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GRAPH-APPROXIMATION
OF MULTIVALUED WEIGHTED MAPS

Robert Skiba

(Submitted by L. Górniewicz)

Abstract. In this paper we study the existence of weighted graph-approx-
imations of w-carriers whose values satisfy a certain w-UV -property. In

particular, we prove that any upper semicontinuous set-valued map with

compact and acyclic values (with respect to the Čech homology with ratio-
nal coefficients) from a compact ANR to an ANR admits arbitrarily close

weighted graph-approximations.

1. Introduction

The approximations methods provide a powerful tool to study multivalued
maps, which were initiated in 1935 by J. von Neumann. The further develop-
ment of his idea is related to the names A. Cellina, A. Granas, L. Górniewicz,
W. Kryszewski, W. Lasonde, and many others; for more historical remarks and
the related references, see the survey paper [21].

It is well-known that a multivalued upper semicontinuous map with not nec-
essarily connected values may not admit (sufficiently close) single-valued con-
tinuous approximations. Therefore we study the finite-valued version of this
problem. The study of such approximations was initiated by J. Pejsachowicz
and G. Conti (see [6], [25]). In this article we are going to develop the ap-
proximation methods introduced in [6] and [25]. We hope our approximation
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techniques being very simple and entirely elementary may be useful in a further
development. Let us note that some applications of these approximations can
be found in [6], [27], [31].

The paper is organized as follows. After this Introduction it consists of five
sections. In Section 2 we give preliminary notations. Moreover, we define w-
maps and we give some of their elementary properties. Section 3 is devoted to
the study of topological properties of the class of multivalued maps discovered
by Gabriele Darbo in 1950 under the name of weighted carriers (w-carriers). In
Section 4 we study sets having various w-UV -properties. In particular, we shall
compare w-UV -notions with acyclicity with respect to the Čech homology. In
Section 5 we improve an approximability theorem for weighted carriers defined
on compact polyhedra due to G. Conti and J. Pejsachowicz (see Theorem 4.1
in [6]). Next we state our main result (see Theorem 5.17). In Appendix we give
a necessary and sufficient condition for a given compact subset A of an ANR X

to be k-acyclic in the sense of Čech homology with the coefficients in the field
of rational numbers Q.

The author express his gratitude to L. Górniewicz, W. Kryszewski, J. Pejsa-
chowicz for many valuable comments, suggestions and remarks.

Finally, let us notice that this paper is the refined version of the part of
Ph. D. thesis of the author (see [31]).

2. Preliminaries and definitions

By a space we always mean a metric space. If (X, dX) is a metric space, ε > 0
and A ⊂ X, then by the ε-neighbourhood of A in X we mean the set Oε(A) :=
{x ∈ X | dX(x,A) < ε}, where dX(x,A) = infa∈A dX(x, a) is the distance of
a point x ∈ X from the set A. In addition, B(x, ε) = {y ∈ X | dX(y, x) < ε}
(resp. D(x, ε) = {y ∈ X | dX(y, x) ≤ ε}) is the open ball (closed disk) of radius
ε centered at x ∈ X. In what follows by a map we understand a single-valued
continuous transformation of spaces and by a multivalued map ϕ of a space X
into a space Y we mean a correspondence which associates to every x ∈ X a non-
empty and compact subset ϕ(x) ⊂ Y , and we write ϕ:X ( Y . In the sequel,
the symbol f :X → Y is reserved for single-valued mappings. A multivalued map
ϕ:X ( Y is upper semicontinuous (u.s.c.) if for any open subset U of Y the
set ϕ−1(U) := {x ∈ X | ϕ(x) ⊂ U} is open in X. Moreover, we associate with ϕ
the graph Γϕ of ϕ by putting: Γϕ := {(x, y) ∈ X × Y | y ∈ ϕ(x)}.

Given a space X, a piece of X is any open and closed subset of X. Through-
out this paper, #X denotes a power of a setX. By a pair of spaces we understand
a pair (X,A) where X is a space and A is a subset of X. Given pairs (X,A),
(Y,B), we write ϕ: (X,A) ( (Y,B) if ϕ:X ( Y and ϕ(A) ⊂ B. Additionally, by
ϕA:A ( B we denote the multivalued map determined by ϕ: (X,A) ( (Y,B).
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If ϕ:X ( Y and A ⊂ X, then the composite of the inclusion i:A → X with
ϕ:X ( Y is denoted by ϕ|A:A ( Y .

If A ⊂ X, then clA, intA and ∂A denote the closure, the interior and the
boundary of A, respectively. By Dn+1 we shall understand the unit closed disk
in Rn+1 and ∂Dn+1 = Sn. Here and in what follows we shall denote by ∆n the
n-dimensional standard simplex.

By Ȟ∗(X,G) we denote the Čech homology (graded) of a space X with
coefficients in a group G ([9]). A space X will be called positively acyclic (resp.
k-acyclic, k ≥ 1) if Ȟn(X,Q) = 0 for n ≥ 1 (resp. Ȟi(X,Q) = 0 for 1 ≤ i ≤ k).
The following nontrivial theorem will be useful for our present purposes.

Theorem 2.1 ([28]). There exists a transformation T form the arbitrarily
homology theory with compact supports over a coefficient group G to the Čech
homology over the same coefficient group G such that

(a) to each metric space X assigns a homomorphism T (X):H(X,G) →
Ȟ(X,G),

(b) for any single-valued map f :X → Y the diagram

H(X,G)
f∗ //

T (X)

��

H(Y,G)

T (Y )

��

Ȟ(X,G)
f∗

// Ȟ(Y,G)

commutes. Moreover, if X is a metric absolute neighbourhood retract,
then T (X):H(X,G) → Ȟ(X,G) is an isomorphism.

Now we shall gather the basic properties of multivalued weighted maps which
are needed in the sequel.

Definition 2.2. A weighted mapping from X to Y with coefficients in Q
(or simply a w-map) is a pair ψ = (σψ, wψ) satisfying the following conditions:

(a) σψ:X ( Y is a multivalued upper semicontinuous mapping such that
σψ(x) is a finite subset of Y for any x ∈ X;

(b) wψ:X × Y → Q is a function with the following properties:
• wψ(x, y) = 0 for any y 6∈ σψ(x);
• for any open subset U of Y and x ∈ X such that σψ(x)∩∂U = ∅ there

exists an open neighbourhood V of the point x such that:∑
y∈U

wψ(x, y) =
∑
y∈U

wψ(z, y)

for every z ∈ V .
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For simplicity of notation, we shall denote a multivalued weighted mapping
from X to Y briefly by ψ:X ( Y . So, by ψ(x) we shall mean σψ(x) for all
x ∈ X. The mapping σψ from the above definition will be called the support of
ψ and wψ the weight of ψ. The class of weighted maps was introduced in 1958 by
G. Darbo and independently by R. Jerrard. Let us notice that in this paper the
notion of weighted map is introduced with very little change from the original
definition, but all the results of [16], [24]–[26] are also true for weighted maps
defined above. Moreover, the above definition seems to be more convenient in
our considerations.

Now we give some examples of weighted maps (see also [24], [34]).

Example 2.3. Each continuous map f :X → Y can be considered as a
weighted one by assigning the coefficient 1 to each f(x).

Example 2.4. Let ψ:X ( Y be a continuous map such that for all x ∈ X,
ψ(x) consists of 1 or exactly n points (with n fixed). A weight wψ:X × Y → Q
we can define by the formula:

wψ(x, y) =


0 if y 6∈ ψ(x),

n if {y} = ψ(x),

1 otherwise.

It is not difficult to verify that ψ = (ψ,wψ) is a weighted map.

Example 2.5. Let f :X → SPnY be a continuous single-valued map and
let Π:SPnY ( Y be a multivalued map which is defined by

Π(xk11 . . . xks
s ) = {x1, . . . , xs},

where SPnY denotes the n-th symmetric product of Y and xk11 . . . xks
s denotes

an equivalence class in SPnY . Then f induces a w-map ϕ = (σϕ, wϕ), where
σϕ:X ( Y and wϕ:X × Y → Q are defined as follows:

σϕ(x) = Π ◦ f(x)

and

wϕ(x, y) =

{
ki if y ∈ σϕ(x),

0 if y 6∈ σϕ(x).

Now we shall gather the basic properties of weighted maps which are needed
in the sequel (see [10], [16]).

Proposition 2.6. If ψ,ϕ:X ( Y are w-maps, then ψ ∪ ϕ = (σψ∪ϕ, wψ∪ϕ)
is also one, where σψ∪ϕ:X ( Y and wψ∪ϕ:X × Y → Q are defined by the
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formulas:

σψ∪ϕ(x) = σψ(x) ∪ σϕ(x),

wψ∪ϕ(x, y) = wψ(x, y) + wϕ(x, y),

for every x ∈ X and y ∈ Y .

Proposition 2.7. If ψ:X ( Y is a w-map and α ∈ Q, then α · ψ =
(σα·ψ, wα·ψ) is also one, where σα·ψ:X ( Y and wα·ψ:X × Y → Q are defined
as follows: σα·ψ(x) = σψ(x) and wα·ψ(x, y) = α · wψ(x, y) for every x ∈ X and
y ∈ Y .

Proposition 2.8. If ψ:X ( Y and ϕ:Y ( Z are w-maps, then ϕ◦ψ:X (

Z is a w-map, where its support σϕ◦ψ is the composition of σϕ and σψ and
a weight wϕ◦ψ:X × Z → Q is defined by the formula:

wϕ◦ψ(x, z) =
∑
y∈Y

wψ(x, y) · wϕ(y, z),

for every x ∈ X and z ∈ Z.

Definition 2.9. Given two w-maps ψ and ϕ from X to Y , we say that ψ is
w-homotopic to ϕ (ψ ∼w ϕ) if there exists a w-map θ:X × [0, 1] ( Y such that:

wθ((x, 0), y) = wψ(x, y) and wθ((x, 1), y) = wϕ(x, y),(2.1)

σθ(x, 0) = σψ(x) and σθ(x, 1) = σϕ(x),(2.2)

for any x ∈ X, y ∈ Y .

Definition 2.10. Let ϕ:X ( Y be a w-map and let X be a connected
space. Then the sum ∑

y∈Y
wϕ(x, y)

is called the weighted index of ϕ, where x ∈ X. We shall denote it by Iw(ϕ).

The above definition is correct because the sum
∑
y wϕ(x, y) does not depend

on the choice of x ∈ X if the space X is connected ([16]).

Proposition 2.11. The above index has the following properties:

(a) If ϕ, ψ:X ( Y are w-homotopic, then Iw(ϕ) = Iw(ψ).
(b) If ϕ:X ( Y and ψ:Y ( Z are w-maps, then Iw(ψ◦ϕ) = Iw(ψ)·Iw(ϕ).
(c) If f :X → Y is a continuous map, then Iw(f) = 1.

The proof is straightforward.
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Proposition 2.12 ([16]). Let ϕ:X ( Y be a weighted map such that
ϕ(X) ⊂

⋃s
i=1 Vi, where Vi, i = 1, . . . , s, are open subsets of Y with Vi ∩ Vj = ∅

for i 6= j. Assume also that the following condition is satisfied: ϕ(x) ∩ Vi 6= ∅
for all x ∈ X and i = 1, . . . , s. Then there exist w-maps ϕi:X ( Y with
ϕi(X) ⊂ Vi, 1 ≤ i ≤ s, such that ϕ =

⋃s
i=1 ϕi.

Lemma 2.13. Let ψ,ϕ:X ( Y be two w-maps such that

wψ(x, y) = wψ(x, y),

for each x ∈ X, y ∈ Y . Then there exists a weighted map θ:X × [0, 1] ( Y such
that

θ(x, 0) = ϕ(x), wθ((x, 0), y) = wϕ(x, y),

θ(x, 1) = ψ(x), wθ((x, 1), y) = wψ(x, y),

for x ∈ X, y ∈ Y .

Proof. It is enough to define a w-map θ:X × [0, 1] ( Y as follows:

θ(x, t) =


ϕ(x) if t ∈ [0, 1/3),

ϕ(x) ∪ ψ(x) if t ∈ [1/3, 2/3],

ψ(x) if t ∈ (2/3, 1]

and
wθ((x, t), y) = wϕ(x, y), for x ∈ X, y ∈ Y , t ∈ [0, 1]. �

Lemma 2.14. Let Y be a path-connected space. Then for any w-map ϕ: {0, 1}
( Y satisfying condition ∑

y∈Y
wϕ(0, y) =

∑
y∈Y

wϕ(1, y)

there exists a w-map ϕ̃: [0, 1] ( Y such that

ϕ̃ =
s⋃
i=1

λifi and ϕ̃|{0, 1} = ϕ,

where λi ∈ Q and fi: [0, 1] → Y are single-valued continuous functions, for
1 ≤ i ≤ s.

Proof. The proof may be found in [6]. But we provide a simple direct
proof. Let ϕ(0) = {x1, . . . , xn} and ϕ(1) = {y1, . . . , ym}. The proof will be
divided into two steps.

Step 1. We assume that n ≥ m. Let

αi := wϕ(0, xi) for 1 ≤ i ≤ n,

βj := wϕ(1, yj) for 1 ≤ j ≤ m.
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First, we shall consider the case m = 1. Then by the connectedness of Y there
exist continuous functions hi: [0, 1] → Y such that

hi(0) = xi and hi(1) = y1,

for i = 1, . . . , n. Consequently, ϕ̃: [0, 1] ( Y it is enough to define as follows

ϕ̃ :=
n⋃
i=1

αihi.

Let m > 1. We put

γx1 = α1,

γyi
= βi − γxi

, γxi+1 = αi+1 − γyi
, for i = 1, . . . ,m− 1,

if n > m, then we put γxm+l
= αm+l, for l = 1, . . . , n−m.

Since Y is path-connected, there exist continuous functions

hx1 , . . . , hxn
: [0, 1] → Y and hy1 , . . . , hym−1 : [0, 1] → Y

such that

hxi
(0) = xi, hxi

(1) = yi, for i = 1, . . . ,m− 1,

hyi
(0) = yi, hyi

(1) = xi+1, for i = 1, . . . ,m− 1,

hxm+l
(0) = xm+l, hxm+l

(1) = ym, for l = 0, . . . , n−m.

Now it is enough to define ϕ̃: [0, 1] ( Y as follows

ϕ̃ =
( n⋃
i=1

γxi
hxi

)
∪

(m−1⋃
j=1

γyj
h−1
yj

)
,

where h−1
yj

(t) := hyj
(1− t) for all t ∈ [0, 1] and j = 1, . . . ,m− 1.

Step 2. We assume that m ≥ n. Let us define a w-map ψ: {0, 1} ( Y by
ψ(t) = ϕ(1− t) for t ∈ {0, 1}. Then by Step 1 there exists a w-map ψ̃: [0, 1] ( Y

such that

ψ̃ =
s⋃
i=1

λifi and ψ̃|{0, 1} = ψ,

where λi ∈ Q and fi: [0, 1] → Y are continuous functions for i = 1, . . . , s.
Consequently, a w-map ϕ̃: [0, 1] ( Y defined by the formula

ϕ̃ =
s⋃
i=1

λif
−1
i

is the desired extension of ϕ: {0, 1} ( Y , where f−1
i (t) := fi(1− t) for t ∈ [0, 1]

and i = 1, . . . , s. This completes the proof of the lemma. �
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Lemma 2.15 (Gluing lemma). Assume that a space X is a union of two
closed subsets X = A1 ∪ A2 and A1 ∩ A2 6= ∅. If there are two weighted maps
ϕ1:A1 ( Y, ϕ2:A2 ( Y such that

σϕ1(x) = σϕ2(x) for all x ∈ A1 ∩A2,

wϕ1(x, y) = wϕ2(x, y) for all x ∈ A1 ∩A2, y ∈ Y,

then a pair ϕ = (σϕ, wϕ) given by

σϕ(x) :=

{
σϕ1(x) if x ∈ A1,

σϕ2(x) if x ∈ A2,

and

wϕ(x, y) :=

{
wϕ1(x, y) if x ∈ A1, y ∈ Y,
wϕ2(x, y) if x ∈ A2, y ∈ Y,

is a weighted map.

The simple proof of the above lemma is left to the reader.
By W we shall denote the category of metric spaces and weighted maps with

coefficients in Q. In particular, by W(X,Y ) we shall understand the class of all
w-maps from X to Y . Let us define an equivalence relation ∼ on W(X,Y ) as
follows: ψ ∼ ϕ if and only if wψ = wϕ. The class of equivalence classes we shall
denote by (X,Y ) := W(X,Y )/ ∼.

Darbo constructed a homology theory for weighted maps by adopting the
usual construction of the singular homology functor. In what follows we briefly
describe his construction. Let ∆k be the geometrical k-simplex. For any 0 ≤ i ≤
k consider the map dik:∆k−1 → ∆k given by the inclusion of ∆k−1 as the face
opposite to the i-th vertex of ∆k. Given a space X we shall consider the graded
vector space C(X,Q) = {Ck(X,Q)}k≥0, where Ck(X,Q) := (∆k, X). So, we can
define a boundary operator ∂ in C(X) as follows:

∂ks =
k⋃
i=0

(−1)is ◦ dik ∈ Ck−1(X,Q),

for any s ∈ Ck(X,Q). The graded vector space H(X,Q) = {Hk(X,Q)}k≥0 of
the complex (C(X,Q), ∂) will be called the Darbo homology of the space X

over Q. Any weighted map ϕ:X ( Y induces in a functorial way a linear map
ϕ∗: H∗(X,Q) → H∗(Y,Q) (of degree zero). Let us note that two w-homotopic
w-maps induce the same linear map in Darbo homology. With this H∗ becomes
additive functor from W to the category of graded vector spaces which is in-
variant under the w-homotopy. Darbo (and Jerrard) showed that the functor
H∗ satisfies the Eilenberg–Steenrod axioms for a homology theory with com-
pact carriers. For more details concerning the notion of Darbo Homology, we
recommend [7], [16].
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A w-map ϕ: (X,x0) ( (Y, y0) between pointed spaces will be called a pointed
w-map if ϕ(x0) = y0. Let W0 be the category of pointed spaces and pointed w-
maps with the weighted index equal to 0. Given two weighted maps ϕ0 and
ϕ1 from (X,x0) to (Y, y0), we say that ϕ0 is w-homotopic relative to x0 to ϕ1

(written ϕ0 ∼w ϕ1 rel. x0) if there exists a weighted map θ:X × [0, 1] ( Y

satisfying two conditions of Definition 2.9 and θ(x0, t) = y0 for any t ∈ [0, 1].
This θ is called the pointed w-homotopy between ϕ0 and ϕ1. It is easy to see
that the pointed w-homotopy is an equivalence relation on W0. For a space X
with a basepoint x0 ∈ X, define πwn (X,x0) to be the set of the pointed classes
of w-maps ϕ: (Sn, s0) ( (X,x0) having the weighted index Iw(ϕ) = 0, where
s0 is a base point of the n-sphere Sn. Notice that πwn (X,x0) admits a natural
structure of Q-module under the following operations:

[ϕ] + [ψ] := [ϕ ∪ ψ], λ[ϕ] = [λϕ],

where [ϕ], [ψ] ∈ πwn (X,x0), λ ∈ Q. For any pointed space X, and n ≥ 0, the
Q-module πwn (X,x0) is called the n-th w-homotopy Q-module of X. It is easy
to see that we can replace in the definition of πwn (X,x0) the unit sphere Sn

by ∂∆n+1. Notice that the concept of w-homotopy was systematically studied
in [18], [24], [26].

The Hurewicz map hn:πwn (X,x0) → H̃n(X,Q) is defined in the usual way.
Namely, hn(α) = α∗(1n), where H̃ denotes the reduced (Darbo) homology and
1n is a generator of H̃n(Sn,Q). In the sequel we shall use the following result:

Theorem 2.16 ([26]). If X is an absolute neighbourhood retract, then the
Hurewicz map hn:πwn (X,x0) → H̃n(X,Q) is an isomorphism for every n ≥ 0
and any x0 ∈ X. Moreover, we have the following commutative diagram:

πwn (X,x0)
ϕ∗n //

hn

��

πwn (Y, y0)

hn

��

H̃n(X,Q) ϕ∗n

// H̃n(Y,Q)

for any weighted map ϕ:X ( Y and n ≥ 0.

We will also make use of the following lemma.

Lemma 2.17. Let ϕ:Sn ( Y be a weighted map. In addition, let us assume
that there exists a point x0 ∈ Sn such that ϕ(x0) consists of one point. If ϕ can
be extended over Dn+1, then ϕ is w-homotopic relative to x0 to Iw(ϕ)k, where
k:Sn → Y is the constant map at ϕ(x0) (1).

(1) By the constant map at y0 ∈ Y we shall understand the function k: X → Y with

k(x) = y0 for all x ∈ X.
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Proof. Let ϕ̃:Dn+1 ( Y be an extension of ϕ and let c:Sn → Dn+1 be
defined by c(x) = x0 for all x ∈ Sn. Since the inclusion i:Sn → Dn+1 and
c:Sn → Dn+1 are w-homotopic relative to x0, it follows that ϕ̃ ◦ i and ϕ̃ ◦ c
are also w-homotopic relative to x0. Let k:Sn → Y be defined to be ϕ̃ ◦ c.
Consequently, ϕ ∼w Iw(ϕ)k, because ϕ̃ ◦ i = ϕ and ϕ̃ ◦ c = Iw(ϕ)k, which
completes the proof. �

3. Weighted carriers

Given any multivalued map Φ:X ( Y we put

D(Φ) = {(V, x) | V is an open subset of Y and Φ(x) ∩ ∂V = ∅}.

Definition 3.1. A multivalued u.s.c. map Φ:X ( Y with compact values is
said to be a weighted carrier if there exists a function Iwloc:D(Φ) → Q satisfying
the following conditions:

(a) (Existence) If Iwloc(Φ, V, x) 6= 0, then Φ(x) ∩ V 6= ∅.
(b) (Local invariance) For every (V, x) ∈ D(Φ) there exists an open neigh-

bourhood Ux of a point x such that for each x′ ∈ Ux we have

Iwloc(Φ, V, x) = Iwloc(Φ, V, x′).

(c) (Additivity) If Φ(x) ∩ V ⊂
⋃k
j=1 Vi, where Vi, 1 ≤ i ≤ k, are open

disjoint subsets of V , then

Iwloc(Φ, V, x) =
k∑
i=1

Iwloc(Φ, Vi, x).

A function Iwloc:D(Φ) → Q verifying the above conditions will be called the
local weighted index of Φ.

Remark 3.2. Let us notice that Definition 3.1 is equivalent to that of [6],
but our definition of weighted carriers is much more useful to our work.

Remark 3.3. The additivity property in the case of k = 1 will be called the
excision property.

Below we shall present a number of examples.

Example 3.4. It is easy to see that if Φ:X ( Y is an upper semicon-
tinuous map with connected values, then Φ is a w-carrier. Indeed, a function
Iwloc:D(Φ) → Q it is enough to define as follows

Iwloc(Φ, U, x) :=

{
1 if Φ(x) ∩ U 6= ∅,
0 if Φ(x) ∩ U = ∅,

for any (U, x) ∈ D(Φ).
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Example 3.5. If ϕ:X ( Y is a weighted map, then Iwloc:D(ϕ) → Q we
define by Iwloc(ϕ,U, x) :=

∑
y∈U wϕ(x, y) for any (U, x) ∈ D(ϕ).

Example 3.6. Let X be a compact ANR and let f :X × [0, 1] → X be
a continuous function with the Lefschetz number λ(f0) 6= 0 of f0, where f0(x) =
f(x, 0) for all x ∈ X. Then a multivalued (u.s.c.) map Φ: [0, 1] ( X defined by
Φ(t) = {x | ft(x) := f(x, t) = x} for all t ∈ [0, 1] is a weighted carrier, because
a function Iwloc:D(Φ) → Q given by

Iwloc(Φ, U, t) := ind(ft, U,X)

verifies all the conditions of Definition 3.1, where ind(ft, U,X) denotes the fixed
point index for single-valued maps (for more information on the fixed point index
for single-valued maps see [14]).

For other examples see [6]. Now we shall prove a lemma which will be used
repeatedly throughout this paper.

Lemma 3.7. Let Ψ:X ( Y be a weighted carrier and let U be an open subset
of Y . In addition, let X0 be a connected subset of X such that Ψ(x) ∩ ∂U = ∅
for each x ∈ X0. Then

Iwloc(Ψ, U, x) = Iwloc(Ψ, U, y)

for any x, y ∈ X0.

Proof. Let us define a map I:X0 → Q by I(y) := Iwloc(Ψ, U, y), where
the set Q of rational numbers is endowed with the discrete topology. Then
from the local invariance of Iwloc we infer that the above function I is locally
constant. Therefore, by the connectedness of X0, I is constant, which completes
the proof. �

Definition 3.8. Let U be an open subset of Y and let Ψ:X ( Y be
a weighted carrier. Let C be a connected subset of X satisfying the following
condition: Ψ(x) ∩ ∂U = ∅. Define Iwloc(Ψ|(C,U)) to be Iwloc(Ψ|(C,U)) :=
Iwloc(Ψ, U, c0), where c0 ∈ C is an arbitrary fixed point.

Let Ψ:Y ( Z and Φ:X ( Y be two weighted carriers. Assume also that the
sets Φ(x) have finitely many connected components Cx1 , . . . , C

x
s , for all x ∈ X.

Now let us fix a point x ∈ X. Since Cxi , i = 1, . . . , sx, are compact disjoint
subsets of Φ(x), there exist open subsets V xi of Z such that

(3.1) Cxi ⊂ V xi and V xi ∩ V xj = ∅,

for i 6= j and i, j = 1, . . . , sx. Let U be an open subset of Z such that Ψ◦Φ(x)∩
∂U = ∅.
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Definition 3.9. Under the above assumptions we let

Iwloc(Ψ ◦ Φ, U, x) =
sx∑
i=1

Iwloc(Φ, V xi , x) · Iwloc(Ψ|(Cxi , U)),

where Iwloc(Ψ|(Cxi , U)) is defined as in Definition 3.8.

Let us observe that from the localization property of Iwloc for Φ it follows
that Iwloc(Φ, V xi , x) does not depend on the choice of V xi , and hence the above
definition is correct.

Proposition 3.10. Let Ψ:Y ( Z and Φ:X ( Y be as above. Then a func-
tion Iwloc:D(Ψ ◦ Φ) → Q defined as in Definition 3.9 satisfies the properties of
existence, local invariance and additivity (and hence Ψ◦Φ is a weighted carrier).

Proof. Let us fix x ∈ X. Let Φ(x) = Cx1 ∪ . . . ∪Cxsx
, where Cxi are compo-

nents of Φ(x). Moreover, let U be an open subset of Z such that Ψ◦Φ(x)∩∂U = ∅.
(Existence) Let Iwloc(Ψ ◦ Φ, U, x) 6= 0. Then there exists 1 ≤ i0 ≤ sx such

that

Iwloc(Φ, V xi0 , x) · Iwloc(Ψ|(Cxi0 , U)) 6= 0.

Since Iwloc(Ψ|(Cxi0 , U)) = Iwloc(Ψ, U, ci0) for any point ci0 ∈ Cxi0 , it follows that
Iwloc(Ψ, U, ci0) 6= 0. Consequently, Ψ(ci0) ∩ U 6= ∅ and hence Ψ(Φ(x)) ∩ U 6= ∅,
because ci0 ∈ Cxi0 ⊂ Φ(x).

(Local invariance) First, we shall show that for any Cxi , i = 1, . . . , sx, there
exists an open neighbourhood W x

i of Cxi in Y such that

(3.2) Iwloc(Ψ|(Cxi , U)) = Iwloc(Ψ, U, y) for all y ∈W x
i

and W x
i ∩W x

j = ∅ for i 6= j. For this purpose, we fix Cxj . By the local invariance
of Iwloc for Ψ we infer that for any y ∈ Cxj there exists an open neighbourhood
O′y of y such that for each y′ ∈ O′y the following equalities hold

Iwloc(Ψ, U, y′) = Iwloc(Ψ, U, y) = Iwloc(Ψ|(Cxj , U)).

Since Ψ is u.s.c. and Ψ(y) ∩ ∂U = ∅ for y ∈ Cxj , it follows that for any y ∈ Cxj
there exists an open neighbourhood O′′y of y such that Ψ(y′) ∩ ∂U = ∅ for each
y′ ∈ O′′y . Let Oy := O′y ∩O′′y for y ∈ Cxj . Moreover, let W̃ x

j :=
⋃
y∈Cx

j
Oy. Then

Iwloc(Ψ, U, y) = Iwloc(Ψ|(Cxj , U)) for y ∈ W̃ x
j .

It is easy to see that there exist open sets Ŵ x
i , i = 1, . . . , sx, such that

Cxi ⊂ Ŵ x
i and Ŵ x

i ∩ Ŵ x
j = ∅ for i 6= j.
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Obviously, if we put W x
i := W̃ x

i ∩ Ŵ x
i , then W x

i ∩W x
j = ∅ for i 6= j and i, j =

1, . . . , sx; which completes the proof of (3.2). Now let us put Iwloc(Ψ|(W x
i , U)) :=

Iwloc(Ψ, U, y), where y ∈W x
i is an arbitrary fixed point. Hence

(3.3) Iwloc(Ψ|(W x
i , U)) = Iwloc(Ψ|(Cxi , U))

for all 1 ≤ i ≤ sx. Consequently, from the local invariance of Iwloc for Φ we infer
that for each 1 ≤ i ≤ sx there exists an open neighbourhood Oxi of the point x
such that

(3.4) Iwloc(Φ,W x
i , x) = Iwloc(Φ,W x

i , x
′)

for all x′ ∈ Oxi . Since Φ is u.s.c. we can deduce that there exists an open
neighbourhood Õx of the point x such that Φ(Õx) ⊂

⋃sx

i=1W
x
i . Let Ox :=

Õx ∩ (
⋂sx

i=1O
x
i ). Since the sets W x

i , 1 ≤ i ≤ sx, satisfy the condition (3.1), we
have

Iwloc(Ψ ◦ Φ, U, x) =
sx∑
j=1

Iwloc(Φ,W x
j , x) · Iwloc(Ψ|(Cxj , U)).

Now we shall show that for any x′ ∈ Ox the following equality holds

Iwloc(Ψ ◦ Φ, U, x) = Iwloc(Ψ ◦ Φ, U, x′),

where

Iwloc(Ψ ◦ Φ, U, x′) =
sx′∑
j=1

Iwloc(Φ, V x
′

j , x′) · Iwloc(Ψ|(Cx
′

j , U)),

Cx
′

j are components of Φ(x′), 1 ≤ j ≤ sx′ , and V x
′

j are open subsets in Y such
that

Cx
′

j ⊂ V x
′

j and V x
′

i ∩ V x
′

j = ∅ for i 6= j.

For this purpose, let us fix x′ ∈ Ox. Let Ix
′

i := {1 ≤ k ≤ sx′ | Cx
′

k ⊂ W x
i } for

1 ≤ i ≤ sx (2). Then
sx′∑
j=1

Iwloc(Φ, V x
′

j , x′) · Iwloc(Ψ|(Cx
′

j , U))(3.5)

=
sx∑
i=1

∑
j∈Ix′

i

Iwloc(Φ, V x
′

j , x′) · Iwloc(Ψ|(Cx
′

j , U))

(2) Let us note that the set Ix′
i defined above can be empty, but it holds only in case

Iwloc(Φ, W x
i , x) = 0. Moreover, if Ix′

i = ∅, then we put

X
j∈Ix′

i

Iwloc(Φ, V x′
j , x′) · Iwloc(Ψ|(Cx′

j , U)) = 0.
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=
sx∑
i=1

∑
j∈Ix′

i

Iwloc(Φ, V x
′

j , x′) · Iwloc(Ψ|(Cxi , U)),

where the last equality follows from the fact that for any j ∈ Ix
′

i and any y ∈
Cx

′

j ⊂W x
i we have

Iwloc(Ψ|(Cx
′

j , U)) = Iwloc(Ψ, U, y) = Iwloc(Ψ|(W x
i , U))

(3.3)
= Iwloc(Ψ|(Cxi , U)).

Consequently, we have

(3.5) =
sx∑
i=1

Iwloc(Ψ|(Cxi , U)) ·
( ∑
j∈Ix′

i

Iwloc(Φ, V x
′

j , x′)
)
.

Now let us observe that if we show that

(3.6)
∑
j∈Ix′

i

Iwloc(Φ, V x
′

j , x′) = Iwloc(Φ,W x
i , x),

then the proof of the local invariance of Iwloc will be completed, because
sx∑
i=1

Iwloc(Ψ|(Cxi , U)) · Iwloc(Φ,W x
i , x) = Iwloc(Ψ ◦ Φ, U, x).

Now let us fix i ∈ {1, . . . , sx}. Since

Φ(x′) ∩ V x
′

j = Cx
′

j ⊂W x
i and Φ(x′) ∩ V x

′

j ⊂ V x
′

j for any j ∈ Ix
′

i ,

we deduce from the excision property of Iwloc for Φ that

Iwloc(Φ, V x
′

j , x′) = Iwloc(Φ, V x
′

j ∩W x
i , x

′)

for all j ∈ Ix′i . Hence∑
j∈Ix′

i

Iwloc(Φ, V x
′

j , x′) =
∑
j∈Ix′

i

Iwloc(Φ, V x
′

j ∩W x
i , x

′)

(∗)
= Iwloc

(
Φ,

( ⋃
j∈Ix′

i

V x
′

j ∩W x
i

)
, x′

)

= Iwloc

(
Φ,

( ⋃
j∈Ix′

i

V x
′

j

)
∩W x

i , x
′
)
,

where the equality (∗) holds true by the additivity property of Iwloc for Φ.
Consequently, applying the excision property of Iwloc, we obtain

Iwloc

(
Φ,

( ⋃
j∈Ix′

i

V x
′

j

)
∩W x

i , x
′
)

= Iwloc(Φ,W x
i , x

′)
(3.4)
= Iwloc(Φ,W x

i , x),

which completes the proof of (3.6).
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(Additivity) Let Ψ ◦ Φ(x) ∩ U ⊂
⋃k
j=1 Uj , Um ∩ Un = ∅ for m 6= n, Uj ⊂ U

for 1 ≤ j ≤ k. First, we shall show that

(3.7) Iwloc(Ψ|(Cxi , U)) =
k∑
j=1

Iwloc(Ψ|(Cxi , Uj))

for 1 ≤ i ≤ sx. For this purpose, let us fix 1 ≤ i0 ≤ sx and cxi0 ∈ Cxi0 . Since
Ψ(cxi0) ∩ U ⊂

⋃k
j=1 Uj , we deduce from the additivity property of Iwloc for Ψ

that

Iwloc(Ψ|(Cxi , U)) = Iwloc(Ψ, U, cxi0) =
k∑
j=1

Iwloc(Ψ, Uj , cxi0),

and taking into account the following equality

Iwloc(Ψ|(Cxi , Uj)) = Iwloc(Ψ, Uj , cxi0),

we obtain (3.7). Consequently

Iwloc(Ψ ◦ Φ, U, x) =
sx∑
i=1

Iwloc(Φ, V xi , x) · Iwloc(Ψ|(Cxi , U))

=
sx∑
i=1

Iwloc(Φ, V xi , x) ·
( k∑
j=1

Iwloc(Ψ|(Cxi , Uj)
)

=
k∑
j=1

sx∑
i=1

Iwloc(Φ, V xi , x) · Iwloc(Ψ|(Cxi , Uj))

=
k∑
j=1

Iwloc(Ψ ◦ Φ, Uj , x),

which completes the proof of the additivity property of Iwloc for Ψ ◦ Φ. �

As an easy consequence of Proposition 3.10 we obtain the following corollary:

Corollary 3.11. Let f :Y → Z be a single-valued map and let Ψ:X ( Y

be a weighted carrier. Then

Iwloc(Ψ ◦ f, U, x) = Iwloc(Ψ, U, f(x)).

Definition 3.12. Let Ψ:X ( Y be a weighted carrier and let f :Y → Z

be a single-valued map. Then Iwloc:D(f ◦Ψ) → Q is defined by

Iwloc(f ◦Ψ, U, x) := Iwloc(Ψ, f−1(U), x),

for any (U, x) ∈ D(f ◦Ψ).

It is easy to see that if (U, x) ∈ D(f ◦ Ψ) then (f−1(U), x) ∈ D(Ψ) and
therefore the above definition is correct.
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Proposition 3.13. Let X be an ANR, let A be a closed ANR subspace of
X and let Y be an arbitrary metric space. If Ψ:A × [0, 1] ( Y is a weighted
carrier such that Ψ0:A ( Y is extendable to a w-carrier Ψ̃0:X ( Y , then there
is a w-carrier Ψ:X × [0, 1] ( Y such that

(a) Ψ|X × {0} = Ψ̃0,
(b) for every t ∈ [0, 1], Ψt|A = Ψt,

where Ψt(x) := Ψ(t, x) and Ψt(x) := Ψ(t, x) for all t ∈ [0, 1] and x ∈ A.

The proof of Proposition 3.13 proceeds along the same line as in the case of
single valued maps in [15] and therefore we omit further details. Now we are
able to prove:

Corollary 3.14. Let X,A ⊂ X,Y be as in Proposition 3.13 and let V ⊂ U

be subsets of Y . In addition, let ϕ:A ( V be a w-map. Then ϕ can be extended
to a w-map ϕ̃:X ( U if and only if ϕ∪ (−Iw(ϕ))y0:A ( V can be extended to
a w-map ϕ:X ( U , where y0 ∈ Y is any fixed point.

Proof. This implication ⇒ is obvious. For ⇐, let ϕ ∪ (−Iw(ϕ))y0:A ( V

be a weighted map and let ϕ:X ( U be an extension of ϕ ∪ (−Iw(ϕ))y0 over
X. Then a weighted map ϕ ∪ Iw(ϕ)y0:X ( U satisfies the following condition
wϕ∪Iw(ϕ)y0(x, y) = wi◦ϕ(x, y) for all x ∈ A, y ∈ U , where i:V ↪→ U is the
inclusion. Hence, in view of Lemma 2.13, a w-map ϕ ∪ Iw(ϕ)y0|A:A ( U is
w-homotopic to i ◦ϕ:A ( U . Consequently, by Proposition 3.13, it follows that
there exists a w-map ϕ̃:X ( U with ϕ̃(x) = ϕ(x) for all x ∈ A, which completes
the proof. �

4. w-UV -sets

Following [20] we propose the following definitions, which will play a crucial
role in the sequel.

Definition 4.1. Let V ⊂ U be subsets of a space Y . We say that the
inclusion V ↪→ U is w-homotopy 0-trivial if for any connected component C of
V and for any weighted map ϕ: ∂∆1 ( C satisfying the condition∑

y∈C
wϕ(0, y) =

∑
y∈C

wϕ(1, y)

there exists a weighted map ϕ̃:∆1 ( U such that ϕ̃(x) = ϕ(x) for every x ∈ ∂∆1.

Definition 4.2. Let V ⊂ U be subsets of a space Y and let n ≥ 1 be an
integer. The inclusion V ↪→ U is said to be w-homotopy n-trivial if it is w-
homotopy 0-trivial and for any integer 1 < k ≤ n + 1 and for every weighted
map ϕ: ∂∆k ( V there exists a w-map ϕ̃:∆k ( U such that ϕ̃(x) = ϕ(x) for
every x ∈ ∂∆k.
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Definition 4.3. Let K be a compact subset of a space X. We say that the
inclusion A ↪→ X has:

(a) w-UV n-property (n ≥ 0) if for every ε > 0 there exists 0 < δ < ε such
that the inclusion Oδ(K) → Oε(K) is w-homotopy n-trivial;

(b) w-UV ω-property if it has w-UV n-property for each n ≥ 0.

Now we are going to show some facts concerning the above notions. In
particular, we will prove that the class of sets satisfying some w-UV -properties
is quite large.

Proposition 4.4. Let X be a locally connected space (3), let K be a compact
subset of X and let n ≥ 1. If for any ε > 0 there exists δ, 0 < δ < ε, such that:

(a) Oδ(K) ↪→ Oε(K) is w-homotopy 0-trivial,
(b) for each positive integer 1 ≤ k ≤ n and x0 ∈ Oδ(K), the inclusion

Oδ(K) ↪→ Oε(K) induces the trivial homomorphism

πwk (Oδ(K), x0) → πwk (Oε(K), x0),

then the inclusion K ↪→ X has a w-UV n-property.

Proof. The proof will be divided into a number of steps. (We proceed by
proving successively more general cases.)

Step 1. Fix ε > 0 and let δ > 0 be such that the induced homomorphism

(4.1) πwk (Oδ(K), x0) → πwk (Oε(K), x0)

is trivial for 1 ≤ k ≤ n and for all x0 ∈ Oδ(A). We divide Step 1 into a sequence
of cases.

Case A. Let ϕ:Sn ( Oδ(A) be a w-map with Iw(ϕ) = 0 and ϕ(s0) = x0,
where s0 ∈ Sn is a fixed point. Since the homomorphism (4.1) is trivial, it
follows that a w-map i ◦ ϕ:Sn ( Oε(A) is w-homotopic to the constant map at
x0 (with the weighted index equals 0), where i:Oδ(A) → Oε(A) is the inclusion.
Hence, in view of Proposition 3.13, we conclude that i ◦ ϕ can be extended to
a w-map ϕ̃:Dn+1 ( Oε(A).

Case B. Let ϕ:Sn ( Oδ(A) be a w-map with Iw(ϕ) 6= 0 and ϕ(s0) = x0 (s0
as in Case 1). Let ψ̃:Sn ( Oδ(A) be given by ψ = ϕ ∪ (−Iw(ϕ))y0, where y0
is an arbitrary fixed point of A. Since Iw(ψ) = 0, we conclude by Case 1 that
there exists a weighted map ψ̃:Dn+1 ( Oε(A) such that ψ̃(x) = ψ(x) for each
x ∈ Sn. Therefore by Corollary 3.14 we obtain a w-map ϕ̃:Dn+1 ( Oε(A) such
that ϕ̃(x) = ϕ(x) for all x ∈ Sn.

(3) If a space X is locally connected and V is an open subset of X, then V is locally

connected. Hence any connected component C of V is open in X. This observation will be of
use in the proof of Proposition 4.4 and later.
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Case C. Let ϕ:Sn ( Oδ(A) be a w-map and let us assume that #ϕ(s0) 6= 1.
Assume also that there exists a w-map α: [0, 1] ( Oδ(A) such that

α(0) = ϕ(s0), α(1) = x0,

wα(0, y) = wϕ(s0, y), for all y ∈ Oδ(A).

Now let us define Υ: (Sn × {0}) ∪ ({s0} × [0, 1]) ( Oδ(A) by

Υ(x, t) =

{
ϕ(x) if t = 0,

α(t) if x = s0.

Then in view of Proposition 3.13 there exists a w-map Υ̃:Sn × [0, 1] ( Oδ(A)
such that Υ̃|(Sn×{0})∪ ({s0}× [0, 1]) = Υ. Now, applying Case A or Case B to
Υ̃( · , 1):Sn ( Oδ(A) (4), we obtain an extension Υ:Dn+1 ( Oε(A) of Υ̃( · , 1).
Let

Υ0: (Sn × {0}) ∪ ({s0} × [0, 1]) ∪ (Dn+1 × {1}) ( Oε(A)

be defined as follows

Υ0(x, t) =


ϕ(x) if t = 0,

α(t) if x = s0,

Υ(x) if t = 1.

Since (Sn×{0})∪({s0}×[0, 1])∪(Dn+1×{1}) is an ANR and is closed in Dn+1×
[0, 1], we infer that due to Proposition 3.13 we can extend Υ0 to a weighted map
Υ̂:Dn+1 × [0, 1] ( Oε(A). Finally, let us observe that Υ̂( · , 0):Dn+1 ( Oε(A)
satisfies the following condition Υ̂(x, 0) = ϕ(x), for every x ∈ Sn.

Step 2. Let ε > 0. Then under the assumptions of Proposition 4.4 it follows
that there exists δ < ε such that

(a) Oδ(K) ↪→ Oε(K) is w-homotopy 0-trivial,
(b) for each positive integer 1 ≤ k ≤ n and x0 ∈ Oδ(K), the inclusion

Oδ(K) ↪→ Oε(K) induces the trivial homomorphism

πwk (Oδ(K), x0) → πwk (Oε(K), x0).

Moreover, for δ there exists η < δ such that

(c) Oη(K) ↪→ Oδ(K) is w-homotopy 0-trivial.

Let us fix 1 ≤ k ≤ n and let s0 be the base point of Sk. Now we shall show that
for any w-map ϕ:Sk ( Oη(A) there exists a w-map ϕ̃:Dk+1 ( Oε(A) with
ϕ̃(x) = ϕ(x) for all x ∈ Sk. To see this, let us fix a w-map ϕ:Sk ( Oη(A).
Let us observe that if for a given w-map ϕ:Sk ( Oη(A) there exists a w-map
α: [0, 1] ( Oδ(A) such that

(4.2) α(0) = ϕ(s0), wα(0, y) = wϕ(s0, y) for all y ∈ Oη(A), #α(1) = 1,

(4) If Iw(eΥ( · , 1)) = 0, then we apply Case A, otherwise we apply Case B.
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then by Step 1 we infer that there exists a w-map ϕ̃:Dk+1 ( Oε(A) with
ϕ̃(x) = ϕ(x) for all x ∈ Sk. Therefore we can assume that for ϕ:Sk ( Oη(A)
there is no α: [0, 1] ( Oδ(A) satisfying (4.2). Let Oη(A) =

⋃
j∈I O

A
j , where

OAj is the connected component of Oη(A). Since Oη(A) is locally connected, it
follows that the connected components of Oη(A) are open in Oη(A). Hence, by
the compactness of ϕ(Sk), we obtain

#I ′ := {j ∈ I | ϕ(Sk) ∩OAj 6= ∅} <∞.

Obviously, ϕ(Sk) ⊂
⋃
jm∈I′ O

A
jm

. Let us choose a point yjm in each component
OAjm and let us define a w-map α:Sk ( Oη(A) as follows

α(x) = {yj1 , . . . , yjs}, wα(x, y) = 0,

for all x ∈ Sk, y ∈ Oη(A), where s := #I ′. Let ϕα:Sk ( Oδ(A) be defined
by ϕα := ϕ ∪ α. Then, by Proposition 2.12, a w-map ϕα has the following
decomposition ϕα = ϕα1 ∪ . . . ∪ ϕαs , where any w-map ϕαm satisfies the following
condition ϕαm(Sk) ⊂ OAjm . Let βm: {0, 1} ( OAjm , m = 1, . . . , s, be defined as
follows

βm(0) = ϕαm(s0), βm(1) = yjm ,

wβm(0, y) := wϕα
m

(s0, y), for all y ∈ OAjm ,
wβm(1, yjm) := Iw(ϕαm), wβm(1, y) := 0 for y 6= yjm ,

where 1 ≤ m ≤ s. Since the inclusion Oη(A) ↪→ Oδ(A) is w-homotopy 0-
trivial, it follows that for any βm there exists a w-map β̃m: [0, 1] ( Oδ(A) with
β̃m|{0, 1} = βm. Hence, by Step 1, for any w-map ϕαm:Sk ( Oη(A) there
exists a w-map ϕ̃αm:Dk+1 ( Oε(A) such that ϕ̃αm(x) = ϕαm(x) for all x ∈ Sk.
Consequently, a w-map ϕ̃:Dk+1 ( Oε(A) given by

ϕ̃α = ϕ̃α1 ∪ . . . ∪ ϕ̃αm

is an extension of ϕα:Sk ( Oη(A). Since w-maps ϕ and ϕα satisfy the following
condition

wϕ(x, y) = wϕα(x, y),

for all x ∈ Sk and y ∈ Oε(A), Lemma 2.13 implies that ϕ is w-homotopic to ϕα;
and hence, by Proposition 3.13, we infer that there exists a w-map ϕ̃:Dk+1 (

Oε(A) such that ϕ̃(x) = ϕ(x) for all x ∈ Sk. This completes the proof. �

Now we will prove that the converse of the last statement is also true.

Proposition 4.5. Let X be a space and let K be a compact subset of X. If
the inclusion K ↪→ X has a w-UV n-property (n ≥ 1), then for each ε > 0, there
exists δ, 0 < δ < ε, such that the homomorphism

hk:πwk (Oδ(K), x0) → πwk (Oε(K), x0)
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induced by the inclusion i:Oδ(A) → Oε(A) is trivial for 1 ≤ k ≤ n and for all
x0 ∈ Oδ(A).

Proof. Let us fix ε > 0. Let δ > 0 be such that for any 1 ≤ k ≤ n and any
w-map ϕ:Sk ( Oδ(A) there exists a w-map ϕ̃:Dk+1 ( Oε(A) with ϕ̃(x) = ϕ(x)
for all x ∈ Sk. Now we are going to show that the induced homomorphism
hk:πwk (Oδ(K), x0) → πwk (Oε(K), x0) is trivial for any 1 ≤ k ≤ n and for each
x0 ∈ Oδ(A). To see this, let us fix 1 ≤ k ≤ n and x0 ∈ Oδ(A). Let ϕ: (Sk, s0) (

(Oδ(A), x0) be a pointed w-map with Iw(ϕ) = 0. Hence, by the definition of δ,
we infer that there exists a w-map ϕ̃:Dk+1 ( Oε(A) such that ϕ̃(x) = ϕ(x) for
x ∈ Sk. Then, in view of Lemma 2.17, i ◦ϕ is w-homotopic relative to s0 to the
constant map at x0 (with the weighted index equal to 0), which proves that the
homomorphism hk is trivial. �

As an immediate consequence of the above propositions we obtain:

Corollary 4.6. Let X be a locally connected space and let K be a compact
subset of X. Then the inclusion K ↪→ X has a w-UV n-property (n ≥ 1) if and
only if, for any ε > 0, there exists δ, 0 < δ < ε, such that:

(a) Oδ(K) ↪→ Oε(K) is w-homotopy 0-trivial,
(b) for each positive integer 1 ≤ k ≤ n and x0 ∈ Oδ(K), the inclusion

Oδ(K) ↪→ Oε(K) induces the trivial homomorphism

πwk (Oδ(K), x0) → πwk (Oε(K), x0).

Proposition 4.7. Let X be a locally path-connected space and let A ⊂ X

be a compact subspace. Then for any open subsets U and V satisfying condition
A ⊂ V ⊂ U ⊂ X the inclusion V ↪→ U is a w-homotopy 0-trivial.

Proof. Let V ⊂ U be open subsets of X and let C be a connected com-
ponent of V . Due to our assumptions C is locally path-connected and con-
nected. Hence C is path-connected. Let ϕ:S0 ( C be a weighted map with∑
y∈C wϕ(0, y) =

∑
y∈C wϕ(1, y). Then in view of Lemma 2.14 there exists

a weighted map ϕ̃:D1 ( C with ϕ̃|S0 = ϕ. This completes the proof. �

Consequently, combining Corollary 4.6 and Proposition 4.7, we obtain the
following corollary.

Corollary 4.8. Let A be a compact subset of a locally path-connected
space X, n ≥ 1. Then A has a w-UV n-property if and only if for each ε > 0
there exists δ > 0 such that the inclusion Oδ(A) ↪→ Oε(A) induces the trivial
homomorphism hk:πwk (Oδ(A), x0) → πwk (Oε(A), x0) for any 1 ≤ k ≤ n and for
all x0 ∈ Oδ(A).

Taking into account Corollary 4.8, Theorems 2.1 and 2.16 we get the following
theorem.
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Theorem 4.9. Let X be an ANR and let A be a compact subset of X,
k ≥ 1. Then the inclusion j:A ↪→ X has a w-UV k-property if and only if
for each ε > 0 there exists 0 < δ < ε such that the induced homomorphism
ji: Ȟi(Oδ(A),Q) → Ȟi(Oε(A),Q) is trivial for each 1 ≤ i ≤ k.

Now let us observe that Theorem 4.9 together with Theorem 6.1 (in Appen-
dix) implies the following theorem.

Theorem 4.10. Let X nad A ⊂ X be as in Theorem 4.9 and k ≥ 1. Then
A is k-acyclic if and only if the inclusion A ↪→ X has a w-UV k-property.

Since a subset A of a space X is positively acyclic if and only if it is k-acyclic
for all k ≥ 1, we obtain, by Theorem 4.10, the following corollary.

Corollary 4.11. Let X be an ANR and let A be a compact subset of X.
Then A is positively acyclic if and only if the inclusion j:A ↪→ X has a w-UV ω-
property.

We shall conclude this section by introducing the following notion, which will
be used in what follows.

Definition 4.12. Let 0 ≤ n <∞ or n = ω. A weighted carrier Ψ:X ( Y

is said to be a w-UV n-valued carrier if, for each x ∈ X, the inclusion Ψ(x) ↪→ Y

has w-UV n-property.

5. Approximation of w-carrier by w-maps

Definition 5.1 ([25]). Let Ψ:X ( Y be a weighted carrier and X0 ⊂ X,
and let ε > 0. A weighted map ψ:X0 ( Y is said to be an ε-approximation of
Ψ:X ( Y if

(a) ψ(x) ⊂ Oε(Ψ(Oε(x))) for all x ∈ X0,
(b) Iwloc(ψ,C, x) = Iwloc(Ψ, C, x) for any piece C of Oε(Ψ(Oε(x))) (5) and

x ∈ X0.

Remark 5.2. The above definition is correct, i.e. (C, x) ∈ D(Ψ) and (C, x) ∈
D(ψ), because the following simple lemma holds true.

Lemma 5.3. Let U be an open subset of X and let C be a piece of U . If K
is a subset of U , then K ∩ ∂C = ∅ (where ∂C denotes the boundary of C with
respect to X).

Proof. It is enough to show that ∂C ∩ U = ∅. For this purpose, let us
observe that C and U \ C are open in X. Consequently, ∂C ∩ (U \ C) = ∅ and
∂C ∩ C = ∅; and hence ∂C ∩ U = ∅. �

Moreover, we have the following result:

(5) Recall that by a piece C of Oε(Ψ(Oε(x))) we understand a subset C of Oε(Ψ(Oε(x)))

which is open and closed in Oε(Ψ(Oε(x))).
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Proposition 5.4. Let Ψ:X ( Y be a w-carrier and let ϕ:X ( Y be a w-
map. In addition, let 0 < ε1 < ε2. If ϕ is an ε1-approximation of Ψ, then ϕ is
also an ε2-approximation of Ψ.

Proof. The first condition of Definition 5.1 is obviously satisfied, only the
second condition needs to be proved. For this purpose, let us fix x ∈ X and let
C be a piece of Oε2(Ψ(Oε2(x))). Then C̃ := C ∩ Oε1(Ψ(Oε1(x))) is a piece of
Oε1(Ψ(Oε1(x))). Since ϕ is an ε1-approximation of Ψ, it follows that

(5.1) Iwloc(ϕ, C̃, x) = Iwloc(Ψ, C̃, x).

Consequently, by the excision property of Iwloc, we obtain

(5.2) Iwloc(ϕ, C̃, x) = Iwloc(ϕ,C, x)

and

(5.3) Iwloc(Ψ, C̃, x) = Iwloc(Ψ, C, x).

Now, taking into account (5.1)–(5.3), we have

Iwloc(ϕ,C, x) = Iwloc(Ψ, C, x),

which completes the proof. �

We need the following lemma.

Lemma 5.5 ([13]). Let ψ:X ( Y and ϕ:Y ( Z be two upper semicon-
tinuous multivalued maps. If X is a compact space, then for every ε > 0 there
is δ > 0 such that Oδ(ϕ)Oδ(ψ)(x) ⊂ Oε(ϕ ◦ ψ(Oε(x))) for any x ∈ X, where
Oδ(ϕ)Oδ(ψ)(x) := Oδ(ϕ(Oδ(Oδ(ψ(Oδ(x)))))).

Now we use the above lemma to obtain the following proposition which will
needed in the sequel.

Proposition 5.6. Let X be a compact space, ϕ:X ( Y a weighted map
and Φ:Y ( Z a weighted carrier. Then for each ε > 0 there exists δ > 0 such
that if ψ:Y ( Z is a δ-approximation of Φ, then ψ ◦ϕ is an ε-approximation of
Φ ◦ ϕ.

Proof. Let ε > 0. From Lemma 5.5 it follows that there exists δ > 0 such
that

Oδ(Φ)Oδ(ϕ)(x) ⊂ Oε(Φ ◦ ϕ)(x),

for all x ∈ X. Let ψ:Y ( Z be a δ-approximation of Φ:Y ( Z. Let us fix
x ∈ X. Then

ψ(ϕ(x)) ⊂ Oδ(Φ(Oδ(ϕ(x)))) ⊂ Oδ(Φ)Oδ(ϕ)(x) ⊂ Oε(Φ ◦ ϕ)(x).



Graph-Approximation of Multivalued Weighted Maps 141

What is left is to show that

Iwloc(ψ ◦ ϕ,C, x) = Iwloc(Φ ◦ ϕ,C, x)

for any piece C of Oε(Φ ◦ ϕ(Oε(x))). Let ϕ(x) = {y1, . . . , ynx
}. Now let us

observe (see Definition 3.9) that

Iwloc(ψ ◦ ϕ,C, x) =
nx∑
i=1

Iwloc(ϕ, V xi , x) · Iwloc(ψ,C, yi),

Iwloc(Φ ◦ ϕ,C, x) =
nx∑
i=1

Iwloc(ϕ, V xi , x) · Iwloc(Φ, C, yi),

where V x1 , . . . , V
x
nx

satisfy the following conditions

yi ∈ V xi and V xi ∩ V xj = ∅ for i 6= j.

Consequently, it is enough to show that the following equality holds

Iwloc(ϕ,C, yi) = Iwloc(Φ, C, yi).

For this purpose, let us observe that

(5.4) Iwloc(ψ,C, yi) = Iwloc(ψ,C ∩Oδ(Φ(Oδ(yi))), yi)

=Iwloc(Φ, C ∩Oδ(Φ(Oδ(yi))), yi) = Iwloc(Φ, C, yi),

where the first equality and the last one follow from the excision property of
Iwloc, because

ψ(yi) ∩ C ⊂ C ∩Oδ(Φ(Oδ(yi))) ⊂ C,

Φ(yi) ∩ C ⊂ C ∩Oδ(Φ(Oδ(yi))) ⊂ C.

Moreover, since C∩Oδ(Φ(Oδ(yi))) is a piece ofOδ(Φ(Oδ(yi))), we deduce that the
second equality in (5.4) follows from the fact that ψ is a δ-approximation of Φ.�

Before proceeding further, we prove some necessary lemmas.

Lemma 5.7. Let X be a locally connected space and let Ψ:X ( Y be
a weighted carrier. Then for every ε > 0 and x ∈ X there exists δx > 0 such that
for any y ∈ B(x, δx) and any piece C of Oε(Ψ(Oε(x))) the following equation
holds:

Iwloc(Ψ, C, x) = Iwloc(Ψ, C, y).

Proof. Let us fix ε > 0 and x ∈ X. Since Ψ is a weighted carrier, it follows
that there exists ηx > 0 such that

(5.5) Ψ(B(x, ηx)) ⊂ Oε(Ψ(x))

and
Iwloc(Ψ, Oε(Ψ(x)), x) = Iwloc(Ψ, Oε(Ψ(x)), y)
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for all y ∈ B(x, ηx). Additionally, since X is locally connected, it follows that
there exists a connected neighbourhood (6) Vx of x and δx > 0 such that
B(x, δx) ⊂ Vx ⊂ B(x, ηx). Now let us observe that for all y ∈ B(x, ηx) and
for any piece C of Oε(Ψ(x)) we have Ψ(y) ∩ ∂C = ∅ (where ∂C denotes the
boundary of C with respect to Y ), by (5.5) and Lemma 5.3. Consequently, in
view of Lemma 3.7, we obtain

Iwloc(Ψ, C, x) = Iwloc(Ψ, C, y)

for all y ∈ Vx; and hence for all y ∈ B(x, δx). This completes the proof. �

Lemma 5.8. Let X be a compact space and let Ψ:X ( Y be a weighted
carrier. Then for every ε > 0 there exists δ > 0 such that if two points x, y ∈ X
satisfy the following condition dX(x, y) < δ, then there exists a point z ∈ X such
that

Ψ(x) ⊂ Oε(Ψ(z)) and Ψ(y) ⊂ Oε(Ψ(z)),(5.6)

z ∈ Oε(x) and z ∈ Oε(y),(5.7)

Iwloc(Ψ, C, x) = Iwloc(Ψ, C, z) = Iwloc(Ψ, C, y),(5.8)

for any piece C of Oε(Ψ(z)).

Proof. Let us fix ε > 0. Since Ψ is an upper semicontinuous multivalued
map with compact values, it follows that for any x ∈ X there exists 0 < δ′x < ε

such that Ψ(B(x, δ′x)) ⊂ Oε(Ψ(x)). Moreover, in view of Lemma 5.7, there exists
δ′′x > 0 such that for any piece of C of Oε(Ψ(x)) and any y ∈ B(x, δ′′x) we have
the following equality

(5.9) Iwloc(Ψ, C, x) = Iwloc(Ψ, C, y).

Let δx := (1/2) min{δ′x, δ′′x} and let {B(x, δx)}x∈X be the open covering of X.
SinceX is compact, there exists a finite subcovering B(x1, δx1), . . . , B(xk, δxk

) of
this covering. Let us put δ := (1/2) min{δx1 , . . . , δxk

}. Now we shall show that
such a δ satisfies the conclusion of Lemma 5.8. Indeed, let us take two points
x and y with dX(x, y) < δ. Then for a point x there exists 1 ≤ i0 ≤ k such
that x ∈ B(xi0 , δxi0

). Let z := xi0 . Then Ψ(x) ⊂ Oε(Ψ(z)). Since dX(y, z) ≤
dX(y, x) + dX(x, z) < δ + δz < ε/2 + ε/2 = ε, we deduce that Ψ(y) ⊂ Oε(Ψ(z))
and y ∈ Oε(z); and hence (5.6) and (5.7) are satisfied. Finally, (5.8) follows from
(5.9) and the fact that dX(x, z) < δ′′z and dX(y, z) < δ′′z , which completes the
proof. �

Now we are able to prove the following corollary.

(6) Recall that by neighbourhood of x in X we mean always a set containing x in its

interior; thus a neighbourhood need not be open.
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Corollary 5.9. Let X be a compact space and let Ψ:X ( Y be a weighted
carrier. Then for every ε > 0 there exists δΨ > 0 such that for every x ∈ X and
every piece C of Oε(Ψ(Oε(x))) we have

Iwloc(Ψ, C, x) = Iwloc(Ψ, C, y)

for any y ∈ B(x, δΨ).

Proof. Let us fix ε > 0 and let δ > 0 be as in Lemma 5.8 according to Ψ and
ε. We shall show that such a δ satisfies the conclusion of the above corollary.
For this purpose, let us choose a point y such that dX(x, y) < δ. Then, by
Lemma 5.8, we deduce that there exists a point z such that

Oε(Ψ(z)) ⊂ Oε(Ψ(Oε(x))),

Ψ(x) ⊂ Oε(Ψ(z)) and Ψ(y) ⊂ Oε(Ψ(z)).

Let C be a piece of Oε(Ψ(Oε(x))). Since C ∩ Oε(Ψ(z)) is open and closed in
Oε(Ψ(z)), it follows by Lemma 5.8 and the excision property of Iwloc that

Iwloc(Ψ, C, x) = Iwloc(Ψ, C ∩Oε(Ψ(z)), x) Lemma 5.8= Iwloc(Ψ, C ∩Oε(Ψ(z)), z)
Lemma 5.8= Iwloc(Ψ, C ∩Oε(Ψ(z)), y) = Iwloc(Ψ, C, y),

which completes the proof. �

The following lemma is crucial in what follows.

Lemma 5.10. Let X be a compact space and let Y be a space, n ≥ 0. If
Ψ:X ( Y is a w-UV n-valued carrier, then for each ε > 0 there exists a δ,
0 < δ < ε, such that for each x ∈ X two properties hold:

(a) for any connected component C of Oδ(Ψ(Oδ(x))) and for every w-map
ϕ: ∂∆1 ( C with

∑
y∈C wϕ(0, y) =

∑
y∈C wϕ(1, y) there exists a w-map

ϕ̃:∆1 ( Oε(Ψ(Oε(x))) such that ϕ̃(x) = ϕ(x) for all x ∈ ∂∆1;
(b) if n > 0, then for each k, 1 < k ≤ n + 1, and any weighted map

ϕ: ∂∆k ( Oδ(Ψ(Oδ(x))) there exists a w-map ϕ̃:∆k ( Oε(Ψ(Oε(x)))
such that ϕ̃(x) = ϕ(x) for all x ∈ ∂∆k.

The proof of the above lemma is similar in spirit to that of [12, Lemma 5.8],
so the details are left to the reader.

We are now going to establish the first approximation result of this section.

Theorem 5.11. Let X be a compact polyhedron and let A be a subpolyhedron
of X. Let Y be a locally connected space. If dim(X \A) ≤ n+ 1 and Ψ:X ( Y

is a w-UV n-valued carrier, then for any ε > 0 there exists δ > 0 such that
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if ϕ0:A ( Y is a δ-approximation of Ψ:X ( Y , then there exists a w-map
ϕ:X ( Y being an ε-approximation of Ψ with ϕ|A = ϕ0.

Proof. The main idea of our proof follows from [6], [12]. Let us fix ε > 0
and let dim(X \A) = n0. Using Lemma 5.10 we can construct a sequence {εi}n0

i=0

(7) such that

(1) εn0 := ε,
(2) 4εi < εi+1 for 0 ≤ i ≤ n0 − 1,
(3) for any x ∈ X, any connected component C of O2ε0(Ψ(O2ε0(x))), and

any weighted map ϕ: ∂∆1 ( C with
∑
y∈C wϕ(0, y) =

∑
y∈C wϕ(1, y)

there exists a weighted map ϕ̃:∆1 ( Oε1/2(Ψ(Oε1/2(x))) such that
ϕ̃(x) = ϕ(x) for all x ∈ ∂∆1,

(4) for any x ∈ X, any positive k, 1 ≤ k ≤ n0 − 1, and any w-map
ϕ: ∂∆k+1 ( O2εk

(Ψ(O2εk
(x))) there exists a weighted map ϕ̃:∆k+1 (

Oεk+1/2(Ψ(Oεk+1/2(x))) such that ϕ̃(x) = ϕ(x) for all x ∈ ∂∆k+1.

Let δ := ε0 and let ϕ0:A ( Y be a δ-approximation of Ψ:X ( Y . Let
(K,L) be a triangulation of (X,A) finer than the covering {Oε0/2(x)}x∈X of
X, i.e. |K| = X, |L| = A and L is a subcomplex of K. We shall prove now
that ϕ:A ( Y can be extended to an ε-approximation of Ψ:X ( Y . For this
purpose, choose for each simplex σ of K \L a point xσ such that |σ| ⊂ Oε0/2(xσ).
Let us notice that if σ is a vertex v of K \ L, then we can take xσ = v. Let v
be a vertex of K such that v 6∈ L. Since Y is locally connected, it follows that
the open set Oε0(Ψ(Oε0(v))) is also locally connected and hence the connected
components of Oε0(Ψ(Oε0(v))) are open in Oε0(Ψ(Oε0(v))). Consequently, by
the compactness of Ψ(v), we infer that it meets only a finite number of connected
components of Oε0(Ψ(Oε0(v))), say Cv1 , . . . , C

v
rv

. Let us choose a point yvi in each
Cvi . We define a weighted map ϕ0: |K(0)| ∪ |L| ( Y (8) by the formula

ϕ0(x) =


ϕ0(x) if x ∈ |L|,
rv∑
i=1

Iwloc(Ψ, Cvi , v)y
v
i if x = v ∈ |K(0)| \ |L|.

Obviously, ϕ0 is an ε0-approximation of Ψ: |K| ( Y . Now we extend ϕ0 to
|K(1)| ∪ |L|. For this purpose, let us fix a 1-dimensional simplex σ = 〈v0, v1〉
such that σ 6∈ L. Since |σ| ⊂ Oε0/2(xσ), we have

Oε0(vi) ⊂ Oε0(|σ|) ⊂ Oε0(Oε0/2(xσ)) ⊂ O2ε0(xσ), for i = 0, 1.

(7) During construction we can assume that n0 ≥ 1 because otherwise n0 = 0 and then

we put {εi}n0
i=0 := ε.

(8) Given simplicial complex we shall denote by K(i) the simplex of K consisting of all

simplexes σ ∈ K with dim(σ) ≤ i.
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Moreover, since ϕ0 is an ε0-approximation of Ψ: |K| ( Y , we infer that

ϕ0(vi) ⊂ Oε0(Ψ(Oε0(vi))) ⊂ O2ε0(Ψ(O2ε0(xσ))), for i = 1, 2.

Now we shall show that for each piece C of O2ε0(Ψ(O2ε0(xσ))) the following
condition holds:

Iwloc(ϕ0, C, v0) = Iwloc(ϕ0, C, v1).

Indeed, let us fix a piece C of O2ε0(Ψ(O2ε0(xσ))). Let

Ci := C ∩Oε0(Ψ(Oε0(vi))),

for i = 1, 2. Then Ci is a piece of Oε0(Ψ(Oε0(vi))), for 1 ≤ i ≤ 2. Since ϕ0 is an
ε0-approximation of Ψ: |K| ( Y , we obtain

(5.10) Iwloc(ϕ0, C, vi) = Iwloc(ϕ0, Ci, vi) = Iwloc(Ψ, Ci, vi) = Iwloc(Ψ, C, vi),

for i = 1, 2; where the first equality and the last one above follow form the
excision property of Iwloc. Consequently, since |σ| = |〈v0, v1〉| is connected and

Ψ(|σ|) ⊂ Ψ(Oε0/2(xδ)) ⊂ O2ε0(Ψ(O2ε0(xδ))),

we deduce from Lemmas 3.7 and 5.3 that

Iwloc(Ψ, C, v0) = Iwloc(Ψ, C, v1).

Hence, taking into account (5.10) and (5.11), we obtain

Iwloc(ϕ0, C, v0) = Iwloc(ϕ0, C, v1).

Thus, by the definition of ε0, we can extend ϕ0||∂σ|: |∂σ| ( O2ε0(Ψ(O2ε0(xσ)))
to

ϕσ: |σ| ( Oε1/2(Ψ(Oε1/2(xσ))).

Now we are going to show that ϕσ is an ε1-approximation of Ψ: |K| ( Y . First,
let us observe that for each x ∈ |σ| we have xσ ∈ Oε0/2(x), since |σ| ⊂ Oε0/2(xσ).
Thus

Oε1/2(Ψ(Oε1/2(xσ))) ⊂ Oε1/2(Ψ(Oε1/2(Oε0/2(x)))) ⊂ Oε1(Ψ(Oε1(x))).

This shows that ϕσ(x) ⊂ Oε1(Ψ(Oε1(x))), for each x ∈ |σ| = |〈v0, v1〉|. So, it is
enough to show that if C is any piece of Oε1(Ψ(Oε1(x))), then

Iwloc(ϕσ, C, x) = Iwloc(Ψ, C, x).

For this purpose, let us fix x ∈ |σ| and let C be a piece of Oε1(Ψ(Oε1(x))). Since

ϕσ(v0) ⊂ ϕσ(|σ|) ⊂ Oε1/2(Ψ(Oε1/2(xσ))) ⊂ Oε1(Ψ(Oε1(x))),

Ψ(v0) ⊂ Ψ(|σ|) ⊂ Oε1/2(Ψ(Oε1/2(xσ))) ⊂ Oε1(Ψ(Oε1(x))),
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it follows, in view of Lemmas 5.3 and 3.7, that

Iwloc(ϕσ, C, v0) = Iwloc(ϕσ, C, x),(5.12)

Iwloc(Ψ, C, v0) = Iwloc(Ψ, C, x).(5.13)

Since ϕσ||∂σ| is an ε0-approximation of Ψ: |K| ( Y , we conclude that

ϕσ(v0) ⊂ Oε0(Ψ(Oε0(v0))) ⊂ Oε1(Ψ(Oε1(x))).

Then, by the excision property of Iwloc, we have

Iwloc(ϕσ, C, v0) = Iwloc(ϕσ, C ∩Oε0(Ψ(Oε0(v0))), v0),(5.14)

Iwloc(Ψ, C, v0) = Iwloc(Ψ, C ∩Oε0(Ψ(Oε0(v0))), v0).(5.15)

Now let us observe that C ∩ Oε0(Ψ(Oε0(v0))) is a piece of Oε0(Ψ(Oε0(v0))).
Hence, taking into account the fact that ϕσ||∂σ| is an ε0-approximation of
Ψ: |K| ( Y , we obtain

(5.16) Iwloc(ϕσ, C ∩Oε0(Ψ(Oε0(v0))), v0) = Iwloc(Ψ, C ∩Oε0(Ψ(Oε0(v0))), v0).

Consequently, from (5.12)–(5.16) we get

Iwloc(ϕσ, C, x) = Iwloc(Ψ, C, x),

which proves that ϕσ satisfies the second condition of Definition 5.1. Now using
the gluing lemma we obtain a weighted map ϕ1: |K(1)| ∪ |L| ( Y being an ε1-
approximation of Ψ: |K| ( Y with ϕ1||K(0)| ∪ |L| = ϕ0. Suppose now that
ϕr: |K(r)| ∪ |L| ( Y is an εr-approximation of Ψ: |K| ( Y , r < n0. Let τ
be an (r + 1)-dimensional simplex such that τ 6∈ L. Then |τ | ⊂ Oε0/2(xτ ) ⊂
Oεr/2(xτ ) and ϕr(x) ⊂ Oεr (Ψ(Oεr (x))), for all x ∈ |∂τ |. Consequently,

ϕr(|∂τ |) ⊂ Oεr
(Ψ(Oεr

(|∂τ |))) ⊂ Oεr
(Ψ(Oεr

(Oεr
(xτ )))) ⊂ O2εr

(Ψ(O2εr
(xτ ))).

Thus, by the definition of εr, a w-map ϕr||∂τ |: |∂τ | ( O2εr (Ψ(O2εr (xτ ))) admits
an extension to

ϕr+1
τ : |τ | ( Oεr+1/2(Ψ(Oεr+1/2(xτ ))).

Let us observe now that for each x ∈ |τ | we have

Oεr+1/2(Ψ(Oεr+1/2(xτ ))) ⊂ Oεr+1(Ψ(Oεr+1(x))),

because |τ | ⊂ Oε0/2(xτ ) ⊂ Oεr+1/2(xτ ) and hence

ϕr+1
τ (x) ⊂ Oεr+1(Ψ(Oεr+1(x))),

for each x ∈ |τ |. This implies that ϕr+1
τ satisfies the first condition of Defini-

tion 5.1. Let us fix x0 ∈ |∂τ |. Now we shall prove that ϕr+1
τ verifies also the
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second condition of Definition 5.1. For this end, let us fix x ∈ |τ | and let C be
a piece of Oεr+1(Ψ(Oεr+1(x))). Then by Lemmas 5.3 and Lemma 3.7 we get

Iwloc(ϕr+1
τ , C, x0) = Iwloc(ϕr+1

τ , C, x),(5.17)

Iwloc(Ψ, C, x0) = Iwloc(Ψ, C, x).(5.18)

Moreover,

(5.19) Iwloc(ϕr+1
τ , C ∩Oεr

(Ψ(Oεr
(x0))), x0)

= Iwloc(Ψ, C ∩Oεr
(Ψ(Oεr

(x0))), x0),

because ϕr+1
τ ||∂τ | is an εr-approximation of Ψ. Next, by the excision property

of Iwloc, we infer that

(5.20) Iwloc(ϕr+1
τ , C ∩Oεr

(Ψ(Oεr
(x0))), x0) = Iwloc(ϕr+1

τ , C, x0)

and

(5.21) Iwloc(Ψ, C ∩Oεr (Ψ(Oεr (x0))), x0) = Iwloc(Ψ, C, x0).

Therefore, taking into account (5.17)–(5.21), we obtain

Iwloc(ϕr+1
τ ||∂τ |, C, x) = Iwloc(Ψ, C, x),

which ends the proof that ϕr+1
τ is an εr+1-approximation of Ψ. Now using the

gluing lemma we obtain a weighted map ϕr+1: |K(r+1)| ∪ |L| ( Y being εr+1-
approximation of Ψ: |K| ( Y with ϕr+1||K(r)| ∪ |L| = ϕr. This completes the
inductive step. Thus, after n0 steps, we arrive to an ε-approximation ϕ = ϕn0

of Ψ. The theorem is proved. �

Let us notice that the following theorem was proved in [6].

Theorem 5.12. Let X0 ⊂ X be a finite polyhedral pair, let Y be a metric
ANR and let Φ:X ( Y be a weighted carrier with positively acyclic values.
Given any ε > 0 there exists δ > 0 such that any δ-approximation ϕ:X0 ( Y of
Φ|X0:X0 ( Y can be extended to an ε-approximation ϕ̃:X ( Y of Φ.

It should be noted that Theorem 5.11 was proved under the weaker assump-
tions than Theorem 5.12 but with a slight different conclusion, which will be
much more convenient in applications.

The following three lemmas will be used in the proof of the main result of
this section.

Lemma 5.13 ([10]). Let K be a compact subset of X and let U be an open
neighbourhood of K in X. Then for any retraction r:U → X and any ε > 0
there exists δ > 0 such that Oδ(K) ⊂ U and dX(r(x), x) < ε for each x ∈ Oδ(K).
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Lemma 5.14 ([23]). Let (X,A) be a pair of compact ANR’s and let η > 0.
Then there is a finite polyhedral pair (P, P0) and maps of pairs i: (P, P0) → (X,A)
and q: (X,A) → (P, P0) such that dX(i ◦ q(x), x) < η for each x ∈ X.

Lemma 5.15 ([5]). Let X be a compact ANR and let ε > 0 be given. Then
there exists δ > 0 such that if f0, f1:X → X are δ-close (9), then there exists
a map h:X × [0, 1] → X such that

(a) h(x, 0) = f0(x) for all x ∈ X,
(b) h(x, 1) = f1(x) for all x ∈ X,
(c) diam(h({x} × [0, 1])) < ε for any x ∈ X,

where diam(h({x} × [0, 1])) := sup{dX(h(x, t1), h(x, t2)), t1, t2 ∈ [0, 1]}.

We shall now prove the following lemma that will play a central role in the
sequel.

Lemma 5.16. Let (X,A) be a pair of compact ANR’s and let Ψ:X ( Y be
a weighted carrier, Y a space. Let ε > 0. Then there exists γ > 0 such that
if a weighted map ψ0: (X × {0}) ∪ (A × [0, 1]) ( Y has the property that the
weighted maps ψ0( · , 0):X ( Y and ψ0( · , t):A ( Y , for each t ∈ [0, 1], are
γ-approximations of Ψ, then there exists a weighted map ψ:X × [0, 1] ( Y such
that for each t ∈ [0, 1] the weighted map ψ( · , t):X ( Y is an ε-approximation
of Ψ and ψ|(X × {0}) ∪ (A× [0, 1]) = ψ0.

Proof. The basic idea of the proof follows from [2]. Let M := (X × {0}) ∪
(A× [0, 1]). Since X×{0}, A× [0, 1], (X×{0})∩(A× [0, 1]) = A×{0} are ANR-
spaces, we infer from [4, Theorem 6.1, p. 90] that M is also an ANR. Hence there
exists an open neighbourhood U ⊂ X × [0, 1] of M and a retraction r:U → M .
Let δΨ be as in Corollary 5.9 for Ψ and ε/2. From Lemma 5.13 it follows that
there exists 0 < γ < min{ε/2, δΨ} such that

(5.22) Oγ(M) ⊂ U and dX×[0,1](r(z), z) < min{ε/2, δ}

for every z ∈ Oγ(M). Now take a w-map ψ0 as in the formulation of Lemma 5.16
according to γ. Define a w-map ψ:Oγ(M) ( Y by the formula: ψ0 ◦ r. Let us
observe that for each (x, t) ∈ Oγ(M) we have

(5.23) ψ(x, t) ⊂ Oε(Ψ(Oε(x))).

Indeed, let (x′, t′) := r(x, t). Then by (5.22) we get

(5.24) dX(x′, x) ≤ dX×[0,1](r(x, t), (x, t)) < min{ε/2, δΨ}.

(9) Let f, g: Y → X be two mappings and let dY be a metric in Y , ε > 0. We shall say

that f and g are ε-close provided for every y ∈ Y we have dY (f(y), g(y)) < ε.
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Therefore

(5.25) ψ(x, t) = ψ0(x′, t′) ⊂ Oγ(Ψ(Oγ(x′))) ⊂ Oε(Ψ(Oε(x))),

which verifies (5.23). Let V be an open neighbourhood of A in X such that
V × [0, 1] ⊂ Oγ(M). Since A and X \V are disjoint subsets of X, there exists an
Urysohn function, i.e. there is a map u:X → [0, 1] such that u(x) = 1, for every
x ∈ A and u(x) = 0, for every X \ V . Define a w-map ψ:X × [0, 1] ( Y by

ψ(x, t) = ψ(x, u(x)t).

Now, let us observe that from (5.23) we get

ψ(x, t) ⊂ Oε(Ψ(Oε(x)))

for all (x, t) ∈ X × [0, 1]. Therefore the proof will be completed, if we show
that for each t ∈ [0, 1] a w-map ψ( · , t):X ( Y satisfies the second condition of
Definition 5.1. To this end we need consider 3 cases.

Case 1. Let x0 ∈ A and let C be a piece of Oε(Ψ(Oε(x0))). In addition, let
us fix t0 ∈ [0, 1]. Then we have

ψ(x0, t0) = ψ(x0, u(x0)t0) = ψ(x0, t0) = ψ0 ◦ r(x0, t0) = ψ0(x0, t0).

Hence
Iwloc(ψ( · , t0), C, x0) = Iwloc(ψ0( · , t0), C, x0).

Since Oγ(Ψ(Oγ(x0))) ⊂ Oε(Ψ(Oε(x0))) and C ⊂ Oε(Ψ(Oε(x0))), we infer that
C ∩Oγ(Ψ(Oγ(x0))) is a piece of Oγ(Ψ(Oγ(x0))). Therefore

Iwloc(ψ0( · , t0), C, x0) = Iwloc(ψ0( · , t0), C ∩Oγ(Ψ(Oγ(x0))), x0)

= Iwloc(Ψ, C ∩Oγ(Ψ(Oγ(x0))), x0),

where the first equality follows from the excision property of Iwloc for ψ0( · , t0),
but the second one follows from the fact that ψ0( · , t0):A ( Y is a γ-approxi-
mation of Ψ. Using once again the excision property of Iwloc, we get

Iwloc(Ψ, C ∩Oγ(Ψ(Oγ(x0))), x0) = Iwloc(Ψ, C, x0),

which proves that

Iwloc(ψ( · , t0), C, x0) = Iwloc(Ψ, C, x0).

The proof of Case 1 is complete.
Case 2. Let x0 ∈ X \V and let C ⊂ Oε(Ψ(Oε(x0)) be as above. In addition,

let us fix t0 ∈ [0, 1]. Then

ψ(x0, t0) = ψ(x0, u(x0)t0) = ψ(x0, 0) = ψ0 ◦ r(x0, 0) = ψ0(x0, 0).

Hence
Iwloc(ψ( · , t0), C, x0) = Iwloc(ψ0( · , 0), C, x0).
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Since ψ0( · , 0) is a γ-approximation of Ψ we have

Iwloc(ψ0( · , 0), C, x0) = Iwloc(ψ0( · , 0), C ∩Oγ(Ψ(Oγ(x0))), x0)
(5.26)

= Iwloc(Ψ, C ∩Oγ(Ψ(Oγ(x0))), x0)

= Iwloc(Ψ, C, x0)(5.27)

where the equalities in (5.26) and (5.27) follow from the excision property of
Iwloc. Therefore

Iwloc(ψ( · , t0), C, x0) = Iwloc(Ψ, C, x0),

which completes the proof of Case 2.
Case 3. (In this case Corollary 5.9 plays a crucial role) Let x0 ∈ V \ A

and let C ⊂ Oε(Ψ(Oε(x0))) be a piece of Oε(Ψ(Oε(x0))). In addition, let us fix
t0 ∈ [0, 1]. Let (x′, t′) := r(x0, t0). Since

ψ(x0, t0) = ψ0 ◦ r(x0, t0) = ψ0(x′, t′),

we have

(5.28) Iwloc(ψ( · , t0), C, x0) = Iwloc(ψ0 ◦ r, C, (x0, t0)) = Iwloc(ψ0( · , t′), C, x′).

Moreover,
ψ0(x′, t′) ⊂ Oγ(Ψ(Oγ(x′))) ⊂ Oε(Ψ(Oε(x0))),

because ψ0( · , t′) is a γ-approximation of Ψ and dX(x0, x
′) < ε/2 by (5.24).

Consequently, the same reasoning as in Case 1 establishes that

(5.29) Iwloc(ψ0( · , t′), C, x′) = Iwloc(Ψ, C, x′).

Since dX(x0, x
′) < δΨ, Corollary 5.9 implies that

(5.30) Iwloc(Ψ, C, x′) = Iwloc(Ψ, C, x0).

Therefore, taking into account (5.28)–(5.30) we get

Iwloc(ψ( · , t0), C, x0) = Iwloc(Ψ, C, x0),

which completes the proof of Case 3, and hence the lemma follows. �

We now prove the main result of this section.

Theorem 5.17. Let X be a compact ANR, let A ⊂ X be a closed ANR,
and let Y be a locally connected space. In addition, let Ψ:X ( Y be a w-UV ω-
valued carrier. Then for each ε > 0 there exists δ > 0 such that if ϕ0:A ( Y

is a δ-approximation of Ψ:X ( Y , then there exists a weighted map ϕ:X ( Y

being an ε-approximation of Ψ with ϕ|A = ϕ0.

Proof. The proof is based on [2]. Let ε > 0 be fixed. Let γ be as in
Lemma 5.16 according to X, A, Ψ and ε. Let δΨ be as in Corollary 5.9 according
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to Ψ and ε. In addition, let η > 0 be as in Lemma 5.15 for X and min{γ/2, δΨ}.
We can assume that η ≤ min{γ/2, δΨ}. Then for a pair of compact ANR’s and
η by Lemma 5.14 there is a polyhedral pair (P, P0) and maps of pairs

(5.31) p: (P, P0) → (X,A) and q: (X,A) → (P, P0)

such that for each x ∈ X we have dX(p ◦ q(x), x) < η. Since P is compact space,
we infer that there exists 0 < µ ≤ γ such that if x, y ∈ P , then dX(p(x), q(x)) <
γ/2 provided that dP (x, y) < µ. Thus p(Oµ(q(x))) ⊂ Oγ(x) for each x ∈ X.
Let Φ:P ( Y be a weighted carrier given by Φ = Ψ ◦ p. It is easy to see that
Φ is a w-UV ω-valued carrier. In view of Theorem 5.11, there exists ν > 0 such
that if θ0:P0 ( Y is a ν-approximation of Φ:P ( Y , then there exists a µ-
approximation θ:P ( Y of Φ with θ|P0 = θ0. Next, in view of Proposition 5.6,
there exists 0 < δ ≤ γ/2 such that if ψ:A ( Y is a δ-approximation of Ψ:X (

Y , then ψ ◦ p|P0:P0 ( Y is a ν-approximation of Φ:P ( Y . Now, let ψ0

be a δ-approximation of Ψ. We shall prove that there exists a weighted map
ψ:X ( Y being an δ-approximation of Ψ with ψ|A = ψ0. Let us observe that
by the choice of δ the composition ψ0 ◦ p|P0 is a ν-approximation of Φ:P ( Y .
Therefore, from Theorem 5.11 it follows that a weighted map ψ0 ◦ p|P0:P0 ( Y

admits an extension ψ̃:P ( Y being a µ-approximation of Φ. Let us define
now a weighted map ψ:X ( Y by ψ = ψ̃ ◦ q. We shall show now that ψ is
a γ-approximation of Ψ:X ( Y . Since ψ̃ is a γ-approximation of Φ, we have

ψ(x) = ψ̃(q(x)) ⊂ Oµ(Φ(Oµ(q(x))))

for each x ∈ X. Hence, taking into account a definition of Φ and (5.31), we get

Oµ(Φ(Oµ(q(x)))) = Oµ(Ψ ◦ p(Oµ(q(x)))) ⊂ Oµ(Ψ(Oγ(x))) ⊂ Oγ(Ψ(Oγ(x))),

for each x ∈ X. Now, we are going to show that for any x ∈ X and for any piece
C of Oγ(Ψ(Oγ(x))) the following condition is satisfied:

Iwloc(ψ,C, x) = Iwloc(Ψ, C, x).

To this end, let us fix x ∈ X and C ⊂ Oγ(Ψ(Oγ(x))) and let us observe that

Iwloc(ψ,C, x) = Iwloc(ψ,C ∩Oµ(Ψ(Oµ(q(x)))), x) (excision of Iwloc)

= Iwloc(ψ̃ ◦ q, C ∩Oµ(Ψ(Oµ(q(x)))), x) (ψ = ψ̃ ◦ q)
= Iwloc(ψ̃, C ∩Oµ(Ψ(Oµ(q(x)))), q(x)) (Corollary 3.11)

= Iwloc(Φ, C ∩Oµ(Ψ(Oµ(q(x)))), q(x)),
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where the last equality follows from the fact that ψ̃ is a µ-approximation of Φ.
Consequently, we get

Iwloc(Φ, C ∩Oµ(Ψ(Oµ(q(x)))), q(x)) = Iwloc(Φ, C, q(x)) (excision of Iwloc)

= Iwloc(Ψ ◦ p, C, q(x)) (Φ = Ψ ◦ p)
= Iwloc(Ψ, C, p ◦ q(x)). (Corollary 3.11)

Since dX(p ◦ q(x), x) < η ≤ δΨ, due to Corollary 5.9, we get

Iwloc(Ψ, C, p ◦ q(x)) = Iwloc(Ψ, C, x).

Summing up, we have showed that

Iwloc(ψ,C, x) = Iwloc(Ψ, C, x),

which proves that ψ is a γ-approximation of Ψ. Now we shall use Lemma 5.16
to modify a weighted map ψ because ψ is not yet the required approximation of
Ψ. For this purpose, let us recall that for each a ∈ A we have

ψ(a) = ψ̃ ◦ q(a) = ψ0(p ◦ q(a)).

Moreover, idA:A → A and p ◦ q:A → A are η-close. Therefore, in view of
Lemma 5.15, there exists a map h:A× [0, 1] → A such that

h( · , 0) = p ◦ q|A and h( · , 1) = idA,

diam(h({a} × [0, 1])) < min{γ/2, δΨ}.(5.32)

Let φ0: (X × {0}) ∪ (A× [0, 1]) ( Y be given by

φ0(x, t) =

{
ψ(x) if (x, t) ∈ X × {0},
ψ0 ◦ h(x, t) if (x, t) ∈ A× [0, 1].

Since
ψ0 ◦ h(z, 0) = (ψ0 ◦ p) ◦ q(a) = ψ,

in view of Corollary 3.11, we get

Iwloc(ψ,U, a) = Iwloc(ψ0 ◦ (p ◦ q), U, a) = Iwloc(ψ0, U, p ◦ q(a))
= Iwloc(ψ0, U, h(a, 0)) = Iwloc(ψ0 ◦ h, U, (a, 0)),

where a ∈ A and U is an open subset of Y such that ψ(a) ∩ ∂U = ∅. Hence, by
the gluing lemma, φ0 is a weighted map. We shall show now that for all t ∈ [0, 1]
a w-map φ0( · , t) is a γ-approximation of Ψ (the case t = 0 has already been
proved). Let us fix t ∈ (0, 1] and a ∈ A. Then

φ0(a, t) = ψ0 ◦ h(a, t) ⊂ Oδ(Ψ(Oδ(h(a, t)))),
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because ψ0 is a δ-approximation of Ψ. Moreover, since h(a, t) ∈ Oγ/2(a), we
have Oδ(h(a, t)) ⊂ Oγ/2+δ(a). Thus

(5.33) φ0(a, t) ⊂ Oγ(Ψ(Oγ(a))),

since δ ≤ γ/2. Let C be a piece of Oγ(Ψ(Oγ(a))). Now we are going to prove
that

Iwloc(φ0( · , t), C, a) = Iwloc(Ψ, C, a).

First, note that

Iwloc(φ0( · , t), C, a) = Iwloc(ψ0 ◦ h( · , t), C, a) (φ0( · , t) = ψ0 ◦ h( · , t))
= Iwloc(ψ0, C, h(a, t)). (Corollary 3.11)

Additionally,

ψ0 ◦ h(a, t) ⊂ Oδ(Ψ(Oδ(h(a, t)))) ⊂ Oδ(Ψ(Oδ(Oγ/2(a))))

⊂ Oγ/2(Ψ(Oγ(a))) ⊂ Oγ(Ψ(Oγ(a))),

and hence C∩Oδ(Ψ(Oδ(h(a, t)))) is a piece of Oδ(Ψ(Oδ(h(a, t)))). Consequently,
by the excision property of Iwloc, we get

Iwloc(ψ0, C, h(a, t)) = Iwloc(ψ0, C ∩Oδ(Ψ(Oδ(h(a, t)))), h(a, t))

and

Iwloc(ψ0, C ∩Oδ(Ψ(Oδ(h(a, t)))), h(a, t))

= Iwloc(Ψ, C ∩Oδ(Ψ(Oδ(h(a, t)))), h(a, t)),

because ψ0 is a δ-approximation of Ψ. Thus

Iwloc(Ψ, C ∩Oδ(Ψ(Oδ(h(a, t)))), h(a, t)) = Iwloc(Ψ, C, h(a, t)) = Iwloc(Ψ, C, a),

where the first equality follows form the excision property of Iwloc, and the
second one holds by Corollary 5.9, because, by (5.32), dX(h(a, t), a) < δΨ (let
us recall that δΨ was defined at the beginning of our proof). Consequently, we
have showed that

(5.34) Iwloc(φ0( · , t), C, a) = Iwloc(Ψ, C, a).

From (5.33) and (5.34) we infer that the assumptions of Lemma 5.16 are satisfied,
and hence φ0 admits an extension φ:X × [0, 1] ( Y such that for each t ∈ [0, 1]
the w-map φ( · , t):X ( Y is an ε-approximation of Ψ. Finally, to complete the
proof, we define ϕ:X ( Y by putting ϕ := φ( · , 1). �

In particular, we obtain the following corollary.
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Corollary 5.18. Let X be a compact ANR, let A ⊂ X be a closed ANR,
and let Y be an ANR. In addition, let Ψ:X ( Y be upper semicontinuous
multivalued map with acyclic values. Then for each ε > 0 there exists δ > 0
such that if ϕ0:A ( Y is a δ-approximation of Ψ:X ( Y , then there exists
a weighted map ϕ:X ( Y being an ε-approximation of Ψ with ϕ|A = ϕ0.

Moreover, from the above considerations we obtain the following corollaries.

Corollary 5.19. Let Ψ:X ( Y be a w-UV ω-valued carrier, let X be
a compact ANR and let Y be a locally connected space. Then for each ε > 0
there exists an ε-approximation ϕ:X ( Y of Ψ.

Proof. It is enough to take A = ∅ in Theorem 5.17. �

Corollary 5.20. Let Θ:X× [0, 1] ( Y be a w-UV ω-valued carrier and let
X,Y be as above. Then for each ε > 0 there exists δ > 0 such that if ϕi:X ( Y

is a δ-approximation of Θ, then there exists an ε-approximation ψ:X×[0, 1] ( Y

of Θ such that ψ|X × {i} = ϕi for i = 0, 1.

Proof. Let us take A = X ×{0}∪X ×{1} and let ϕ:A ( Y be defined as
follows

ϕ(x, t) =

{
ϕ0(x) if (x, t) ∈ X × {0},
ϕ1(x) if (x, t) ∈ X × {1}.

This completes the proof if we invoke Theorem 5.17. �

Corollary 5.21. Let Ψ:X ( Y be a w-UV ω-valued carrier. Then for each
ε > 0 there is a δ > 0 such that for any two δ-approximations ϕ0, ϕ1:X ( Y of
Ψ there exists a w-homotopy ψ:X × [0, 1] ( Y such that

(a) ψ( · , 0) = ϕ0 and ψ( · , 1) = ϕ1,
(b) ψ( · , t) is an ε-approximation of Ψ for any t ∈ [0, 1].

Proof. Let Θ:X× [0, 1] ( Y be a w-UV ω-valued carrier defined by Θ(x, t)
= Ψ(x) for all x ∈ X and t ∈ [0, 1]. Then in view of Corollary 5.20 there exists
the required weighted homotopy ψ. �

In particular, we get:

Corollary 5.22. Let Ψ:X ( Y and X,Y be as above. Then there is δ > 0
such that any two δ-approximations ψ1, ψ2:X ( Y of Ψ are w-homotopic.

We shall end this section by proving approximation results for w-carriers
defined on pairs of compact ANR’s.

Let us recall that Ψ: (X,A) ( (Y,B) is a w-carrier if Ψ:X ( Y is a w-
carrier and Ψ(A) ⊂ B. It is easy to see that if Ψ: (X,A) ( (Y,B) is a w-carrier,
then ΨA:A ( B is also a w-carrier.
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Definition 5.23. Let Ψ: (X,A) ( (Y,B) be a w-carrier and let ε > 0. We
say that a w-map ϕ: (X,A) ( (Y,B) is an ε-approximation of Ψ if ϕA:A ( B

is an ε-approximation of ΨA and ϕ:X ( Y is an ε-approximation of Ψ:X ( Y .

Definition 5.24. We say that Ψ: (X,A) ( (Y,B) is a w-UV ω-valued car-
rier if ΨA and ΨX are w-UV ω-valued carriers.

Theorem 5.25. Let (X,A) be pair of compact ANR’s, (Y,B) a pair of locally
connected spaces and Φ: (X,A) ( (Y,B) a w-UV ω-valued carrier. Then for each
ε > 0 there is a w-map ϕ: (X,A) ( (Y,B) such that ϕ is an ε-approximation
of Φ.

Proof. The proof is similar to that of [2, Theorem 3.1(i)], but for the sake
of completeness we give details. Let us take ε > 0 and let 0 < δ < ε be as in
Theorem 5.17. Since ΦA:A ( B is a w-UV ω-valued carrier, we conclude, using
Corollary 5.19, that there is a δ-approximation ϕ0:A ( B of ΦA. Consequently,
in view of Theorem 5.17, there exists a weighted map ϕ:X ( Y such that ϕ
is an ε-approximation of Φ and ϕ|A = ϕ0. Hence we obtain a weighted map
ϕ: (X,A) ( (Y,B) being an ε-approximation of Φ: (X,A) ( (Y,B). �

Similarly to [2, Theorem 3.1(ii)], we get the following theorem.

Theorem 5.26. Let (X,A), (Y,B) and Φ: (X,A) ( (Y,B) be as in the
formulation of Theorem 5.25. Then for each ε > 0 there is δ > 0 such that
if ϕ1, ϕ2: (X,A) ( (Y,B) are δ-approximations of Φ, then there exists a w-
homotopy θ: (X × [0, 1], A× [0, 1]) ( (Y,B) such that θ( · , t): (X,A) ( (Y,B) is
an ε-approximation of Φ for each t ∈ [0, 1].

Proof. Let ε > 0 and let Φ: (X × [0, 1], A × [0, 1]) ( (Y,B) be defined by
Φ(x, t) := Φ(x) for all t ∈ [0, 1], x ∈ X. It is easy to see that Φ is a w-UV ω-valued
carrier. Additionally, let us define M := (X × {0}) ∪ (A × [0, 1]) ∪ (X × {1}).
Using the same arguments as in the proof of Lemma 5.16, we see that M is
an absolute neighbourhood retract. Let 0 < γ < ε be as in the formulation of
Theorem 5.17 for X × [0, 1], M , Φ and ε. Moreover, Corollary 5.21 provides
0 < δ < γ according to ΦA:A ( B and γ. Then, by Corollary 5.21, there is a
w-homotopy θ:A× [0, 1] ( B such that

(1) θ( · , t) is a γ-approximation of ΦA for all t ∈ [0, 1],
(2) θ( · , 0) = ϕA( · ) and θ( · , 1) = ψA( · ).

Now let us define a w-map θ̃:M ( Y as follows

θ̃(x, t) =


ϕX(x) if (x, t) ∈ X × {0},
θ(x, t) if (x, t) ∈ A× [0, 1],

ψX(x) if (x, t) ∈ X × {1}.
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Since θ̃ is a γ-approximation of Φ:X × [0, 1] ( Y , by Theorem 5.17, there
exists an extension θ:X × [0, 1] ( Y of θ̃ over X × [0, 1] such that θ is an
ε-approximation of Φ:X ( Y , which implies that there is a weighted map
θ: (X,A) ( (Y,B) satisfying all requirements of the assertion. �

Corollary 5.27. Let (X,A), (Y,B) and Φ: (X,A) ( (Y,B) be as above.
Then there is δ > 0 such that if ϕ,ψ: (X,A) ( (Y,B) are δ-approximations
of Φ, then there is a w-homotopy θ: (X × [0, 1], A × [0, 1]) ( (Y,B) such that
θ( · , 0) = ϕ( · ) and θ( · , 1) = ψ( · ).

Remark 5.28. In the forthcoming paper of the author ([32]) it will be pre-
sented how the approximability theorems obtained above can be used to show
new fixed point results for weighted carriers (see also [6], [27], [31], [33]).

6. Appendix

In Appendix we will use the Čech homology with the coefficients in the field
of rational numbers Q, and for simplicity we will omit Q from the notation. The
aim of this section is to prove the following theorem.

Theorem 6.1. Let X be an ANR and let A ⊂ X be a compact subset, k ≥ 1.
Then A is k-acyclic if and only if for each ε > 0 there exists δ < ε such that the
inclusion j:Oδ(A) ↪→ Oε(A) induces a trivial homomorphism j∗i: Ȟi(Oδ(A)) →
Ȟi(Oε(A)) for all 1 ≤ i ≤ k.

Before we give the actual proof of the main result in this section we derive
a few propositions. For this purpose we shall need a number of lemmas.

Lemma 6.2 ([15]). Let Y ∈ ANR, X be an arbitrary space and A ⊂ X be
a closed subset. Assume that f, g:X → Y are such that there is a homotopy
h:A× [0, 1] → Y with h(x, 0) = f(x), h(x, 1) = g(x) for every x ∈ A. Then there
exists a neighbourhood U of A in X and a homotopy H:U × [0, 1] → Y such that
H|A× [0, 1] = h, H(x, 0) = f(x) and H(x, 1) = g(x) for every x ∈ U .

Lemma 6.3 ([4]). Let Qω be the Hilbert cube and let A ⊂ Qω be a compact
subset. Then there exists a sequence {Zi}∞i=1 of compact ANR-spaces such that

Z1 = Qω, Zi+1 ⊂ intZi, A =
∞⋂
i=1

Zi.

Lemma 6.4 ([14]). Let X be a compact space and let X1 ⊃ X2 ⊃ . . . be
a descending sequence of compact spaces with X =

⋂∞
i=1Xi. Then

Ȟ∗(X) = lim
←−

Ȟ∗(Xi).
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Lemma 6.5 ([14]). Let (X1, A1) ⊃ (X2, A2) ⊃ . . . be a descending se-
quence of compact pairs with (X,A) =

⋂∞
i=1(Xi, Ai). In addition, fix n and

let {z1, . . . , zs} be a linearly independent set in H̆n(X,A). Then there exists an
index kn such that:

(a) {jk(z1), . . . , jk(zs)} is linearly independent in Ȟn(Xk, Ak) for all k≥kn,
where jk: H̆n(X,A) → H̆n(Xk, Ak) are induced by (X,A) ⊂ (Xk, Ak),

(b) in particular, for all k≥kn, jk: H̆n(X,A)→H̆n(Xk, Ak) is a monomor-
phism on the space Es := 〈z1, . . . , zs〉 generated by {z1, . . . , zs}.

Lemma 6.6. Let X, Y be ANR’s and let X0 ⊂ X and Y0 ⊂ Y be compact
subsets. In addition, assume that the inclusion X0 ↪→ X has a w-UV n-property,
where n ≥ 1. If Y0 is homeomorphic to X0, then the inclusion Y0 ↪→ Y has also
a w-UV n-property.

The proof of the above lemma is the same as in [3]. The only difference is
using the w-homotopy functor instead of the homotopy functor.

Proposition 6.7. Let X be the Hilbert cube and let A ⊂ X be a compact
subset. Assume, furthermore, that A is k-acyclic, k ≥ 1. Then for each ε > 0
there exists δ < ε such that the inclusion j:Oδ(A) ↪→ Oε(A) induces a trivial
homomorphism j∗l: Ȟl(Oδ(A)) → Ȟl(Oε(A)) for each 1 ≤ l ≤ k.

Proof. Our proof is based upon ideas found in [14]. Since X is the Hilbert
cube there exists, in view of Lemma 6.3, a sequence {Zi}∞i=1 of compact ANR-
spaces such that Zi+1 ⊂ Zi, for i ≥ 1, and

⋂∞
i=1 Zi = A. Let us fix Zi0 . Now

consider the diagram

H̆l(Zs)

ps
l

��

H̆l(A)
jl // H̆l(Zi0)

λs
l

��

wl // H̆l(Zi0 , A)

µs
lwwooooooooooo

H̆l(Zi0 , Zs),

where all homomorphisms are induced by inclusions, the triangle is commutative;
and both the horizontal and vertical lines are exact, s ≥ i0, l ≥ 1. Let us observe
that if H̆l(A) = 0 for some l ≥ 1, then from the above diagram we deduce that
kerwl = 0. Additionally, dim Imwl < ∞, because compact ANR’s have the
C̆ech homology of finite type. Now we shall show that there exists an index
Ni0 such that the homomorphisms psl : H̆l(Zs) → H̆l(Zi0) are trivial for s ≥ Ni0
and 1 ≤ l ≤ k. Let 1 ≤ l0 ≤ k be fixed and let zl01 , . . . , z

l0
sl

be a basis for



158 R. Skiba

wl0(H̆l0(Zi0)) ⊂ H̆l0(Zi0 , A). Now, by applying Lemma 6.5 to

(Zi0 , Zs) ⊃ (Zi0 , Zs+1) ⊃ (Zi0 , Zs+2) ⊃ . . .

and µsl0 : H̆l0(Zi0 , A) → H̆l0(Zi0 , Zs) for s ≥ i0, we obtain N i0
l0
≥ i0 such that the

homomorphism µsl0 |〈z
l0
1 , . . . , z

l0
sl0
〉: 〈zl01 , . . . , zl0sl0

〉 → H̆l0(Zi0 , Zs) is a monomor-
phism for s ≥ N i0

l0
. Moreover, since kerwl0 = 0 and λsl0 = µsl0 ◦ wl0 , we deduce

that the homomorphism λsl0 : H̆l0(Zi0) → H̆l0(Zi0 , Zs) is a monomorphism for all
s ≥ N i0

l0
. Thus, from the exactness of the vertical sequence in the above diagram,

we infer that Im psl0 = 0 for s ≥ N i0
l0

. Let Ni0 := max{N i0
1 , . . . , N

i0
k }. Then for

1 ≤ l ≤ k and s ≥ Ni0 the homomorphism

(6.1) psl : H̆l(Zs) → H̆l(Zi0)

is trivial. Let ε > 0. Now, let us observe that there exists i0 such that Zs ⊂
Oε(A) for s ≥ i0, because A =

⋂∞
i=1 Zi and Zi+1 ⊂ Zi. Let us fix s ≥ Ni0

(Ni0 ≥ i0). Since Zs is a compact ANR, there exists an open subset U ⊂ X with
Zs ⊂ U ⊂ Oε(A) and a retraction rs:U → Zs. Let f :U → Oε(A) be factored as

U
rs−→ Zs

js−→ Zi0
is−→ Oε(A),

where js and is are the inclusions. Then by the compactness of A and Lemma 6.2
we infer that there exists δ < ε with Oδ(A) ⊂ U and such that f |Oδ(A) is
homotopic to the inclusion i:Oδ(A) → Oε(A). Hence

(f |Oδ(A))∗l = i∗l: H̆l(Oδ(A)) → H̆l(Oε(A)).

But (f |Oδ(A))∗l = (is)∗l ◦ (js)∗l ◦ (rs|Oδ(A))∗l and (js)∗l = psl , so, in view of
(6.1), the homomorphism (f |Oδ(A))∗l is trivial for 1 ≤ l ≤ k. Consequently,
i∗l: H̆l(Oδ(A)) → H̆l(Oε(A)) is the trivial homomorphism for 1 ≤ l ≤ k, which
completes the proof. �

Corollary 6.8. Let X be an ANR and let A ⊂ X be a compact subset.
Assume, furthermore, that A is k-acyclic, k ≥ 1. Then for each ε > 0 there exists
δ < ε such that the inclusion j:Oδ(A) ↪→ Oε(A) induces a trivial homomorphism
j∗l: Ȟl(Oδ(A)) → Ȟl(Oε(A)) for 1 ≤ l ≤ k.

Proof. Since any compact metric space admits an embedding into the
Hilbert cube Qω, it follows that there exists a compact subset B of Qω which is
homeomorphic to A. Moreover, since A is k-acyclic and since A is homeomorphic
to B, we deduce that B is also k-acyclic. Now, in view of Proposition 6.7 and
Theorem 4.9, we infer that the inclusion B ↪→ Qω has a w-UV k-property. Hence,
by Lemma 6.6, the inclusion A ↪→ X has a w-UV k-property. Consequently, by
Theorem 4.9, the assertion follows. �



Graph-Approximation of Multivalued Weighted Maps 159

Proposition 6.9. Let X and A ⊂ X be as above. If for each ε > 0 there
exists δ < ε such that the inclusion j:Oδ(A) ↪→ Oε(A) induces a trivial homo-
morphism j∗l: Ȟl(Oδ(A)) → Ȟl(Oε(A)) for any 1 ≤ l ≤ k, then A is k-acyclic.

Proof. Let {Zn}∞n=1 be sequence as in Lemma 6.3. Then, under our as-
sumption, there exist two sequences {εm}∞m=1 and {im}∞m=1 such that

(1) Zi1 = Qω, ε1 = 1, i1 = 1, εm+1 < εm;
(2) Zim+1 ⊂ Oεm

(A) ⊂ Zim for m ≥ 1;
(3) the inclusion j:Oεm+1(A) → Oεm

(A) induces the trivial homomorphism
j∗l: H̆l(Oεm+1(A)) → H̆l(Oεm(A)) for any m ≥ 1, 1 ≤ l ≤ k.

Since the inclusion Jim :Zim+2 ↪→ Zim can be factored as

Zim+2 ↪→ Oεm+1(A) ↪→ Oεm(A) ↪→ Zim ,

the induced homomorphism Jim : H̆l(Zim+2) ↪→ H̆l(Zim) is trivial for any m ≥ 1
and 1 ≤ l ≤ k. Therefore

(6.2) lim
←−
m

Ȟl(Zi(2m−1)) = 0,

and since A =
⋂∞
m=1 Zi(2m−1) , so by Lemma 6.4 and (6.2) we infer that H̆l(A) = 0

for 1 ≤ l ≤ k, which completes the proof. �

Corollary 6.10. Let X be an ANR and let A ⊂ X be a compact subset.
If for each ε > 0 there exists δ < ε such that the inclusion j:Oδ(A) ↪→ Oε(A)
induces a trivial homomorphism j∗l: Ȟl(Oδ(A)) → Ȟl(Oε(A)) for any 1 ≤ l ≤ k,
then A is k-acyclic.

Proof. By the same argument as in the proof of Corollary 6.8, there exists
a compact subset B of the Hilbert cube Qω which is homeomorphic to A. Under
our assumptions Theorem 4.9 implies that the inclusion A ↪→ X has a w-UV k-
property. Hence by Lemma 6.6 it follows that the inclusion B ↪→ Qω has a w-
UV k-property. Consequently, by Theorem 4.9 and Proposition 6.9, we infer
that B is k-acyclic. Since A is homeomorphic to B, we deduce that A is also
k-acyclic. �

Finally, from Corollaries 6.8 and 6.10 we obtain Theorem 6.1.
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