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FIXED POINT INDEX
FOR KRASNOSEL’SKII-TYPE SET-VALUED MAPS

ON COMPLETE ANRS

Wojciech Kryszewski — Jaros law Mederski

Abstract. In the paper a fixed-point index for a class of the so-called
Krasnoselskĭı-type set-valued maps defined locally on arbitrary absolute

neighbourhood retracts is presented. Various applications to the existence

problems for constrained differential inclusions and equations are provided.

1. Introduction

Among many different generalizations of the Schauder and Banach fixed point
principles the following result due to Krasnosel’skĭı played an important role.

Theorem 1.1 (Krasnosel’skĭı, [32]). Let X be a nonempty closed and convex
subset of a Banach space E. If K : X → E is a k-contraction (i.e. Lipschitz
with constant k ∈ [0, 1)), C:X → E is a compact map and, for all x, y ∈ X,

(∗) K(x) + C(y) ∈ X,

then there exists x0 ∈ X such that x0 = K(x0) + C(x0).

This result had lost some of its significance when Darbo and Sadovski in-
troduced the concepts of a k-set-contraction and a condensing map. Namely,

2000 Mathematics Subject Classification. 47J25, 54C60, 54H25, 55M25, 47H09.

Key words and phrases. Set-valued map, fixed-point index, contraction, absolute neigh-
bourhood retract.

Research supported in part by KBN Grant 2/PO3A/01525.

c©2006 Juliusz Schauder Center for Nonlinear Studies

335



336 W. Kryszewski — J. Mederski

it appears that if K is a k-contraction and C is a compact map, then K + C
is a k-set contraction (with respect to the Kuratowski or Hausdorff measure of
noncompactness). Hence, if X is additionally bounded, then the assertion of
Theorem 1.1 holds true even when hypothesis (∗) is replaced by a weaker one:
for each x ∈ X, K(x) + C(x) ∈ X (1). However, it seems that the idea un-
derlying the ingenious proof of Theorem 1.1 is still fruitful and has been used
by different authors in order to establish some interesting generalizations of this
result. These generalizations concern several directions: the authors consider
less strict contraction properties (see e.g. [55]), weaker continuity properties (see
e.g. [6]), more general operators (see e.g. [5], [41], [31], [11]), more general spaces
(see e.g. [47], [50]) and also multivalued operators (see e.g. [43], [45], [46]) — see
also references in these papers. There are also many interesting applications of
Theorem 1.1 and the related results.

In the present paper we shall deal with an approach motivated to some
extent by [41], [31] and that from [45], [46]. Namely it seems reasonable to
consider, instead of the sum K + C, a composite map of the form X 3 x 7→
T (K(x), C(x)), where a (usually nonlinear) operator T :E×E → E replaces the
sum +:E×E → E and K, C are suitable set-valued maps. Our principal aim is
to construct a homotopy invariant responsible for the existence of fixed points of
(possibly) set-valued maps of the above or similar form that are defined locally
on, no longer closed convex subsets of E, but on arbitrary complete absolute
neighbourhood retracts.

The paper is organized as follows: in the rest of the first section we introduce
some notation and preliminaries; in the second section we study the parameter-
ized set-valued contractions (with non-convex values) and the properties of their
fixed-point sets; in the third section we define the class of single- and set-valued
Krasnosel’skĭı-type maps and provide a construction of a homotopy invariant
detecting their fixed points. The fourth section is devoted to applications, while
in the additional fifth section we discuss some variants of the relevant fixed-point
index theories and a general strong invariance result for constrained differential
inclusions.

1.1. Preliminaries. Let X be a space (2). If x ∈ X and A ⊂ X, then
d(x,A) := infa∈A d(x, a) is the distance of x to A; for any ε > 0,

B(A, ε) := {x ∈ X | d(x,A) < ε}; D(A, ε) := {x ∈ Y | d(x,A) ≤ ε}.

(1) In the setting of Theorem 1.1, Burton in [10] observed that condition (∗) may be relaxed

by assuming that, for any y ∈ X, if x = K(x) + C(y), then x ∈ X; the condition of Burton
may still be relaxed by assuming for example that, for each y ∈ X, the map K( · ) + C(y) is

weakly inward on X.

(2) In what follows by a space we always mean a metric space; its distance will be denoted
by dX or, when it leads to no ambiguity, by d.
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Given spaces X, Y , by a set-valued map Φ from X into Y (written Φ:X ( Y ) we
mean a map which assigns to each x ∈ X a nonempty closed subset Φ(x) of Y . If,
for any closed (resp. open) set U ⊂ Y , the preimage Φ−1(U) := {x ∈ X : Φ(x)∩
U 6= ∅} is closed (resp. open), then we say that Φ is upper semicontinuous (resp.
lower semicontinuous); Φ is continuous if it is upper and lower semicontinuous
simultaneously. Recall that the graph Gr(Φ) := {(x, y) ∈ X × Y | y ∈ Φ(x)}
of an upper semicontinuous map Φ is closed; Φ is lower semicontinuous if and
only if given x ∈ X, y ∈ Φ(x) and a sequence xn → x, there is a sequence
yn ∈ Φ(xn) such that yn → y; Φ is upper semicontinuous and has compact
values if and only if, for each x ∈ X and a sequence (xn, yn) ∈ Gr(Φ) such
that xn → x, there exists a subsequence (ynk) such that ynk → y ∈ Φ(x)
(this means that the projection p: Gr(Φ) → X is proper, i.e. for each compact
K ⊂ X, p−1(K) is compact). We say that Φ:X ( Y is compact if the closure
cl Φ(X) of the image Φ(X) :=

⋃
x∈X Φ(x) is compact. If X ⊂ Y , then by

Fix(Φ) := {x ∈ X | x ∈ Φ(x)} we denote the set of fixed points of Φ.
For a pair A, B of nonempty closed subsets of a space Y , the Hausdorff

distance

D(A,B) := max{d(A,B), d(B,A)} ≤ ∞,

where d(A,B) := supa∈A d(a,B), is defined. It is well-known that D is a metric
in the (hyper)space B(Y ) of all nonempty bounded closed subsets of Y . This
metric is complete provided so is the metric in Y . We say that a map Φ:X ( Y is
H-continuous if it is continuous with respect to the distance D in Y , i.e. for each
x0 ∈ X, given ε > 0, there is δ > 0 such that, for any x ∈ X, D(Φ(x),Φ(x0)) < ε
provided d(x, x0) < δ. A set-valued map F :X ( Y is k-Lipschitz, where k ≥ 0,
if for all x, y ∈ X,

D(F (x), F (y)) ≤ kd(x, y).

If k < 1 then F is called a set-valued k-contraction or, simply, a contraction.

Let C be a subclass of the class of all (metric) spaces. A (nonempty) space X
is an absolute neighbourhood extensor (resp. absolute extensor) with respect to C
(written X ∈ ANE(C) (resp. X ∈ AE(C))) if, given a space Z ∈ C and its closed
subset Z0, any continuous map f0:Z0 → X admits a continuous extension onto
a (open) neighbourhood U of Z0 in Z (resp. onto Z), i.e. there is a map f :U → X
(resp. f :Z → X) such that f(z) = f0(z) for all z ∈ Z0. Clearly AE(C) ⊂
ANE(C). If C is the class of all spaces, then ANE(C) (resp. AE(C)) coincides
with the class ANR of absolute neighbourhood retracts (resp. AR of absolute
retracts). Observe that, for any class C, ANR ⊂ ANE(C) (resp. AR ⊂ AE(C))
and ifX ∈ ANE(C) (resp.X ∈ AE(C)) is a closed subset a space Y ∈ C, thenX is
a neighbourhood retract (resp. retract) of Y ; hence if Y ∈ ANR (resp. Y ∈ AR),
then X ∈ ANR (resp. X ∈ AR). In particular, by the Urysohn embedding
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theorem, if a compact space X ∈ ANE(Comp) (resp. X ∈ AE(Comp)), where
Comp stands for the class of compact spaces, then X ∈ ANR (resp. X ∈ AR).

2. Set-valued contractions

The well-known Covitz–Nadler theorem, generalizing the Banach fixed point
principle, asserts that any set-valued contraction F :X ( X, defined on a com-
plete space X, admits a fixed point. However, contrary to the single-valued case,
the fixed-point set Fix(F ) does not need to be a singleton and, hence, it is of
interest to study the structure of this set (see e.g. [49]). It is clear that Fix(F )
is always closed and compact if so are the values of F . The important result
due to Ricceri [44] states that if X is a convex closed subset of a Banach space
and values of F are convex, then Fix(F ) ∈ AR. More generally (see e.g. [20,
Theorem 56] and comp. [48]):

Theorem 2.1. Let Y be a space and X be a closed convex subset of a Banach
space. Suppose that F :X×Y ( X has closed convex values, for each y ∈ Y , the
map F ( · , y):X ( X is a k(y)-contraction, where k:Y → [0, 1) is continuous.
If, for each x ∈ X, F (x, · ):Y ( X is lower semicontinuous, then:

(a) given a space Z, a closed subset Z0 ⊂ Z and a continuous map g:Z →
Y , any continuous map f0:Z0 → X such that, for z ∈ Z0, f0(z) ∈
Fix(F ( · , g(z))) := {x ∈ X | x ∈ F (x, g(z))}, admits a continuous
extension f :Z → X such that f(z) ∈ Fix(F ( · , g(z)));

(b) if the graph of the map Y 3 y 7( Fix(F ( · , y)) is closed ( 3), then there
is a continuous map r:X × Y → X such that, for each y ∈ Y , r( · , y)
is a retraction of X onto Fix(F ( · , y));

(c) the map Y 3 y 7( Fix(F ( · , y)) admits a continuous selection (4).

In fact [20] shows the second assertion assuming that F (x, · ) is continuous
for all x ∈ X. The first assertion may be shown similarly as in [27]; the second
and the third assertions follow from the first one (comp. Proposition 2.4).
If above, for all x ∈ X, F (x, · ) is only upper semicontinuous, then the

assertion of Theorem 2.1 does not hold true. To see this let X = Y = R and, for
any (x, y) ∈ R2, let

F (x, y) =


{0} if y < 0,

[0, 1] if y = 0,

{1} if y > 0.
Then F satisfies the above assumptions, F (x, · ) is upper semicontinuous, but
the map Y 3 y 7( Fix(F ( · , y)) has no continuous selections.

(3) This holds e.g. if, for all x ∈ X, F (x, · ) is continuous.

(4) I.e. there is a map t: Y → X such that t(y) ∈ Fix(F ( · , y)) for all y ∈ Y .
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The result of Ricceri has been generalized by Górniewicz, Marano and Ślosar-
ski in [27]. Since we shall make use of this result, let us recall some of its relevant
issues. Suppose that C denotes a subclass of the class of all (metric) spaces and
let X be a space. According to [27] a lower semicontinuous map Φ:X ( X

is said to have the selection property with respect to C (written Φ ∈ SP(X; C))
whenever given a space Z ∈ C, a continuous map f :Z → X, a continuous
function ε:Z → (0,∞) such that

Ψ(z) := cl [Φ(f(z)) ∩B(f(z), ε(z))] 6= ∅

for all z ∈ Z, and a closed nonempty subset Z0 ⊂ Z, every continuous selection
g0:Z0 → X of Ψ|Z0 admits a continuous extension g:Z → X being a selection
of Ψ. If C is the class of all spaces, then we write Φ ∈ SP(X).
It appears (see [27]) that if a complete space X ∈ AE(C), F ∈ SP(X; C) is

a set-valued contraction, then Fix(F ) ∈ AE(C). This result generalizes the Ric-
ceri theorem since, as it is easy to see, if X is a convex closed subset of a Banach
space, then X ∈ AR and any contraction F :X ( X with convex values belongs
to SP(X) in view of the Michael theorem. Moreover, in view of the Bressan,
Colombo and Fryszkowski theorem (see [9], [19]), if X is a closed subset of the
space Lp(J,E) (of p-Bochner integrable functions defined on a finite interval J
with values in a Banach space E, 1 ≤ p < ∞) and a lower semicontinuous map
Φ:X ( X has decomposable values (5), then Φ ∈ SP(X;S) where S stands
for the class of all separable spaces. In particular, if X is a retract in Lp(J,E)
and F :X ( X is a contraction with decomposable values, then Fix(F ) ∈ AR.
Some other examples of maps having the selection property are provided in [27]
(see also [24]). It is not difficult to obtain a result that generalize the above
mentioned result in a way Theorem 2.1 generalizes the result of Ricceri (comp.
[20, Theorem 57] for the decomposable case).
In what follows we shall also study compositions of contractions. For example

suppose X1, X2 are spaces and let F1:X1 ( X2, F2:X2 ( X1 be k1- (resp k2-)
Lipschitz maps. It is clear that the compositions F2 ◦ F1:X1 ( X1 and F1 ◦
F2:X2 ( X2 are k1k2-Lipschitz and their mixed Cartesian product F1⊗F2:X1×
X2 ( X1 ×X2, defined by the formula F1 ⊗ F2(x1, x2):= F2(x2) × F1(x1) for
x1 ∈ X1, x2 ∈ X2, is max{k1, k2}-Lipschitz (6). Observe that x1 ∈ Fix(F2◦F1) if
and only if there is x2 ∈ F1(x1) such that x1 ∈ F2(x2), i.e. if and only if there is
x2 ∈ X2 such that (x1, x2) ∈ Fix(F1⊗F2). Hence Fix(F2◦F1) = p1(Fix(F1⊗F2))
where p1:X1 × X2 → X1 is the projection. In particular, if X1, X2 are closed
convex subsets of some Banach spaces, F1:X1 ( X2 and F2:X2 ( X1 are

(5) Recall that a nonempty set D ⊂ Lp(J, E) is decomposable if, given u, v ∈ D and
a measurable I ⊂ J , χIu + χJ\Iv ∈ D where χI denotes the characteristic function of I.

(6) We consider a metric dX1×X2 ((x1, x2), (x′1, x′2)) := max{dX1 (x1, x′1), dX2 (x2, x′2)} in
X1 ×X2.
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contractions with convex values, then so is F1 ⊗ F2 and therefore, in view of
the Ricceri theorem, Fix(F1 ⊗ F2) ∈ AR; hence Fix(F2 ◦ F1) is a continuous
image of a complete AR; moreover, if F1:X1 × Y ( X2 and F2:X2 × Y ( X1,
where Y is a space, satisfy conditions of Theorem 2.1, then the map Y 3 y 7(
Fix(F2(F1( · , y)× {y})) admits a selection.
However, these arguments do not help much to characterize the set Fix(F2 ◦

F1) in case k1k2 < 1 (but k1 ≥ 1 or k2 ≥ 1) and do not imply the existence of
selections in case, for each x1 ∈ X1, x2 ∈ X2, either F1(x1, · ) or F2(x2, · ) is not
lower semicontinuous.
In order to get a result in this direction we shall introduce the following

definition.

Definition 2.2. Let C be a subclass of the class of all spaces and let X1, X2
be spaces. A map Φ:X1 ( X2 is said to have the selection property with respect
to C (written Φ ∈ SP(X1, X2; C)) whenever given a space Z ∈ C, continuous
maps f1:Z → X1, f2:Z → X2, a continuous function ε:Z → (0,∞) such that,
for all z ∈ Z,

Ψ(z) := cl [Φ(f1(z)) ∩B(f2(z), ε(z))] 6= ∅,
and a closed nonempty subset Z0 ⊂ Z, every continuous selection g0:Z0 → X2
of Ψ|Z0 admits a continuous extension g:Z → X2 such that g is a selection of Ψ.
If C is the class of all spaces, then we write Φ ∈ SP(X1, X2).

Remark 2.3. (a) Again in view of the Michael theorem, if X1 is a space,
X2 is a closed convex subset of a Banach space and Φ:X1 ( X2 is lower semi-
continuous with convex values, then Φ ∈ SP(X1, X2). If X2 is a closed subset of
Lp(J,E) and Φ is lower semicontinuous with decomposable values, then, in view
of the Bressan–Colombo results (see [9]), Φ ∈ SP(X1, X2;S) where S denotes
the class of separable spaces.
(b) It is easy to see that if Φ1 ∈ SP(X1, X2; C) and Φ2 ∈ SP(X2, X1; C), then

Φ1 ⊗ Φ2 ∈ SP(X1 ×X2; C).
(c) If Φ ∈ SP(X1, X2; C) is H-continuous, then it has the following property:

(∗) Given Z ∈ C, a continuous f :Z → X1 and a closed Z∗ ⊂ Z, any
continuous selection g∗:Z∗ → X2 of the restriction (Φ ◦ f)|Z∗ admits a
continuous extension g:Z → X2 such that g(z) ∈ Φ(f(z)) for all z ∈ Z.

To see that take any continuous h:Z → X2 and observe that the function

ε′(z) := d(h(z),Φ(f(z))) + 1, z ∈ Z,

is continuous; let ε′′:Z → [0,∞) be any continuous extension of the function
Z∗ 3 z 7→ d(g∗(z), h(z)) + 1 and let ε(z) := max{ε′(z), ε′′(z)} for z ∈ Z. Then
Ψ(z) := cl [Φ(f(z)) ∩ B(h(z), ε(z))] 6= ∅ on Z and g∗(z) ∈ Ψ(z) on Z∗. Hence,
by Definition 2.2, the assertion follows.



Fixed Point Index for Krasnosel’skĭı-Type Set-Valued Maps 341

Remark 2.3(c) says that Φ has a certain selection property and, being H-
continuous, has the closed graph. To understand better the structure of the
above defined family SP(X1, X2, C) let us mention the following result.

Proposition 2.4. Let C be a multiplicative class of spaces (7) and let X1, X2
∈ C. If a map Φ:X1 ( X2 has property (∗) and Gr(Φ) is closed, then:

(a) there is retraction R:X1 × X2 → Gr(Φ) such that R(x1, x2) ∈ {x1} ×
Φ(x1) for all (x1, x2) ∈ X1 ×X2;

(b) there is a normed space E, a closed continuous embedding i:X2 → E
and a continuous map r:X1 ×E → E such that r(x1, · ) is a retraction
from E on i(Φ(x1)) for all x1 ∈ X1 (in particular, Φ(x) ∈ AR for all
x ∈ X1);

(c) Φ is lower semicontinuous.

On the other hand, if condition (b) is satisfied, (or X2 ∈ AE(C) and condition
(a) holds), then Φ has property (∗) and Gr(Φ) is closed.

Proof. Suppose that Φ has property (∗) and Gr(Φ) is closed. Let Z :=
X1 × X2, Z0 := Gr(Φ) and let f :X1 × X2 → X1 × X2, g0:Z0 → X1 × X2 be
given by: f(x1, x2) := (x1, x1) for x1 ∈ X1, x2 ∈ X2 and g0(x1, x2) = (x1, x2)
for (x1, x2) ∈ Z0. It is a matter of a routine calculation to show that the map
Ψ:X1×X1 ( X1×X2 given by Ψ(x1, x′1) = {x1}×Φ(x′1) has property (∗), i.e.
there is a continuous g:Z → X1 ×X2 such that g|Z0 = g0 and g(x1, x2) ∈ (Ψ ◦
f)(x1, x2) = {x1}×Φ(x1) for all x1 ∈ X1, x2 ∈ X2. Hence a map R:X1×X2 →
Gr(Φ) such that R(x1, x2) = g(x1, x2) on X1 ×X2 is a retraction.
Consider a closed continuous embedding i:X2 → E, where E is a normed

space, provided by the Arens-Eells theorem and a map Φ′ := i ◦ Φ:X1 ( E. It
is clear that the graph of Φ′ is closed and Φ′ has property (∗). Therefore, by (a),
there is a retraction R′:X1×E → Gr(Φ′) such that R′(x1, u) ∈ {x1}×Φ′(x1) for
all x1 ∈ X1 and u ∈ E. Let p:X1 × E → E be the projection and, for x1 ∈ X1,
u ∈ E, let

r(x1, u) := p(R(x1, u)).

Clearly r(x1, u) ∈ Φ′(x1) on X1 × E and, if u ∈ Φ′(x1), then r(x1, u) =
p(R(x1, u)) = u.

Let x1 ∈ X1, x2 ∈ Φ(x1) and a sequence xn1 → x1. In view of assertion (a),
there is a sequence xn2 := p2(R(x

n
1 , x2)) such that x

n
2 ∈ Φ(xn1 ) and xn2 → x2,

where p2: Gr(Φ) → X2 is the projection. Therefore Φ is lower semicontinuous
map.

(7) I.e. if X1, X2 ∈ C, then X1 ×X2 ∈ C.
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Conversely suppose that condition (a) or (b) is satisfied. If condition (b)
holds, then a map R:X1 ×X2 → X1 ×X2 given by

R(x1, x2) := (x1, i−1(r(x1, i(x2)))),

x1 ∈ X1, x2 ∈ X2, is retraction from X1 ×X2 onto Gr(Φ). Hence, in the both
cases (a) and (b), Gr(Φ) is closed as a retract of X1 ×X2.
Let Z ∈ C, Z0 ⊂ Z is closed, f :Z → X1, g0:Z0 → X2 are continuous and

g0(z) ∈ Φ(f(z)) on Z0. If condition (a) is satisfied and, additionaly, X2 ∈ AE(C),
then we may define g(z) := p2(R(f(z), g1(z))) for z ∈ Z, where g1:Z → X2 is an
arbitrary continuous extension of g0. If condition (b) is satisfied, then we may
define g(z) := i−1(r(f(z), g2(z))) for z ∈ Z, where g2:Z → E is an arbitrary
continuous extension of i ◦ g0. In the both cases g is a (continuous) selection of
Φ ◦ f and g|Z0 = g0. �

Let us return to the problem of a characterization of the fixed-point set of a
set-valued contraction of the form F2 ◦ F1. In view of the discussion preceding
Definition 2.2 and Remark 2.3(b) we get immediately the following result.

Proposition 2.5. If complete spaces X1, X2 ∈ AE(C) (where a class C of
spaces is arbitrary), F1:X1 ( X2, F2:X2 ( X1 are contractions such that F1 ∈
SP(X1, X2; C), F2 ∈ SP(X2, X1; C), then Fix(F1⊗F2) ∈ AE(C) and Fix(F2 ◦F1)
is a continuous image of a complete AE(C), namely:

Fix(F2 ◦ F1) = p1(Fix(F1 ⊗ F2))

where p1:X1 ×X2 → X1 is the projection onto the first factor.

We shall address the similar question assuming instead that F1 and F2 are
Lipschitz maps and such that the composition F2 ◦ F1 is a contraction. We get
a result even more general. Assume that the following general conditions are
met:

Assumption 2.6.

(a) X0, . . . , Xm−1 are complete spaces and Xm := X0;
(b) there is j ∈ {0, . . . ,m− 1} such that Xj ∈ AE(C) where C is a certain
class of spaces;

(c) for each i = 0, . . . ,m− 1, Fi ∈ SP(Xi, Xi+1; C) is a Lipschitz set-valued
map with constant ki > 0 and the product k := k0 . . . km−1 < 1;

(d) F := Fm−1 ◦ Fm−2 ◦ . . . ◦ F0:X0 ( Xm (according to our terminology
and notation we assume silently that F has closed values).

It is convenient to observe that all spaces and maps above are indexed by the
group Zm = {0, . . . ,m− 1} of integers modulo m. In what follows the addition
of indices in Zm is performed modulo m.
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Theorem 2.7. Under Assumption 2.6 the set

S := {(x0, . . . , xm−1) ∈ X0 × . . .×Xm−1 | xi+1 ∈ Fi(xi), i ∈ Zm}

is a nonempty absolute extensor with respect to the class C and, moreover,
Fix(F ) = p0(S) where p0:

∏
i∈Zm Xi → X0 is the projection.

Proof. Let us first introduce some notation. Namely let

Γ := {(x0, . . . , xm−1) ∈ X0 × . . .×Xm−1 | xi+1 ∈ Fi(xi), i ∈ Zm, i 6= j}

and let, for i ∈ Zm, pi: Γ→ Xi be the projection. It is clear that Γ is closed and
nonempty since

S = {(x0, . . . , xm−1) ∈ Γ | xj+1 ∈ Fj(xj)} and p0(S) = Fix(F ) 6= ∅.

For technical reasons, let us introduce a new metric d on Γ given by

d(γ, γ′) = max{αidi(pi(γ), pi(γ′)) | i ∈ Zm}, γ, γ′ ∈ Γ,

where, for i ∈ Zm, di stands for the metric in Xi and (remembering that j ∈ Zm
is fixed and such that Xj ∈ AE(C))

αj+1 = kj+1, αj+2 = 1, αj+3 = k−1j+2,

αj+s = (kj+2 . . . kj+s−1)−1 for 4 ≤ s ≤ m.

It is clear that d is uniformly equivalent to the usual max-metric on Γ; hence the
space Γ with the metric d is complete. Moreover, for any γ, γ′ ∈ Γ and i ∈ Zm,

(2.1) di(pi(γ), pi(γ′)) ≤ α−1i d(γ, γ
′).

In order to prove that S ∈ AE(C), take an arbitrary space Z ∈ C, a closed
Z∗ ⊂ Z and a continuous map f∗:Z∗ → S. We are to show the existence of
a continuous extension f :Z → S of f∗. To this aim let 1 < c < k−1. We shall
now construct a sequence (fn)∞n=0, of maps fn:Z → Γ, such that:

fn|Z∗ = f∗ for n ≥ 0,(2.2)

pj+1 ◦ fn(z) ∈ Fj(pj ◦ fn−1(z)) for n ≥ 1 and z ∈ Z,(2.3)

d(fn(z), fn−1(z)) < kn−1d(f1(z), f0(z)) + c1−n for n ≥ 1 and z ∈ Z.(2.4)

Observe that, for any z ∈ Z∗, f∗(z) = (p0(f∗(z)), . . . , pm−1(f∗(z))) and, since
Xj ∈ AE(C), there is an extension f̃0:Z → Xj of pj ◦ f∗:Z∗ → Xj . Since, for
z ∈ Z∗, f∗(z) ∈ S, we have pj+1(f∗(z)) ∈ Fj(pj ◦ f∗(z)) = Fj(f̃0(z)). Hence,
in view of Remark 2.3(c), there is a continuous extension hj+10 :Z → Xj+1 of
pj+1 ◦ f∗ such that hj+10 (z) ∈ Fj(f̃0(z)) for all z ∈ Z. For z ∈ Z∗, pj+2 ◦ f∗(z) ∈
Fj+1(pj+1 ◦ f∗(z)) = Fj+1(hj+10 (z)) and, again by Remark 2.3(c), there is an
extension hj+20 :Z → Xj+2 of pj+2 ◦ f∗ such that h

j+2
0 (z) ∈ Fj+1(h

j+1
0 (z)) for

all z ∈ Z. Suppose that, for some s ∈ Zm, s ≥ 2, a continuous extensions
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hj+s0 :Z → Xj+s of pj+s ◦ f∗ such that h
j+s
0 (z) ∈ Fj+s−1(h

j+s−1
0 (z)) for z ∈ Z

has been constructed. Since, for z ∈ Z∗, pj+s+1 ◦ f∗(z) ∈ Fj+s(pj+s ◦ f∗(z)) =
Fj+s(h

j+s
0 (z)), by Remark 2.3(c), there is a continuous extension h

j+s+1
0 :Z →

Xj+s+1 of pj+s+1 ◦ f∗ such that, for z ∈ Z, hj+s+10 (z) ∈ Fj+s(hj+s0 (z)) (8). In
this way we have produced a family of continuous extensions hi0:Z → Xi of
pi ◦ f∗, i ∈ Zm. For z ∈ Z, let

f0(z) := (h00(z), . . . , h
m−1
0 (z)).

It is clear that, for i ∈ Zm, i 6= j, and z ∈ Z, hi+10 (z) ∈ Fi(hi0(z)), i.e. f0:Z → Γ
and, for z ∈ Z∗, f0(z) = f∗(z).
For z ∈ Z∗, pj+1 ◦ f∗(z) ∈ Fj(pj ◦ f∗(z)) = Fj(pj ◦ f0(z)). Therefore, by

Remark 2.3(c) again, there is a continuous extension hj+11 :Z → Xj+1 of pj+1◦f∗

such that hj+11 (z) ∈ Fj(pj ◦ f0(z)). Similarly as above we see that, for z ∈ Z∗,
pj+2 ◦ f∗(z) ∈ Fj+1(pj+1 ◦ f∗(z)) = Fj+1(hj+11 (z)), so there is a continuous
extension hj+21 :Z → Xj+2 of pj+2 ◦ f∗ such that h

j+2
1 (z) ∈ Fj+1(h

j+1
1 (z)) for

z ∈ Z. Continuing this procedure as above we produce map hi1:Z → Xi, i ∈ Zm,
such that if i 6= j, then hi+11 (z) ∈ Fi(hi1(z)) (and h

j+1
1 (z) ∈ Fj(pj ◦ f0(z))) on Z.

Therefore, the formula

f1(z) := (h01(z), . . . , h
m−1
1 (z)), z ∈ Z,

correctly defines a continuous map f1:Z → Γ which, together with f0, satisfies
conditions (2.1)–(2.3).
Assume that, for some n ≥ 1, continuous maps f0, . . . , fn satisfying condi-

tions (2.1)–(2.3) have been constructed. Therefore, for z ∈ Z,

dj+1(pj+1(fn(z)), Fj(pj ◦ fn(z)))
≤D(Fj(pj ◦ fn−1(z)), Fj(pj ◦ fn(z))) ≤ kjdj(pj(fn(z)), pj(fn−1(z)))

≤α−1j kjd(fn(z), fn−1(z)) =
k

kj+1
d(fn(z), fn−1(z))

<
k

kj+1
kn−1d(f1(z), f0(z)) +

k

kj+1
c1−n =: η(z).

Let η0, . . . , ηm−1:Z → (0,∞) be continuous functions such that
k

kj+1
d(fn(z), fn−1(z)) < η0(z) < η1(z) < . . . < ηm−1(z) < ηm(z) := η(z).

We thus get that, for z ∈ Z,

Fj(pj ◦ fn(z)) ∩Bj+1(pj+1 ◦ fn(z), η0(z)) 6= ∅ (9).

(8) Remember that addition of indices is performed modulo m.

(9) Here and in what follows, Bi(xi, r), i ∈ Zm, denotes the open ball of radius r in Xi

around xi ∈ Xi.
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Since Fj ∈ SP(Xj , Xj+1; C) and, for z ∈ Z∗,

pj+1 ◦ f∗(z) ∈ cl [Fj(pj ◦ fn(z)) ∩Bj+1(pj+1 ◦ fn(z), η0(z))],

we infer that there is a continuous extension hj+1n+1:Z → Xj+1 of pj+1 ◦ f∗ such
that, for each z ∈ Z,

hj+1n+1(z) ∈ cl [Fj(pj ◦ fn(z)) ∩Bj+1(pj+1 ◦ fn(z), η0(z))]
⊂ Fj(pj ◦ fn(z)) ∩Bj+1(pj+1 ◦ fn(z), η1(z)).

In particular, for z ∈ Z,

dj+1(h
j+1
n+1(z), pj+1 ◦ fn(z)) < η1(z) < η(z).

Since fn(z) ∈ Γ, pj+2(fn(z)) ∈ Fj+1(pj+1 ◦ fn(z)) on Z. Hence, on Z,

dj+2(pj+2(fn(z)), Fj+1(h
j+1
n+1(z)) ≤ D(Fj+1(pj+1 ◦ fn(z)), Fj+1(hj+1n+1(z)))
≤ kj+1dj+1(pj+1(fn(z)), hj+1n+1(z)) < kj+1η1(z)

and
Fj+1(h

j+1
n+1(z)) ∩Bj+2(pj+2(fn(z)), kj+1η1(z)) 6= ∅.

Since Fj+1 ∈ SP(Xj+1, Xj+2; C), and, on Z∗,

pj+2 ◦ f∗(z) ∈ Fj+1(pj+1 ◦ f∗(z)) ∩Bj+2(pj+2(fn(z)), kj+1η1(z)),

there is a continuous extension hj+2n+1:Z → Xj+2 of pj+2 ◦ f∗ such that, for all
z ∈ Z,

hj+2n+1(z) ∈ Fj+1(h
j+1
n+1(z)) ∩Bj+2(pj+2 ◦ fn(z), kj+1η2(z)).

Inductively we construct continuous extensions hj+sn+1:Z → Xj+s of pj+s ◦ f∗

(3 ≤ s ≤ m) such that, for z ∈ Z,

hj+sn+1(z) ∈ Fj+s−1(h
j+s−1
n+1 (z)) ∩Bj+s(pj+s(fn(z)), kj+1 . . . kj+s−1ηs(z)).

Let us put
fn+1(z) := (h0n+1(z), . . . , h

m−1
n+1 (z)), z ∈ Z.

It is clear that fn+1 is continuous, fn+1|Z∗ = f∗ and fn+1:Z → Γ. Moreover,
for each z ∈ Z,

pj+1 ◦ fn+1(z) = hj+1n+1(z) ∈ Fj(pj ◦ fn(z))

and, for s = 1, . . . ,m, we have

dj+s(pj+s(fn+1(z)), pj+s(fn(z))) < kj+1α−1j+sη(z),

i.e.

d(fn+1(z), fn(z)) < knd(f1(z), f0(z)) + kc1−n < knd(f1(z), f0(z)) + c−n.

This inductively completes the construction of the required sequence (fn)∞n=0.
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Next, for any r > 0, let Zr := {z ∈ Z | d(f1(z), f0(z)) < r}. The family
{Zr}r>0 forms an open cover of Z. By (2.4) and the completeness of Γ, for each
z ∈ Z, there is f(z) := limn→∞ fn(z); moreover, this convergence is uniform
on Zr for all r > 0. Hence the map f :Z → Γ is continuous. In view of properties
(2.2) and (2.3), f |Z∗ = f∗ and for all z ∈ Z, pj+1(f(z)) ∈ Fj(pj(f(z))), i.e.
f(z) ∈ S. �

Corollary 2.8. In addition to Assumption 2.6 suppose that, for each i ∈
Zm, the map Fi has compact values and the class Comp of compact spaces is
contained in C. Then the sets Fix(F ) and S are compact and, moreover, S ∈ AR.

Proof. The compactness of Fix(F ) and, hence, of S, is clear. Therefore, by
Theorem 2.7, the compact space S ∈ AE(C) ⊂ AE(Comp), i.e. as we remarked
in the introduction, A ∈ AR. �

Suppose now that X,Y are spaces, let X be complete and consider a set-
valued map F :X × Y ( X. In view of the Nadler theorem, if, for each y ∈ Y ,
the map F ( · , y):X ( X is a k(y)-contraction (k(y) ∈ [0, 1)), then the map
F :Y ( X, given by F(y) := Fix(F ( · , y)) for y ∈ Y , is well-defined. If k(y) does
not depend on y (i.e. k(y) = k ∈ [0, 1) for all y ∈ Y ) and the map F (x, · ):Y ( X

is H-upper semicontinuous uniformly with respect to x ∈ X (i.e. for any y0 ∈ Y
and ε > 0, there is δ > 0 such that, for x ∈ X and y ∈ Y , if dY (y, y0) < δ,
then d(F (x, y), F (x, y0)) := supz∈F (x,y) d(z, F (x, y0)) < ε), then F is H-upper
semicontinuous. This follows by inspection of the proof of the stability result
due to Lim [40] (see also [22, Lemma 15.12, Thorem 15.2]). This result is too
weak for our purposes. Hence we state a stronger result.

Proposition 2.9. Suppose again that F :X×Y ( X, where X is a complete
space, has compact values, for each y ∈ Y , F ( · , y) is a k(y)-contraction with
a continuous k:Y → [0, 1) and, for each x ∈ X, the map F (x, · ):Y ( X is
upper semicontinuous. Then the map F :Y ( X, given by F(y) := Fix(F ( · , y))
for y ∈ Y , is upper semicontinuous with compact values.

Proof. Assume that a sequence (yn, xn) ∈ Gr(F), i.e. for each n ≥ 1,
xn ∈ F (xn, yn), and assume that yn → y ∈ Y . LetK(X) denote the (hyper)space
of all compact subsets ofX. It is clear that (K(X),D) is a complete metric space.
Consider a map Φ:K(X)→ K(X) defined by the formula Φ(A) = F (A×{y}) for
A ∈ K(X). It is easy to see that Φ is a well-defined k(y)-contraction, i.e. for all
A,B ∈ K(X), D(Φ(A),Φ(B)) ≤ k(y)D(A,B). In view of the Banach theorem,
there is a unique fixed point of Φ, i.e. a compact K ⊂ X such that Φ(K) = K.
Let n ≥ 1 and take an arbitrary x ∈ K. Then

d(xn,K) ≤ d(xn, F (x, y)) ≤ d(F (xn, yn), F (x, y))

≤ d(F (xn, yn), F (x, yn)) + d(F (x, yn), F (x, y))
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≤ k(yn)d(xn, x) + d(F (x, yn), F (x, y))

≤ k(yn)d(xn, x) + sup
x∈K

d(F (x, yn), F (x, y)).

Since x ∈ K was arbitrary, we infer that, for each n ≥ 1,

(1− k(yn))d(xn,K) ≤ sup
x∈K

d(F (x, yn), F (x, y)).

For each x ∈ K, the map F (x, · ) is upper semicontinuous with compact values.
Hence it is H-upper semicontinuous and, in view of the contractivity of F ( · , y),
we gather that, for any ε > 0 and x ∈ K, there is δx > 0 such that if x′ ∈ B(x, δx)
and y′ ∈ B(y, δx), then d(F (x′, y′), F (x′, y)) < ε. The compactness of K implies
that, there is δ > 0 such that if d(y′, y) < δ, then d(F (x, y′), F (x, y)) < ε for all
x ∈ K. Thus, in view of the continuity of k( · ), we see that

lim
n→∞
d(xn,K) = 0.

This implies that (xn) has a convergent subsequence xnk → x. Since clearly F
is upper semicontinuous, the graph Gr(F ) is closed and, therefore x ∈ F (x, y),
i.e. x ∈ F(y). �

Now let us return to the setting of Theorem 2.7 and Corollary 2.8. Namely
suppose that

Assumption 2.10.

(a) For any i ∈ Zm, Xi, Yi are spaces and let Xm := X0 be complete;
additionally let X := X0;

(b) for i ∈ Zm, Fi:Xi × Yi ( Xi+1 has compact values; for each yi ∈ Yi,
Fi( · , yi):Xi ( Xi+1 is a Lipschitz map with constant ki(yi) ≥ 0 where
ki:Yi → [0,∞) is continuous; the product k0(y0) . . . km−1(ym−1) < 1 on
Y0 × . . .× Ym−1 and, for each xi ∈ Xi, the map Fi(xi, · ):Yi ( Xi+1 is
upper semicontinuous.

Proposition 2.11. Under Assumption 2.10, the maps F :Y := Y0 × . . . ×
Ym−1 ( X and S:Y ( X0× . . .×Xm−1 given, for y = (y0, . . . , ym−1) ∈ Y , by

x ∈ F(y) ⇔ ∀ i ∈ Zm ∃xi ∈ Xi x = x0, xi+1 ∈ Fi(xi, yi),
(x0, . . . , xm−1) ∈ S(y) ⇔ ∀ i ∈ Zm xi+1 ∈ Fi(xi, yi),

are upper semicontinuous with nonempty compact values and, for y ∈ Y ,

F(y) = p0(S(y))

where p0:
∏
i∈Zm Xi → X = X0 is the projection.



348 W. Kryszewski — J. Mederski

Proof. The upper semicontinuity of F is a direct consequence of Proposi-
tion 2.9 since, for y ∈ Y , F(y) is the fixed point set of a compact-valued contrac-
tion F ( · , y) with a continuous Lipschitz constant k(y) := k0(y0) . . . km−1(ym−1)
(y = (y0, . . . , ym−1) ∈ Y ) and such that F (x, · ):Y ( X is upper semicon-
tinuous, where for given x ∈ X and y = (y0, . . . , ym−1) ∈ Y , F (x, y) :=
Gm−1 ◦ . . . ◦ G0(x) with Gi := Fi( · , yi) for i ∈ Zm. Moreover, for each y ∈ Y ,
the sets F(y) and S(y) are compact and F(y) = p0(S(y)).
If yn → y in Y and xn ∈ S(yn), then xn0 := p0(xn) ∈ F(yn). By the upper

semicontinuity of F (and passing to subsequences if necessary), xn0 → x0 ∈
F(y) = p0(S(y)). If, for some i ∈ Zm, 1 ≤ i ≤ m− 1, xni−1 := pi−1(xn)→ xi−1,
then since xni := pi(x

n) ∈ Fi−1(xni−1, yni−1), by the upper semicontinuity (and the
compactness of values) of Fi−1 and again passing to a subsequence if necessary,
xni → xi ∈ Fi−1(xi−1, yi−1). Finally we have x = (x0, . . . , xm−1) = limn→∞ xn

such that xi ∈ Fi−1(xi−1, yi−1) for all i ∈ Zm, i ≥ 1. To show that x ∈ S(y)
observe that xn0 ∈ Fm−1(xnm−1, ynm−1); hence x0 ∈ Fm−1(xm−1, ym−1) by the
closeness of Gr(Fm−1). �

Remark 2.12. If above Y0 = . . . = Ym−1 =: Y , then instead of F :Y m (

X (resp. S:Y m (
∏
i∈Zm Xi) one may consider a map Y ( X (resp. Y 7(∏

i∈Zm Xi) given by Y 3 y 7( F ◦∆ (resp. Y 3 y 7( S ◦∆) where ∆:Y → Y m is
the diagonal map, i.e. ∆(y) := (y, . . . , y) ∈ Y m). In what follows these new maps
are also denoted by F (resp. S). As before these maps are upper semicontinuous
with nonempty compact values and, for any y ∈ Y , F(y) = p0(S(y)).

In view of Theorem 2.7 we get immediately

Corollary 2.13. Suppose that Assumption 2.10 is satisfied. If, for each
i ∈ Zm, Xi is complete, there is j ∈ Zm such that Xj ∈ AE(C), where C is a class
of spaces containing the class Comp of compact spaces and, for each i ∈ Zm and
yi ∈ Yi, Fi( · , yi) ∈ SP(Xi, Xi+1; C), then S : Y :=

∏
i∈Zm Yi →

∏
i∈Zm Xi is

upper semicontinuous with compact values and S(y) ∈ AR for all y ∈ Y .

The assertion of Corollary 2.13 holds for instance if, for each i ∈ Zm, Xi is
a closed convex subset of a Banach space and the map Fi( · , yi), where yi ∈ Yi,
has compact convex values.

3. Fixed point index for Krasnosel’skĭı-type maps

In this section we shall construct a fixed point index for the so-called Kras-
nosel’skĭı-type maps. To make the setting more transparent, let us first briefly
study the single-valued situation.

3.1. Single-valued Krasnosel’skĭı-type maps. Suppose thatX is a space
and let A ⊂ X. Additionally let Λ be a parameter metric space.
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Definition 3.1. A map ϕ:A × Λ → X is called a Krasnosel’skĭı-type map
provided there exist:

(a) a space Y , a map f :X × Y × Λ → X such that, for each x ∈ X,
f(x, · , · ):Y × Λ → X is continuous and, for each y ∈ Y and λ ∈ Λ,
f( · , y, λ):X → X is a k(y, λ)-contraction where the function k:Y ×Λ→
[0, 1) is continuous;

(b) a continuous compact map c:A× Λ→ Y , such that

ϕ(x, λ) = f � c(x, λ) := f(x, c(x, λ), λ) for all x ∈ A and λ ∈ Λ.

A similar class of maps has been studied in [41]. The family of all Kras-
nosel’skĭı-type maps is denoted by K(A×Λ, X). In the case when Λ = {λ} is the
singleton, we write K(A,X). If ϕ = f � c ∈ K(A,X), i.e. when Λ is a singleton,
then the dependence of λ may be skipped: the existing map f :X × Y → X is
such that f(x, · ) is continuous and f( · , y) is a k(y)-contraction with continuous
k:Y → [0, 1), while c:A→ Y is continuous and compact and then

ϕ(x) = f � c(x) := f(x, c(x)).

It is also clear that given ϕ ∈ K(A×Λ, X) and λ0 ∈ Λ, the map ϕλ0 := ϕ( · , λ0) ∈
K(A,X).
Let ϕ = f � c belong to K(A × Λ, X) (resp. K(A,X)) and suppose that the

space X is complete. The map F :Y ×Λ→ X (resp. F :Y → X) given, for y ∈ Y
and λ ∈ Λ by

F(y, λ) := Fix(f( · , y, λ)) (resp. F(y) := Fix(f( · , y))),

is well-defined and, in view of Proposition 2.9, continuous. Moreover, the map
A × Λ 3 (x, λ) 7→ F(c(x, λ), λ) (resp. A 3 x 7→ F(c(x))) is well-defined and
compact. Observe that, for each λ ∈ Λ,

Fix(ϕ( · , λ)) = Fix(F(c( · , λ), λ)) (resp. Fix(ϕ) = Fix(F ◦ c))

and if A is closed then, Fix(ϕ( · , λ)) (resp. Fix(ϕ)) is compact.

Definition 3.2. Given maps ϕi ∈ K(A,X), i = 0, 1, we say that ϕ0 is
homotopic in K to ϕ1 (written ϕ0 'K ϕ1) if there exists ϕ = f � c ∈ K(A ×
[0, 1], X) such that ϕi = ϕ( · , i), i = 0, 1 (we say that ϕ is a K-homotopy joining
ϕ0 to ϕ1).

In order to proceed further we assume that a complete space X ∈ ANR and
U ⊂ X is open. Assume that ϕ = f � c ∈ K(clU,X) has no fixed points on the
boundary bdU of U , i.e. Fix(ϕ) ∩ bdU = ∅ and put

(3.1) Ind(ϕ,U) := indG(F ◦ c, U)
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where indG(F ◦c, U) stands for the Granas fixed-point index of the compact map
F ◦ c (see [28]) and, as above, F(y) = Fix(f( · , y)). Observe that, in general,
Ind(ϕ,U) may strongly depend on the form of ϕ, i.e. the structure of ϕ reflected
by the formula ϕ = f � c.
Our definition constitutes a counterpart and a generalization onto the con-

text of the fixed-point index theory of the quasi-degree or quasi-rotation of Kras-
nosel’skĭı and Zabrĕıko (see [33, Section 34.1] and comp. [55]).

Remark 3.3. It is not difficult to show that if ϕ = f �c ∈ K(A,X), then ϕ is
a k-ball-contraction with k = sup{k(y) | y ∈ c(A)}, i.e. for each bounded B ⊂ A,
β(ϕ(B)) ≤ kβ(B), where β stands for the Hausdorff measure of noncompactness
in X — see the more general Proposition 3.15 below.
Therefore if A = clU where U is an open subset of a closed convex subset X

of a Banach space, then the fixed point index of ϕ is available (see for instance
the book [30]) and in this case our approach gives nothing new. Indeed, let
indcond(ϕ,U) denote the fixed-point index of ball-contractions. We are to show
that indcond(ϕ,U) = Ind(ϕ,U). To this end we shall show that a map h: clU ×
[0, 1]→ X given by the formula

h(x, λ) = (1− λ)F ◦ c(x) + λϕ(x)

(being a ball-contraction) has no fixed points on bdU . To this end suppose to
the contrary that x ∈ bdU and x = h(x, λ) for some λ ∈ [0, 1]. Let y = F ◦ c(x);
then y = f(y, c(x)) and

‖x− y‖ = λ‖y − f(x, c(x))‖ = λ‖f(y, c(x))− f(x, c(x))‖
≤ λk(c(x))‖x− y‖ < ‖x− y‖,

a contradiction. The homotopy property of indcond gives that

indcond(ϕ,U) = indcond(F ◦ c, U) = indG(F ◦ c, U) = Ind(ϕ,U).

However, the fixed-point index theory for arbitrary ball-contractions (or con-
densing maps) defined on arbitrary absolute neighbourhood retracts is yet un-
available. But our constructions makes it possible to deal with this construction
at least for a special type of ball-contractions: namely for Krasnosel’skĭı-type
maps.

To see the immediate advantage of our approach consider the following ex-
ample.

Example 3.4. Suppose that E is a Banach space, X is a bounded neigh-
bourhood retract in E and let U = {U(t)}t≥0 be a C0-semigroup of bounded
linear operators U(t):E → E (t ≥ 0) such that, for all ‖U(t)‖ ≤ eωt where ω < 0
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(i.e. U is a strict contraction semigroup). Let A be the infinitesimal generator of
U and F:X → E be an `-Lipschitz function. Suppose that, for all x ∈ bdX,

lim inf
h→0+

dX(U(h)x+ hF(x))
h

= 0

where, for z ∈ E, dX(z) := infx∈X ‖x− z‖ is the distance function. Under these
assumption Bothe [8] proves that, for each T > 0, there exists a unique mild
solution x = x(x0; · ): [0, T ]→ X to the problem

(3.2) x′ = Ax+ F(x), x(t) ∈ X, x(0) = x0 ∈ X (10).

Moreover, the map X 3 x0 7→ x(x0; · ) ∈ C([0, T ], E), where C([0, T ], E) stands
for the Banach space of continuous functions [0, T ]→ E, is continuous.
We shall study the existence of a mild solution x: [0, T ]→ X to (3.2) such that

x(0) = x(T ). This problem has been addressed in [4, Theorems 30, 37, 38] under
the assumption that X is bounded and convex (and some extra assumptions
concerning the semigroup U).
It is clear that the existence of periodic (mild) solutions to (3.2) is equivalent

to the existence of fixed point of the associated Poincaré operator PT :X → X
defined by the formula

PT (x0) := x(x0;T ), x0 ∈ X.

Observe that PT is compact if the semigroup U is compact (and then the periodic
problem may be solved via the Granas index theory); it may be also shown that
PT is a k-ball-contraction with k = e(ω+4`)T (see [4, Theorem 25]). However it
does not help much since X is no longer convex in our setting. Therefore we
propose an attitude sufficient to show that PT is a Krasnosel’skĭı-type map.
Namely we suppose that U is uniformly continuous, i.e. limt→0+ ‖U(t)−I‖ =

0 (11) and F is compact. Given w ∈ C([0, T ], E) and x0 ∈ E, let ΣA(x0, w) be
a unique (mild) solution to the problem x′ = Ax + w, x(0) = x0. It is easy to
see that, for all t ∈ [0, T ], x0, x′0 ∈ E and w,w′ ∈ C([0, T ], E),

‖ΣA(x0, w)(t)− Σ(x′0, w′)(t)‖ ≤ eωt‖x0 − x′0‖+
∫ t
0
eω(t−s)‖w(s)− w′(s)‖ ds.

Hence the map f := ΣA( · , · )(T ):E × C([0, T ], E) → E is continuous and, for
each w ∈ C([0, T ], E), f( · , w) is a k-contraction with k := eωT < 1. Now let us
consider a map c:X → C([0, T ], E) given by

c(x0)(t) = F(x(x0; t)), x0 ∈ X.

(10) I.e. x: [0, T ]→ E is a continuous function such that, for all t ∈ [0, T ],

x(t) = U(t)x0 +
R t
0 U(t− s)F(x(s)) ds.

(11) This is, by all means, a restrictive assumption since it implies that A is defined
everywhere and, for each t ≥ 0, U(t) = eAt; moreover in this case any mild solution to (3.2) is
actually a strong solution.
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It is clear that c is continuous. We shall show that c is compact. To this end
observe that the family {x(x0; · ) | x0 ∈ X} is uniformly equicontinuous, that is
given ε > 0, there is δ > 0 such that, for any t, t′ ∈ [0, T ], if |t − t′| < δ, then
‖x(x0; t) − x(x0; t′)‖ < ε for all x0 ∈ X. Indeed, assume that 0 ≤ t′ < t ≤ T ;
then the semigroup property yields that

‖x(x0; t)− x(x0; t′)‖ ≤ eωt
′
‖U(t− t′)− I‖‖x0‖

+
∫ t′
0
eω(t

′−s)‖U(t− t′)− I‖‖c(x0)(s)‖ ds+
∫ t
t′
eω(t−s)‖c(x0)(s)‖ ds.

Taking the boundedness ofX and F and the uniform continuity of U into account,
we infer that {x(x0; · )}x0∈X is indeed uniformly equicontinuous. In view of the
compactness of F, it is clear that, for each t ∈ [0, T ], the orbit {c(x0)(t)}x0∈X of
the family c(X) is relatively compact. Hence, by the Ascoli–Arzela theorem and
the uniform continuity of F, we see that c is compact.
Finally observe that, for all x0 ∈ X,

PT (x0) = f � c(x0) = Σ(x0;F(x(x0; · ))(T ).

Hence PT is a Krasnosel’skĭı-type map and its fixed points (that is periodic solu-
tions to (3.2)) may be studied by means of the introduced index. In particular,
if X ∈ AR, then (3.2) has periodic solutions in view of the generalized Schauder
theorem (see [28, Theorem (7.4)]).
Let us remark that the described technique allows to study the existence of

equilibria states, i.e. points x0 ∈ X such that −A(x0) = F(x0). Given T > 0,
let xn: [0, T ] → X be a solution to (3.2) such that xn(0) = x(2−nT ). It is
clear that xn converges uniformly to a constant map x0 ∈ X (i.e. x0(t) ≡ x0
on [0, T ]) such that −A(x0) = F(x0). This result constitutes a direct (single-
valued) generalization of the Deimling theorem [15, Theorem 11.5] for non-convex
domains since if A = −I, then U(t)x = e−tx on E and, as it easy to see,

TUX(x) :=
{
u ∈ E

∣∣∣∣ lim inf
h→0+

dX(U(h)x+ hu)
h

= 0
}
= x+ TX(x)

where TX(x) is the Bouligand tangent cone to X at x ∈ X (see Assumption 4.2
below).

In what follows we are going to treat similar problems within the setting of
set-valued Krasnosel’skĭı-type maps.

3.2. Fixed point index for compositions of acyclic maps. In order
to address the set-valued situation we shall need some more preparation. An
index to be constructed will be defined via an appropriate fixed point index for
set-valued maps. As it is well-known the availability of such theory is restricted
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to special classes of such maps (see also the Appendix below). Hence we have to
recall some relevant issues.
We say that a space A ⊂ X is acyclic if Ȟ∗(A;Q) = Ȟ∗(pt;Q) where pt

stands for a one-point space and Ȟ∗( · ;Q) is the Čech homology with compact
carriers and rational coefficients (see e.g. [24]). Observe that any contractible
space is acyclic; in particular if A ∈ AR, then A is acyclic. Let X,Y be spaces.
We say that an upper semicontinuous set-valued map F :X ( Y is acyclic if, for
each x ∈ X, F (x) is compact and acyclic. The class of acyclic maps X ( Y is
denoted by A(X,Y ).

Definition 3.5 (see [18, Definition 2.15], [51]). By an acyclic decomposition
of a map F :X ( Y we mean a sequenceD(F ) = (F0, F1, . . . , Fn−1) representing
the diagram

(3.3) D(F ):X = X0
F0
−( X1

F1
−( · · ·

Fn−2
−( Xn−1

Fn−1
−( Xn = Y,

where Xi, i = 0, . . . , n, are spaces and, for i = 0, . . . , n − 1, Fi ∈ A(Xi, Xi+1),
such that F = Fn−1 ◦ . . . ◦ F0. We also say that the decomposition D(F )
determines F and that F :X ( Y is acyclic-decomposable if there exists an
acyclic decomposition determining it.

Example 3.6. (a) Clearly any acyclic, and — in particular — single-valued,
map F :X ( Y is acyclic-decomposable with the decomposition (F ) determined
by F itself.
(b) Recall Assumption 2.6 and assume that, for each i ∈ Zm, Fi has compact

values. If the class C is multiplicative, then F = Fm−1 ◦ . . . ◦ F0 is acyclic-
decomposable in view of Proposition 2.4.
(c) Under assumptions of Corollary 2.13, the map F defined in Proposition

2.11 is acyclic-decomposable with an acyclic decomposition given by the diagram

D(F):Y
S
−(

∏
i∈Zm

Xi
p0−→ X.

The class of acyclic decompositions of acyclic-decomposable maps X ( Y

will be denoted by DA(X,Y ). We shall study these maps along with their acyclic
decompositions. Therefore two acyclic-decomposable maps F, F ′:X → Y are
equal if and only if there are acyclic decompositions D(F ), D(F ′) ∈ DA(X,Y )
of F and F ′, respectively, such that D(F ) = D(F ′) (12). Given acyclic de-
compositions D(F ) ∈ DA(X,Y ), D(G) ∈ DA(Y, Z), where Z is a space, of

(12) I.e. if D(F ) is given by (3.3) and D(F ′) : X = X′
0

F ′0
−( X′

1

F ′1
−( · · ·

F ′m−2
−( X′

m−1

F ′m−1
−(

X′
m = Y , then n = m, Xi = X′

i and Fi = F ′i for all i. Clearly if F = F ′, then F (x) = F ′(x) for

each x ∈ X, but not conversely since the same acyclic-decomposable map may admit different
decompositions.
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acyclic-decomposable maps F :X ( Y and G:Y ( Z, respectively, and A ⊂ X,
then the composition D(G) ◦D(F ) and the restriction D(F )|A ∈ DA(A, Y ) are
defined in an obvious way; evidently D(G) ◦ D(F ) and D(F )|A are acyclic de-
compositions of G ◦ F and F |A, respectively.
Two acyclic decompositions D(F ), D(G):X ( Y of acyclic-decomposable

maps F,G:X ( Y are homotopic, if there exists an acyclic-decomposable map
H:X× [0, 1]( Y with an acyclic decomposition D(H) ∈ DA(X× [0, 1], Y ) such
that

D(H)|X×{0} = D(F ), D(H)|X×{1} = F (G).
It is clear that the relation of homotopy is an equivalence relation.

Remark 3.7. It is easy to show (see [18, Proposition 2.14]) that if, for
i = 0, . . . , n− 1, Fi, Gi are homotopic in A(Xi, Xi+1) (i.e. there is Hi ∈ A(Xi ×
[0, 1], Xi+1) such that Hi( · , 0) = Fi and Hi( · , 1) = Gi on Xi), then the de-
compositions D(F ) = (F0, . . . , Fn−1) and D(G) = (G0, . . . , Gn−1) of acyclic-
decomposable maps G = Gn−1 ◦ . . . ◦ G0 and F = Fn−1 ◦ . . . ◦ F0, respectively,
are homotopic.

Let X ∈ ANR and let D(F ) = (F0, . . . , Fn−1) ∈ DA(X,X) be an acyclic
decomposition of a compact acyclic-decomposable map F :X ( X. In this
situation Skordev and Siegberg [51], [53] (see also [18] for a more general case
and [54]) define the Lefschetz number L(D(F )) ∈ Q of the decomposition D(F ).
Moreover, given an open U ⊂ X such that Fix(F ) ∩ bdU = ∅, they define the
fixed point index indS(X,D(F ), U) of the decomposition D(F ) with respect to
U . These definitions rely on relatively complex algebraic constructions involving
the so-called approximation systems. The index indS satisfies all the natural
properties.

(a) (Existence) If indS(X,D(F ), U) 6= 0, then Fix(F ) ∩ U 6= ∅.
(b) (Additivity) If U1, . . . , Uk ⊂ U are open disjoint and Fix(F ) ∩ [clU \⋃k

i=1 Ui] = ∅, then

indS(Φ, U) =
k∑
i=1

indS(Φ, Ui).

(c) (Homotopy invariance) If D(H) ∈ DA(X × [0, 1], X) is an acyclic de-
composition of the compact acyclic-decomposable map H:X × [0, 1](
X, then L(D(H)X×{0}) = L(D(H)X×{1}). If, for each t ∈ [0, 1],
Fix(H( · , t)) ∩ bdU = ∅, then

indS(X,D(H)|X×{0}, U) = indS(X,D(H)|X×{1}, U).

(d) (Commutativity) If X,Y ∈ ANR, a decomposition D(F ) ∈ DA(X,Y )
determines a compact map, G ∈ DA(Y,X), Fix(G ◦ F ) ∩ bdU = ∅,
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Fix(F ◦G)∩bdV = ∅, where V = {y ∈ Y | G(y) ⊂ U} andG[Fix(F ◦G)\
clV ]∩Fix(G◦F |U ) = ∅, then indS(X,D(G)◦D(F ), U) = IndS(Y,D(F )◦
D(G), V ).

(e) (Normalization) If D(F ) ∈ DA(X,X), then

indS(X,D(F ), X) = L(D(F )).

(f) (Units) If F :X → F is acyclic-decomposable and, for each x ∈ X,
F (x) = K ⊂ X, where K ∩ bdU = ∅, then, for any acyclic decomposi-
tion D(F ) of F ,

indS(X,D(F ), U) =

{
1 if K ∩ U 6= ∅,
0 otherwise.

(g) The index indS is consistent with the Granas index: if f :X → X is
a continuous compact single-valued map and Fix(f) ∩ bdU = ∅, then
indS(X, (f), U) = indG(f, U) (see Example 3.6(a)).

Properties (b)–(e) were proved in [51]; property (a) follows from (b), (f)
and (g) are direct consequences of the very definition.

Remark 3.8. Let X ∈ ANR and consider an acyclic decomposition (3.3) of
an acyclic-decomposable map F :X ( X such that Fix(F ) ∩ bdU = ∅.
(a) Along with (3.3) one may consider decompositions

(id, D(F )):X = X0
id−→ X0

F0
−( X1

F1
−( · · ·Xn−1

Fn−1
−( Xn = X,

(D(F ), id):X = X0
F0
−( X1

F1
−( . . . Xn−1

Fn−1
−( Xn

id−→ Xn = X,

where id stands for the identity on X0 and Xn, respectively. Then, by the very
construction of the index, it is easy to see that

indS(X, (id, D(F )), U) = indS(X,D(F ), U) = indS(X, (D(F ), id), U).

(b) Let D′(F ) : X = X ′0
F ′0
−( X ′1

F ′1
−( · · ·X ′n−1

F ′n−1
−( Xn = X be another

acyclic decomposition of F . We say that the decompositions D(F ) and D′(F )
are related if, for each i = 0, . . . , n, there is a continuous map hi:Xi → X ′i such
that h0 = idX = hn and hi+1 ◦ Fi = F ′i ◦ hi for i = 0, . . . , n− 1. It is clear that
if decompositions D(F ) and D′(F ) are related, then

indS(X,D(F ), U) = indS(X,D′(F ), U).

(c) Suppose that in (3.3), there is j ∈ {0, . . . , n−2} such that Fj = fj :Xj →
Xj+1 is a single-valued map. Then it makes sense to consider the reduced decom-
position D′(F ) = (F0, . . . , Fj−1, Fj+1 ◦ fj , Fj+2, . . . , Fn−1). From (b) it follows
immediately that

indS(X,D(F ), U) = indS(X,D′(F ), U).
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(d) If an acyclic decomposition D(F ) ∈ DA(X,Y ) of a compact acyclic-
decomposable map F :X ( Y , where X,Y ∈ ANR and Y ⊂ X, and an open
U ⊂ X such that Fix(F ◦ j) ∩ bdU = ∅, where j:Y → X, are given, then —
in view of the commutativity property — the following restriction property is
satisfied:

indS(X, (D(F ), j), U) = indS(Y,D(F )|Y , U ∩ Y ).
Some other indications as to the construction of the fixed point index for

set-valued maps are provided Section 5.1.

3.3. Set-valued Krasnosel’skĭı-type maps. We may now formulate the
basic concepts and results of this paper.

Definition 3.9. Let X,Λ be spaces; assume that X is complete. We say
that Φ:X × Λ( X is a Krasnosel’skĭı-type set-valued map if:

(a) there are a space Y and a set-valued map F :X × Y × Λ ( X with
compact values such that, for each x ∈ X, F (x, · , · ):Y × Λ ( X is
upper semicontinuous, for each y ∈ Y and λ ∈ Λ, F ( · , y, λ):X ( X is
a k(y, λ)-contraction (where the function k:Y × Λ → [0, 1) is continu-
ous);

(b) there is a compact upper semicontinuous map C:X×Λ( Y , such that

Φ(x, λ) = F � C(x, λ) := F ({x} × C(x, λ)× {λ})

for x ∈ X and λ ∈ Λ.

Observe that, in view of Proposition 2.9, if Φ is a Krasnosel’skĭı-type map,
then the map F :Y × Λ( X given, by

F(y, λ) := Fix(F ( · , y, λ)) for y ∈ Y, λ ∈ Λ,

is upper semicontinuous with nonempty and compact values.

Definition 3.10. We say that a Krasnosel’skĭı-type map Φ = F � C is
permissible provided the maps C and F are acyclic-decomposable in the sense
of Definition 3.5.

As before the family of Krasnosel’skĭı-type maps Φ:X × Λ( X is denoted
by K(X × Λ, X) and by K(X,X) if Λ reduces to a point (i.e. when, in practice,
Λ is not present). At the same time the class of permissible Krasnosel’skĭı-type
maps is denoted by Kp(X×Λ, X) (resp. Kp(X,X)). A class of mappings similar
to that of permissible Krasnosel’skĭı-type maps has been considered in [45] and
[46]; the author studies there maps of the form F � C assuming that both maps
F and C have compact convex values.

Remark 3.11. It is clear that if Φ = F �C ∈ K(X,X) and F , C are acyclic-
decomposable maps, then so is Φ; however if Φ is permissible in the above sense,
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then — in general — Φ may be not acyclic-decomposable. For instance consider
a map F :R×R ( R given by F (x, y) = {(x+y)/2, y} ⊂ R for any x, y ∈ R, and
let C:R→ R be an arbitrary compact continuous map. Then Φ = F � C is not
acyclic-decomposable, but for each y ∈ R, F(y) = {y} is acyclic-decomposable
and, hence Φ is a permissible Krasnosel’skĭı-type map.

Example 3.6(b) justifies the definition of permissible Krasnosel’skĭı-type maps
and provides a method to construct natural examples of set-valued Krasnosel’-
skĭı-type maps. Namely we have:

Example 3.12. (a) Let us assume that, for i ∈ Zm, Xi is a complete space
(and there is j ∈ Zm such that Xj ∈ AE(C) where C is a class of spaces contain-
ing the class Comp of compact spaces), a map Fi:Xi × Y × Λ ( Xi+1 (again
addition is performed modulo m) is such that, for each y ∈ Y and λ ∈ Λ,
Fi( · , y, λ) is a compact-valued Lipschitz map (with constant ki(y, λ)) belonging
to SP(Xi, Xi+1) and, for each x ∈ Xi, Fi(x, · , · ) is upper semicontinuous. If the
product function

∏
i∈Zm ki( · ) is continuous on Y × Λ and takes values in [0, 1),

and C:X ×Λ( Y is an arbitrary acyclic-decomposable map, then Φ := F �C,
where F (x, y, λ) = Gm−1 ◦ . . . ◦ G0(x) and Gi := Fi( · , y, λ) for x ∈ X, y ∈ Y ,
λ ∈ Λ and i ∈ Zm, is a permissible Krasnosel’skĭı-type map.
(b) Suppose that K:X × Λ ( X1 has compact values, for each λ ∈ Λ,

K( · , λ) ∈ SP(X,X1) is Lipschitz with constant k(λ), C:X ×Λ( Y is compact
acyclic-decomposable and let T :X1 × Y × Λ→ X be continuous and such that,
for each y ∈ Y , λ ∈ Λ, T ( · , y, λ) is Lipschitz with constant t(y, λ). If spaces
X,X1 are complete, X1 ∈ AR, the function k( · )t( · , · ) ∈ [0, 1) is continuous on
Y × Λ and K(x, · ) is upper semicontinuous on Λ, then the map mentioned in
Introduction

X × Λ 3 (x, λ) 7( Φ(x, λ) := T (K(x, λ)× C(x, λ)× {λ})

is a permissible Krasnosel’skĭı-type mapping. Indeed, let F :X × Y ×Λ( X be
given by

F (x, y, λ) := T (K(x, λ)× {(y, λ)}), x ∈ X, y ∈ Y, λ ∈ Λ.

Then, for x ∈ X and λ ∈ Λ,

F � C(x, λ) = F ({x} × C(x, λ)× {λ}) = T (K(x, λ)× C(x, λ)× {λ}) = Φ(x, λ).

Obviously, for each y ∈ Y , λ ∈ Λ, F ( · , y, λ) is a contraction with the contin-
uous constant k(λ)t(y, λ), F (x, · , · ) is upper semicontinuous on Y × Λ and, in
view of Corollary 2.8 and Proposition 2.11, the map F :Y × Λ → X is acyclic-
decomposable.
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Definition 3.13. Given Φi ∈ K(X,X) (resp. Φi ∈ Kp(X,X)), i = 0, 1, we
say that Φ0 is homotopic in K (resp. in Kp) to Φ1 (written Φ0 'K Φ1 (resp.
Φ0 'Kp Φ1)) if there is Φ ∈ K(X × [0, 1], X) (resp. Kp(X × [0, 1], X)) such that
Φi = Φ( · , i). We say that Φ is a K-homotopy (resp. Kp-homotopy) joining Φ0
to Φ1. Obviously relation 'K (resp. 'Kp) is an equivalence relation.

Example 3.14. Suppose that X is a convex subset of a Banach space, for
i = 0, 1, Yi is a space, Fi:X ×Yi ( X and Ci:X → Yi are set-valued maps with
compact values such that Ci is compact acyclic-decomposable, for y ∈ Yi, Fi( · , y)
is a ki(y)-contraction with convex values, ki:Yi → [0, 1) is continuous and, for
each x ∈ X, Fi(x, · ) is upper semicontinuous. Then Φi := Fi � Ci ∈ K(X,X),
i = 0, 1, are permissible Krasnosel’skĭı-type maps and, moreover they are Kp-
homotopic.

To see this observe that, by the Arens–Eells theorem (see e.g. [28]), both
spaces Y0 and Y1 may be considered as the disjoint closed subsets of a normed
space Y . Define C:X×[0, 1]( Y by the formula C(x, λ) = (1−λ)C0(x)+λC1(x)
for x ∈ X. It is easy to verify that C is an acyclic-decomposable compact map.
Next we show a construction of a certain extension F̃i:X×Y ( X of Fi, i = 0, 1.

Let i = 0 and let {Us, as}s∈S be the Dugundji system for Y \ Y0 (see [7,
Definition II.3.1]), i.e. S is the set of indices, {Us}s∈S is a locally finite cover
of Y \ Y0, for all s ∈ S, Us ⊂ Y \ Y0 is open, as ∈ Y0 and if y ∈ Us, then
d(y, as) ≤ 2d(y, Y0) := infa∈Y0 d(y, a). Let {bs}s∈S be a locally finite partition
of unity subordinated to the covering {Us}s∈S . Consider a map F̃0:X ×Y ( X

given, for x ∈ X and y ∈ Y , by the formula

F̃0(x, y) =


F0(x, y) for y ∈ Y0,∑
s∈S
bs(y)F0(x, as) for y ∈ Y \ Y0.

It is easy to show that, for any x ∈ X, F̃0(x, · ):Y ( X is upper semicontinuous
(see the arguments in [7]) and has compact convex values. Let y ∈ Y ; if y ∈ Y0,
then F̃0( · , y) is a k0(y)-contraction. Suppose that y ∈ Y \ Y0 and let x, x′ ∈ X.
Let z ∈ F̃0(x, y). Hence z =

∑
s∈S bs(y)zs where zs ∈ F0(x, as). For each s ∈ S,

there is z′s ∈ F0(x′, as) such that

‖zs − z′s‖ = d(zs, F0(x′, as)) ≤ D(F0(x, as), F0(x′, as)) ≤ k(as)‖x− x′‖.

Clearly z′ :=
∑
s∈S bs(y)z

′
s ∈ F̃0(x′, y) and

‖z − z′‖ ≤
∑
s∈S
bs(y)‖zs − z′s‖ ≤

∑
s∈S
bs(y)k0(as)‖x− x′‖.
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Let, for y ∈ Y ,

k̃0(y) =


k0(y) for y ∈ Y0,∑
s∈S
bs(y)k0(as) for y ∈ Y \ Y0.

Then k̃0:Y → [0, 1) is continuous and, for all y ∈ Y and x, x′ ∈ X,

D(F̃0(x, y), F̃0(x′, y)) ≤ k̃0(y)‖x− x′‖.

Let F̃1:X × Y ( X be an extension of F1 constructed analogously (in
particular, for each y ∈ Y , F̃1( · , y) is a k̃1(y)-contraction).
Finally define F :X × Y × [0, 1]( X by the formula

F (x, y, λ) := (1− λ)F̃0(x, y) + λF̃1(x, y), x ∈ X, y ∈ Y.

It is then clear that, for each x ∈ X, F (x, · , · ):Y × [0, 1] ( X is upper semi-
continuous and, for all y ∈ Y and λ ∈ [0, 1], F ( · , y, λ):X ( X is a k(y, λ)-
contraction with k(y, λ) := (1− λ)k̃0(y) + λk̃1(y). Then Φ := F �C is a desired
Kp-homotopy joining Φ0 to Φ1.
In the same manner one shows that any two Krasnosel’skĭı-type maps of the

form F �C, where F = Fn◦. . .◦F1 is a composition of contractions with compact
convex values, are K-homotopic.

Our next observation situates the class of Krasnosel’skĭı-type maps in the
class of set-valued contractions with respect to the Hausdorff measure of non-
compactness.

Proposition 3.15. If Φ = F �C ∈ K(X,X), then Φ is a k-ball-contraction
with k := sup{k(y) | y ∈ C(X)} i.e. for any bounded B ⊂ X,

β(Φ(B)) ≤ kβ(B)

where β stands for the Hausdorff measure of noncompactness in X.

Proof. Let B ⊂ X be bounded and µ := β(B). It is sufficient to show that,
for any ε > 0, there is a compact set Z ⊂ X such that Φ(B) ⊂ B(Z, kµ + ε).
To this end fix ε > 0. Then B ⊂

⋃
b∈IB B(b, µ+ k

−1ε) where the set IB ⊂ X is
finite. Let Z := F (IB × clC(B)). The upper semicontinuity of F implies that
Z is compact. Let x ∈ Φ(B). There is x′ ∈ B, b ∈ IB and y ∈ C(x), such that
x ∈ F (x′, y) and d(x′, b) < µ+ k−1ε. Then

d(x,Z) ≤ d(x, F (b, y)) ≤ D(F (x′, y), F (b, y)) ≤ k(y)d(x′, b) < kµ+ ε. �

Remark 3.16. If we assume that X is a closed convex and bounded subset
of a Banach space, F and C are acyclic-decomposable maps, then Φ is an acyclic-
decomposable map (see Remark 3.11) and, in view of [30] (see also [26]), Φ has
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fixed points. Moreover, in this case, the authors in [30] (comp. [26]) give a defini-
tion of a local index monitoring the existence of fixed points in an open subset of
X (see Section 5.1; a more general approach to this problem has been presented
in [21]). The attitude of [30], [26] or [21] can not be, unfortunately, applied in
case X is an arbitrary ANR (see also Remark 3.3). This is understandable since
even in the single-valued case the available fixed point techniques for k-set (-ball)
-contractions (or condensing maps) require convex domains; some efforts to over-
come this shortcoming has been undertaken in [42] where the so-called special
ANRs and maps that remind condensing ones were studied. As we shall see be-
low, the application of permissible Krasnosel’skĭı-type maps allows to study their
fixed points on arbitrary (complete) ANRs by means of homotopical methods.
It seems therefore that (permissible) Krasnosel’skĭı-type maps provide a com-
promise of sorts between compact and k-ball-contractions (or condensing maps)
since they are properly chosen in order to deal with local homotopy invariants
on arbitrary ANRs.

We are now in a position to define a fixed-point index for permissible Kras-
nosel’skĭı-type maps. Namely, suppose that Φ = F � C ∈ Kp(X,X), a complete
space X ∈ ANR and let U ⊂ X be open and such that Fix(Φ) ∩ bdU = ∅.
Since the map F ◦ C is acyclic-decomposable (as the composition of acyclic-
decomposable maps) with the acyclic decomposition given as D(F) ◦ D(C)
(which, later on, will be identified with the pair (F , C)) where D(C) and D(F)
are the given acyclic decompositions of C and F , respectively, and F ◦ C is
compact, we are in a position to define a fixed-point index

(3.4) Ind(Φ, U) := indS(X, (F , C), U)

remembering that the index thus defined depends strongly on particular decom-
positions of F and C. It is clear that definition (3.4) is consistent with (3.1), i.e.
if ϕ = f � c ∈ K(X,X) is single-valued, then both definitions agree.
Let us collect some properties of Ind.

Theorem 3.17. Let Φ = F �C ∈ Kp(X,X) where X ∈ ANR and let U ⊂ X
be open.

(a) (Existence) If Fix(Φ)∩bdU=∅ and Ind(Φ, U) 6=0, then Fix(Φ)∩U 6=∅.
(b) (Additivity) If U1, . . . , Uk ⊂ U are open disjoint and Fix(Φ) ∩

[
clU \⋃k

i=1 Ui
]
= ∅, then

Ind(Φ, U) =
k∑
i=1

Ind(Φ, Ui).

(c) (Homotopy invariance) If Φ = F � C ∈ Kp(X × [0, 1], X) is a Kp-
homotopy joining Φ0 := Φ( · , 0) to Φ1 := Φ( · , 1) and Fix(Φ( · , λ)) ∩
bdU = ∅ for each λ ∈ [0, 1], then Ind(Φ0, U) = Ind(Φ1, U).
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Proof. (a) It is easy to see that Fix(Φ) = Fix(F ◦ C); if Ind(Φ, U) 6= 0,
then Fix(F ◦ C) 6= ∅.
(b) is an immediate consequence of the additivity property of indS .

To see (c) observe that, for i = 0, 1, Φi = Fi �Ci where Fi := F ( · , · , i):X ×
Y ( Y , Ci := C( · , i):X ( Y , for y ∈ Y ,

Fi(y) := Fix(Fi( · , y)) = Fix(F ( · , y, i)) = F(y, i).

Thus Fi is acyclic-decomposable with the acyclic decomposition being the re-
striction of the given acyclic decomposition of F to Y × {i}. Therefore these
acyclic decompositions are homotopic. Similarly, the acyclic decompositions of
Ci, i = 0, 1, being restrictions of the given acyclic decomposition of C to X×{i},
are homotopic. Hence the decompositions of Φi are homotopic in view of argu-
ments similar to those from Remark 3.7. Thus, by the homotopy invariance of
indS , we get the assertion. �

Remark 3.18. (a) Suppose that Φ = F � C ∈ Kp(X,X) where X ∈ ANR
is complete, F :X × Y ( X and C:X ( Y . Suppose that Y ∈ ANR as well.
Then the map C ◦ F :Y ( Y is also acyclic-decomposable with the acyclic
decomposition given as D(C) ◦D(F). Given an open V ⊂ Y such that Fix(C ◦
F) ∩ bdV = ∅, the index indS(Y,D(C) ◦D(F), V ) is defined. Its nontriviality
implies the existence of fixed points of Φ, too. Let, as above U ⊂ X be open,
Fix(Φ) ∩ bdU = ∅ and suppose that V := {y ∈ Y | F(y) ⊂ U}. If Fix(C ◦
F) ∩ bdV = ∅ and F [Fix(C ◦ F) \ clV ] ∩ Fix(Φ|U ) = ∅, then — in view of
the commutativity property of indS , Ind(Φ, U) = indS(Y,D(C) ◦D(F), V ). In
particular, if U = X, then V = Y and Ind(Φ, X) = L(D(C) ◦D(F)).
(b) The following slight generalization (in the spirit of the already mentioned

observation of Burton in [10]) may be useful. Namely suppose that X ′ is a space
and Φ = F � C ∈ Kp(X ′, X ′) where the maps F :X ′ × Y ( X ′ and C:X ′ ( Y
are as in Definition 3.9. Let X ⊂ X ′ be a complete ANR and suppose that, for
each y ∈ clC(X), F(y) ⊂ X. Then clearly the restriction F ◦ C:X ( X and
again the index Ind(Φ, U) is defined provided Fix(Φ) ∩ bdU = ∅.

We shall now provide some simple statements which constitute direct exten-
sions of the Krasnosel’skĭı fixed point Theorem 1.1.

Proposition 3.19. If Φ = F �C ∈ Kp(X,X) and X is a complete AR, then
Ind(Φ, X) = 1. Similarly if Y ∈ AR (see Definition 3.9), then Ind(Φ, X) = 1.
In particular, in both cases, Fix(Φ) 6= ∅.

Proof. By the normalization property of indS ,

Ind(Φ, X) := indS(X, (F , C), X) = L((F , C)) = 1.
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To see the last equality recall that, by Remark 3.8, L((F , C)) = L((F , C, id))
where id is the identity on X. Since X is contractible, i.e. id is homotopic to
the constant map const:X → x0 ∈ X, we see, by Remark 3.7 and the homotopy
invariance of indS , that L((F , C)) = L(const) = 1.
The second statement follows from the commutativity property of indS (see

Remark 3.18(a)):

Ind(Φ, X) = indS(X, (F , C), X)
= indS(Y,D(C) ◦D(F), Y ) = L(D(C) ◦D(F)) = 1.

The assertions follow from the existence property of Ind. �

Proposition 3.19 may be easily generalized.

Corollary 3.20. Suppose again that Φ = F � C ∈ Kp(X,X), where X is
a complete ANR. If the space Y is contractible, then Fix(Φ) 6= ∅.

Proof. Let D(C) be an acyclic decomposition of C:X ( Y and let h:Y ×
[0, 1] → Y be a homotopy joining the identity on Y to a point, i.e. h(y, 0) = y
and h(y, 1) = y0 ∈ Y for all y ∈ Y . Denote the constant map Y 3 y 7→ y0 by
c. Then Φ′ = F ′ � C ′ ∈ Kp(X × [0, 1], X) where F ′:X × Y × [0, 1] ( X and
C ′:X×[0, 1]( Y are given by F ′(x, y, λ) = F (x, y) and C ′(x, λ) = h(C(x)×{λ})
for x ∈ X, y ∈ Y and λ ∈ [0, 1]. It is clear that Φ′ provides a Kp-homotopy
joining Φ to Ψ := F � c. Thus

Ind(Φ, X) = Ind(Ψ, X) = L((F , c)).

But evidently F ◦ c = Fix(F ( · , y0)). Therefore, in view of the Units property of
indS , we see that Ind(Φ, X) = 1. �

Having the general fixed-point index for Krasnosel’skĭı-type set-valued maps
on (complete) absolute neighbourhood retracts we may proceed as usual to get
some natural consequences as concerns solvability of equations (inclusions) in-
volving these maps (see for instance [28] where consequences of the Granas index
are carefully studied). Leaving the most obvious results to the reader we shall
study the generalized homotopy invariance which may be easily used as the
source of various connectedness results (continuation, bifurcation, etc.).
Let Λ be a space. Given a set A ⊂ E × Λ, where E is a Banach space, for

λ ∈ Λ, we let A(λ) := {x ∈ E | (x, λ) ∈ A}. We say that Z ⊂ E × Λ is an
ANR-tube if the map Λ 3 λ 7( Z(λ) is upper semicontinuous, there is an open
neighbourhood Ω ⊂ E × Λ of Z and a continuous map r: Ω → E such that,
for each λ ∈ Λ, r( · , λ) is a retraction of Ω(λ) onto Z(λ). It is clear that, for
any λ ∈ Λ, Z(λ) is a complete ANR. For instance, if X ⊂ E is an ANR, then
Z := X × Λ is a trivial ANR-tube.
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Let us consider the following situation. We assume that Z ⊂ E × Λ is an
ANR-tube, Y is a space, F :Z×Y ( E and C:Z ( Y are upper semicontinuous
maps with compact values. Moreover we suppose that:

• for each λ ∈ Λ, x ∈ Z(λ) and y ∈ Y , F ((x, λ), y) ⊂ Z(λ);
• C is a compact map;
• there is a continuous function k: Λ × Y → [0, 1) such that, for each
λ ∈ Λ, y ∈ Y , if x, x′ ∈ Z(λ), then D(F ((x, λ), y), F ((x′, λ), y)) ≤
k(λ, y)‖x− x′‖.

Let Φ(z) = F (z, C(z)) for z ∈ Z. Then, for each λ ∈ Λ, Φ( · , λ) ∈
K(Z(λ), Z(λ)). It is clear that if Z = X × Λ is a trivial ANR-tube, then
Φ ∈ K(X × Λ, X).

Lemma 3.21. Let F(λ, y) := {x ∈ Z(λ) | x ∈ F ((x, λ), y)} for λ ∈ Λ and
y ∈ Y . Then the map F : Λ × Y ( E is upper semicontinuous with nonempty
compact values.

Proof. It is clear that, for (λ, y) ∈ Λ×Y , F(λ, y) is compact and nonempty
since Z(λ) is complete. Let (λn, yn, xn) ∈ Gr(F), i.e. xn ∈ Z(λn) and xn ∈
F ((xn, λn), yn) for all n ≥ 1, and let (λn, yn) → (λ, y) ∈ Λ × Y . As in the
proof of Proposition 2.9, there is a compact set K ⊂ Z(λ) such that K =
F ((K × {λ})× {y}). Since Ω (from the definition of an ANR-tube) is open, for
large n, n ≥ N say, K ⊂ Ω(λn). Let n ≥ N and x ∈ K. Then

d(xn,K) ≤ d(F ((xn, λn), yn), F ((x, λ), y))

≤ d(F ((xn, λn), yn), F ((r(x, λn), λn), yn))

+ d(F ((r(x, λn), λn), yn), F ((x, λ), y))

≤ k(λn, yn)(‖xn − x‖+ ‖x− r(x, λn)‖)
+ d(F ((r(x, λn), λn), yn), F ((x, λ), y))

where r: Ω→ E is a retraction from the definition of an ANR-tube. Since x ∈ K
is arbitrary,

d(xn,K) ≤ (1− k(λn, yn))−1 sup
x∈K
(k(λn, yn)‖x− r(x, λn)‖

+ d(F ((r(x, λn), λn), yn), F ((x, λ), y)))→ 0

as n→∞. This implies that, up to a subsequence, xn → x ∈ F(λ, y) in view of
the compactness of K and the upper semicontinuity of F . �

Further on let us assume additionally that:

• the maps C:Z ( Y and F : Λ× Y ( E are acyclic-decomposable.

Thus, for each λ ∈ Λ, Φ( · , λ) ∈ Kp(Z(λ), Z(λ)) and the index Ind(Φ( · , λ), U(λ))
is well-defined.
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Theorem 3.22. Under the above assumptions, suppose that Λ is path-co-
nnected, U ⊂ Z is open and, for each λ ∈ Λ, Fix(Φ( · , λ))∩ bdU(λ) = ∅. Then,
for all λ, µ ∈ Λ,

Ind(Φ( · , λ), U(λ)) = Ind(Φ( · , µ), U(µ)).

Proof. For λ ∈ Λ, let x ∈ K(λ) if and only if (x, λ) ∈ clU and x ∈
Φ(x, λ). ThenK(λ) ⊂ Z(λ) and the correspondence Λ 3 λ 7( K(λ) has compact
(possibly empty) values and is upper semicontinuous (in the usual sense). To
see this let λn → λ ∈ Λ and xn ∈ K(λn); then (xn, λn) ∈ clU and xn ∈
F(λn, yn) where yn ∈ C(xn, λn), n ≥ 1. The compactness of C and the upper
semicontinuity of F (see Lemma 3.21) imply that, up to a subsequence, yn →
y ∈ Y and xn → x ∈ F(λ, y). Thus (x, λ) ∈ clU and x ∈ K(λ) since y ∈ C(x, λ).
Let C1: Ω( Y be given by

C1(x, λ) = C(r(x, λ), λ)

for λ ∈ Λ and x ∈ Ω(λ). It is obvious that C1 = C on Z, C1 is com-
pact and acyclic-decomposable and so is the map Ω 3 (x, λ) 7( Ψ(x, λ) :=
F(λ,C1(x, λ)) ⊂ E. For any λ ∈ Λ and x ∈ Ω(λ), Ψ(x, λ) ∈ Z(λ) ⊂ Ω(λ) and
Fix(Ψ( · , λ)) ∩ bdU(λ) = ∅ since Fix(Ψ( · , λ)) = Fix(Φ( · , λ)). Therefore

Ind(Φ( · , λ), U(λ)) = indS(Z(λ), D(Ψ( · , λ))|Z(λ), U(λ))

where D(Ψ( · , λ)) stands for the composition of the acyclic decompositions
D(F(λ, · )) and D(C( · , λ)) of F(λ, · ) and C( · , λ), respectively. In view of the
restriction property of indS (see Remark 3.8(d)), for λ ∈ Λ,

indS(Z(λ), D(Ψ( · , λ))|Z(λ), U(λ)) = indS(Ω(λ), D(Ψ( · , λ)), V (λ))

where V ⊂ Ω is is open subset of E × Λ such that V ∩ Z = U . Finally ob-
serve that the map Λ 3 λ 7( X(λ) := clΨ(Ω(λ) × {λ}) = clΨ(Z(λ) × {λ})
is upper semicontinuous as the closure of the composition of Ψ with the upper
semicontinuous map λ 7( Z(λ)× {λ}.
Let us fix λ0 ∈ Λ. The sets X(λ0) andK(λ0) are compact, K(λ0) ⊂ X(λ0) ⊂

Z(λ0) ⊂ Ω(λ0) and K(λ0) ⊂ V (λ0). Therefore there are open neighbourhoods
Ω0, V0, and Λ0 of X(λ0), of K(λ0) and of λ0, respectively, such that V0 ⊂ Ω0,
Ω0 ×Λ0 ⊂ Ω, V0 ×Λ0 ⊂ V . In view of the upper semicontinuity of X( · ), K( · ),
without loss of generality we may assume that X(λ) ⊂ Ω0 and K(λ) ⊂ V0 for
any λ ∈ Λ0. In view of the additivity and restriction properties, for each λ ∈ Λ0,

indS(Ω(λ), D(Ψ( · , λ)), V (λ)) = indS(Ω(λ), D(Ψ(λ, · )), V0)
= indS(Ω0, D(Ψ( · , λ))|Ω0 , V0).
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Now let λ, µ ∈ Λ. There is a path σ: [0, 1] → Λ such that λ = σ(0) and µ =
σ(1). If s0 ∈ [0, 1], λ0 = σ(s0), then by the above argument and the homotopy
property of indS , Ind(Φ( · , σ(s)), U(σ(s)) is constant for s in a neighbourhood
of s0. The connectedness of [0, 1] implies that it is constant for s ∈ [0, 1]. Hence
the assertion. �

When studying generalizations of the Krasnosel’skĭı theorem it makes sense
to consider combinations of contractions with completely continuous maps in-
stead of compact ones. In this way we get a variant of the result obtained
in [11].

Theorem 3.23. Let Φ=F �C ∈ Kp(X,X), where F :X×Y(X, C:X(Y

and X is a Banach space (see Definition 3.9), but assume that C is merely
completely continuous (i.e. C is acyclic-decomposable and, for each bounded B⊂
X, clC(B) is compact). Assume that there is y0 ∈ Y such that, for sufficiently
large R > 0, if x ∈ X and ‖x‖ ≤ R, then

(3.5) D(Φ(x), F (x, y0)) ≤ lR

where l is a constant such that 0 < l < 1− k(y0). Then Φ has fixed points.

Proof. Let ξ ∈ F(y0) and define F̃ :X × Y , C̃:X ( Y by

F̃ (x, y) := F (x+ ξ, y)− ξ, C̃(x) := C(x+ ξ), x ∈ X, y ∈ Y.

Then, for each x, x′ ∈ X and y ∈ Y ,

D(F̃ (x, y), F̃ (x′, y)) = D(F (x+ ξ, y), F (x′ + ξ, y)) ≤ k(y)‖x− x′‖.

Hence, for each x ∈ X and y ∈ Y , F̃ ( · , y) is a k(y)-contraction and F̃ (x, · ) is up-
per semicontinuous; moreover C̃ and F̃ :Y ( X (given by F̃(y) := Fix(F̃ ( · , y))
= F(y)− ξ for y ∈ Y ) are acyclic-decomposable. Observe that, for x ∈ X,

D(F̃ (x, y0), F̃ (0, y0)) ≤ k(y0)‖x‖.

Let Φ̃(x) = F̃ (x, C̃(x)) for x ∈ X, M := D(F̃ (0, y0), {0}), take a large r > 0
(such that, for R = r + ‖ξ‖, condition (3.5) is satisfied) and x ∈ X such that
‖x‖ ≤ r. Then ‖x+ ξ‖ ≤ R and

D(Φ̃(x), {0}) ≤ D(Φ̃(x), F̃ (x, y0)) +D(F̃ (x, y0), F̃ (0, y0)) +M

≤ l(r + ‖ξ‖) + k(y0)r +M ≤ r

provided r ≥ (1− l−k(y0))−1(l‖ξ‖+M). Thus Φ̃ = F̃ � C̃ ∈ Kp(D(0, r), D(0, r))
since C̃|D(0,r) is compact. Obviously D(0, r) is an AR and, in view of Proposi-
tion 3.19, there is x0 ∈ D(0, r) such that x0 ∈ Φ̃(x0). Hence x0 + ξ ∈ Fix(Φ). �
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4. Applications

It appears that Krasnosel’skĭı-type maps admit several nontrivial applica-
tions.

4.1. Coupled differential inclusions with constraints. Let E1, E2 be
separable Banach spaces and let J = [0, T ] where T > 0. Suppose that sets X ⊂
E1, Y ⊂ E2 are closed bounded and let F: J×E1×Y ( E1, G: J×X×Y ( E2
be set-valued maps. Given x0 ∈ X, y0 ∈ Y , we look for solutions to the system
of coupled differential inclusions:

(4.1)

{
x′(t) ∈ F(t, x(t), y(t)), x(0) = x0,

y′(t) ∈ G(t, x(t), y(t)), y(0) = y0.

By a solution we mean a pair (x, y) of continuous functions x: J → X, y: J → Y
such that, for all t ∈ J , x(t) = x0 +

∫ t
0 w(s) ds and y(t) = y0 +

∫ t
0 u(s) ds where

w: J → E1, u: J → E2 are (Bochner) integrable functions such that w(s) ∈
F(s, x(s), y(s)) and u(s) ∈ G(s, x(s), y(s)) for almost all s ∈ J (in particular,
functions x, y are absolutely continuous).

Let us make the following standing assumptions:

Assumption 4.1.

(a) The maps F, G have compact convex (and nonempty) values;
(b) F and G are upper-Carathéodory maps, i.e. for all (x, y) (in E1×Y and
X×Y , respectively), F( · , x, y), G( · , x, y) are (strongly) measurable on J
and, for all t ∈ J , F(t, · , · ), G(t, · , · ) are (jointly) upper semicontinuous
(on E1 × Y and X × Y , respectively); moreover, F is product measura-
ble (13);

(c) F, G are integrably bounded, i.e. there is an integrable function c: J → R
such that, for all t ∈ J , x ∈ X and y ∈ Y ,

sup
z∈F(t,x,y)

‖z‖, sup
z∈G(t,x,y)

‖z‖ ≤ c(t);

(d) for each t ∈ J and y ∈ Y , the map F(t, · , y):E1 ( E1 is L(t)-Lipschitz,
i.e. for x1, x2 ∈ E1, D(F(t, x1, y),F(t, x2, y)) ≤ L(t)‖x1 − x2‖ where
L ∈ L1(J,R);

(e) F maps compact subsets of J × E1 × Y into compact ones;
(f) the map G is compact, i.e. the set G(J ×X × Y ) is relatively compact.

(13) I.e. measurable with respect to the product σ-algebra of the Lebesgue σ-algebra in J

and the σ-algebra of Borel subsets in E1 × Y . Observe also that since the considered spaces
are separable, strong measurability coincides with the usual one.
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As we see the assumptions are rather mild. As a consequence of (a) and
(b), maps F, G are weakly superpositionally measurable (in view of the prod-
uct measurability, F is even superpositionally measurable and this is what we
actually need in what follows), i.e. given continuous functions x: J → E1 (resp.
x: J → X) and y: J → Y , the map F( · , x( · ), y( · )) is measurable (resp. the
map G( · , x( · ), y( · )) has a measurable selection). Therefore, by (c), the (set-
valued) Nemytskĭı operators NF:C(J,E1)×C(J, Y )( L1(J,E1), NG:C(J,X)×
C(J, Y )( L1(J,E2) given by

NF(x, y) := {w ∈ L1(J,E1) | w(s) ∈ F(s, x(s), y(s)) a.e. on J},
NG(x, y) := {u ∈ L1(J,E2) | u(s) ∈ G(s, x(s), y(s)) a.e. on J},

for x ∈ C(J,E1) (resp. x ∈ C(J,X)) and y ∈ C(J, Y ) (14), are well-defined.
Condition (e) is satisfied if, for example, F is upper semicontinuous.
Observe that the immediate approach that reduces the existence of solutions

of (4.1) to the viablity issue for the Cauchy initial problem of the form

u′(t) = H(t, u(t)), u(0) = (x0, y0),

where u = (x, y): J → X × Y , H(t, x, y) := F(t, x, y) × G(t, x, y), fails since
the map H does not have sufficient compactness properties in y. Therefore we
shall suitably convert the solvability of (4.1) into the fixed point problem for
Krasnosel’skĭı-type maps.
First we shall try to explain our setting. Let

X := C(J,X), Y := C(J, Y ).

Suppose that, for each x ∈ X , the set

C(x) :=
{
y ∈ Y

∣∣∣∣ y(t) = y0 + ∫ t
0
u(s) ds for some u ∈ NG(x, y)

}
is nonempty and closed, i.e. C:X ( Y and that F :C(J,E1)× Y ( C(J,E1) is
given, by

u ∈ F (x, y) ⇔ ∃w ∈ NF(x, y) u(t) = x0 +
∫ t
0
w(s) ds

for x ∈ C(J,E1) and y ∈ Y, is well-defined. Then the map Φ = F � C:X (

C(J,E1) given by Φ(x) = F (x × C(x)) is defined and if, additionally, for each
y ∈ Y, the set F(y) = Fix(F ( · , y)) ⊂ X , then F ◦ C:X ( X and x ∈ Fix(Φ) if
and only if x ∈ F ◦ C(x) if and only if there is y ∈ C(x) such that x ∈ F (x, y),
i.e. the pair (x, y) ∈ X × Y is a solution to (4.1).

(14) C(J, E1) and C(J, X), C(J, Y ) stand for the Banach space of continuous functions

J → E1 with the usual max-norm and the sets of continuous functions J → X, J → Y ,
respectively.
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In order to use our theory (in particular Proposition 3.19) we shall make
some additional hypotheses.

Assumption 4.2.

(a) The set X is a bounded neighbourhood retract in E1 and, for any y ∈ Y,
X is strongly invariant with respect to the flow generated by the map
J × E1 3 (t, x) 7( F(t, x, y(t)) (for the definition and the discussion of
the concept of strong invariance of a set with respect to a flow — see
Section 5.2);

(b) Y is closed convex bounded and, for all t ∈ J , x ∈ X, y ∈ Y , G(t, x, y)∩
TY (y) 6= ∅.

Above for y ∈ Y , TY (y) stands for the Bouligand contingent cone (see e.g. [2]),
i.e.

TY (y) :=
{
v ∈ E2

∣∣∣∣ lim inf
t→0+

dY (y + tv)
t

= 0
}
,

where dY is the distance Y (i.e. for instance dY (y) = infz∈Y ‖z− y‖ for y ∈ E2).
Since Y is convex, for all y ∈ Y ,

TY (y) = cl
⋃
h>0

Y − y
h
.

For technical reasons we introduce a new norm in C(J,E1) given, for x ∈
C(J,E1), by

‖x‖B := sup
t∈J
e−

R t
0 L(s) ds‖x(t)‖

for x ∈ C(J,E1). This formula correctly defines a (complete) norm (15) equiva-
lent to the usual max-norm.

Let us now make the following statements.

Proposition 4.3. Under Assumptions 4.1 and 4.2:

(a) the set X is a neighbourhood retract of C(J,E1) (and therefore X ∈
ANR), the set Y is closed convex in C(J,E2);

(b) the above map C:X ( Y is well defined, compact and acyclic-decom-
posable;

(c) the map above F :C(J,E1)×Y ( C(J,E1) is well-defined, has compact
convex values, for each x ∈ C(J,E1), the map F (x, · ):Y ( C(J,E1)
is upper semicontinuous;

(d) for each y ∈ Y, the map F ( · , y): (C(J,E1), ‖ · ‖B)( (C(J,E1), ‖ · ‖B)
is a k-contraction with k ∈ [0, 1) and F(y) := Fix(F ( · , y)) ⊂ X .

(15) Being a variant of the well-know Bielecki norm.
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Proof. (a) Let U be a neighbourhood of X such that there is a retraction
r:U → X. Clearly U := {x ∈ C(J,E1) | x(J) ⊂ U} is open in C(J,E1) (recall
that we consider the compact-open topology on C(J,E1)). Let R:U → X be
given by: R(x)(t) := r(x(t)). It is easy to see that R is a (continuous) retraction
of U onto X . It is evident that Y is closed and convex.
(b) By [4, Theorem 20], for x ∈ X , C(x) is an Rδ-set in C(J,E2) (see

Section 5.1 for the definition of Rδ-set); hence acyclic. We shall establish the
compactness and upper semicontinuity of C. To this aim let xn ∈ X and let yn ∈
C(xn), n ∈ N. It is now sufficient to show that the sequence (yn) has a convergent
subsequence. For each n ∈ N, there is un ∈ NG(xn, yn) such that yn(t) =
y0 +
∫ t
0 un(s) ds. Assumption 4.1(c) implies that the sequence (un) is integrably

bounded (i.e. there is a function c ∈ L1(J) such that ‖un(t)‖ ≤ c(t)). Hence
the sequence (yn) is uniformly equicontinuous. The compactness of G implies
that the fibres {yn(t)}, t ∈ J , are relatively compact. Hence, by the Ascoli–
Arzela Theorem, the sequence (yn) has a convergent subsequence. To get the
upper semicontinuity it is enough to show that if xn → x ∈ X and yn → y, then
y ∈ C(x). Observe that the sequence (un), being integrably bounded and having
compact fibres, is — by the Diestel theorem (see [16, Corollary 3]) — relatively
weakly compact in L1(J,E2), i.e. (passing to a subsequence if necessary) we
may assume that un ⇀ u ∈ L1(J,E2) (weak convergence in L1). The function
yn is almost everywhere differentiable and y′n = un a.e. for all n ∈ N. Since
yn → y in C(J,E2) and un ⇀ u, by the so-called Compactness Theorem (see
[1, Theorem 0.3.4]), we infer that y(t) = y0 +

∫ t
0 u(s) ds, i.e. y

′(t) = u(t) a.e.
on J . Summing up: for each n ∈ N, un(t) = y′n(t) ∈ G(t, xn(t), yn(t)) a.e.
on J , xn → x in C(J,E1), yn → y in C(J,E2) and un ⇀ u in L1. Thus, by
the Convergence Theorem [2, Theorem 7.2.2], y′(t) = u(t) ∈ G(t, x(t), y(t)) a.e.
on J . Hence y ∈ C(x).
(c) It is clear that values of F are convex. In order to show that values of F

are compact and that, for a fixed function x ∈ C(J,E1), F (x, · ) is upper semi-
continuous it is sufficient to show that given a sequence (yn, zn) ∈ Gr(F (x, · )),
if yn → y in C(J,E1), then there is a subsequence (znk) such that znk → z ∈
F (x, y). By definition, for each n ∈ N and t ∈ J , zn(t) = x0 +

∫ t
0 wn(s) ds

where wn ∈ NF(x, yn). The compactness of fibres of the sequence (yn), As-
sumption 4.1(c) together with the compactness of values of F(t, x(t), · ), t ∈ J ,
implies that the sequence (wn) is integrably bounded with relatively compact
fibres; hence — again, by the already used result due to Diestel and passing to
a subsequence if necessary — we may assume that wn ⇀ w ∈ L1(J,E1). It is
clear that, for each t ∈ J and n ≥ 1,

zn(t)− x0 =
∫ t
0
wn(s) ds ∈ t cl convF ([0, t]× x([0, t])×K)
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where K := {yn(s) | n ∈ N, s ∈ [0, t]} is compact. Thus, by Assumption 4.1(e),
we gather that the fibres of the sequence (zn) are compact. Since this sequence is
equicontinuous, again by the Ascoli–Arzela and Compactness theorems (passing
to a subsequence) we may assume that zn → z ∈ C(J,E1) and z(t) − x0 =∫ t
0 w(s) ds. Again the use of the Convergence Theorem shows that z ∈ F (x, y).
(d) Fix y ∈ Y, let x1, x2 ∈ C(J,E1) and take an arbitrary z1 ∈ F (x1, y).

Then z1(t) = x0 +
∫ t
0 w1(s) ds where w1 ∈ NF(x1, y). The mentioned super-

positional measurability of F implies that the map J 3 s 7( F(s, x2(s), y(s))
is measurable and, hence, the function J 3 s 7→ d(w1(s),F(s, x2(s), y(s)) is
measurable, too. Therefore, for any ε > 0, there is an integrable selection
w2( · ) ∈ F( · , x2( · ), y( · )) for a.e. s ∈ J such that

‖w1(s)− w2(s)‖ ≤ d(w1(s),F(s, x2(s), y(s))) + ε
≤D(F(s, x1(s), y(s)),F(s, x2(s), y(s))) + ε

≤L(s)‖x1(s)− x2(s)‖+ ε

for almost all s ∈ J . Let z2(t) := x0 +
∫ t
0 w2(s) ds. Then z2 ∈ F (x2, y) and, for

each t ∈ J ,

e−
R t
0 L(s) ds‖z1(t)− z2(t)‖ ≤ e−

R t
0 L(s) ds

∫ t
0
‖w1(s)− w2(s)‖ ds

≤ e−
R t
0 L(s) ds‖x1 − x2‖B

∫ t
0
L(s)e

R s
0 L(τ) dτ ds+ Tε

=(1− e−
R t
0 L(s) ds)‖x1 − x2‖B + Tε ≤ k‖x1 − x2‖B + Tε

where k := (1 − e−
R T
0 L(s) ds) < 1 (enlarging L if necassary we may assume

that
∫ T
0 L(s) ds > 0). Hence, if we denote by d

B , dB and DB the distance,
the Hausdorff “half”-distance and the Hausdorff distance induced by ‖ · ‖B ,
respectively, then

dB(z1, F (x2, y)) ≤ k‖x1 − x2‖B .

Since z1 was arbitrary, this implies that

dB(F (x1, y), F (x2, y)) ≤ k‖x1 − x2‖

and, analogously

dB(F (x2, y), F (x1, y)) ≤ k‖x1 − x2‖,

i.e.

DB(F (x1, y), F (x2, y)) ≤ k‖x1 − x2‖B .

The second statement of (d) follows from Assumption 4.2(a). This completes
the proof. �
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Theorem 4.4. Under Assumptions 4.1 and 4.2, problem (4.1) admits a so-
lution.

Proof. According to Remark 3.18(b), the index Ind(Φ,X ), where Φ :=
F �C, is defined. Remembering that Y is convex, i.e. Y is an AR, by Proposition
3.19, Ind(Φ,X ) = 1. �

Remark 4.5. (a) The separability of E2 is not necessary if G is upper semi-
continuous; otherwise we need to apply the so-called Scorza-Dragoni property
due to Rzeżuchowski which require separability (see [4, Theorem 1, Remark 24]).
On the other hand, without separability of E1 or E2 the application of the Com-
pactness Theorem from [1] is impossible and in order to proceed one has to use
slightly different and more involved argument (the correct proof of the Compact-
ness theorem makes use of the Phillips theorem asserting that L1(J,Ei) may be
identified with L∞(J,E∗i ) provided Ei is reflexive or separable).

(b) The convexity of Y may be replaced by the so-called epi-Lipschitzeanity
of Y or its strict regularity in the sense of [4]. In this case however one has to
assume that additionally Y is an AR. If not, then in order to have Theorem 4.4
one has to assume that X ∈ AR.
(c) It would be interesting to obtain an existence result concerning the solv-

ability of a coupled system of semilinear differential inclusions of the form{
x′(t) ∈ Ax(t) + F(t, x(t), y(t)), x(0) = x0;

y′(t) ∈ By(t) +G(t, x(t), y(t)), y(0) = y0,

where A,B are the (infinitesimal) generators of C0-semigroups of linear bounded
operators acting on E1 and E2, respectively, F, G satisfies the above assumptions
but instead of the compactness of G, the semigroup generated by B is compact.
It seems that if the semigroup generated by A is uniformly bounded, then it is
not a difficult task. The main difficulty is to get the strong invariance of the first
of the above inclusions with respect to X.

4.2. Constrained compact-periodic problem. Suppose now that E is
a separable Banach space, X is a neighbourhood retract in E and G:X ( X is
a compact acyclic-decomposable map with a given acyclic decomposition D(G).
Let F: J × E ( E, where J = [0, T ], be a set-valued map with compact convex
values such that:

Assumption 4.6.

(a) for each x ∈ E, F( · , x) is measurable, for each t ∈ J and x1, x2 ∈ E,

D(F(t, x1),F(t, x2)) ≤ L(t)‖x1 − x2‖
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where L is a positive integrable function and the function J 3 t 7→
supz∈F(t,0) ‖z‖ is integrable (16);

(b) X is strongly invariant with respect to the flow generated by F.

Theorem 4.7. Under the Assumption 4.6, the following compact-periodic
problem

u′ ∈ F(t, u), u ∈ X, u(0) ∈ G(u(T ))
admits a solution, i.e. there is an absolutely continuous function u: J → X such
that u′(t) ∈ F(t, u(t)) a.e. on J and u(0) ∈ G(u(T )), provided the Lefschetz
number L(D(G)) 6= 0.

Proof. Consider a map F :C(J,E)× E ( C(J,E) given by the formula

F (u, y) =
{
x ∈ C(J,E)

∣∣∣∣ x(t) = y + ∫ t
0
w(s) for some w ∈ NF(u)

}
,

y ∈ E, u ∈ C(J,E).

Recall that NF(u) := {w ∈ L1(J,E) | w(s) ∈ F(s, u(s)) a.e. on J}. Observe that
in view of Assumption 4.6(a), F has linear growth and, hence, NF:C(J,E) (

L1(J,E) is well-defined. It is clear that, for each u ∈ C(J,E), F (u, · ):E (

C(J,E) is compact convex valued and upper semicontinuous. As before we
check that after the appropriate Bielecki renorming procedure, for each y ∈ E,
F ( · , y):C(J,E)( C(J,E) is a k-contraction where k := 1− e−

R T
0 L(s) ds.

Exactly as before we see that, in view of Assumption 4.6(b),

F(y) = Fix(F ( · , y)) ⊂ X := C(J,X) for each y ∈ X

(evidently X ∈ ANR). Let C:C(J,E)( E be given by the composition G̃ ◦ eT
where eT (u) = u(T ) for u ∈ C(J,E) and G̃:E ( E is an arbitrary compact
acyclic-decomposable extension of G (i.e. G̃(y) = G(y) for y ∈ X). This exten-
sion may be produced as follows: let r:U → X be a neighbourhood retraction,
let V be open and such that X ⊂ V ⊂ clV ⊂ U and let φ:E → [0, 1] be
continuous and φ|X ≡ 1, φ|E\V ≡ 0. We put G̃(x) = φ(x)G ◦ r(x) for x ∈ U
and G̃(x) := {0} for x 6∈ U . It is clear that C is acyclic-decomposable having
(eT , D(G̃)) as the acyclic decomposition.
Clearly Φ := F � C ∈ K(C(J,E), C(J,E)) and, for each y ∈ clC(X ) ⊂ X,

F(y) ⊂ X . Hence (see Remark 3.18(b)), the index Ind(Φ,X ) is defined. It is
sufficient to show that Ind(Φ, X) 6= 0. Indeed in this case there is u ∈ X such
that u ∈ F(C(u)), i.e. u(t) ∈ G(u(T )) +

∫ t
0 w(s) ds, where w ∈ NF(u); thus

u(0) ∈ G(u(T )) and u′(t) = w(t) ∈ F(t, u(t)) a.e. on J .

(16) We see that, in fact F is a Carathéodory map, i.e. F( · , x) is measurable and F(t, · )
is continuous; consequently F is product-measurable, hence F( · , u( · )) is measurable for any
continuous function u: J → E.
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To complete the proof observe that F ◦C|X has the following acyclic decom-
position

D(F ◦ C):X eT−→ X
D(G)
−( X

F
−( X .

According to the commutativity property of the Skordev index, we have (comp.
Remark 3.18(b))

Ind(Φ,X ) = indS(X,D,X),
where

D:X
F
−( X eT−→ X

D(G)
−( X.

Consider an acyclic-decomposable map H:X × [0, 1] ( X having an acyclic
decomposition

D(H):X × [0, 1]
F
−( X × [0, 1] e−→ X

D(G)
−( X

where F(y, λ) = F(y) × {λ} and e(u, λ) := eλT (u) = u(λT ) for y ∈ X, u ∈ X
and λ ∈ [0, 1]. It is clear that H provides a homotopy joining the decomposition
D to

D′:X
F
−( X e0−→ X

D(G)
−( X.

Hence indS(X,D,X) = indS(X,D′, X). On the other hand, the decomposition
D′ is related to the decomposition

D′′:X id−→ X id−→ X
D(G)
−( X.

To see this take h1:X → X and h0 = h2 = h3 = id:X → X as h1:X → X
is given by h1(u) := e0(u) = u(0) ∈ X for u ∈ X and compare Remark 3.8.
Therefore

indS(X,D′, X) = indS(X,D′′, X) = indS(X,D(G), X) = L(D(G)) 6= 0. �

4.3. Periodic problem for feedback controlled semilinear constrained
differential equations. Suppose that E is a separable Banach space, X is
a neighbourhood retract in E and let, as above, A:D(A) → E be the infinites-
imal generator of a C0-semigroup U = {U(t)}t≥0 of bounded linear operators
U(t):E → E such that ‖U(t)‖ ≤ e−ωt, where ω > 0, for all t ≥ 0. Suppose that
Y is a compact space and let F: [0, T ]× E × Y ( E be a set-valued map.
We are going to study the existence periodic trajectories x: [0, T ]→ X of the

feedback controlled semilinear differential inclusion of the form

(4.2) x′(t) ∈ Ax(t) + F(t, x(t), y(t)), y ∈ C(x),

where the impulsive feedback rule C(x) defining the feedback control y( · ) is
defined as follows. Assume that a finite sequence of prescribed switching times,
i.e. a partition {t0, . . . , tn}, where 0 = t0 < . . . < tn = T , of the interval
J := [0, T ] and a control rule, i.e. a set-valued map c:E ( Y are given. For
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any function x: J → E, let C(x) be the set of functions y: J → Y such that
y(t) = yi for t ∈ [ti, ti+1), i = 0, . . . , n − 2, and y(t) = yn−1 for t ∈ [tn−1, T ],
where yi ∈ c(x(ti)) for i = 0, . . . , n− 1.
By a (mild) solution to our problem (4.2) we mean a continuous function

x: J → E such that x(0) = x(T ), x(t) ∈ X and

x(t) = U(t)x(0) +
∫ t
0
U(t− s)w(s) ds

for all t ∈ J , with w(s) ∈ F(s, x(s), y(s)), where y ∈ C(x).
Let Y denote the space of piecewise constant functions on J with values

in Y , i.e. y ∈ Y if and only if there are points yi ∈ Y , i = 0, . . . , n− 1, such that
y(t) = yi for t ∈ [ti, ti+1), i = 0, . . . , n− 2, and y(t) = yn−1 for t ∈ [tn−1, T ]. We
see that actually C:C(J,E)( Y.
Let us assume that:

Assumption 4.8.

(a) The map F is integrably bounded, has compact convex values and maps
compact subsets of J × E × Y into compact sets;

(b) For each x ∈ E and y ∈ Y , the map F( · , x, y): J ( E is measurable;
for almost all t ∈ J and all x ∈ E, the map F(t, x, · ):Y ( E is upper
semicontinuous;

(c) there is a constant 0 ≤ L < ω such that

D(F(t, x1, y),F(t, x2, y))) ≤ L‖x1 − x2‖

for almost all t ∈ J , all y ∈ Y and all x1, x2 ∈ E.
(d) The set-valued map c:E ( Y is acyclic-decomposable.

As above we shall explain a setting for the problem. For any x ∈ C(J,E)
and y ∈ Y, let as usual

NF(x, y) := {w ∈ L1(J,E) | w(s) ∈ F(s, x(s), y(s)) for a.e. s ∈ J}

and define a map
F :C(J,E)× Y ( C(J,E)

by saying that, for x ∈ C(J,E), y ∈ Y, u ∈ F (x, y) if and only if there exists
w ∈ NF(x, y) such that

u(t) = [I − U(T )]−1
(∫ t
0
U(t− s)w(s) ds+ U(t)

∫ T
t

U(T − s)w(s) ds
)
,

where I:E → E stands for the identity on E.
Observe that this definition is correct since I − U(T ) is invertible in view of

the inequality ‖U(T )‖ ≤ e−ωT < 1. Moreover,

‖[I − U(T )]−1‖ ≤ (1− e−ωT )−1.
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Moreover, given w ∈ L1(J,E), U(t− · )w( · ) is measurable and ‖U(t− · )w( · )‖ ∈
L1([0, t],R) (similarly U(T − · )w( · ) ∈ L1([t, T ], E)).
Observe that if, for some y ∈ Y, x ∈ F (x, y), then there is w ∈ NF(x, y) such

that

x(t) = [I − U(T )]−1
(∫ t
0
U(t− s)w(s) ds+ U(t)

∫ T
t

U(T − s)w(s) ds
)
.

Hence

x(0) = [I − U(T )]−1
∫ T
0
U(T − s)w(s) ds = x(T )

and, since U(t)[I − U(T )]−1 = [I − U(T )]−1U(t), a simple computation shows
that

x(t) = U(t)x(0) +
∫ t
0
U(t− s)w(s) ds,

i.e. x is a periodic mild solution to the problem

x′(t) ∈ Ax(t) + F(t, x(t), y(t)).

Similarly we show that if x ∈ F ({x}×C(x)), then x is a solution to the original
problem (4.2).
In addition to technical hypotheses 4.8, let us make the following structural

assumption.

Assumption 4.9. We suppose that if y ∈ Y and x: J → E is a periodic mild
solution of the inclusion x′(t) ∈ Ax(t) + F(t, x(t), y(t)), a.e. on J , then x(t) ∈ X
for all t ∈ J .

Theorem 4.10. Suppose that Y is a compact contractible space. If Assump-
tions 4.8 and 4.9 are fulfilled, then there is a solution to problem (4.2).

Proof. First we shall show that F :C(J,E)×Y ( C(J,E) has compact con-
vex values and, for each x ∈ C(J,E), F (x, · ) is upper semicontinuous (in Y we
consider the natural metric d(y, y′) := maxi=1,... ,n{dY (yi−1, y′i−1)} where yi−1 =
y(t), y′i−1 = y

′(t) for t ∈ [ti−1, ti), i = 1, . . . , n− 1 and yn−1 = y(t), y′n−1 = y′(t)
for t ∈ [tn−1, T ]). To this aim take a sequence (yn, zn) ∈ Gr(F (x, · )) such that
yn → y in Y. Then zn = K(wn) where wn ∈ NF(x, yn) and K:L1(J,E) →
C(J,E) is given by

K(w)(t) := [I − U(T )]−1
(∫ t
0
U(t− s)w(s) ds+ U(t)

∫ T
t

U(T − s)w(s) ds
)
,

for w ∈ L1(J,E). Clearly K is linear and bounded.
As before, using the integral boundedness of F, the upper semicontinuity of

F(t, x, · ), the Diestel compactness criterion and the Convergence theorem, we
show that (passing to a subsequence if necessary) wn ⇀ w (weakly in L1(J,E))
and w ∈ NF(x, y). Moreover, similarly as in the proof of Proposition 4.3, we show
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that the sequence (zn) is equicontinuous and has compact fibres and, hence (again
passing to subsequences) zn → z in C(J,E). Since zn = K(wn), this implies
that z = K(w), i.e. z ∈ F (x, y). The convexity of the values of F is clear in view
of the convexity of values of NF and the linearity of K.
Next we shall show that, for each y ∈ Y, F ( · , y) is a k-contraction. Let

x1, x2 ∈ C(J,E) and z1 ∈ F (x1, y). As in the proof of the mentioned Propo-
sition 4.3, given w1 ∈ NF(x1, y) such that z1 = K(w1) and ε > 0, we choose
w2 ∈ NF(x2, y) such that

‖w1(s)− w2(s)‖ ≤ d(w1(s),F(s, x2(s), y(s)) + ε

for almost all s ∈ J (the choice of w2 is possible since, as it is easy to see, the
map J ×E 3 (s, x) 7→ F(s, x, y(s)) is product-measurable; to see this recall that
this map is Carathéodory). Hence

‖w1(s)− w2(s)‖ ≤ L‖x1(s)− x2(s)‖+ ε.

Let z2 := K(w2). After easy computations we see that, for any t ∈ J ,

‖K(w1)(t)−K(w2)(t)‖ ≤ ω−1(L sup
s∈J
‖x1(s)− x2(s)‖+ ε).

Arguing as before, this implies that

DC(F (x1, y), F (x2, y)) ≤ k sup
t∈J
‖x1(t)− x2(t)‖,

where k := ω−1L < 1 and DC denotes the Hausdorff distance in C(J,E).
Let us now study the map C:C(J,E)( Y. It is clear that C may be factored

in the following way C = g ◦ c̃ ◦ f , where f :C(J,E) → En is given by f(x) =
(x(t0), . . . , x(tn−1)) for x ∈ C(J,E), c̃:En ( Y n is given by c̃(z0, . . . , zn−1) =
c(z0) × . . . × c(zn−1) for (z0, . . . , zn−1) ∈ En, and g:Y n → Y is given by
g(y0, . . . , yn−1)(t) = yi−1 for t ∈ [ti−1, ti), i = 1, . . . , n − 2, g(y0, . . . , yn−1)(t)
= yn−1 for t ∈ [yn−1, T ]. It is clear that f, g are continuous, c̃ is acyclic-
decomposable; hence C is acyclic-decomposable. Therefore Φ := F �C is a Kras-
nosel’skĭı-type map.
It is clear that a map F :Y(C(J,E), defined as usual by F(y) = Fix(F ( · , y))

for y ∈ Y, is acyclic-decomposable (already in view of the Ricceri theorem and
Proposition 2.9). Thus Φ ∈ Kp(C(J,E), C(J,E)).
Observe that, in view of Assumption 4.9, for any y ∈ Y, F(y) ∈ X; thus

F ◦ C:X ( X. Since, as it is easy to see Y is contractible, arguing as in
Corollary 3.20, we show that L((F , C)) = 1. This shows that Φ has a fixed point
and completes the proof. �

Let us finally remark Theorem 4.10 may be restated without Assumption 4.9
as follows.
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Corollary 4.11. If the space Y is compact contractible and Assumption 4.8
is satisfied, then the set

S = {x∈C(J,E) | x(0)=x(T ), x′(t)∈Ax(t) + F(t, x(t), y(t)) a.e. on J, y ∈ Y}

is bounded. Let X ⊂ E be an arbitrary neighbourhood retract such that, for
x ∈ S, x(t) ∈ X for t ∈ J . Then there is a solution to problem (4.2) such that
x(t) ∈ X for t ∈ J .

5. Appendix

In this short last section we shall provide a discussion of the alternative
approach to the fixed point index for acyclic-decomposable set-valued maps and
the discussion of the mentioned strong invariance properties.

5.1. Discussion of the fixed point index. The class of acyclic-decompo-
sable maps (see Definition 3.5) admits a different description. Suppose that an
upper semicontinuous map Φ:X ( Y has compact values and let pΦ: Gr(Φ) →
X, qΦ: Gr(Φ) → Y be the projection of Gr(Φ) onto X and into Y , respectively.
Then, for each x ∈ X, Φ(x) = qΦ(p−1Φ (x)). Moreover, it is easy to see that p is a
proper surjection, i.e. p−1Φ (K) is compact provided so is K ⊂ X. If Φ is acyclic,
then, for each x ∈ X, the fiber p−1Φ (x) is acyclic. This formalism leads to the
notion of an admissible pair due to Górniewicz (see [24]): a pair of continuous
maps X

p←− Γ q−→ Y , where Γ is a space, is admissible if p is a proper surjection
and, for each x ∈ X, the fiber p−1(x) is acyclic. Each admissible pair determines
an acyclic-decomposable map Φ = Φ(p,q):X ( Y , Φ(x) := q(p−1(x)), x ∈ X,
with an acyclic decomposition given by

D(p, q):X
Φp
−( Γ q−→ Y,

where Φp(x) := p−1(x) for x ∈ X. The class of maps determined by admis-
sible pairs is closed under composition: given maps Φi:Xi → Xi+1, i = 0, 1,
determined by admissible pairs, it is not difficult to show that the composition
Φ1 ◦Φ0 is determined by an admissible pair, too (see [24]). Since, as was shown
above, any acyclic map is determined by an admissible pair, we see that the class
of acyclic-decomposable maps (defined above after [18] or [51]) is identical with
that consisting of maps determined by admissible pairs.
An adequate theory of the topological degree and the fixed point index for

compact maps determined by admissible pairs was provided in [24] and based
on the Vietoris theorem. If X is a normed space, U ⊂ X is open and a compact
map Φ determined by an admissible pair clU

p←− Γ q−→ X is such that Fix(Φ)∩
bdU = ∅, then Górniewicz defines (cf. [24] and comp. [34]) the coincidence index
indG((p, q), U) detecting the existence of fixed points of Φ (or coincidences of p
and q). As in the case of the Skordev index (where the index was defined for
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a particular decomposition of a given acyclic-decomposable map), the Górniewicz
index indG depends on a particular admissible pair determining Φ. The index
has most of the standard properties and constitutes a direct generalization of
the ordinary Leray–Schauder fixed-point index. However, due to the lack of the
commutativity property of indG, it is not known whether indG may be lifted
to the case when X ∈ ANR (17). This is the reason we decided to use the
Siegberg–Skordev index instead of the simpler and more intuitive approach due
to Górniewicz (even though their definition requires that Φ has to be defined
on the whole X).
Contrary to the fixed point index, Górniewicz [24] constructs the full Lef-

schetz theory of compact maps Φ:X ( X, where X ∈ ANR, determined by
admissible pairs X

p←− Γ q−→ X, and defines the generalized Lefschetz number
L((p, q)) having standard properties (see [24]). Therefore, from the view-point
of applications where we mainly deal with the Lefschetz number, the use of the
Górniewicz approach would be completely sufficient. It is not known whether
(in case X is a normed space) approaches of Siegberg–Skordev and Górniewicz
coincide.
Still a different, simple and sufficient in most of applications, construction of

the fixed point index has been provided in [3]. Let X ∈ ANR and assume that
a compact map F :X ( X have a decomposition

(5.1) D(F ) : X = X0
F0
−( X1

F1
−( · · ·

Fn−2
−( Xn−1

Fn−1
−( Xn = X

(i.e. F = Fn−1 ◦ . . . ◦ F0) such that Xi ∈ ANR for i = 1, . . . , n− 1 and, for i =
0, . . . , n− 1, Fi ∈ Rδ, i.e. Fi is upper semicontinuous with Rδ-values (a compact
subsetK of an ANR is an Rδ-set ifK is contractible in each of its neighbourhoods
(see [29]); clearly any compact contractible or convex set is Rδ; in particular any
compact AR is an Rδ-set). By [39] it is easy to see that Rδ-sets have trivial Čech
cohomology (with coefficients in any abelian group); thus in view of [24, Theorem
(5.1)] they are acyclic (18); in particular F given by (5.1) is acyclic-decomposable
and D(F ) ∈ DA(X,X). Let U ⊂ X be open and Fix(F ) ∩ bdU = ∅. Using
approximation results from [25] (comp. some refinements in [37]), Bader and
Kryszewski in [3] define the fixed point index indBK(F,U) of F with respect to U .
As in the case of the Skordev index, indBK depends strongly on a factorization
D(F ) of F . The substantial difference between indBK and indS is that the
latter does not require that in a decomposition D(F ) ∈ DA(X,X) all spaces
Xi ∈ ANR, i = 1, . . . , n − 1. Hence, the approach of [51] is more general;

(17) Under slightly stronger hypotheses concerning p and using a different approach, the

first author in [36], [35] constructed the full coincidence index theory for compact admissible

pairs U
p←− Γ

q−→ X, where U is an open subset of an ANR X.
(18) In fact [3] deals with maps having the so-called proximally ∞-connected values [17]

being more general than Rδ-sets (see also [37]).
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however the approach from [3] is simpler and needs no complicated algebraic
apparatus.

5.2. Strong invariance. Let X be a closed subset of a Banach space E and
assume that F: J × E ( E, where J = [0, T ], is a set-valued map. We say that
X is strongly invariant with respect to the flow generated by F if any solution
x: J → E of the Cauchy problem

(5.2) x′ ∈ F(t, x), x(0) = x0 ∈ X

stays in X, i.e. x(t) ∈ X for all t ∈ J .
The following results is perhaps known. However, since we could not find

a direct reference, we provide its full statement and proof.

Theorem 5.1. If, for all t ∈ J , the map F(t, · ):E ( E is L(t)-Lipschitz
with L ∈ L1(J,R), for all x ∈ X and t ∈ J ,

(5.3) F(t, x) ⊂ TX(x),

then X is strongly invariant with respect to the flow generated by F.

As above

TX(x) :=
{
v ∈ E

∣∣∣∣ lim inf
t→0+

dX(x+ tv)
t

= 0
}

is the Bouligand contingent cone to X at x ∈ X (dX is the distance from X).

Lemma 5.2. For each α ≥ 0, all x ∈ bdXα (where Xα := {x ∈ E | d(x) :=
d(x,X) ≤ α}), t ∈ J and u ∈ F(t, x),

lim sup
h→0+

d(x+ hu)− α
h

≤ L(t)α.

Proof. For α = 0 this is easy: fix x ∈ bdX (X0 = X), t ∈ J and u ∈ F(t, x).
Let xn ∈ X and xn → x. By the lower semicontinuity of F(t, · ), we gather that
there is un ∈ F(t, xn) such that un → u. Hence

u ∈ Liminf
y→x, y∈X

F(t, y) ⊂ Liminf
y→x, y∈X

TX(y) ⊂ CK(x),

where CX(x) stands for the Clarke tangent cone, i.e.

CX(x) :=
{
v ∈ E

∣∣∣∣ lim sup
h→0+, y→x, y∈X

d(y + hv)
h

= 0
}
.

Thus

lim sup
h→0+

d(x+ hu)
h

= 0.

Suppose to the contrary that there are α > 0, x ∈ bdXα, t ∈ J and u ∈
F(t, x) such that

lim sup
h→0+

d(x+ hu)− α
h

> Lα
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where L := L(t). Let ε ∈ (0, 1) be such that

lim sup
h→0+

d(x+ hu)− α
h

> L(α+ 2ε).

Hence, for each η > 0, there exists h ∈ (0, η) such that

d(x+ hu)− α > hL(α+ 2ε).

Clearly we may assume that u 6= 0; then we put

η := ε(‖u‖+ L(α+ 1 + ε))−1

and choose an appropriate h ∈ (0, η). Moreover let us take 0 < γ < hLε and
y ∈ X such that ‖x− y‖ < α+ γ. Then

D(y + hu, hL(α+ ε)) ∩X = ∅.

If z ∈ D(y + hu, hL(α+ ε)) ∩X, then ‖z − y − hu‖ ≤ hL(α+ ε) and

hL(α+ 2ε) < d(x+ hu)− α ≤ ‖z − x− hu‖ − α
≤ ‖z − y − hu‖+ ‖x− y‖ − α ≤ Lh(α+ ε) + γ,

i.e. γ > hLε: a contradiction.
Now we shall recall the following Drop Theorem due to Daneš [14]:

If X is a closed subset of a Banach space E, y0 ∈ E, d(y0, X) > r > 0 and y ∈ X,
then there is z0 ∈ X ∩conv (y,D(y0, r)) such that X ∩conv (z0, D(y0, r)) = {z0}.
In our situation (y0 := y+hu, r = hL(α+ε)), there is z0 ∈ X∩conv (y,D(y+

hu, hL(α+ε))) such that X ∩ conv (z0, D(y+hu, hL(α+ε))) = {z0}. Therefore,
for some λ ∈ [0, 1],

z0 = ty + (1− t)(y + hw) = y + (1− t)hw,

where ‖w − u‖ ≤ L(α + ε). It is easy to see that λ > 0 for otherwise z0 =
y + hw ∈ D(y + hu, hL(α+ ε)) ∩X. Observe that

‖z0 − x‖ ≤ ‖z0 − y‖+ ‖y − x‖ ≤ (1− λ)h‖w‖+ α+ γ
≤ h(‖u‖+ L(α+ ε)) + hLε+ α
= h(‖u‖+ L(α+ ε) + Lε) + α < α+ ε.

By Lipschitzeanity of F, there is v ∈ F(t, z0) such that

‖u− v‖ ≤ D(F(t, x),F(t, z0)) ≤ L‖x− z0‖ < L(α+ ε).

Since v ∈ F(t, z0) ⊂ TX(z0), there are sequences (sn) and (vn) such that 0 <
sn → 0, vn → v and z0 + snvn ∈ X for all n. For large n, sn < λh and
‖vn − u‖ ≤ L(α + ε); hence vn 6= 0 (for otherwise ‖u‖ ≤ L(α + ε), i.e. y ∈
D(y + hu, hL(α+ ε)) ∩X).
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Now observe that, for all large n,

z0 + snvn =
(
1− sn
λh

)
z0 +

sn
λh
(y + h(w + λ(vn − w)))

∈ conv (z0, D(y + hu, hL(α+ ε))) ∩X.

Thus z0 = z0 + snvn and snvn = 0: a contradiction. �

Proof of Theorem 5.1. Let x0 ∈ X and let x: J → E be a solution to
(5.2), i.e. x(t) = x0 +

∫ t
0 w(s) ds, where w ∈ L

1(J,E) and w(s) ∈ F(s, x(s))
for all s ∈ J . Let g(t) = d(x(t)). Functions x and g are differentiable almost
everywhere. Let t ∈ J be a point of differentiability of x and g; then x′(t) = w(t)
and, for small h > 0, x(t+h) = x(t)+hw(t)+hε(h), where ε(h)→ 0 if h→ 0+.
By the above Lemma,

g′(t) = lim
h→0+

g(t+ h)− g(t)
h

= lim
h→0+

d(x(t) + hw(t) + hε(h))− d(x(t))
h

≤ lim sup
h→0+

d(x(t) + hw(t))− d(x(t))
h

≤ L(t)g(t).

Hence, by the Gronwall inequality, g ≡ 0, i.e. x(t) ∈ X. �

Remark 5.3. (a) If E is separable and, for each x ∈ E, F( · , x) is measur-
able, then, by the parameterized version of the Michael theorem due to Kucia
[38], it is easy to see that strong invariance of X implies that the tangency
condition (5.3) is satisfied.
(b) It is easy to see that Theorem 5.1 holds true when F(t, · ) is L(t)-Lipschitz

for almost all t ∈ J and, if E is separable, when for all x ∈ bdX and almost all
t ∈ J , F(t, x) ⊂ TX(x).
(c) If X is a proximinal, i.e. for each y ∈ E \ X, the set πX(y) := {x ∈

X | ‖x− y‖ = d(y,X)} 6= ∅, then the tangency condition (5.3) may be relaxed.
Namely it is enough to assume that, for all x ∈ bdX, t ∈ J and u ∈ F(t, x),

(5.4) sup
v∈NPX(x)

〈v, u〉+ ≤ 0

where NPX (x) stands for the proximal normal cone to X at x and 〈 · , · 〉+:E×E
is the (positive) semi-inner product, i.e. 〈v, x〉+ := supp∈J(v)〈p, x〉 where J(v) :=
{p ∈ E∗ | 〈p, v〉 = ‖p‖2 = ‖v‖2} is the duality map. Condition (5.4) is also
sufficient if X is no longer proximinal, but E is reflexive, E and E∗ are smooth
in the sense that their norms are Fréchet differentiable off the origin. Indications
as to the proofs (in case of a Hilbert space) may be found in [13].
(d) Condition (5.3) may be replaced also by the following external tangency

condition: there is an open neighbourhood Ω of X such that, for all t ∈ J ,
x ∈ Ω \ X, F(t, x) ⊂ ∂dX(x)−, where ∂dX(x)− denotes the (negative) polar
cone to the Clarke generalized gradient ∂dX(x) of the distance function dX( · ),
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i.e. ∂dX(x)− := {u ∈ E | for all p ∈ ∂dX(x), 〈p, u〉 ≤ 0} — see [12]. Indeed,
if x(t) = x0 +

∫ t
0 w(s) ds, where w(s) ∈ F(s, x(s)) on J and there is t ∈ [0, T ]

such that x(t) 6∈ X, then there are t1, t2 ∈ [0, T ] such that x(t1) ∈ X and
x(t) ∈ Ω \X for t ∈ (t1, t2]. As above the function f := dX ◦ x is differentiable
almost everywhere on [t1, t2]. If f ′(t), t ∈ [t1, t2], exists, then

f ′(t) ≤ sup
p∈∂dX(x(t))

〈p, x′(t)〉 ≤ 0.

Thus, for all t ∈ (t1, t2),

dX(x(t)) = dX(x(t))− dX(x(t1)) =
∫ t
t1

f ′(s) ds ≤ 0,

a contradiction.
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[24] L. Górniewicz, Topological Fixed Point Theory for Multivalued Mappings, Kluwer,

2000.
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