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GRAPH-APPROXIMATION
OF MULTIVALUED WEIGHTED MAPS

ROBERT SKIBA

(Submitted by L. Gérniewicz)

ABSTRACT. In this paper we study the existence of weighted graph-approx-
imations of w-carriers whose values satisfy a certain w-UV-property. In
particular, we prove that any upper semicontinuous set-valued map with
compact and acyclic values (with respect to the Cech homology with ratio-
nal coefficients) from a compact ANR to an ANR admits arbitrarily close
weighted graph-approximations.

1. Introduction

The approximations methods provide a powerful tool to study multivalued
maps, which were initiated in 1935 by J. von Neumann. The further develop-
ment of his idea is related to the names A. Cellina, A. Granas, L. Gérniewicz,
W. Kryszewski, W. Lasonde, and many others; for more historical remarks and
the related references, see the survey paper [21].

It is well-known that a multivalued upper semicontinuous map with not nec-
essarily connected values may not admit (sufficiently close) single-valued con-
tinuous approximations. Therefore we study the finite-valued version of this
problem. The study of such approximations was initiated by J. Pejsachowicz
and G. Conti (see [6], [25]). In this article we are going to develop the ap-
proximation methods introduced in [6] and [25]. We hope our approximation
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techniques being very simple and entirely elementary may be useful in a further
development. Let us note that some applications of these approximations can
be found in [6], [27], [31].

The paper is organized as follows. After this Introduction it consists of five
sections. In Section 2 we give preliminary notations. Moreover, we define w-
maps and we give some of their elementary properties. Section 3 is devoted to
the study of topological properties of the class of multivalued maps discovered
by Gabriele Darbo in 1950 under the name of weighted carriers (w-carriers). In
Section 4 we study sets having various w-UV-properties. In particular, we shall
compare w-UV-notions with acyclicity with respect to the Cech homology. In
Section 5 we improve an approximability theorem for weighted carriers defined
on compact polyhedra due to G. Conti and J. Pejsachowicz (see Theorem 4.1
in [6]). Next we state our main result (see Theorem 5.17). In Appendix we give
a necessary and sufficient condition for a given compact subset A of an ANR X
to be k-acyclic in the sense of Clech homology with the coefficients in the field
of rational numbers Q.

The author express his gratitude to L. Gérniewicz, W. Kryszewski, J. Pejsa-
chowicz for many valuable comments, suggestions and remarks.

Finally, let us notice that this paper is the refined version of the part of
Ph. D. thesis of the author (see [31]).

2. Preliminaries and definitions

By a space we always mean a metric space. If (X, dx) is a metric space, ¢ > 0
and A C X, then by the e-neighbourhood of A in X we mean the set O.(4) :=
{r € X | dx(z,A) < €}, where dx(z,A) = infoca dx(z,a) is the distance of
a point z € X from the set A. In addition, B(z,e) = {y € X | dx(y,z) < ¢}
(resp. D(z,e) ={y € X | dx(y,x) < e}) is the open ball (closed disk) of radius
€ centered at * € X. In what follows by a map we understand a single-valued
continuous transformation of spaces and by a multivalued map ¢ of a space X
into a space Y we mean a correspondence which associates to every x € X a non-
empty and compact subset p(z) C Y, and we write ¢: X — Y. In the sequel,
the symbol f: X — Y is reserved for single-valued mappings. A multivalued map
p: X — Y is upper semicontinuous (u.s.c.) if for any open subset U of Y the
set ¢ 1 (U) :={z € X | ¢(z) C U} is open in X. Moreover, we associate with ¢
the graph 'y, of ¢ by putting: T'y, := {(z,y) € X xY |y € p(x)}.

Given a space X, a piece of X is any open and closed subset of X. Through-
out this paper, #.X denotes a power of a set X. By a pair of spaces we understand
a pair (X, A) where X is a space and A is a subset of X. Given pairs (X, A),
(Y, B), we write p: (X, A) — (Y, B) if p: X —o Y and p(A4) C B. Additionally, by
va: A — B we denote the multivalued map determined by ¢: (X, A) — (Y, B).
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If p: X — Y and A C X, then the composite of the inclusion i: A — X with
@: X — Y is denoted by p|A: A — Y.

If A C X, then cl A, int A and 0A denote the closure, the interior and the
boundary of A, respectively. By D"*! we shall understand the unit closed disk
in R"*! and 9D"+! = S”. Here and in what follows we shall denote by A,, the
n-dimensional standard simplex.

By H.(X,G) we denote the Cech homology (graded) of a space X with
coefficients in a group G ([9]). A space X will be called positively acyclic (resp.
k-acyclic, k > 1) if H,(X,Q) =0 for n > 1 (resp. H;(X,Q) =0 for 1 <i < k).
The following nontrivial theorem will be useful for our present purposes.

THEOREM 2.1 ([28]). There exists a transformation T form the arbitrarily
homology theory with compact supports over a coefficient group G to the Cech
homology over the same coefficient group G such that

(a) to each metric space X assigns a homomorphism T(X): H(X,G) —
H(X,G),
(b) for any single-valued map f: X — 'Y the diagram

H(X.G) -l H(Y,G)

T(X)l JT(Y)

H(X.G) —— (Y. G)

commutes. Moreover, if X is a metric absolute neighbourhood retract,
then T(X): H(X,G) — H(X,G) is an isomorphism.

Now we shall gather the basic properties of multivalued weighted maps which
are needed in the sequel.

DEFINITION 2.2. A weighted mapping from X to Y with coefficients in Q
(or simply a w-map) is a pair ¢ = (oy, wy) satisfying the following conditions:
(a) oy: X — Y is a multivalued upper semicontinuous mapping such that
oy(x) is a finite subset of Y for any = € X;
(b) wy: X XY — Q is a function with the following properties:
o wy(z,y) =0 for any y & oy (x);
e for any open subset U of Y and € X such that o, () NOU = () there
exists an open neighbourhood V of the point « such that:

> wy(zy) =Y wy(zy)

yelU yelU

for every z € V.
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For simplicity of notation, we shall denote a multivalued weighted mapping
from X to Y briefly by ¥: X — Y. So, by ¢(x) we shall mean oy (z) for all
xz € X. The mapping oy from the above definition will be called the support of
1 and wy, the weight of 1. The class of weighted maps was introduced in 1958 by
G. Darbo and independently by R. Jerrard. Let us notice that in this paper the
notion of weighted map is introduced with very little change from the original
definition, but all the results of [16], [24]-[26] are also true for weighted maps
defined above. Moreover, the above definition seems to be more convenient in
our considerations.

Now we give some examples of weighted maps (see also [24], [34]).

ExAMPLE 2.3. Each continuous map f: X — Y can be considered as a
weighted one by assigning the coefficient 1 to each f(z).

EXAMPLE 2.4. Let 1: X — Y be a continuous map such that for all z € X,
1(z) consists of 1 or exactly n points (with n fixed). A weight wy: X xY — Q
we can define by the formula:

0 ifydy(x),
wy(z,y) =4 n if {y} =Y(z),

1 otherwise.
It is not difficult to verify that ¢ = (¢, wy) is a weighted map.

EXAMPLE 2.5. Let f: X — SP"Y be a continuous single-valued map and
let II: SP™Y — Y be a multivalued map which is defined by

(M . b)) = {z, ...z},

where SP"Y denotes the n-th symmetric product of ¥ and x’fl ...x% denotes
an equivalence class in SP™Y. Then f induces a w-map ¢ = (0,,w,), where
0p: X —Y and wy: X XY — Q are defined as follows:

op(x) = Ilo f(z)

and

|k if y € o,(x),
wely) = 0 ifydou(z)

Now we shall gather the basic properties of weighted maps which are needed
in the sequel (see [10], [16]).

PROPOSITION 2.6. If 1), p: X —o Y are w-maps, then ¥ U@ = (0yup, Wyue)
is also one, where oypuy,: X — Y and wyue: X XY — Q are defined by the
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formulas:

oyup(T) = oy(z) Uoy(z),
Wyup (T, y) = wy(@,y) + we(z,y),

for everyx € X andy €Y.

PrOPOSITION 2.7. If : X — Y is a w-map and o € Q, then o - =
(Cap, Wanp) 15 also one, where 0491 X — Y and wa.p: X XY — Q are defined
as follows: 0o.4(x) = oy(x) and Wa.yp(x,y) = a - wy(z,y) for every x € X and
yeyY.

PRrROPOSITION 2.8. Ifi): X — Y and p:Y —o Z are w-maps, then poih: X —o
Z is a w-map, where its support o,oy is the composition of o, and oy and
a weight Weoy: X X Z — Q is defined by the formula:

wgpo?b(xﬂz) = Z w¢(m,y) . wsﬁ(y7z)a
yey

for everyx € X and z € Z.

DEFINITION 2.9. Given two w-maps ¢ and ¢ from X to Y, we say that 1 is
w-homotopic to @ (1 ~uy, @) if there exists a w-map 0: X x [0, 1] — Y such that:

(2.1) wo((,0),y) = wy(z,y) and wp((z,1),y) =wy(z,y),
(2.2) o9(z,0) = oy(x) and oo(x,1) = 0,(x),
foranyz e X,yeY.

DEFINITION 2.10. Let ¢: X — Y be a w-map and let X be a connected

Z wtp(xvy)

yey
is called the weighted index of ¢, where x € X. We shall denote it by I,,(¢).

space. Then the sum

The above definition is correct because the sum 3, wy,(z,y) does not depend
on the choice of z € X if the space X is connected ([16]).

PROPOSITION 2.11. The above index has the following properties:

(a) If p, ¥: X — Y are w-homotopic, then I,(p) = L, ().
(b) If p: X — Y and ):Y —o Z are w-maps, then L,(vop) = L,(¥) L, (p).
(¢) If f: X — Y is a continuous map, then L,(f) = 1.

The proof is straightforward.
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PROPOSITION 2.12 ([16]). Let ¢: X — Y be a weighted map such that
o(X) CU_, Vi, where V;, i =1,... s, are open subsets of Y with V; N V; =0
for i # j. Assume also that the following condition is satisfied: o(x) NV; #
forallz € X and ¢ = 1,...,s. Then there exist w-maps p;: X — Y with
0i(X) C Vi, 1 <i<s, such that ¢ = J;_; ¢i.

LEMMA 2.13. Let ¢, p: X — Y be two w-maps such that
ww(xv y) = wd)(‘ra y)v

for each x € X,y € Y. Then there exists a weighted map 0: X x [0,1] — Y such
that

forre X;yeY.

PROOF. It is enough to define a w-map 6: X x [0,1] — Y as follows:

o(x) if t €[0,1/3),
O(z,t) =< lx)Uy(z) iftell/3,2/3],
P(z) if t € (2/3,1]
and
we((z,t),y) = wy(z,y), forze X, yeY,tel01] O

LEMMA 2.14. LetY be a path-connected space. Then for any w-map ¢:{0,1}
—o Y satisfying condition
D we(0,y) =Y we(l,y)
yey yey

there exists a w-map @:[0,1] — Y such that
g=JNfi and Z{0,1} =,
i=1

where \; € Q and f;:[0,1] — Y are single-valued continuous functions, for
1< <s.

PROOF. The proof may be found in [6]. But we provide a simple direct
proof. Let ©(0) = {x1,... ,2,} and ¢©(1) = {y1,... ,Ym}- The proof will be
divided into two steps.

Step 1. We assume that n > m. Let
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First, we shall consider the case m = 1. Then by the connectedness of Y there

exist continuous functions h;: [0,1] — Y such that
hl(O) = T; and hl(l) = Y1,

for i =1,...,n. Consequently, ¢:[0,1] — Y it is enough to define as follows

n
@ = U O{ihi.
i=1

Let m > 1. We put

P)/:El :a17
rYyL:B’L_waU '7xi+1:ai+1_’}’yw fori:la"'7m_17
if n > m, then we put v,,,, = Qmy, forl=1,... ,n—m.

Since Y is path-connected, there exist continuous functions
hayyoow s he,:[0,1] =Y and hy,,... hy, ,:[0,1] =Y
such that

hg, (0) = x4, he, (1) =y, fori=1,...,m—1,
hqh(O) = Yi, hyb(l) = Ti+1, fOI‘iZl,... ,m—l,
hap(0) = Tyt hap (1) =Ym, forl=0,...,n—m.

Now it is enough to define @:[0,1] — Y as follows

n m—1
o= (Uﬁ/xihxi) U < U ’Vyjhyj1>a
i=1 j=1

where h;jl(t) = hy,(1—t) foralltc[0,1] and j =1,... ,m — 1.

Step 2. We assume that m > n. Let us define a w-map ¢:{0,1} — Y by
Y(t) = p(1—t) for t € {0,1}. Then by Step 1 there exists a w-map ¢:[0,1] — Y
such that

d=JNfi and 9{0,1} =4,
i=1
where \; € Q and f;:[0,1] — Y are continuous functions for ¢ = 1,...,s.
Consequently, a w-map @:[0,1] — Y defined by the formula

g=Jxns
i=1

is the desired extension of :{0,1} — Y, where f;(t) := fi(1 —t) for t € [0,1]
and i = 1,...,s. This completes the proof of the lemma.
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LEMMA 2.15 (Gluing lemma). Assume that a space X is a union of two
closed subsets X = Ay U Ay and Ay N Ay # 0. If there are two weighted maps
p1: A1 — Y, po: Ay — Y such that

Opy () = 0y () for all z € Ay N Ag,
Wy (T,Y) = Wy, (x,y) forallz e AyNAy, yeY,

then a pair ¢ = (0,,w,) given by

o () = o (x) ifz € Ay,
v B Opy(z) if € As,

and

wtpl(xvy) ifxEAla yGY»
wtp(x7y) =

wlPQ(‘%‘ay) Z.fxEAQa yEK
is a weighted map.

The simple proof of the above lemma is left to the reader.

By W we shall denote the category of metric spaces and weighted maps with
coefficients in Q. In particular, by W(X,Y) we shall understand the class of all
w-maps from X to Y. Let us define an equivalence relation ~ on W(X,Y) as
follows: 9 ~ ¢ if and only if wy, = w,. The class of equivalence classes we shall
denote by (X,Y) := W(X,Y)/ ~.

Darbo constructed a homology theory for weighted maps by adopting the
usual construction of the singular homology functor. In what follows we briefly
describe his construction. Let Ag be the geometrical k-simplex. For any 0 <1 <
k consider the map d;;: Ag_1 — Ay given by the inclusion of Ag_1 as the face
opposite to the i-th vertex of Ag. Given a space X we shall consider the graded
vector space C(X, Q) = {Ci(X, Q) }r>0, where Ci(X, Q) := (Ag, X). So, we can
define a boundary operator 9 in C(X) as follows:

k

Os = [ J(=1)'s o d} € Cr1(X, Q)
i=0

for any s € Ci(X,Q). The graded vector space H(X,Q) = {H(X,Q)}x>0 of
the complex (C(X,Q),d) will be called the Darbo homology of the space X
over Q. Any weighted map ¢: X — Y induces in a functorial way a linear map
v Hi (X, Q) — H.(Y,Q) (of degree zero). Let us note that two w-homotopic
w-maps induce the same linear map in Darbo homology. With this H, becomes
additive functor from W to the category of graded vector spaces which is in-
variant under the w-homotopy. Darbo (and Jerrard) showed that the functor
H,. satisfies the Eilenberg—Steenrod axioms for a homology theory with com-
pact carriers. For more details concerning the notion of Darbo Homology, we
recommend [7], [16].
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A w-map ¢: (X, x0) —o (Y, yo) between pointed spaces will be called a pointed
w-map if p(xo) = yo. Let Wy be the category of pointed spaces and pointed w-
maps with the weighted index equal to 0. Given two weighted maps ¢g and
1 from (X, zq) to (Y, y0), we say that ¢q is w-homotopic relative to zg to ¢
(written g ~y @1 rel. xg) if there exists a weighted map 6: X x [0,1] — YV
satisfying two conditions of Definition 2.9 and 6(zo,t) = yo for any ¢ € [0, 1].
This 6 is called the pointed w-homotopy between g and 1. It is easy to see
that the pointed w-homotopy is an equivalence relation on Wy. For a space X
with a basepoint zg € X, define 7%(X, x¢) to be the set of the pointed classes
of w-maps ¢: (S™,s9) — (X, z0) having the weighted index I, (¢) = 0, where
so is a base point of the n-sphere S™. Notice that 7% (X, z0) admits a natural
structure of Q-module under the following operations:

[l + W] = [pUd]l, Mgl =[],

where [¢], [¢] € T¥(X,z0), A € Q. For any pointed space X, and n > 0, the
Q-module 7% (X, xq) is called the n-th w-homotopy Q-module of X. Tt is easy
to see that we can replace in the definition of 7% (X, xo) the unit sphere S™
by 0A, ;1. Notice that the concept of w-homotopy was systematically studied
in [18], [24], [26].

The Hurewicz map hy: (X, o) — H,(X,Q) is defined in the usual way.
Namely, h,(a) = o, (1,), where H denotes the reduced (Darbo) homology and

1, is a generator of H, (S™,Q). In the sequel we shall use the following result:

THEOREM 2.16 ([26]). If X is an absolute neighbourhood retract, then the
Hurewicz map hy: (X, x0) — H,(X,Q) is an isomorphism for every n > 0
and any xo € X. Moreover, we have the following commutative diagram:

(X, x0) " 7 (Y yo)

N |-

H,(X,Q) —— H,(Y,Q)

Pxn

for any weighted map p: X — Y and n > 0.
We will also make use of the following lemma.

LEMMA 2.17. Let p: S™ — Y be a weighted map. In addition, let us assume
that there exists a point g € S™ such that ¢(xg) consists of one point. If ¢ can
be extended over D", then ¢ is w-homotopic relative to xg to L,(¢)k, where
k:S™ — Y is the constant map at ¢(xo) (1).

(1) By the constant map at yo € Y we shall understand the function k: X — Y with
k(z) =yo for all x € X.
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PROOF. Let @: D" — Y be an extension of ¢ and let ¢: S* — D"*! be
defined by c(x) = = for all x € S™. Since the inclusion i: " — D" and
c: 8™ — D™ are w-homotopic relative to xg, it follows that @ oi and @ o c
are also w-homotopic relative to xg. Let k:S™ — Y be defined to be ¢ o c.
Consequently, ¢ ~,, I,(p)k, because p oi = ¢ and @ o ¢ = I, ()k, which
completes the proof. O

3. Weighted carriers
Given any multivalued map ®: X — Y we put
D(®) = {(V,z) | V is an open subset of Y and ®(z) N9V = 0}.

DEFINITION 3.1. A multivalued u.s.c. map ®: X — Y with compact values is
said to be a weighted carrier if there exists a function I yec: D(®) — Q satisfying
the following conditions:

(a) (Existence) If Lyioc(®, V,2z) # 0, then ®(z) NV # 0.
(b) (Local invariance) For every (V,z) € D(®) there exists an open neigh-
bourhood U, of a point x such that for each ' € U, we have

leoc((Py ‘/7 LL') = wloc(q)7 V7 xl)'

(¢) (Additivity) If ®(z) NV C U?zl Vi, where V;, 1 < i < k, are open
disjoint subsets of V', then

k
leoc(q)v V; 1‘) = Z leoc(cbv ‘/iv {L')
=1

A function I0e: D(®) — Q verifying the above conditions will be called the
local weighted index of ®.

REMARK 3.2. Let us notice that Definition 3.1 is equivalent to that of [6],
but our definition of weighted carriers is much more useful to our work.

REMARK 3.3. The additivity property in the case of k = 1 will be called the
excision property.

Below we shall present a number of examples.

ExXAMPLE 3.4. It is easy to see that if ®: X — Y is an upper semicon-

tinuous map with connected values, then ® is a w-carrier. Indeed, a function

Lyioc: D(®) — Q it is enough to define as follows
1 if®(x)NU # 0,

leoc<(b7U7 l‘) = ( ) 7&

0 if d(x)NU =10,

for any (U, z) € D(®).
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EXAMPLE 3.5. If ¢: X — Y is a weighted map, then I0c: D(¢) — Q we
define by Luioc(, U, ) := Zyertp(xay) for any (U, z) € D(y).

EXAMPLE 3.6. Let X be a compact ANR and let f: X x [0,1] — X be
a continuous function with the Lefschetz number A(fo) # 0 of fy, where fo(z) =
f(z,0) for all x € X. Then a multivalued (u.s.c.) map ®:[0,1] — X defined by
O(t) = {z | fe(x) := f(x,t) = a} for all t € [0,1] is a weighted carrier, because
a function Iyjoe: D(®) — Q given by

leoc(q)v Ua t) = ind(fta U7 X)

verifies all the conditions of Definition 3.1, where ind(f;, U, X) denotes the fixed
point index for single-valued maps (for more information on the fixed point index
for single-valued maps see [14]).

For other examples see [6]. Now we shall prove a lemma which will be used
repeatedly throughout this paper.

LEMMA 3.7. Let U: X —o Y be a weighted carrier and let U be an open subset
of Y. In addition, let Xo be a connected subset of X such that ¥(x) NOU = ()
for each x € Xy. Then

leoc(\I/a U, l‘) = wloc(\IJ7 U, y)
for any x,y € Xo.

PROOF. Let us define a map I: Xg — Q by I(y) := ILuoc(¥,U,y), where
the set Q of rational numbers is endowed with the discrete topology. Then
from the local invariance of I,,. we infer that the above function I is locally
constant. Therefore, by the connectedness of Xy, I is constant, which completes
the proof. O

DEFINITION 3.8. Let U be an open subset of Y and let ¥: X — Y be
a weighted carrier. Let C' be a connected subset of X satisfying the following
condition: ¥(z) N AU = 0. Define I0c(¥|(C,U)) to be Lyoc(P|(C,U)) =
Tpioc (P, U, ¢p), where ¢y € C is an arbitrary fixed point.

Let U:Y — Z and ®: X — Y be two weighted carriers. Assume also that the
sets ®(x) have finitely many connected components CT,...,C?, for all x € X.
Now let us fix a point 2 € X. Since C?, ¢ = 1,...,s,, are compact disjoint

subsets of ®(x), there exist open subsets V;* of Z such that
(3.1) CycV® and V'NV® =10,

fori #jandi,j=1,...,s,. Let U be an open subset of Z such that ¥o®(x)N
oU = 0.
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DEFINITION 3.9. Under the above assumptions we let

leoc(\ll o (I), U7 LL‘) = Z leoc(q)a V;x; I) : leoc(\ll|(cixa U))7

i=1
where Lyioc(U|(CF,U)) is defined as in Definition 3.8.

Let us observe that from the localization property of Io. for @ it follows
that Tyioc(®, V¥, x) does not depend on the choice of V/*, and hence the above
definition is correct.

PROPOSITION 3.10. Let¥:Y — Z and ®: X — Y be as above. Then a func-
tion Lyoc: D(V o @) — Q defined as in Definition 3.9 satisfies the properties of
existence, local invariance and additivity (and hence ¥ o® is a weighted carrier).

PROOF. Let us fix x € X. Let ®(x) = CY U...UC? , where Cf are compo-
nents of ®(x). Moreover, let U be an open subset of Z such that Wo®(z)NoU = (.

(Existence) Let Lyjoe(V o @,U,x) # 0. Then there exists 1 < ig < s, such
that

leoc(q)v Vzi? :E) : leoc(\IIKCinga U)) 7£ 0.

Since Lyloc(Y|(CF,U)) = Luloc(¥, U, ¢;,) for any point ¢;, € CF , it follows that
Tpioc (¥, U, ¢;,) # 0. Consequently, ¥(c;,) NU # () and hence ¥(®(z)) N U # 0,
because ¢;, € Cf) C ®(x).

(Local invariance) First, we shall show that for any C¥, i =1,... ,s,, there

K3

exists an open neighbourhood W7 of C in Y such that
(32) leoc(\IlKCixa U)) - wloc(\Ilv U» y) fOI’ au Yy S Wlw

and WrNWy = () for i # j. For this purpose, we fix C7. By the local invariance
of Lyloc for ¥ we infer that for any y € C7 there exists an open neighbourhood
O, of y such that for each y’ € O}, the following equalities hold

leoc(lll7 U; y/) = wloc(\IIa U7 y) = wloc(lI/Ksz U))

Since ¥ is u.s.c. and W(y) N QU = 0 for y € C7, it follows that for any y € Cf
there exists an open neighbourhood Oy of y such that ¥(y') N OU = () for each
y' € Oy. Let Oy := Oy N Oy for y € Cf. Moreover, let Wf = UyEC’f O,. Then

Lutoc(W, U, y) = Loe(¥|(CE,U))  for y € WF.

It is easy to see that there exist open sets Wf, i=1,...,8,, such that

Cf c WP and Wfﬂﬁfz@ for i # j.
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Obviously, if we put W} := Wf N Wf, then W N W =0 for i # j and i,j =
1,..., sg; which completes the proof of (3.2). Now let us put Iioc (U|(W7,U)) :=
Liioc(V, U, y), where y € W7 is an arbitrary fixed point. Hence

(3.3) leoc(\I]‘(Wiz, U)) = wloc(\m(ciwv U))

for all 1 <1i < s;. Consequently, from the local invariance of I, for ® we infer
that for each 1 < ¢ < s, there exists an open neighbourhood Of of the point z
such that

(3.4) [u)loc((pa Wizv 93) = UJIOC((I)’ Wiwv x/)

for all 2’ € OF. Since ® is u.s.c. we can deduce that there exists an open
neighbourhood O, of the point z such that ®(0,) C Uiz, W®. Let O, :=
O, N (N2, OF). Since the sets W, 1 < i < s,, satisfy the condition (3.1), we
have
leoc(\Ij o (I)a U7 :C) = Z leoc(q)a Wfﬂ .I) : leoc(\IjKCfa U))
j=1
Now we shall show that for any z’ € O, the following equality holds

leoc(\:[l o (I)a U7 .’E) = wloc(\Il o (I)7 Uv l'/)7

where

Syt
leoc(\p 0®,U, .Z‘/) = Z Iu;loc(q’a va ,33/) : leoc(\IjKC’;‘C » U)),
=1

Cjz/ are components of ®(z’), 1 < j < s/, and ij/ are open subsets in Y such
that

Cy cVy and VP NVS =0 fori#j.
For this purpose, let us fix 2’ € O,. Let If/ ={1 <k < sy | C,f/ C W2} for
1 <i<s; (?). Then

(3.5) > Lutoe(®, V7, 2") - Lotoo(¥[(CF,U))
j=1
= Z Z leoc(q)a ij/a I/) : leoc(\l’|(cjz,7 U))
=1 jeIiz’

(?) Let us note that the set If/ defined above can be empty, but it holds only in case
Iyioc(®, WF, ) = 0. Moreover, if IZ‘-’”, = (), then we put

’ ’
> Lutoe(@, V@) - Tuioc(¥[(CF,U)) = 0.
jers’
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= Z Z leoc(q)a ijl,ivl) 'leoc(\p|(cisz))a

=1 jeIiz’
where the last equality follows from the fact that for any j € Ifl and any y €
CJ‘-”/ C W?F we have

?

leoc(\I/|(Cj ;U)) = wloc(\IJ; U, y) = wloc(\l"(Wi 7U)) = wloc(\pl(ci ,U))

Consequently, we have
35 = Y- LoclWC2.0) - (T Lure(®,172))
i=1 jerg’

Now let us observe that if we show that

(36) Z leoc((bv‘/jm,vx/) = wloc(q>7Wixax)7

jerr’

then the proof of the local invariance of I, will be completed, because
Z leoc(\IJKCiwa U)) . I’LUlOC((P7 W{Ea (E) = wloc(\ll o (I)a U7 .’IJ)
i=1

Now let us fix i € {1,...,s,}. Since
d(z") N ijl = C’f C W and ®(z") N ijl C ijlfor any j € I¥,
we deduce from the excision property of 1o for ® that
Litoo(®, V', 2") = Ljoc(®,VE NWE,2')
for all j € I¥'. Hence

Z leoc((I)a V;'w/ax/) = Z leoc(q)a V}wl N Wz‘wv :E/)
jers’ jers’

(;) wloc(q)>( U va?:,ﬂWix>7x/)

jery’
— dwloc ((I)v ( U V]T/> sz:Tax/)v
jer'

where the equality (x) holds true by the additivity property of Ioc for @.
Consequently, applying the excision property of I,,0c, We obtain

leoc (q)v ( U ‘/f’> N Wz‘xax/) = wloc(q)vwizax/) (3:4) leoc(q)7Wfax)a
jer

which completes the proof of (3.6).
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(Additivity) Let ¥ o ®(2) N U € Us_, Uj, Un NU, =0 for m #n, U; C U
for 1 < j < k. First, we shall show that

(37) wloc(\pl leloc \Ij| ))

for 1 < i < s;. For this purpose, let us fix 1 < iy < s, and i € ij). Since
U(ci)NU C U?:l U;, we deduce from the additivity property of Iy for ¥
that

Ltoc(¥[(CF,U)) = Lo (¥, U, c2) ZLMOC (0, Uj,ct),
and taking into account the following equality

leoc(\ll|(cixa Uj)) = wloc(‘ll Ujacq,o)

we obtain (3.7). Consequently

leoc(\Il o (I)a U .T ZIUJIOC (I) V .’ﬂ) UJIOC(\IIK ))

i=1

_ Z-[wloc (O, V7", ) <waloc v|(C )>

= ZZIwIOC (I) V LU) wloc(q/|< ))

Jj=11i=1

k
= ZIUJIOC(\IJ o (1)7 Uj,l'),
j=1

which completes the proof of the additivity property of I,oc for ¥ o ®. g
As an easy consequence of Proposition 3.10 we obtain the following corollary:

COROLLARY 3.11. Let f:Y — Z be a single-valued map and let V: X — Y

be a weighted carrier. Then

leoc(\Il of,U, ;E) = wloc(\l/v U, f(l‘))

DEFINITION 3.12. Let U: X — Y be a weighted carrier and let f:Y — Z
be a single-valued map. Then I oc: D(f o ¥) — Q is defined by

leoc(fo \I’7U7 LL’) = wloc(\llaf_l(U)a'r)v
for any (U,z) € D(f o U).

It is easy to see that if (U,z) € D(f o ¥) then (f~'(U),z) € D(¥) and
therefore the above definition is correct.
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PROPOSITION 3.13. Let X be an ANR, let A be a closed ANR subspace of
X and let Y be an arbitrary metric space. If U: A x [0,1] — Y is a weighted
carrier such that Wg: A — Y is extendable to a w-carrier \ilvoz X —o Y, then there
is a w-carrier ¥: X x [0,1] — Y such that

(a) U|X x {0} = W,

(b) for every t € [0,1], WA = Uy,

where Uy (z) := U(t,x) and Vi(x) := U(t,z) for all t € [0,1] and = € A.

The proof of Proposition 3.13 proceeds along the same line as in the case of
single valued maps in [15] and therefore we omit further details. Now we are

able to prove:

COROLLARY 3.14. Let X, A C X,Y be as in Proposition 3.13 and let V C U
be subsets of Y. In addition, let p: A — V be a w-map. Then ¢ can be extended
to a w-map $: X —o U if and only if o U (—I,(¢))yo: A — V can be extended to
a w-map ©: X —o U, where yo € Y is any fized point.

ProOF. This implication = is obvious. For <, let ¢ U (—I,(p))yo: A — V
be a weighted map and let ©: X —o U be an extension of ¢ U (—I,(¢))yo over
X. Then a weighted map @ U L, (p)yo: X — U satisfies the following condition
WaUT, (9)yo (T, Y) = Wiop(z,y) for all z € Ay € U, where i:V — U is the
inclusion. Hence, in view of Lemma 2.13, a w-map @ U L,(¢)yo|A: A — U is
w-homotopic to i0p: A — U. Consequently, by Proposition 3.13, it follows that
there exists a w-map @: X —o U with ¢(z) = ¢(x) for all x € A, which completes
the proof. O

4. w-UV-sets

Following [20] we propose the following definitions, which will play a crucial
role in the sequel.

DEFINITION 4.1. Let V' C U be subsets of a space Y. We say that the
inclusion V' — U is w-homotopy 0-trivial if for any connected component C of
V and for any weighted map ¢: 0A; — C' satisfying the condition

Z w(p((),y) = Z ww(l,y)
yeC yeC

there exists a weighted map @: Ay — U such that @(x) = ¢(x) for every x € 0A;.

DEFINITION 4.2. Let V' C U be subsets of a space Y and let n > 1 be an
integer. The inclusion V — U is said to be w-homotopy n-trivial if it is w-
homotopy O-trivial and for any integer 1 < k < n + 1 and for every weighted
map : 0A, —o V there exists a w-map @: Ay, —o U such that $(x) = ¢(z) for
every x € 0Ag.
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DEFINITION 4.3. Let K be a compact subset of a space X. We say that the
inclusion A — X has:

(a) w-UV™-property (n > 0) if for every € > 0 there exists 0 < § < & such
that the inclusion Os(K) — O (K) is w-homotopy n-trivial;
(b) w-UV“-property if it has w-UV"-property for each n > 0.

Now we are going to show some facts concerning the above notions. In
particular, we will prove that the class of sets satisfying some w-UV -properties
is quite large.

PROPOSITION 4.4. Let X be a locally connected space (3), let K be a compact
subset of X and let n > 1. If for any € > 0 there exists §, 0 < § < €, such that:
(a) Os5(K) — O (K) is w-homotopy 0-trivial,
(b) for each positive integer 1 < k < n and zg € Os(K), the inclusion
O5(K) — O.(K) induces the trivial homomorphism,

71 (05(K), z0) — 7} (Oc(K), o),

then the inclusion K — X has a w-UV™-property.

PROOF. The proof will be divided into a number of steps. (We proceed by
proving successively more general cases.)
Step 1. Fix € > 0 and let 4 > 0 be such that the induced homomorphism

(4.1) i (05(K), w0) — mf (O=(K), xo)

is trivial for 1 < k < n and for all zy € O5(A). We divide Step 1 into a sequence
of cases.

Case A. Let ¢:S™ —o Os5(A) be a w-map with I,,(¢) = 0 and ¢(sg) = zo,
where sy € S™ is a fixed point. Since the homomorphism (4.1) is trivial, it
follows that a w-map ¢ o ¢: S™ — O.(A) is w-homotopic to the constant map at
xo (with the weighted index equals 0), where i: O5(A) — O(A) is the inclusion.
Hence, in view of Proposition 3.13, we conclude that ¢ o ¢ can be extended to
a w-map @: D" — O.(A).

Case B. Let ¢: S™ —o Os(A) be a w-map with I,,(¢) # 0 and ¢(so) = zo (so
as in Case 1). Let 1: S™ — O5(A) be given by ¢ = ¢ U (—I,(¢))yo, where o
is an arbitrary fixed point of A. Since I, (V) = 0, we conclude by Case 1 that
there exists a weighted map ¢: D"*! —o O, (A) such that ¢(z) = () for each
x € S™. Therefore by Corollary 3.14 we obtain a w-map @: D" — O_(A) such
that p(z) = p(z) for all z € S™.

(3) If a space X is locally connected and V is an open subset of X, then V is locally
connected. Hence any connected component C of V is open in X. This observation will be of
use in the proof of Proposition 4.4 and later.
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Case C. Let ¢: 8™ —o O5(A) be a w-map and let us assume that #p(sg) # 1.
Assume also that there exists a w-map «:[0,1] — Os(A) such that

a(0) = ¢(s0), a(l) = o,
wa(0,y) = we(so,y), forall y € Os(A).

Now let us define T: (S™ x {0}) U ({so} % [0,1]) — Os(A) by
Tlet) = { o(z) ift=0,

at) if x = sp.

Then in view of Proposition 3.13 there exists a w-map T: 5" x [0,1] —o Os(A)
such that T[(S™ x {0})U ({so} x [0,1]) = Y. Now, applying Case A or Case B to
T(-,1): 58" — O5(A) (*), we obtain an extension T: D"t — O.(A) of T(-,1).
Let

Yo: (S™ x {0}) U ({so} x [0,1]) U (D™ x {1}) —o O(A)

be defined as follows

p(x) ift=0,
To(l’,t) = Oé(t) if x = S0,
T(x) ift=1.

Since (S™ x {0})U({so} x[0,1])U(D" 1 x {1}) is an ANR and is closed in D"**! x
[0, 1], we infer that due to Proposition 3.13 we can extend Y to a weighted map
T: D" % [0,1] — O-(A). Finally, let us observe that Y(-,0): D**! —o O.(A)
satisfies the following condition Y (z,0) = ¢(x), for every z € S™.

Step 2. Let € > 0. Then under the assumptions of Proposition 4.4 it follows
that there exists § < e such that

(a) Os(K) — O(K) is w-homotopy 0-trivial,

(b) for each positive integer 1 < k < n and zy € Os(K), the inclusion

Os5(K) — O.(K) induces the trivial homomorphism

i (05(K), w0) — 7 (O=(K), o).

Moreover, for § there exists 7 < § such that

(c) Oy(K) — Os(K) is w-homotopy 0-trivial.
Let us fix 1 < k < n and let sg be the base point of S*. Now we shall show that
for any w-map ¢: S¥ — O,(A) there exists a w-map @: D**! — O.(A) with
P(x) = ¢(x) for all z € S*. To see this, let us fix a w-map ¢: S* — O, (A).
Let us observe that if for a given w-map ¢: S*¥ —o O, (A) there exists a w-map
a:[0,1] — Os(A) such that

(4.2) a(0) = ¢(s0), wa(0,y) = wy(se,y) forally € O,(A), #a(l) =1,

(4) If L,(Y(-,1)) = 0, then we apply Case A, otherwise we apply Case B.
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then by Step 1 we infer that there exists a w-map @: DF¥*! — O.(A) with
o(x) = ¢(z) for all x € S*. Therefore we can assume that for ¢: S* — O, (A)
there is no a:[0,1] — Os(A) satisfying (4.2). Let Oy(A4) = U,¢; 034, where
Of is the connected component of O, (A). Since O,,(A) is locally connected, it
follows that the connected components of O, (A) are open in O, (A). Hence, by
the compactness of p(S*), we obtain

#I':={j € 1] p(S*) N0 # 0} < 0.

Obviously, ¢(S*) C U;, cp O3} . Let us choose a point y;,, in each component

m

Ofm and let us define a w-map a: S* — O,,(A) as follows

O‘('r) = {yjn' .- ’y.js}7 wa(x,y) =0,

for all z € S*,y € O,(A), where s := #I'. Let p*:S* — O;(A) be defined
by ¢% := ¢ U «a. Then, by Proposition 2.12, a w-map ¢“ has the following
decomposition ¢ = f U ... U ¢, where any w-map ¢, satisfies the following
condition ¢g,(S*) C O . Let 8,,:{0,1} — O} ,m =1,... s, be defined as

follows

ﬂm(O) = %02(50)7 ﬂm(l) = Yjm>
wg,, (0,y) := wea (s0,y), forallye O;‘m,
wﬁnz(l’ yjnz) = Iw(gpgl)’ wﬁvn(:l? y) = 0 fOl“ y # yjnl?

where 1 < m < s. Since the inclusion O,(A) — Os(A) is w-homotopy 0-
trivial, it follows that for any f,, there exists a w-map E,;: [0,1] — Os(A) with
B;HO,l} = Bm. Hence, by Step 1, for any w-map ¢%:S* — O, (A) there
exists a w-map §%: D¥1 — O_(A) such that 32 (z) = % (z) for all x € S*.

Consequently, a w-map @: Dt — O.(A) given by

=T U.. .U
is an extension of ¢®: S¥ — O, (A). Since w-maps ¢ and ¢* satisfy the following
condition

w#’('% y) = Wy (l‘, y)’
for all x € S¥ and y € O.(A), Lemma 2.13 implies that ¢ is w-homotopic to p%;
and hence, by Proposition 3.13, we infer that there exists a w-map @: D**1 —o
O.(A) such that @(x) = ¢(x) for all x € S¥. This completes the proof. O

Now we will prove that the converse of the last statement is also true.

PROPOSITION 4.5. Let X be a space and let K be a compact subset of X. If
the inclusion K — X has a w-UV™-property (n > 1), then for each € > 0, there
exists 6, 0 < § < g, such that the homomorphism

thﬂ';:(O[;(K),Jfo) - W}ZU(OE(K)7370)
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induced by the inclusion i: O5(A) — O.(A) is trivial for 1 < k < n and for all
xp € Os (A)

PROOF. Let us fix e > 0. Let § > 0 be such that for any 1 < k < n and any
w-map ¢: S¥ —o Os(A) there exists a w-map @: Dt — O_(A) with §(z) = ¢(x)
for all z € S*. Now we are going to show that the induced homomorphism
hig: i (Os(K), 20) — 7P (O:(K), x0) is trivial for any 1 < k < n and for each
xo € Os(A). To see this, let us fix 1 <k < n and 9 € Os(A). Let ¢: (S*,s0) —o
(Os(A),x) be a pointed w-map with I,,(¢) = 0. Hence, by the definition of ¢,
we infer that there exists a w-map @: D**! — O.(A) such that $(z) = ¢(x) for
x € S*. Then, in view of Lemma 2.17, i o ¢ is w-homotopic relative to sq to the
constant map at xo (with the weighted index equal to 0), which proves that the
homomorphism hy, is trivial. O

As an immediate consequence of the above propositions we obtain:

COROLLARY 4.6. Let X be a locally connected space and let K be a compact
subset of X. Then the inclusion K — X has a w-UV™-property (n > 1) if and
only if, for any € > 0, there exists §, 0 < § < €, such that:

(a) Os5(K) — O(K) is w-homotopy 0-trivial,
(b) for each positive integer 1 < k < n and zg € Os(K), the inclusion
O5(K) — O (K) induces the trivial homomorphism

i (05(K), o) — i (O=(K), xo).-

PROPOSITION 4.7. Let X be a locally path-connected space and let A C X
be a compact subspace. Then for any open subsets U and V satisfying condition
ACV CUC X the inclusion V. — U is a w-homotopy 0-trivial.

PROOF. Let V C U be open subsets of X and let C be a connected com-
ponent of V. Due to our assumptions C' is locally path-connected and con-
nected. Hence C is path-connected. Let ¢:S8° — C be a weighted map with
> yec We(0,y) = 30 cowy(l,y). Then in view of Lemma 2.14 there exists
a weighted map @: D! — C with 3|S° = ¢. This completes the proof. g

Consequently, combining Corollary 4.6 and Proposition 4.7, we obtain the
following corollary.

COROLLARY 4.8. Let A be a compact subset of a locally path-connected
space X, n > 1. Then A has a w-UV™-property if and only if for each ¢ > 0
there exists 0 > 0 such that the inclusion Os(A) — O.(A) induces the trivial
homomorphism hy: m* (O5(A), x0) — 7 (0:(A), z0) for any 1 < k < n and for
all zg € O5(A).

Taking into account Corollary 4.8, Theorems 2.1 and 2.16 we get the following
theorem.
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THEOREM 4.9. Let X be an ANR and let A be a compact subset of X,
k > 1. Then the inclusion j: A — X has a w-UV¥*-property if and only if
for each ¢ > 0 there exists 0 < § < & such that the induced homomorphism
Gi: Hi(0s(A),Q) — H;(O-(A),Q) is trivial for each 1 < i < k.

Now let us observe that Theorem 4.9 together with Theorem 6.1 (in Appen-

dix) implies the following theorem.

THEOREM 4.10. Let X nad A C X be as in Theorem 4.9 and k > 1. Then
A is k-acyclic if and only if the inclusion A — X has a w-UV*-property.

Since a subset A of a space X is positively acyclic if and only if it is k-acyclic
for all £ > 1, we obtain, by Theorem 4.10, the following corollary.

COROLLARY 4.11. Let X be an ANR and let A be a compact subset of X.
Then A is positively acyclic if and only if the inclusion j: A — X has a w-UV¥-
property.

We shall conclude this section by introducing the following notion, which will

be used in what follows.

DEFINITION 4.12. Let 0 <n < oo or n = w. A weighted carrier ¥V: X —o Y
is said to be a w-UV™-valued carrier if, for each € X, the inclusion ¥(z) — Y
has w-UV™-property.

5. Approximation of w-carrier by w-maps

DEFINITION 5.1 ([25]). Let U: X — Y be a weighted carrier and Xy C X,
and let € > 0. A weighted map 1: Xy — Y is said to be an e-approximation of
U: X —o VY if

(a) ¥(z) C O(¥(Oc(x))) for all z € X,
(b) Luioc(®, C, ) = Lyioc(¥, C, z) for any piece C of O (¥(O-(z))) (°) and
z € Xp.

REMARK 5.2. The above definition is correct, i.e. (C,z) € D(¥) and (C,z) €
D(4)), because the following simple lemma holds true.

LEMMA 5.3. Let U be an open subset of X and let C be a piece of U. If K
is a subset of U, then K N OC = () (where OC denotes the boundary of C with
respect to X).

PROOF. It is enough to show that 0C N U = (). For this purpose, let us
observe that C' and U \ C are open in X. Consequently, 9C N (U \ C') = ) and
AC N C = 0; and hence dC NU = (. O

Moreover, we have the following result:

(%) Recall that by a piece C of Oz (¥(Oc¢(x))) we understand a subset C of O (¥(O¢(x)))
which is open and closed in Of (¥ (O¢(z))).
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PROPOSITION 5.4. Let ¥: X —o Y be a w-carrier and let o: X — Y be a w-
map. In addition, let 0 < €1 < 9. If ¢ is an e1-approximation of ¥, then ¢ is
also an eo-approzimation of V.

PROOF. The first condition of Definition 5.1 is obviously satisfied, only the
second condition needs to be proved. For this purpose, let us fix z € X and let

C be a piece of O, (¥(O.,(x))). Then C := C N O, (¥(O,,(x))) is a piece of
O, (¥(O,, (x))). Since @ is an ej-approximation of ¥, it follows that

(51> leoc(@aéax) = wloc(\II757x)-

Consequently, by the excision property of ¢, we obtain

(52) leoc((pv 67 .CC) = Lwloc (4107 C, .73)
and
(5.3) leoc(qlvéa z) = Luyioc(V, C, ).

Now, taking into account (5.1)—(5.3), we have
Ltoc(, Cy ) = Lytoc(V, C, 1),
which completes the proof. O
We need the following lemma.

LEMMA 5.5 ([13]). Let v: X — Y and ¢:Y — Z be two upper semicon-
tinuous multivalued maps. If X is a compact space, then for every e > 0 there
is 0 > 0 such that Os(p)Os()(x) C Oc(p o W(O(x))) for any x € X, where
05(0)Os(¥)(2) = Os(p(0s(0s(¥(0s(2))))))-

Now we use the above lemma to obtain the following proposition which will
needed in the sequel.

PROPOSITION 5.6. Let X be a compact space, p: X — Y a weighted map
and ©:Y — Z a weighted carrier. Then for each € > 0 there exists § > 0 such
that if Y:Y —o Z is a d-approzximation of ®, then ¥ o is an e-approximation of
Pop.

PROOF. Let € > 0. From Lemma 5.5 it follows that there exists § > 0 such
that

05(2)0s(p)(x) C O(® 0 9)(),

for all z € X. Let ¥:Y — Z be a §-approximation of ®:Y — Z. Let us fix
z € X. Then

P(p(x)) C Os5(2(0s(¢(x)))) C O5(2)0s(p)(x) C O(P 0 @)(x).
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What is left is to show that
leoc(w ° @, Ca .%') = wloc(q) ° Y, C> 33)

for any piece C of O (® o ¢(O(x))). Let p(z) = {y1,... ,yn,}. Now let us
observe (see Definition 3.9) that

I’LUIOC(,IJZ) ° @, Ca :L‘) = Z leoc(wa ‘/;27 $) ° Iu}loc(wa Ca yi)a

i=1
Ny
leoc(q) ° @, C» x) = Z leoc(SD, ‘/2@7 ZL’) . leoc(q)v C, yi)a
i=1
where Vi*,... | V7 satisfy the following conditions

yi € V¥ and VNV =0 foris#j.
Consequently, it is enough to show that the following equality holds

leoc(@a C, yz> = wlOC((b’ 07 yz)

For this purpose, let us observe that

(5:4)  Twtoc(¥, C,yi) = Lutoc (¥, C N Os(2(Os(yi))), yi)
=luioc(®,C N Os(P(05(yi))), Yi) = Lutoc(®, C, yi),
where the first equality and the last one follow from the excision property of
ILy1oc, because
Y(y;) NC C CNOs(P(0s(y;))) C C,
D(y;)NC C CNOs(P(0s(yi))) C C.

Moreover, since CNOs(®(Os(y;))) is a piece of Os(P(Os(y;))), we deduce that the
second equality in (5.4) follows from the fact that ¢ is a J-approximation of ®.0J

Before proceeding further, we prove some necessary lemmas.

LEMMA 5.7. Let X be a locally connected space and let ¥: X — Y be
a weighted carrier. Then for everye > 0 and x € X there exists 6, > 0 such that
for any y € B(x,0,) and any piece C' of O (¥(Oc(x))) the following equation
holds:
leoc(\lla C, JJ) = wloC(\Ilv C, y)

PROOF. Let us fix e > 0 and = € X. Since V is a weighted carrier, it follows
that there exists 7, > 0 such that

(5.5) V(B(z,12)) C O=(¥(x))

and
leOC(\I’a OE(\I/(Z‘)), x) = wloc(\Il7 OE(\II(Z‘))7 y)



142 R. SKIBA

for all y € B(z,n,). Additionally, since X is locally connected, it follows that
there exists a connected neighbourhood (°) V, of x and §, > 0 such that
B(z,0;) C Vo C B(z,nm,). Now let us observe that for all y € B(x,n,) and
for any piece C' of O;(¥(z)) we have ¥(y) N dC = @ (where C denotes the
boundary of C' with respect to Y'), by (5.5) and Lemma 5.3. Consequently, in
view of Lemma 3.7, we obtain

IU}IOC(\IIv C? I) = wIOC(\Ijv Oa y)
for all y € V,;; and hence for all y € B(z,d,). This completes the proof. O

LEMMA 5.8. Let X be a compact space and let V: X — Y be a weighted
carrier. Then for every e > 0 there exists 6 > 0 such that if two points x,y € X
satisfy the following condition dx (x,y) < 0, then there exists a point z € X such
that

(5.6) U(x) C O(¥(2)) and ¥(y) C O(¥(2)),
(5.7) 2 €0 (x) and z€ O:(y),
(58) leoc(\:[j,c;x) = wloc(qlacv'z) = wloc(q]acv y)a

for any piece C of O.(¥(z)).

PrROOF. Let us fix € > 0. Since ¥ is an upper semicontinuous multivalued
map with compact values, it follows that for any x € X there exists 0 < 0, < ¢
such that ¥(B(z,?,)) C O (¥(x)). Moreover, in view of Lemma 5.7, there exists
d” > 0 such that for any piece of C of O.(¥(z)) and any y € B(z, ) we have
the following equality

(59) leoc(\llacv JC) = wlOC(\IJ707 y)

Let 0, := (1/2) min{o., 6"} and let {B(z,d,)}zex be the open covering of X.
Since X is compact, there exists a finite subcovering B(z1, 6y, ), ... , B(Tk, 0z, ) of
this covering. Let us put 6 := (1/2) min{d,,,...,ds, }. Now we shall show that
such a ¢ satisfies the conclusion of Lemma 5.8. Indeed, let us take two points
2 and y with dx(z,y) < 6. Then for a point z there exists 1 < iy < k such
that @ € B(wiy,0s,,). Let z := x;,. Then ¥(z) C O(¥(2)). Since dx(y,z) <
dx(y,xz) +dx(xz,z) <6+, <e/2+¢/2 = ¢, we deduce that ¥(y) C O-(¥(z))
and y € O(z); and hence (5.6) and (5.7) are satisfied. Finally, (5.8) follows from
(5.9) and the fact that dx(z,z) < 07 and dx(y,z) < 67

', which completes the

proof. O
Now we are able to prove the following corollary.

(%) Recall that by neighbourhood of z in X we mean always a set containing z in its
interior; thus a neighbourhood need not be open.
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COROLLARY 5.9. Let X be a compact space and let U: X — Y be a weighted
carrier. Then for every e > 0 there exists dg > 0 such that for every x € X and
every piece C' of O (¥(O(x))) we have

leoc(\ljz C7 -7;) = wloc(ma 07 y)
for any y € B(x, dy).

PROOF. Let usfixe > 0andlet § > 0 be as in Lemma 5.8 according to ¥ and
€. We shall show that such a ¢ satisfies the conclusion of the above corollary.
For this purpose, let us choose a point y such that dx(z,y) < 6. Then, by
Lemma 5.8, we deduce that there exists a point z such that

0-(¥(2)) € O-(¥(0x())),
U(z) C O.(U(z)) and U(y) C O-(¥(2)).

Let C be a piece of O (¥ (O.(x))). Since C N O(¥(z)) is open and closed in
O:(¥(2)), it follows by Lemma 5.8 and the excision property of I .. that

Litoc(U, C,2) = Lyioc (¥, 0N O(¥(2)), 7) Lemma 5.8 Lploc (¥, C N O(T(2)), 2)
b 58 1 0e(W,C N O(¥(2)),y) = Lutoe(¥, C, ),

which completes the proof. O
The following lemma is crucial in what follows.

LEMMA 5.10. Let X be a compact space and let Y be a space, n > 0. If
U: X — Y is a w-UV™-valued carrier, then for each € > 0 there exists a 6,
0 < 0 < g, such that for each x € X two properties hold:

(a) for any connected component C of Os(¥(O5(x))) and for every w-map
pr0A; — Cwith y}, o wy(0,y) =3, ccwe(l,y) there exists a w-map
©: A1 — O (¥(Oc(x))) such that p(z) = @(x) for all x € OA;

(b) if n > 0, then for each k, 1 < k < n + 1, and any weighted map
p: OAR — Os(U(Os(x))) there exists a w-map @: Ay —o O (V(O:(2)))
such that @(x) = p(x) for all x € OA}.

The proof of the above lemma is similar in spirit to that of [12, Lemma 5.8],
so the details are left to the reader.

We are now going to establish the first approximation result of this section.

THEOREM 5.11. Let X be a compact polyhedron and let A be a subpolyhedron
of X. Let' Y be a locally connected space. If dim(X\ A) <n+1and ¥: X —Y
is a w-UV™-valued carrier, then for any € > 0 there exists § > 0 such that
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if po: A — Y is a d-approzimation of V: X —o Y, then there exists a w-map
p: X — Y being an e-approzimation of ¥ with ¢|A = @y.

PRrROOF. The main idea of our proof follows from [6], [12]. Let us fix € > 0
and let dim(X \ A) = ny. Using Lemma 5.10 we can construct a sequence {e;}:°,
(") such that

(1) ep, i=¢,

(2) 4e; < giqpq for 0<i<ng—1,

(3) for any x € X, any connected component C' of Oz, (¥(Og,(x))), and
any weighted map ¢:0A; —o C with 3 o w,(0,y) = >, ccw,(1,y)
there exists a weighted map @: Ay —o O, /2(¥(O¢, j2(x))) such that
o(xz) = (z) for all x € A,

(4) for any « € X, any positive k, 1 < k < ng — 1, and any w-map
©: 00k 11 —o O, (U(O2, (2))) there exists a weighted map @: Ay —o
Oc,12(¥(O;, ., j2())) such that $(x) = @(x) for all z € OAy 4.

Let § := gp and let pg: A — Y be a d-approximation of ¥: X — Y. Let
(K, L) be a triangulation of (X, A) finer than the covering {O.,/2(2)}zex of
X, ie. |[K| = X, |L| = A and L is a subcomplex of K. We shall prove now
that ¢: A — Y can be extended to an e-approximation of U: X — Y. For this
purpose, choose for each simplex o of K\ L a point z, such that |o| C O¢, /2(zs).
Let us notice that if o is a vertex v of K \ L, then we can take x, = v. Let v
be a vertex of K such that v € L. Since Y is locally connected, it follows that
the open set O, (¥(O,,(v))) is also locally connected and hence the connected
components of Og, (¥ (O, (v))) are open in O, (¥(Og,(v))). Consequently, by
the compactness of ¥(v), we infer that it meets only a finite number of connected
components of O, (¥(O¢,(v))), say C7, ... ,Cy . Let us choose a point y;’ in each
C?. We define a weighted map ¢°: |[K(©|U|L| — Y (®) by the formula

wo(x) if z €L,

0 ) = Ty
(@) S Lutoe(U,CY o)y ifa = v e [KO|\|L].

i=1

Obviously, ¢° is an eg-approximation of ¥:|K| — Y. Now we extend ¢" to
|KM| U |L|. For this purpose, let us fix a l1-dimensional simplex o = (vg,vy)
such that o ¢ L. Since |o| C O, /2(25), we have

Oc, (Vi) C Ogy(|o]) C Ogy(Ogyj2(25)) C Oey(25), fori=0,1.

(7) During construction we can assume that ng > 1 because otherwise ng = 0 and then
we put {g;}]0, :==e.

(8) Given simplicial complex we shall denote by K@ the simplex of K consisting of all
simplexes o € K with dim(o) <.
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Moreover, since ¢ is an eg-approximation of ¥: |K| — Y, we infer that
@O(’Ui) C 050 (W(OEO (Ul))> C 0260(\1/(0250 (.’130)))7 fori=1,2.

Now we shall show that for each piece C' of Oac,(V(O2c,(z,))) the following
condition holds:

leoc((p07 Ca UO) = wloc((p07 Ca Ul)-
Indeed, let us fix a piece C' of Og.y (¥ (O (x5))). Let

Ci = C n Ogo (\I/(Oso (Uz))),

for i = 1,2. Then C; is a piece of O, (¥(O¢,(v;))), for 1 <i < 2. Since ¢° is an
go-approximation of ¥:|K| — Y, we obtain

(510) leoc((PO7C7’Ui) = wloc((poaciavi) = wloc(\I’aCiu/Ui) = wloc(\I’aC7vi)a

for ¢+ = 1,2; where the first equality and the last one above follow form the
excision property of I,0c. Consequently, since |o| = |(vg,v1)| is connected and

U(lo]) € W(Ocq/2(25)) C Oeo (¥(O2eo(25))),
we deduce from Lemmas 3.7 and 5.3 that
Tpioc (U, C,v9) = Tploc(P, C,v1).
Hence, taking into account (5.10) and (5.11), we obtain

leoc(‘POa C, UO) = wloc(‘POa C, vl)-

Thus, by the definition of ¢, we can extend ¢°||0c|: |00 —o Oac, (¥ (O2z,(74)))
to

Poi|o] =0 Oc, j2(¥(0:, j2(20)))-
Now we are going to show that ¢, is an e1-approximation of U: |K| — Y. First,

let us observe that for each 2 € || we have x5 € O, /2(x), since |o| C O, j2(25).
Thus

Oc,/2(¥(O¢, /2(25))) € Oc,2(¥(O¢, /2(0cy/2(2)))) € Oc, (¥(O, (2)))-

This shows that ¢, (x) C O, (¥(Og, (2))), for each x € |o| = |{vg,v1)]|. So, it is
enough to show that if C' is any piece of O, (¥(O, (x))), then

leoc(@o’v C, :C) = wloc(\D; 07 LU)

For this purpose, let us fix z € |o| and let C be a piece of O, (¥ (O, (x))). Since

©o(v0) C ¢o(lo]) C Oc, j2(¥(Oc, j2(20))) C Oc, (¥(O, (2))),
U(vo) € ¥(lo]) C O, /2(¥(Oc, j2(20))) C O,y (¥(Oc, (2))),
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it follows, in view of Lemmas 5.3 and 3.7, that

(512) leoc(‘PmCa UO) = wloC(@o‘aC7 .’If),

(5.13) Tpioc (¥, CLv9) = Iyploc(V, C, x).

Since @, ||00