine homeo-
morphisms. Further, wP (X) = wX ≤ τ [24, Chapter 7, § 3]. By suggestion, the
action of the group G on P (X) has an invariant probability measure. Then in
accordance with Theorem 2.1, the action of G on P (X) has a fixed point, which,
evidently, is an invariant measure in X.

The implication (f)⇒ (j) is evident.
(j)⇒ (b) Represent the compactum βG as an inverse limit of zero-dimen-

sional compact extensions bG of weight ≤ τ which admit free extension of the
action of the group G. By Remark 2.5, the action of the group G on βG is
free. According to Theorem 2.3, for every element g ∈ G there is a compact
extension bgG of weight τ such that a homeomorphism g can be extended to
a continuous free mapping bgg on bgG. According to the Engelking–Sklyarenko–
Zarelua theorem [20], [22], [48], for every function ϕ ∈ Cb(G) there exists a
zero-dimensional compactification bϕG such that:

• the function ϕ can be extended continuously over bϕG;
• the action of G can be extended over bϕG;
• bϕG can be mapped onto each compactification bgG, g ∈ G by a map-

ping which is identical on G.

Assume that for every family ϕ1, . . . , ϕk, 2 ≤ k ≤ n, we constructed compacti-
fication bϕ1,... ,ϕk

G, and for each i ∈ {1, . . . , k} we constructed a mapping

πϕ1,... ,ϕk
ϕ1,... ,ϕi−1,ϕi+1,... ,ϕk

: bϕ1,... ,ϕk
G → bϕ1,... ,ϕi−1,ϕi+1,... ,ϕk

G.
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By the Engelking–Sklyarenko–Zarelua theorem, for every family ϕ1, . . . , ϕn+1

there exists a zero-dimensional compact extension bϕ1,... ,ϕn+1G of weight ≤ τ

which admits the extension of the action of the group G, and for any i ∈
{1, . . . , n + 1} there is a mapping

πϕ1,... ,ϕn+1
ϕ1,... ,ϕi−1,ϕi+1,... ,ϕn+1

: bϕ1,... ,ϕn+1G → bϕ1,... ,ϕi−1,ϕi+1,... ,ϕn+1G.

An indexed set of our inverse spectrum is the set of all finite subsets of
Cb(G). We denote this set by B and its members by B. Compositions of different
projections commute, because there is a unique continuous mapping from one
compatification of G onto another one, which is identical on G. From properties
of Stone–Čech extension it follows that compactum βG is the limit of spectrum
S = {bBG, πB

B′ , B′ ⊆ B ∈ B}.
Let us verify that for every B ∈ B the action of the group G on a compact

extension bBG is free. Indeed, let g ∈ G be non-identity element and x ∈ bBG

be an arbitrary point. An extension of the mapping g over bBG shall be denoted
by gB . Natural map of bBG to bgG will be denoted by q. Then q(gB(x)) =
(q ◦ gB)(x) = (bgg ◦ q)(x) = bgg(q(x)) 6= q(x), i.e. points x and gB(x) are
distinct. Hence, according to agreement, on compact bBG there is an invariant
finitely additive normed function, defined on the algebra of all clopen subsets.
Then by Proposition 2.9, set of all invariant probability measures on bBG is not
empty; denote it by PB . Clearly, this set is closed in P (bBG) and, consequently,
is a compactum. Now let us verify that

(2.5) P (πB
B′)(PB) ⊆ PB′ .

Action of element g on P (bBG) we will denote by gB . Since gh = (πB
B′ ◦

gB)(h) = (gB′ ◦ πB
B′)(h) for any point h ∈ G, and G is dense subset of the space

bBG, the equality

(2.6) πB
B′ ◦ gB = gB′ ◦ πB

B′

holds. It means that projection πB
B′ is an equivariant map. Let µ ∈ PB and

ν = P (πB
B′)(µ). Then

gB′(ν) = gB′ ◦ P (πB
B′)(µ)

(according to (g) and Proposition 2.11)

= P (πB
B′) ◦ gB(µ) = P (πB

B′)(µ) = ν.

Hence, the family
T = {PB , P (πB

B′)|PB
, B′ ⊆ B ∈ B}

forms an inverse spectrum of non-empty compacta. By the Kurosh theorem,
Pβ = lim T 6= ∅. Since the functor P is continuous (see [24, Chapter 7, §3]), a
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non-empty compactum Pβ is naturally identified with subset of P (βG). Let us
show that all measures from Pβ are invariant (in fact, it is exactly the set of all
invariant probability measures in βG).

So, {P (βG), P (πB)} is the limit of inverse spectrum {P (bBG), P (πB
B′), B′ ⊆

B ∈ B} (see [24, Chapter 7, §3]). Maps πB
B′ and πB are equivariant, therefore

in accordance with Proposition 2.11, maps P (πB
B′) are equivariant, as well as

maps P (πB) are. Let m ∈ Pβ , i.e. P (πB)(m) ∈ PB for every B ∈ B. Then
P (πB)(gm) = gBP (πB)(m) = P (πB)(m). Since the established equality is valid
for all B ∈ B, it follows that gm = m.

(b)⇔ (g) The implication (b)⇒ (g) is evident. Conversely, if µ is an invariant
finitely additive normed function, defined on the algebra of all clopen subsets of
βG, then in accordance with Proposition 2.9 there exists a unique extending
probability measure m. Probability measure gm is an extension for ĝµ (ĝµ(A) =
µ(gA)). Since function µ is invariant, then ĝµ = µ, therefore from the uniqueness
of extending probability measure it follows that gm = m, i.e. m is an invariant
mean.

(g)⇔ (h) For a discrete space X algebra CO(X) appears to be algebra of all
subsets 2X , therefore everything can be deduced from Corollary 2.8.

(h)⇔ (i) The implication (i)⇒ (h) is evident. Let group G act from the
left on a space X. Fix some point x ∈ X and define an equivariant mapping
f :G → X by formula f(g) = gx. An invariant finitely additive normed function
µ on 2X can be defined by formula µ(A) = µG(f−1(A)), where µG is some
invariant finitely additive normed function on G. �

Remark 2.13. An equivalence of conditions (a), (c), and (d) is Bogoljubov–
Day theorem, formulated above. An equivalence of conditions (a) and (f) (for
τ = ℵ0) is the Zimmer theorem, discussed above. An equivalence of conditions
(a), (h), and (i) was shown by J. von Neuman.

Remark 2.14. Since for every compactum X of weight ≤ τ , every non-
empty open subset of compactum X ×Dτ has weight τ and cardinality 2τ , then
in condition (f) only the following can be required: for every action of a group G

on any compact space in which every non-empty open subset has weight τ and
cardinality 2τ there exists an invariant measure. According to the Alexandroff
theorem, each compactum of weight ℵ0 without isolated points is homeomorphic
with Cantor perfect set C. It means that for τ = ℵ0 implications (f)⇒ (j)⇒ (a)
give reduction of T. Giordano and P. de la Harpe. For τ ≥ ℵ1 for every non-
diadic compactum X of weight τ , the product X × Dτ is not homeomorphic
with Dτ ; moreover, it is not a continuous image of the latter. It follows that
for τ ≥ ℵ1 in condition (f) we can not restrict ourselves by the only space Dτ .
However, since in condition (b) the only space βG is figured, then in conditions
(c) and (d) we can also restrict ourselves to the only space P (βG). It shows
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an expediency of finding a topological description of the space P (βG). Besides
that, clearly for validity of implication (e)⇒ (j) in condition (e) it is sufficient
to consider not all compact convex spaces, but only those, the sets of extreme
points of which are zero-dimensional compacta of weight τ with free action of
the group G.

Corollary 2.15. For a countable discrete group G the following conditions
are equivalent.

(a) The group G is amenable.
(b) For any action of the group G on the Hilbert cube Q there exists an

invariant measure.
(c) For any free action of the group G on the Cantor compactum C there

exists an invariant measure.

Proof. The condition (b) is a part of condition (f) of Theorem 2.12, there-
fore the implication (a)⇒ (b) is evident.

(b)⇒ (c) The action of G on C induces the action of G on P (C). The space
P (C) is a convex metrizable subspace of RC(C) (see [24]). By the Keller–Klee
theorem [24] the space P (C) is homeomorphic to the Hilbert cube Q. Therefore
the action of G on P (C) has an invariant measure. The action of G on P (C)
is affine. By Theorem 2.1 this action has a fixed point µ ∈ P (C), which is an
invariant measure of the original action of G on C.

(c)⇒ (a) Let us show that ( Corollary 2.18(c) implies Theorem 2.12(j). Let
X be a zero-dimensional metrizable compact space with a free action of the
group G. Since an infinite group can not act freely on a scattered compactum,
then the perfect kernel of compactum X is perfect, hence in accordance with
the Alexandroff theorem is homeomorphic to C. It is evident that an invariant
measure in subset C (the perfect kernel) defines an invariant measure in the
whole X. However, an invariant measure in X also could be constructed applying
the method of Remark 2.14 (multiplying by C). �

Remark 2.16. Compact space βG of a discrete space G may be identified
with the set of all finitely additive measures with values in {0, 1}, defined on all
subsets of G. The absense of a fixed point of an action of G on βG means that
no non-trivial group G has an invariant finitely additive measure with values in
{0, 1}, defined on all subsets of G. According to J. von Neuman’s theorem ((a)⇔
(h)), for a discrete group G the existence of invariant finitely additive measure
with values in [0, 1], defined on all subsets of G, is equivalent to amenability of
this group G. The question about existence on a discrete set G of non-atomaric
probability measure is the question about measurableness of cardinal τ = |G|.
The question about existence of invariant probability measure on a discrete group
G has a naive solution.
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Theorem 2.17. No infinite discrete group G admits an invariant countably
additive normed function, defined on σ-algebra of all subsets.

Proof. Assume that such a function µ exists. Let {gi}∞i=1 be a countable
family of distinct elements of a group G and H be the generated group. Consider
in a group G some section {gα:α ∈ A} of the set of right cosets {Hg: g ∈ G}.
Then sets {hT :h ∈ H} do not intersect pairwise and they form a covering of the
group G. From the invariance of function µ the equality µ(hT ) = µ(T ) follows.
Therefore from contably additiveness follows the equality

µ(G) =
∑
h∈H

µ(hT ) =
∑
h∈H

µ(T ),

which leads to a contradiction (since µ is normed). �

Remark 2.18. T. Giordano and P. de la Harpe showed that no compact
manifold can be a “test” one for amenability of countable groups. However for
a countable discrete group the following question seems to remain open: is such
a group necessary amenable if every action of it on each compact manifold ad-
mits an invariant measure? Besides that, it is unknown whether for a countable
discrete group the following conditions are equivalent: group is amenable; ev-
ery action of this group on hereditarily indecomposable snake-like continuum
[35]–[37] admits an invariant measure; every action of the group on the univer-
sal dendrite [14] admits an invariant measure. It is known [27] that group G

is amenable if and only if some free action of it (on some space X) has an in-
variant finitely additive normed function, defined on algebra of all subsets of X.
Conditions (g) and (h) show that it may well be true that a discrete group G

is amenable if and only if for some free action of it on some (compact) space X

there exists an invariant finitely additive normed function, defined on algebra of
all Baire (Borel) subsets of X. Next Corollary shows fruitlessness of attempts
to built an invariant finitely additive normed function, defined on algebra of all
subsets of G, by constructing Baire retraction r:X → G.

Let group G act from the left on a space X. Subset A ⊆ X will be called
a section provided that it contains exactly one point from every orbit, i.e. |Gx∩
A| = 1 for every x ∈ X. Axiom of choice implies that every action has a section.
However even in the simplest case axiom of choice does not permit us to control
properties of a section. From the Palais slice theorem it follows that every
action of a compact Lie group on a paracompact space has a section which is
Fσ-subset. G. Villalobos showed [47] that in the class of compact groups, the slice
theorem is a characteristic property of Lie groups. We show that for a discrete
group the existence of Baire section is a rarity, therefore it is impossible to get
the solution of the problem formulated in Remark 2.18 by constructing Baire
retraction r:X → G.
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Corollary 2.19. No free action of countable discrete amenable group on
compact space has a section by Baire set.

Proof. Let a countable discrete amenable group G act from the left on a
compact space X. Assume that Baire subset A ⊆ X is a section. Amenability of
the group G implies that on compact space X there is an invariant probability
measure µ, defined on σ-algebra of all Baire subsets of X. Countably additive
normed function µ̂ on σ-algebra of all subsets of G is defined by the formula
µ̂(B) = µ(B ·A) for an arbitrary subset B ⊆ G. However, the existence of such
function µ̂ contradicts Theorem 2.12. �

Conjecture. No free (effective) action of an infinite (countable, amenable)
discrete group on a compact space has a Baire section.

Remark 2.20. Theorem 2.3 implies that every countable discrete group ad-
mits free action on Cantor perfect set. This result also follows from the equi-
variant version of the Alexandroff–Urysohn theorem, obtained by T. Giordano
and P. de la Harpe, and from the existence (a priori non-evident) of free action
of a given countable discrete group on some compact metric space. Problem
of describing those homogeneous compact spaces which admit free (effective)
action of every countable discrete group, seems to be open and, in view of Re-
mark 2.18, is of certain interest. In particular, it would be desirable to show that
every countable discrete group has a free action on the Menger compactum µn.
In works [2], [13], [18], [37] (free) actions of zero-dimensional compact groups
are studied. From Dranǐsnikov’s theorem it follows that every finitely-generated
abelian group acts freely on every Menger compactum µn. However, group of
rational numbers (under addition, with discrete topology) already can not be
condensed onto a subgroup of a compact zero-dimensional group; therefore the
question about free action of general countable discrete group (on µn) can not
be reduced to the settled question about free action of zero-dimensional com-
pact group. In the work [44] interesting results concerning minimal actions of
countable free groups are obtained.

Remark 2.21. Repetition of arguments of T. Giordano and P. de la Harpe
[25] allows us to represent every action of a discrete group G of cardinality ≤ τ

on a compactum of weight ≤ τ as an equivariant image of G-action on some zero-
dimensional compact space of weight ≤ τ (but not necessarily Dτ ). It would be
of interest to obtain an analogue of the Kulesza theorem [34] about finite-to-
one equivariant cover for an arbitrary countable discrete group. Besides that, it
would be desirable to construct an analogue of the Dranǐsnikov map [2], [18] for
an arbitrary countable discrete group.

3. A notion of amenability is defined not only for discrete, but also for topo-
logical groups. However a sufficiently deep theory is built at present only for
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locally compact groups. An analogue of Bogoljubov–Day’s theorem concerning
a characterization of amenability of locally compact groups was proved by Day
(implication (a)⇒ (b)) and Rickert [41] (implication (b)⇒ (a)). Every compact
topological group has an invariant measure (the Haar measure), and every com-
pact metrizable topological group has an invariant metric. From this it is easily
seen that every compact group is amenable and admits a free action on some
compact space (on itself), and a compact metrizable group admits free action
on some metric compactum by means of isometries. In 1960 Ellis proved that
every discrete group admits a free action on a compact space [19] (see Remark
2.5). In 1977 Veech proved that every locally compact group admits a free ac-
tion on a compact space [46]. It is natural to ask whether a topological group
G can behave in the “opposite” way, that is, can it happen so that every action
of a topological group G on every compact space has a fixed point? This ques-
tion appeared in the 1970 paper of Mitchell [38]. The existence of a fixed point
in every compact G-space is in fact an extremely strong version of amenability
(the existence of invariant measure in every compact G-space is replaced by the
existence of a fixed point in every compact G-space, or the existence of a fixed
point for every affine G-action on every compact convex space is replaced by the
existence of a fixed point in every compact G-space). For that reason topological
groups with this property have been called extremely amenable [40]. It appears
that the first example of such a topological group was constructed in 1975 by
Herer and Christensen [30] quite independently of the problematics of topological
dynamics, and their paper, in turn, remained till a work of Pestov [40] virtually
unknown to topological dynamicists. V. G. Pestov carried out a systematic in-
vestigation of extremely amenable groups. He was giving the characterization
of extremely amenable groups and exhibited vast classes of extremely amenable
topological groups which are very natural. Pestov proved that the topological
group Aut(Q,≤), equipped with the topology of pointwise (simple) convergence,
is extremely amenable. Among topological groups containing it as a topological
subgroup there are the full symmetric group S(X) of an infinite set X endowed
with the topology of simple convergence, the unitary group U(H) of an infinite-
dimensional Hilbert space equipped with the strong operator topology, and the
group Homeo(Iω) of self-homeomorphisms of the Hilbert cube with the compact-
open topology. Pestov proved that any action of these groups on any compact
space is not free.

P. S. Urysohn in one of his latter works constructed and investigated the
universal metric space (U, %). P. S. Urysohn showed that for a complete separable
metric space Y the following conditions are equivalent.

(1) The space Y is isometric with (U, %).
(2) The space Y has properties:
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(U) Every finite (separable) metric space can be isometrically embedded
into Y .

(H) Every isometry of a finite (compact [8]) subset of the space Y can
be extended to an isometry of the whole space Y .

Since an isometry of a compact subset of the Urysohn space can be extended
over the whole space, and the 2-dimensional sphere can be isometrically embed-
ded into the latter: S2 7→ U , it follows that the group O(3) is a subset of the
group Isom(U, %). However it can not be supposed that this embedding is either
topological or algebraical (a possibility to extend an isometry does not ensure
that “close” isometries are extended to “close” and that an extension of a com-
position is a composition of extensions). Group O(3) contains (not closely) a free
subgroup F2 with two generators. Since an extension of isometries which had no
relations on a subset, moreover can not has relations on the whole space, then
the group Isom(U, %) contains free subgroup F2 with two generators. It means
that the group Isom(U, %) (regarded as a discrete group) is not amenable.

From the ability to extend an isometry from compact subset of the Urysohn
space over the whole space it follows that the group Isom(U, %) is very large. We
suppose that any action of the group Isom(U) of self-isometries of the Urysohn
homogeneous universal metric space (U, %) with the compact open topology
(topology of simple convergence) on any compact space is not free. Next hy-
pothesis is closely connected with the formulated hypothesis. An equilateral
subset A ⊂ U will be called maximal, if it is not contained in a larger equilateral
subset.

Conjecture. For every isometry h:A → B of maximal equilateral subsets
of the Urysohn space there exists an (unique) extending isometry of the Urysohn
space onto itself.

The results of this paper were presented at Kurosh and Schauder Conferences
[7], [9]. The first author thanks Lech Górniewicz for hospitality. The authors
thank their colleague Olga Frolkina for help, who made completing this work
possible. This work was supported by Russian Foundation for Basic Research
(No. 00-01-00289).
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[29] F. Hausdorff, Grundzüge der Mengenlehre, Leipzig, 1914.



Schauder’s Fixed Point and Amenability of a Group 401

[30] W. Herer and J. P. R. Christensen, On the existence of pathological submeasures

and the construction of exotic topological groups, Math. Ann. 213 (1975), 203–210.

[31] J. R. Jachymski, Another proof of the Markov–Kakutani theorem and an extension,

Math. Japonica 47 (1998)), no. 1, 19–20.

[32] S. Kakutani, Two fixed-point theorems concerning bicompact convex sets, Proc. Imp.

Acad. Tokyo 14 (1936), 242–245.
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