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MULTIPLICITY OF SOLUTIONS
FOR SOME ELLIPTIC EQUATIONS

INVOLVING CRITICAL AND SUPERCRITICAL
SOBOLEV EXPONENTS

Shujie Li — Zhaoli Liu

Abstract. We study multiplicity of solutions of the following elliptic prob-

lems in which critical and supercritical Sobolev exponents are involved:

−∆u = g(x, u) + λh(x, u) in Ω and u = 0 on ∂Ω,

−div(|∇u|p−2∇u) = g(x, u) + λh(x, u) in Ω and u = 0 on ∂Ω,

where Ω is a smooth bounded domain in RN , p > 1, λ is a parameter,

and λh(x, u) is regarded as a perturbation term of the problems. Except
oddness with respect to u in some cases, we do not assume any condi-

tion on h. For the first problem, we get a result on existence of three

nontrivial solutions for |λ| small in the case where g is superlinear and

lim sup|t|→∞ g(x, t)/|t|2∗−1 is suitably small. We also prove that the first

problem has 2k distinct solutions for |λ| small when g and h are odd and

there are k eigenvalues between limt→0 g(x, t)/t and lim|t|→∞ g(x, t)/t. For

the second problem, we prove that it has more and more distinct solutions
as λ tends to 0 assuming that g and h are odd and g is superlinear and

lim|t|→∞ g(x, t)/|t|p∗−1 = 0.
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1. Introduction

Let Ω be a bounded domain in RN (N ≥ 2) with smooth boundary ∂Ω, say,
in C2,β for some 0 < β < 1. We will consider in this paper the semilinear elliptic
boundary value problem

(P1)λ

{
−∆u = g(x, u) + λh(x, u) in Ω,

u = 0 on ∂Ω,

and the quasilinear elliptic boundary value problem

(P2)λ

{
−∆pu = g(x, u) + λh(x, u) in Ω,

u = 0 on ∂Ω,

where 1 < p < +∞, ∆pu = div(|∇u|p−2∇u), g and h: Ω × R → R are locally
Lipschitz continuous, λ is a parameter and λh(x, t) is regarded as a perturbation
term. By a solution u of (P1)λ we mean a classical solution, that is, u ∈ C2(Ω)
and u satisfies (P1)λ pointwise. By a solution u of (P2)λ we mean a weak
solution, that is, u ∈W 1,p

0 (Ω) and u satisfies (P2)λ in the distribution sense. We
will see that all weak solutions of (P2)λ obtained in this paper are in C1,α(Ω)
for some 0 < α < 1.

The problem (P1)λ has a wide background in concrete problems from other
branches of science such as mathematical biology, chemistry and physics (see
[12], [21], [22], [24]). The problem (P2)λ arise also naturally in geometry and
mechanics; it has geometrical interest for p ≥ 2 and arise in the theory of non-
Newtonian fluids both for p > 2 and 1 < p < 2 (see [11], [19], [32] and the
references cited therein).

The problem (P1)λ with λ = 1 was studied as a perturbation problem from
symmetry in [5]–[7], [23], [39], [41]. In these papers the term h(x, u) is considered
to be a perturbation term and is assumed, as a nonlinear function of u, to be very
small compared with the term g(x, u). Under the oddness condition g(x,−t) =
−g(x, t) imposed only on g infinitely many solutions of the problem (P1)λ were
then proved to exist. Similar results were obtained for (P2)λ in [30]. In the
present paper, we consider the problems (P1)λ and (P2)λ also as perturbation
problems and from a different point of view. Without assuming any conditions
on h (except continuity and oddness in some cases) we shall prove multiplicity
results on solutions of these problems with |λ| sufficiently small.

Critical and supercritical Sobolev exponents are involved in the following
sense. In our first result, g(x, t) is allowed to be α|t|4/(N−2)t for |t| large and
h(x, t) can be any Lipschitz continuous function. In our second and third results,
h(x, t) is only assumed to be Lipschitz continuous and odd in t.
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Denote p∗ = Np/(N − p) if 1 < p < N and p∗ = +∞ if p ≥ N . Our first
result is about (P1)λ. For stating it, we formulate some conditions as below.

(g1) (P1)0 has a strict sub-solution φ ∈ C2
0 (Ω) and a strict super-solution

ψ ∈ C2
0 (Ω) with φ < 0 < ψ.

(g2) There exist constants M > 0 and µ > 2 such that

0 < µG(x, t) ≤ tg(x, t), x ∈ Ω, |t| ≥M,

where G(x, t) =
∫ t

0
g(x, s) ds.

(g3) β∞
4
= lim sup|t|→∞ |g(x, t)|/|t|q−1 < ∞ uniformly in x ∈ Ω, where q =

2∗ if N > 2 and q is any positive number if N = 2.

Denote by λ1 < λ2 ≤ λ3 ≤ . . . all the eigenvalues of −∆ with 0-Dirichlet
boundary condition and by e1, e2, . . . the corresponding eigenfunctions, with the
explicit meaning that each λi is counted as many times as its multiplicity. We
also denote λ0 = −∞. Note that λ1 > 0 is simple and e1 does not change sign.
We assume that e1 > 0 in Ω and ‖ej‖1,2 = 1 for j ∈ N. From (g2), it is easy to
see that there exists M1 > 0 such that

(1.1) G(x, t) ≥ 1
2
λ2t

2, x ∈ Ω, |t| ≥M1.

Now, we define two numbers as

m1 = max
x∈Ω,|t|≤M1

{
1
2
λ2t

2 −G(x, t)
}
,(1.2)

m2 = max
x∈Ω,|t|≤M

{
G(x, t)− 1

µ
tg(x, t)

}
.(1.3)

It is obvious that, m1 ≥ 0, m2 ≥ 0, and

G(x, t) ≥ 1
2
λ2t

2 −m1, x ∈ Ω, t ∈ R,(1.4)

G(x, t) ≤ 1
µ
tg(x, t) +m2, x ∈ Ω, t ∈ R.(1.5)

Denote by S the best constant of the critical Sobolev embedding H1
0 (Ω) ↪→

L2∗(Ω). That is,

(1.6) S = inf
φ∈H1

0 (Ω),‖φ‖2∗=1
‖∇φ‖22.

It is well known that S depends on N and is independent of Ω. See, for example,
[46] for discussions on such numbers. Our first main result is that

Theorem 1.1. Suppose that (g1)–(g3) are satisfied and, in the case N > 2,(
m1 +m2

2−1 − µ−1

)2/(N−2)

β∞ <
8NSN/(N−2)

(N + 2)2|Ω|2/(N−2)
.
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Then, for any h, there exists λ = λ(h) > 0 such that, for all |λ| ≤ λ. Problem
(P1)λ has at least three classical solutions u1, u2 and u3 satisfying u1 > φ,
u1 6≤ ψ, u2 < ψ, u2 6≥ φ, u3 6≤ ψ, and u3 6≥ φ.

In some cases, we can get additional information about the solutions. For
example, we have the following corollary from Theorem 1.1.

Corollary 1.2. Instead of assuming (g1), we assume that

lim sup
t→0

g(x, t)
t

< λ1

uniformly in x ∈ Ω. Then the three solutions obtained in Theorem 1.1 are
such that u1 is positive, u2 is negative, and u3 is sign-changing provided that
h(x, 0) = 0.

Remark 1.3. In Theorem 1.1, we do not need any assumption except Lip-
schitz continuity of h(x, t), so critical Sobolev exponent may be involved if λ 6= 0.
This is also the case even if λ = 0 since β∞ may be positive (see Example 1.4
below). The existence of a positive solution and a negative solution was obtained
by Ambrosetti and Rabinowitz [3] with a Mountain Pass argument (see also [40]).
The existence of a third nontrivial solution was first proved by Wang [44]. Later,
many authors proved that the third nontrivial solution is a sign-changing one
(see, for example, [8], [9], [16], [21], [22], [33], [34], [37]). We should emphasize
that the nonlinearities in those papers were always assumed to be subcritical.
Even in the special case λ = 0, Theorem 1.1 generalizes the results mentioned
above. But Theorem 1.1 says much more.

The following two examples shows that the critical Sobolev exponent is in-
volved even in the case λ = 0.

Example 1.4. Consider

g(x, t) =

{
α1t

(N+2)/(N−2) + γ1t
p1 for t ≥ 0,

α2|t|4/(N−2)t+ γ2|t|p2−1t for t < 0,

where αi > 0, γi > 0 and 1 < pi < (N + 2)/(N − 2) (i = 1, 2). It is easy to see
that, for all p1, p2, γ1, γ2, there exists a number α = α(p1, p2, γ1, γ2, N,Ω) > 0
such that if max{α1, α2} ≤ α then all conditions in Theorem 1.1 are satisfied by
g(x, t).

Example 1.5. Consider

g(x, t) =

{
α1t

(N+2)/(N−2)/ ln(2 + t) + γ1t
p1 for t ≥ 0,

α2|t|4/(N−2)t/ ln(2 + |t|) + γ2|t|p2−1t for t < 0.

In this case, for all αi > 0, γi > 0 and 1 < pi < (N +2)/(N −2) (i = 1, 2), g(x, t)
satisfies the conditions in Theorem 1.1.
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Next, we consider Problem (P1)λ in the case where g(x, t) is asymptotically
linear at t = 0 and t = ∞. The following conditions will be used.

(g4) limt→0 g(x, t)/t = α0 and lim|t|→∞ g(x, t)/t = α∞ uniformly in x ∈ Ω,
where α0 and α∞ are real numbers.

(g5) g(x,−t) = −g(x, t) for all x ∈ Ω and t ∈ R.
(h) h(x,−t) = −h(x, t) for all x ∈ Ω and t ∈ R.

Our second result reads as follows.

Theorem 1.6. Assume (g4) and (g5).

(a) If λi < α0 < λi+1 ≤ λi+2 ≤ . . . ≤ λi+k < α∞ < λi+k+1, for some
i ∈ N ∪ {0} and k ∈ N then, for any h satisfying (h), there exists
λ = λ(h) > 0 such that, for |λ| ≤ λ, (P1)λ possesses at least k pairs of
distinct classical solutions with positive energy.

(b) If λi < α∞ < λi+1 ≤ λi+2 ≤ . . . ≤ λi+k < α0 < λi+k+1, for some
i ∈ N ∪ {0} and k ∈ N then, for any h satisfying (h), there exists
λ = λ(h) > 0 such that, for |λ| ≤ λ, (P1)λ possesses at least k pairs of
distinct classical solutions with negative energy.

Remark 1.7. In the case λ = 0, results in Theorem 1.6 are well known and
was proved with index theory (see e.g. [3], [18], [20], [40]). Since h can be any Lip-
schitz continuous function satisfying (h), limt→0 h(x, t)/t and lim|t|→∞ h(x, t)/t
may not exist. But when |λ| is small enough, |λh(x, t)/t| is very small in a suit-
ably large interval of t and this is sufficient for (P1)λ to have k pairs of distinct
classical solutions. Therefore, Theorem 1.6 shows that, in the case λ = 0, the
assumption (g4) is stronger than what needed to guarantee existence of k pairs
of distinct classical solutions of (P1)0. Conditions may be imposed on g only for
t in a suitably large interval.

Our third result is about (P2)λ in which g and h are odd in u and g is
superlinear. To state such a result, we need the following assumptions.

(g6) There exist constants M > 0 and µ > p such that

0 < µG(x, t) ≤ tg(x, t), x ∈ Ω, |t| ≥M.

(g7) lim|t|→∞ g(x, t)/|t|q−1 = 0 uniformly in x ∈ Ω, where q = p∗ if 1 < p <

N and q is any positive number if p ≥ N .

Theorem 1.8. Suppose that (g5)–(g7) are satisfied. Then, for any h satis-
fying (h) and any j ∈ N, there exists λj = λj(h) > 0 such that, when |λ| ≤ λj,
Problem (P2)λ possesses at least j pairs of solutions with positive energy. More-
over, these solutions are in C1,α(Ω) for some 0 < α < 1.

It is easy to see that, in the case 1 < p < N , g(x, t) = α|t|p∗−2t/ ln(2 + |t|) +
γ|t|q−2t with α > 0, γ > 0 and p < q < p∗ satisfies (g5)–(g7). In Theorem 1.8,
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the only assumption imposed on h is the oddness in t, so, for example, h(x, t) =
t2n−1et2m+1 with n and m being positive integers is a legitimate function.

Remark 1.9. Theorem 1.8 implies that, in the case λ = 0, there exist
infinitely many solutions of (P2)0 if (g5)–(g7) are satisfied. In the case p = 2,
under (g5)–(g6) and a condition stronger than (g7) (with p = 2), existence of
infinitely many solutions of (P1)0 was first proved in [3] (see also [40]).

Remark 1.10. In a recent paper [17], Chabrowski and Yang studied problem
(P1)λ with Ω = RN , g(x, u) = Q(x)|u|q−1 − u and h(x, u) = R(x)|u|r−1u, where
2 < q < (N + 2)/(N − 2) ≤ r and N ≥ 3. They proved existence of one
positive solution and variant multiplicity results when λ > 0 is small. They used
truncation argument and their argument depends on the special feature of both
the subcritical and the supercritical terms. We will also use truncation argument
to get the results in the present paper. Our results exhibit such a phenomenon
that for any function h, the number of solutions of (P1)λ and (P2)λ is closer and
closer to that of (P1)0 and (P2)0 as λ goes to 0, respectively.

Remark 1.11. In the case where g is sublinear and odd, (P1)1 and (P2)1
were studied by Wang [45] where h is also a perturbation term with respect to
g. Under suitable conditions on g and h, he proved that (P1)1 and (P2)1 have
infinitely many solutions with negative energy and converging to 0. In [45], some
other kinds of sublinear problems were also studied.

In order to give further information on the comparison between Theorem 1.8
and known results in the literature, we state the following two corollaries as very
special cases of Theorem 1.8.

Corollary 1.12. Assume that p < q < p∗ and r > p. Then for any j ∈ N,
there exists λj > 0 such that, when λ ≥ λj, the problem

(P3)±λ

{
−∆pu = λ|u|q−2u± |u|r−2u in Ω,

u = 0 on ∂Ω,

possesses at least j pairs of solutions with positive energy.

Remark 1.13. Problems like (P3)+λ have been studied by many authors.

(a) For the p-Laplacian case, Garcia and Peral [30] proved that, among
other results, if 1 < p < N and p < q < r = p∗ then there exists
λ0 > 0 such that (P3)+λ has at least one nontrivial solution for λ ≥ λ0.
Corollary 1.12 strengthens their result.

(b) In the case p = 2 and 2 ≤ q < r = 2∗, it was studied by Brezis and
Nirenberg in their celebrated paper [15].

(c) In the case p = 2 and 1 < q < 2 < r ≤ 2∗, such a problem was studied
by Ambrosetti, Brezis and Cerami in [2]. The results in [2] have been
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extended and generalized later in e.g. [10] and [45]. For related results,
see also [29] and [13].

(d) In the case p = 2 and max{2, 2∗ − 1} < q < r = 2∗ and Ω being the
unit ball, existence of radially symmetric solutions of (P3)+λ was studied
in [4] and the Neumann problem was studied in [1].

Corollary 1.14. Assume that p < q < p∗ and r > q. Then for any j ∈ N,
there exists λj > 0 such that, when λ ≥ λj, the problem

(P4)±λ

{
−∆pu = λ(|u|q−2u± |u|r−2u) in Ω,

u = 0 on ∂Ω,

possesses at least j pairs of solutions with positive energy.

Remark 1.15.

(a) Problems like (P4)±λ in unbounded domains were studied in [25], [26]
where the nonlinearity was assumed to be subcritical.

(b) In Corollaries 1.12 and 1.14, r can be any large numbers. Especially,
the critical and supercritical cases r = p∗ and r > p∗ are included.

Roughly speaking, the above theorems give bifurcation phenomena for the
solutions of elliptic problems. Nevertheless, it seems that they are not obtainable
from known bifurcation theory as well as global theory for nonlinear eigenvalue
problems (cf. [38]).

2. Proof of Theorem 1.1

We will use ‖ · ‖q to denote the norm of Lq(Ω) (1 ≤ q ≤ ∞) and ‖ · ‖m,q

to denote the norm of Wm,q(Ω) (1 ≤ q < ∞). We will only consider the case
N > 2.

The proof is based on a truncation argument. This technique has been
used successfully by many authors in dealing with superlinear elliptic problems
(see, for example, [27], [28], [17], [36]). Different truncation functions should be
adopted in dealing with different problems. The arguments in the papers just
mentioned above do not suffice for the present purpose. We define the truncation
functions as follows.

Let φ, ψ, µ, M and M1 be as in (g1), (g2) and (1.1). Without loss of general-
ity, we can assume that 2 < µ < 2N/(N−2). Take an increasing sequence of num-
bers {tn} such that tn ↑ ∞ as n→∞ and t1 > max{‖φ‖C(Ω), ‖ψ‖C(Ω),M,M1}.
For n ∈ N and λ ∈ R, define

gn,λ(x, t) =


g(x, t) + λh(x, t) if |t| ≤ tn,

g(x, tn)(t/tn)µ−1 + λh(x, tn)µn(t) if t > tn,

g(x,−tn)(−t/tn)µ−1 + λh(x,−tn)µn(−t) if t < −tn,
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where

µn(t) =

{
1 + tn − t if tn ≤ t ≤ tn + 1,

0 if t > tn + 1.

Define Gn,λ(x, t) =
∫ t

0
gn,λ(x, s) ds. Then Gn,λ(x, t) has the expression

Gn,λ(x, t) =



G(x, t) + λH(x, t) if |t| ≤ tn,

G(x, tn) + λH(x, tn)

+g(x, tn)an(t) + λh(x, tn)bn(t) if t > tn,

G(x,−tn) + λH(x,−tn)

−g(x,−tn)an(−t)− λh(x,−tn)bn(−t) if t < −tn.

where H(x, t) =
∫ t

0
h(x, s) ds,

an(t) =
∫ t

tn

(
s

tn

)µ−1

ds =
tµ − tµn

µtµ−1
n

, t ≥ tn,

and

bn(t) =
∫ t

tn

µn(s) ds =

{
(1− (1 + tn − t)2)/2 if tn ≤ t ≤ tn + 1,

1/2 if t > tn + 1.

Take a number δ > 0 such that

(2.1)
(
m1 +m2 + 2δ

2−1 − µ−1

)2/(N−2)

(β∞ + 2δ) <
8NSN/(N−2)

(N + 2)2|Ω|2/(N−2)
.

Now we give some lemmas which will be used in the sequel.

Lemma 2.1. There exists a constant C > 0 depending only on g with the
property that, for any n∗ ∈ N, there exists a number λ∗ = λ∗(n∗, h) > 0 such
that, for all n ∈ {1, . . . , n∗}, all |λ| ≤ λ∗, all x ∈ Ω, and all t ∈ R,

|gn,λ(x, t)| ≤ (β∞ + δ)|t|(N+2)/(N−2) + C,

and
|gn,λ(x, t)||t|N/2 ≤ (β∞ + δ)|t|(N+2)/(N−2)+N/2 + C.

Proof. We only prove the second inequality since the proof for the first one
is similar. By (g3), there exists a constant M2 > 0 such that, for all x ∈ Ω and
all t ∈ R with |t| ≥M2,

|g(x, t)| ≤ (β∞ + δ)|t|(N+2)/(N−2).

Define a constant C1 as

C1 = max
x∈Ω,|t|≤M2

|g(x, t)||t|N/2.
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Then, for all x ∈ Ω and all t ∈ R,

|g(x, t)||t|N/2 ≤ (β∞ + δ)|t|(N+2)/(N−2)+N/2 + C1.

Now, we claim that, for all n ∈ N, all x ∈ Ω and all t ∈ R,

(2.2) |gn(x, t)||t|N/2 ≤ (β∞ + δ)|t|(N+2)/(N−2)+N/2 + C1,

where gn(x, t) = gn,0(x, t). Clearly, we need only to prove (2.2) for |t| > tn.
Without loss of generality, we can assume that t1 ≥ M2. Since µ − 1 < (N +
2)/(N − 2), for any n ∈ N and x ∈ Ω, if |t| > tn then

|gn(x, t)| ≤ (β∞ + δ)t(N+2)/(N−2)
n (|t|/tn)µ−1 ≤ (β∞ + δ)|t|(N+2)/(N−2).

Hence (2.2) is true. For any n∗ ∈ N, let λ∗ = λ∗(n∗, h) > 0 be small such that

(2.3) λ∗|h(x, t)||t|N/2 ≤ 1, x ∈ Ω, |t| ≤ tn∗ .

Then (2.2) and (2.3) together with the definition of gn,λ(x, t) yield, for all n ∈
{1, . . . , n∗}, all |λ| ≤ λ∗, all x ∈ Ω, and all t ∈ R,

|gn,λ(x, t)||t|N/2 ≤ (β∞ + δ)|t|(N+2)/(N−2)+N/2 + C1 + 1.

Letting C = C1 + 1, we complete the proof. �

Lemma 2.2. Let m1 be defined as in (1.2). Then, for any n∗ ∈ N, there exists
a number λ∗ = λ∗(n∗, h) > 0 such that, for all n ∈ {1, . . . , n∗}, all |λ| ≤ λ∗, all
x ∈ Ω, and all t ∈ R,

Gn,λ(x, t) ≥ 1
2
λ2t

2 −m1 − δ.

Proof. We first claim that, for all n ∈ N, all x ∈ Ω, and all t ∈ R,

(2.4) Gn(x, t) ≥ 1
2
λ2t

2 −m1,

where Gn(x, t) = Gn,0(x, t). Indeed, if |t| ≤ tn then (1.4) yields (2.4). If t > tn
then, from (g2), (1.1) and the fact that tn ≥ max{M,M1}, we have

Gn(x, t) =G(x, tn) +
tn
µ
g(x, tn)

((
t

tn

)µ

− 1
)

≥G(x, tn)
(
t

tn

)µ

≥ 1
2
λ2t

2
n

(
t

tn

)µ

≥ 1
2
λ2t

2.

Similarly, we have Gn(x, t) ≥ λ2t
2/2 for t < −tn. Therefore, 2.4 is valid. For

any n∗ ∈ N, let λ∗ = λ∗(n∗, h) > 0 be small such that

(2.5) λ∗(|H(x, t)|+ |h(x, t)|) ≤ δ, x ∈ Ω, |t| ≤ tn∗ .
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Combining (2.4) and (2.5), we see that, for any n∗ ∈ N, there exists a number
λ∗ = λ∗(n∗, h) > 0 such that, for all n ∈ {1, . . . , n∗}, all |λ| ≤ λ∗, all x ∈ Ω, and
all t ∈ R,

Gn,λ(x, t) ≥ 1
2
λ2t

2 −m1 − δ. �

Lemma 2.3. Let m2 be defined as in (1.3). Then, for any n∗ ∈ N, there exists
a number λ∗ = λ∗(n∗, h) > 0 such that, for all n ∈ {1, . . . , n∗}, all |λ| ≤ λ∗, all
x ∈ Ω, and all t ∈ R,

Gn,λ(x, t) ≤ 1
µ
tgn,λ(x, t) +m2 + δ.

Proof. We first claim that, for all n ∈ N, all x ∈ Ω, and all t ∈ R,

(2.6) Gn(x, t) ≤ 1
µ
tgn(x, t) +m2.

In fact, if |t| ≤ tn then (2.6) is just from (1.5). If t > tn then, in view of (g2)
and the fact that tn ≥M , we have

Gn(x, t) = G(x, tn) +
1
µ
tng(x, tn)

((
t

tn

)µ

− 1
)

≤ 1
µ
tng(x, tn) +

1
µ
tng(x, tn)

((
t

tn

)µ

− 1
)

=
1
µ
tgn(x, t).

If t < −tn, we have Gn(x, t) ≤ tgn(x, t)/µ in a similar way. Hence (2.6) is true.
For any n∗ ∈ N, let λ∗ = λ∗(n∗, h) > 0 be small such that

(2.7) λ∗(|H(x, t)|+ |h(x, t)|+ 1
µ
|t||h(x, t)|) ≤ δ, x ∈ Ω, |t| ≤ tn∗ .

Combining (2.6) and (2.7), we see that, for any n∗ ∈ N, there exists a number
λ∗ = λ∗(n∗, h) > 0 such that, for all n ∈ {1, . . . , n∗}, all |λ| ≤ λ∗, all x ∈ Ω, and
all t ∈ R,

Gn,λ(x, t) ≤ 1
µ
tgn,λ(x, t) +m2 + δ. �

For proving Theorem 1.1, we still need to recall some notations. Denote
H = H1

0 (Ω), X = C1
0 (Ω). For u1, u2 ∈ X, we denote u1 � u2 if u1(x) < u2(x)

for x ∈ Ω and (∂u1/∂ν)(x) > (∂u2/∂ν)(x) for x ∈ ∂Ω, where ν is the outward
normal at x ∈ ∂Ω.

Now, we are ready to prove Theorem 1.1.

Proof of Theorem 1.1. For every n ∈ N and λ ∈ R, consider the bound-
ary value problem

(2.8)n,λ

{
−∆u = gn,λ(x, u) in Ω,

u = 0 on ∂Ω,
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whose solutions correspond to critical points of

Jn,λ(u) =
1
2

∫
Ω

|∇u|2 −
∫

Ω

Gn,λ(x, u), u ∈ H.

It is well known that, due to the definition of gn,λ(x, t), Jn,λ satisfies (PS) con-
dition on H for each n ∈ N and each λ ∈ R. Choose a number m = m(n, λ) > 0
such that gn,λ(x, t) + mt is strictly increasing in t ∈ R. Since φ and ψ are
a strict sub- and a strict super-solution of (P1)0 respectively, we have, by strong
maximum principle,

φ� (−∆ +m)−1(g( · , φ) +mφ)

and
ψ � (−∆ +m)−1(g( · , ψ) +mψ).

Then it is easy to see that there exists λ̃ = λ̃(h) > 0 such that, for all |λ| ≤ λ̃,

(2.9) φ� (−∆ +m)−1(g( · , φ) + λh( · , φ) +mφ)

and

(2.10) ψ � (−∆ +m)−1(g( · , ψ) + λh( · , ψ) +mψ).

Since t1 > max{‖φ‖C(Ω), ‖ψ‖C(Ω)}, φ and ψ are a strict sub- and a strict super-

solution of (2.8)n,λ for all n ∈ N and all |λ| ≤ λ̃, respectively. Taking the
following equivalent norm of H

‖u‖21,2 =
∫

Ω

(|∇u|2 +mu2),

we have by a direct computation

J ′n,λ(u) = u− (−∆ +m)−1(gn,λ( · , u) +mu), u ∈ H.

Denote
An,λu = (−∆ +m)−1(gn,λ( · , u) +mu), u ∈ H.

Then An,λ is Lipschitz continuous from H to H as well as from X to X. Let
u0 ∈ X and consider the following initial value problem both in H and in X:{ du(t)

dt
= −u(t) +An,λu(t) for t ≥ 0,

u(0) = u0.

Let u(t, u0) (resp. ũ(t, u0)) be the unique solution with maximal interval of ex-
istence [0, η(u0)) (resp. [0, η̃(u0))) in H (resp. X). By [37, Lemma 4.2], η̃(u0) =
η(u0), ũ(t, u0) = u(t, u0) for 0 ≤ t < η(u0), and if limt→η(u0) u(t, u0) = u∗ in the
H topology for some u∗ ∈ Kn,λ, the critical sets of Jn,λ, then limt→η(u0) u(t, u0)
= u∗ in the X topology. Define

D1 = {u ∈ X | u� φ}, D2 = {u ∈ X | u� ψ}.
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Then D1 and D2 are open convex subsets of X and

D1 ∩D2 = {u ∈ X | φ� u� ψ} 6= ∅.

As in [37], we use ∂XD and D
X

to denote the boundary and the closure of D
relative to X. From (2.9), (2.10) and the increasing of the operator An,λ, we get
that

An,λ(∂XDi) ⊂ Di, i = 1, 2.

By the proof of [37, Theorem 4.1], there exists a path h: [0, 1] → X such that

h(0) ∈ D1 \D2, h(1) ∈ D2 \D1,

and
inf

u∈D
X
1 ∩D

X
2

Jn,λ(u) > max
t∈[0,1]

Jn,λ(h(t)).

According to [37, Theorem 3.3], Jn,λ has three critical points un,λ,1 ∈ D1 \D2
X ,

un,λ,2 ∈ D2 \ D1
X and un,λ,3 ∈ X \ (D1

X ∪ D2
X). So, for all n ∈ N and all

|λ| ≤ λ̃, (2.8)n,λ has three solutions un,λ,1, un,λ,2 and un,λ,3 satisfying un,λ,1 >

φ, un,λ,1 6≤ ψ, un,λ,2 < ψ, un,λ,2 6≥ φ, un,λ,3 6≤ ψ, and un,λ,3 6≥ φ. By the proof of
[37, Theorem 3.3], un,λ,1, un,λ,2 and un,λ,3 are minimizers of Jn,λ on ∂XCX(D1∩
D2)∩D1

X , ∂XCX(D1 ∩D2)∩D2
X and ∂XCX(D1 ∩D2) \ (CX(D1)∪CX(D2)),

respectively, where CX(D1∩D2) is the set of points u0 inX for which there exists
0 < t < η(u0) such that u(t, u0) ∈ D1 ∩ D2. Since φ < 0 < ψ, the maximum
principle implies φ� 0 � ψ. So,

0 ∈ D1 ∩D2 ⊂ CX(D1 ∩D2).

Therefore, each of the three sets ∂XCX(D1∩D2)∩D1
X , ∂XCX(D1∩D2)∩D2

X

and ∂XCX(D1 ∩D2) \ (CX(D1)∪CX(D2)) intersects with span{e1, e2} (see [37]
for details). Then we have, for i = 1, 2, 3,

Jn,λ(un,λ,i) ≤ sup
u∈span{e1,e2}

Jn,λ(u).

By Lemma 2.2 for all n ∈ {1, . . . , n∗} and |λ| ≤ λ∗, if u ∈ span{e1, e2} then

Jn,λ(u) ≤
∫

Ω

(
1
2
|∇u|2 − 1

2
λ2u

2 +m1 + δ

)
≤ (m1 + δ)|Ω|.

So, we arrive at, for all n ∈ {1, . . . , n∗} and |λ| ≤ λ∗ := min{λ∗(n∗, h), λ̃(h)},

(2.11) Jn,λ(un,λ,i) ≤ (m1 + δ)|Ω|, i = 1, 2, 3,

here and in the sequel, we use λ∗ to represent variant constants depending only
on n∗ and h. We need to prove that each un,λ,i (i = 1, 2, 3) is a solution of
(P1)λ when n is large and λ is small. For the sake of brevity, we omit the
subscript i and denote un,λ,i by un,λ for i = 1, 2, 3. Now, we prove the existence
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of a constant C̃ with the property that, for any n∗ ∈ N, there exists λ∗ > 0 such
that, for all n ∈ {1, . . . , n∗} and all |λ| ≤ λ∗,

(2.12) ‖un,λ‖∞ ≤ C̃.

By Lemma 2.3, we see that, for all n∗ ∈ N, if n ∈ {1, . . . , n∗} and |λ| ≤ λ∗,

Jn,λ(un,λ) ≥ 1
2

∫
Ω

|∇un,λ|2 −
1
µ

∫
Ω

un,λgn,λ(x, un,λ)− (m2 + δ)|Ω|.

Since un,λ is a solution of (2.8)n,λ, it follows that, for all n∗ ∈ N, if n ∈
{1, . . . , n∗} and |λ| ≤ λ∗,

(2.13) Jn,λ(un,λ) ≥
(

1
2
− 1
µ

) ∫
Ω

|∇un,λ|2 − (m2 + δ)|Ω|.

Combining (2.11) and (2.13), we have, for all n∗ ∈ N, if n ∈ {1, . . . , n∗} and
|λ| ≤ λ∗,

(2.14) ‖un,λ‖21,2 ≤ (2−1 − µ−1)−1(m1 +m2 + 2δ)|Ω|.

To get a L∞(Ω) bound for un,λ, we use a technique from [14] (see also [28]).
Multiplying (2.8)n,λ with |un,λ|N/2signun,λ and integrating by parts, we have,
for all n ∈ N and all |λ| ≤ λ∗,∫

Ω

|∇|un,λ|(N+2)/4|2 = τN

∫
Ω

gn,λ(x, un,λ)|un,λ|N/2signun,λ,

where τN = (N + 2)2/(8N). According to Lemma 2.1, for any n∗ ∈ N, there
exists λ∗ > 0 such that, for all n ∈ {1, . . . , n∗} and all |λ| ≤ λ∗,∫

Ω

|∇|un,λ|(N+2)/4|2 ≤ τN (β∞ + δ)
∫

Ω

|un,λ|4/(N−2)+(N+2)/2 + C|Ω|τN .

Using Hölder inequality, (1.6) and (2.14), we estimate as follows, for all n ∈
{1, . . . , n∗} and all |λ| ≤ λ∗,∫

Ω

|∇|un,λ|(N+2)/4|2 ≤ τN (β∞ + δ)
( ∫

Ω

|un,λ|2N/(N−2)

)2/N

·
( ∫

Ω

|un,λ|N(N+2)/(2(N−2))

)(N−2)/N

+ C|Ω|τN

≤ τN (β∞ + δ)
1

S2/(N−2)+1
‖un,λ‖4/(N−2)

1,2 ‖|un,λ|(N+2)/4‖21,2 + C|Ω|τN

≤ τN (β∞ + δ)
1

SN/(N−2)

(
(m1 +m2 + 2δ)|Ω|

2−1 − µ−1

)2/(N−2)

· ‖|un,λ|(N+2)/4‖21,2 + C|Ω|τN .
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The last inequality combined with (2.1) yields, for all n ∈ {1, . . . , n∗} and all
|λ| ≤ λ∗,

‖|un,λ|(N+2)/4‖21,2 ≤
β∞ + δ

β∞ + 2δ
‖|un,λ|(N+2)/4‖21,2 + C|Ω|τN .

This implies that a constant C1 > 0 exists with the property that, for all n∗ ∈ N,
there exists λ∗ > 0 such that, for all n ∈ {1, . . . , n∗} and all |λ| ≤ λ∗,

‖|un,λ|(N+2)/4‖1,2 ≤ C1,

and hence, by Sobolev inequality, ‖un,λ‖N(N+2)/2(N−2) ≤ C2, for some constant
C2 > 0 independent of n and λ. By Lemma 2.1 again, a constant C3 > 0 exists
with the property that, for all n∗ ∈ N, there exists λ∗ > 0 such that, for all
n ∈ {1, . . . , n∗} and all |λ| ≤ λ∗, ‖gn,λ(x, un,λ)‖N/2 ≤ C3. According to Lp

theory of linear elliptic equations, a constant C4 > 0 exists with the property
that, for all n∗ ∈ N, there exists λ∗ > 0 such that, for all n ∈ {1, . . . , n∗} and
all |λ| ≤ λ∗, ‖un,λ‖2,N/2 ≤ C4. Since W 2,N/2(Ω) ↪→ L∞(Ω), a constant C̃ > 0
exists with the property that, for any n∗ ∈ N, there exists λ∗ > 0 such that
(2.12) is valid for all n ∈ {1, . . . , n∗} and all |λ| ≤ λ∗. Since C̃ is independent of
n∗ ∈ N and λ, we can choose a number n∗ ∈ N such that tn∗ > C̃. For such an
n∗, let λ = λ(h) := λ∗(n∗, h). Then, for all |λ| ≤ λ,

‖un∗,λ‖∞ ≤ C̃ < tn∗

and un∗,λ is a solution of (P1)λ. The proof is finished. �

Proof of Corollary 1.2. Since lim supt→0 g(x, t)/t < λ1 uniformly in
x ∈ Ω and h(x, 0) = 0, there exist δ > 0 and λ̃ > 0 such that, for all x ∈ Ω,
0 < |t| ≤ δ, and |λ| ≤ λ̃,

t−1(g(x, t) + λh(x, t)) < λ1.

This implies that φ = −δ∗e1 and ψ = δ∗e1 are a strict sub- and a strict super-
solution of (P1)λ provided |λ| ≤ λ̃, where δ∗ > 0 is such that δ∗‖e1‖∞ < δ. Let
u1, u2 and u3 be the three solutions obtained in Theorem 1.1. Then u1 > φ, u1 6≤
ψ, u2 < ψ, u2 6≥ φ, u3 6≤ ψ, and u3 6≥ φ. Clearly, u3 is a sign-changing solution.
Now we prove that u1 is a positive solution. Denote Ω∗ = {x ∈ Ω | u1(x) < 0}.
If Ω∗ 6= ∅ then{

−∆u1(x) = g(x, u1(x)) + λh(x, u1(x)) > λ1u1(x) for x ∈ Ω∗,

u1(x) = 0 for x ∈ ∂Ω∗.

Let λ∗1 be the first eigenvalue of

−∆u = λu in Ω∗; u = 0 on ∂Ω∗
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with the positive eigenfunction e∗1. Then λ∗1 ≥ λ1. Multiplying the last inequality
with e∗1 and taking integral, we have

λ∗1

∫
Ω∗1

u1e
∗
1 > λ1

∫
Ω∗1

u1e
∗
1,

which is a contradiction. So, u1 is a positive solution. Similarly, u2 is a negative
solution. �

3. Proof of Theorem 1.6

In this section, we prove Theorem 1.6. The two cases (a) and (b) in Theorem
1.6 will be handled separately. Let Σ = {A ⊂ H\{0} | A is closed and A = −A}.
We use γ(A) to denote the genus of A (see [40]). We define a new kind of
truncation functions to fulfill our task. Choose a sequence of positive numbers
{tn} with the property that tn ↑ +∞ and define, for n ∈ N and λ ∈ R,

gn,λ(x, t) =


g(x, t) + λh(x, t) for |t| ≤ tn,

g(x, t) + λh(x, tn) for t > tn,

g(x, t) + λh(x,−tn) for t < −tn.

Lemma 3.1. There are constants C > 0, δ > 0 and δ > 0 with the property
that, for any n∗ ∈ N, there exists λ∗ = λ∗(n∗, h) > 0 such that, for all n ∈
{1, . . . , n∗}, all |λ| ≤ λ∗, and all x ∈ Ω,

• in case (a),∣∣∣∣gn,λ(x, t)− λi+k + λi+k+1

2
t

∣∣∣∣ ≤ (
λi+k+1 − λi+k

2
− δ

)
|t|+ C, t ∈ R,(3.1)

λi + δ <
gn,λ(x, t)

t
< λi+1 − δ, 0 < |t| ≤ δ,(3.2)

• and, in case (b),∣∣∣∣gn,λ(x, t)− λi + λi+1

2
t

∣∣∣∣ ≤ (
λi+1 − λi

2
− δ

)
|t|+ C, t ∈ R,(3.3)

λi+k + δ <
gn,λ(x, t)

t
< λi+k+1 − δ, 0 < |t| ≤ δ.(3.4)

Proof. We give the proof only in case (a) since it is similar in case (b).
Take a δ > 0 such that

λi+k + 2δ < α∞ < λi+k+1 − 2δ and λi + 2δ < α0 < λi+1 − 2δ.

By (g4), there exist C1 > 0 and δ > 0 such that, for all x ∈ Ω and all t ∈ R,∣∣∣∣g(x, t)− λi+k + λi+k+1

2
t

∣∣∣∣ ≤ (
λi+k+1 − λi+k

2
− δ

)
|t|+ C1
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and that, for all x ∈ Ω and all 0 < |t| ≤ δ,

λi + 2δ < g(x, t)/t < λi+1 − 2δ.

For any n∗ ∈ N, choose λ∗ = λ∗(n∗, h) > 0 small enough such that

λ∗|h(x, t)| < 1, x ∈ Ω, |t| ≤ tn∗ ,

λ∗|t−1h(x, t)| < δ, x ∈ Ω, 0 < |t| ≤ δ.

Let C = C1 + 1. Then the result follows easily from the definition of gn,λ. �

Proof of Theorem 1.6. For any n ∈ N and λ ∈ R, consider

(3.5)n,λ

{
−∆u = gn,λ(x, u) in Ω,

u = 0 on ∂Ω,

and the associated functional Jn,λ. Let us begin with case (a). For n∗ ∈ N, let
λ∗ = λ∗(n∗, h) > 0 be as in Lemma 3.1. From (3.1) and (3.2), it is well known
that (see, for example, [18, Theorem 4.3]), for n ∈ {1, . . . , n∗} and |λ| ≤ λ∗,
(3.5)n,λ has at least k pairs of classical solutions

(3.6) ±un,λ,1,±un,λ,2, . . . ,±un,λ,k

with positive critical values. This fact can also be seen with the following stan-
dard argument. For n ∈ N, denote En = {e1, . . . , en} and by E⊥n the orthogonal
complement of En. By (3.1), Jλ,n satisfies (PS) condition and there exists R > 0
such that

Jn,λ(u) ≤ 0, u ∈ Ei+k, ‖u‖1,2 ≥ R.

By (3.2), there exist α > 0 and r > 0 such that

Jn,λ(u) ≥ α, u ∈ E⊥i , ‖u‖1,2 = r.

Denote D = {u ∈ Ei+k | ‖u‖1,2 ≤ R} and S = {u ∈ E⊥i | ‖u‖1,2 = r}. Define

Φ = {h ∈ C(D,H) | h is odd and h(u) = u for u ∈ ∂D}

and

Γj = {h(D \ Y ) | h ∈ Φ, Y ∈ Σ, γ(Y ) ≤ i+ k − j}, j = i+ 1, . . . , i+ k.

If B ∈ Γj for some i+ 1 ≤ j ≤ i+ k then B ∩ S 6= ∅ (see [40, Proposition 9.23]).
Define

cj = inf
B∈Γj

max
u∈B

Jn,λ(u), j = i+ 1, . . . , i+ k.

Then

0 < α ≤ ci+1 ≤ ci+2 ≤ . . . ≤ ci+k < +∞.
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So, Jn,λ has at least 2k critical points denoted as in (3.6) such that (see [40,
Proposition 9.30])

Jn,λ(±un,λ,j) = ci+j > 0, j = 1, . . . , k.

For n ∈ {1, . . . , n∗}, |λ| ≤ λ∗, and j ∈ {1, . . . , k}, we denote un,λ = un,λ,j and
λi+k = (λi+k + λi+k+1)/2 and we have

un,λ = (−∆− λi+k)−1(gn,λ(x, un,λ)− λi+kun,λ),

which together with (3.1) implies that

‖un,λ‖2 ≤‖(−∆− λi+k)−1‖L(L2(Ω),L2(Ω))‖gn,λ(x, un,λ)− λi+kun,λ‖2

≤ 2
λi+k+1 − λi+k

[(
λi+k+1 − λi+k

2
− δ

)
‖un,λ‖2 + C|Ω|1/2

]
.

Here we have used the fact that ‖(−∆ − λi+k)−1‖L(L2(Ω),L2(Ω)) = 2/(λi+k+1 −
λi+k). Then, for any n∗ ∈ N, there exists λ∗ > 0 such that, for all n ∈ {1, . . . , n∗}
and all |λ| ≤ λ∗,

‖un,λ‖2 ≤ Cδ−1|Ω|1/2,

which combined with (3.1) implies ‖gn,λ(x, un,λ)‖2 ≤ C1 for some constant C1 >

0 independent of n and λ. Hence ‖un,λ‖2,2 ≤ C2 for some constant C2 > 0
independent of n and λ. Then we can use the argument as in the proof of
Theorem 1.1 to get the result.

In case (b), (3.3) and (3.4) implies that for n ∈ {1, . . . , n∗} and |λ| ≤ λ∗,
(3.5)n,λ has at least k pairs of classical solutions

(3.7) ±u′n,λ,1,±u′n,λ,2, . . . ,±u′n,λ,k

with negative critical values. This fact can be quoted from, for example, [18,
Theorem 4.1]. Or, one may have it from the following standard argument. Note
that (3.3) implies Jn,λ satisfies the (PS) condition and is bounded on E⊥i from
below, while (3.4) implies existence of α1 > 0 and r1 > 0 such that

Jn,λ(u) ≤ −α1, u ∈ Ei+k, ‖u‖1,2 = r1.

Define
c′j = inf

A∈Σ,γ(A)≥j
sup
u∈A

Jn,λ(u), j = i+ 1, . . . , i+ k.

Since A ∩ E⊥i 6= ∅ for any A ∈ Σ with γ(A) ≥ i+ 1 (see [40]), we have

−∞ < inf
u∈E⊥i

Jn,λ(u) ≤ c′i+1 ≤ c′i+2 ≤ . . . ≤ c′i+k ≤ −α1 < 0.

Therefore, Jn,λ has at least 2k critical points denoted as in (3.7) such that (see
[40, Proposition 8.5])

Jn,λ(±u′n,λ,j) = c′i+j < 0, j = 1, . . . , k.
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Then the same argument as in case (a) leads to the result. �

4. Proof of Theorem 1.8

Take an increasing sequence {tn} such that t1 > M and tn →∞ as n→∞.
Define gn,λ as in Section 2. But in the present case µ is taken from (g6), in which
one may assume that p < µ < p∗ without loss of generality.

Lemma 4.1. Let q be as in (g7).

(a) There exists a constant C > 0 depending only on g with the property
that, for any n∗ ∈ N, there exists a number λ∗ = λ∗(n∗, h) > 0 such
that, for all n ∈ {1, . . . , n∗}, all |λ| ≤ λ∗, all x ∈ Ω, and all t ∈ R,

|gn,λ(x, t)| ≤ C(|t|q−1 + 1).

(b) Let δ > 0 be any positive number. There exists a constant C(δ) > 0
depending only on g and δ with the property that, for any n∗ ∈ N, there
exists a number λ∗ = λ∗(n∗, h) > 0 such that, for all n ∈ {1, . . . , n∗},
all |λ| ≤ λ∗, all x ∈ Ω, and all t ∈ R,

|gn,λ(x, t)||t|N+1 ≤ δ|t|q+N + C(δ).

The proof of Lemma 4.1 is similar to that of Lemma 2.1 and therefore is
omitted. Note that Lemma 2.3 is also valid and it will be used in the sequel, and
the number δ > 0 in Lemma 2.3 can be any fixed number in the present case.

Lemma 4.2. There are two constants C1 > 0 and C2 > 0 depending only on g
with the property that, for any n∗ ∈ N, there exists a number λ∗ = λ∗(n∗, h) > 0
such that, for all n ∈ {1, . . . , n∗}, all |λ| ≤ λ∗, all x ∈ Ω, and all t ∈ R,

Gn,λ(x, t) ≥ C1|t|µ − C2.

Proof. From (g6), we see that, for all x ∈ Ω, and all |t| ≥M ,

d

dt

(
G(x, t)
|t|µ

){
≥ 0 if t ≥M,

≤ 0 if t ≤ −M.

Define

C1 = min
x∈Ω

{
G(x,M)
Mµ

,
G(x,−M)

Mµ

}
and

C ′2 = max
x∈Ω,|t|≤M

{C1|t|µ −G(x, t)}.

It follows that, for all x ∈ Ω and all t ∈ R,

G(x, t) ≥ C1|t|µ − C ′2.
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Note that t1 > M . For any n ∈ N, x ∈ Ω, and t ∈ R, if t > tn then (g6) yields

Gn(x, t) =G(x, tn) +
1
µ
tng(x, tn)

((
t

tn

)µ

− 1
)

≥G(x, tn)
(
t

tn

)µ

≥ C1t
µ
n

(
t

tn

)µ

= C1t
µ.

If t < −tn, we get Gn(x, t) ≥ C1|t|µ in the same way. Therefore, for all n ∈ N,
all x ∈ Ω, and all t ∈ R,

Gn(x, t) ≥ C1|t|µ − C ′2.

For any n∗ ∈ N, take a number λ∗ = λ∗(n∗, h) > 0 small enough such that

λ∗(|H(x, t)|+ |h(x, t)|) ≤ 1, x ∈ Ω, |t| ≤ tn∗ .

Then we get the result letting C2 = C ′2 + 1. �

In view of the argument of [40, Proposition 9.23], we have the next lemma.

Lemma 4.3. Let E be a Banach space, V an k dimensional subspace of E,
and 0 < r1 < r2 < +∞. Denote T = {u ∈ E | ‖u‖ = r1} and D = {u ∈ V |
‖u‖ ≤ r2}. If h ∈ C(D,E), h is odd, h(u) = u for u ∈ ∂D, k ≥ j, Y ∈ Σ, and
γ(Y ) ≤ k − j, then

γ(h(D \ Y ) ∩ T ) ≥ j.

Denote M = {u ∈ W 1,p
0 9Ω) | ‖u‖p = 1}. Define I(u) = ‖∇u‖p

p for u ∈
W 1,p

0 (Ω) and

λk = inf
A⊂M,γ(A)≥k

sup
u∈A

I(u), k = 1, 2, . . . .

The following lemma is taken from [42, Theorem 4.4] and can be proved with
the argument of [40, Proposition 9.33].

Lemma 4.4. λk →∞ as k →∞.

Now we recall some important facts (the following two lemmas) about regu-
larity of the solutions of p-Laplacian equations. The proofs of these two lemmas
are included only for reasons of completeness and convenience.

Lemma 4.5. Assume f : Ω×R → R is continuous and there exist C > 0 and
1 < r < p∗ − 1 such that, for all x ∈ Ω and t ∈ R, |f(x, t)| ≤ C(1 + |t|r). If
u ∈W 1,p

0 (Ω) is a weak solution of

−∆pu = f(x, u) in Ω, u = 0 on ∂Ω,

then u ∈ Lq(Ω) for all q > 1.
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Proof. The result for p ≥ N is trivial. Now, we assume 1 < p < N . Let
s > 0. Multiplying the equation with |u|su and taking integral, we have∫

Ω

|∇(|u|s/pu)|p =
(s+ p)p

(s+ 1)pp

∫
Ω

f(x, u)|u|su.

So, there exists a constant C = C(p, s) > 0 such that∫
Ω

|∇(|u|s/pu)|p ≤ C

∫
Ω

|u|s+r+1 + C.

By Sobolev inequality,

Sp‖u‖p+s
N(p+s)/(N−p) ≤ C‖u‖r+s+1

r+s+1 + C,

where
Sp = inf

φ∈W 1,p
0 (Ω),‖φ‖p∗=1

‖∇φ‖p
p.

From the last inequality, we see that if u ∈ Lr+s+1(Ω) for some s > 1 then
u ∈ LN(p+s)/(N−p)(Ω). Denote s0 = p∗− (r+1) > 0. Since u ∈ Lp∗(Ω), we have
u ∈ Lq1(Ω), where

q1 =
N(p+ s0)
N − p

= p∗ +
p∗

p
s0.

Since u ∈ Lq1(Ω), we have u ∈ Lq2(Ω) where

q2 =
N

N − p
(p+ q1 − (r + 1)) = p∗ +

p∗

p
s0 +

(
p∗

p

)2

s0.

Continuing this procedure of iteration, we have u ∈ Lqn(Ω) for all n ∈ N where

qn = p∗ + s0

n∑
i=1

(
p∗

p

)i

.

Therefore, u ∈ Lq(Ω) for all q > 1. �

Lemma 4.6. Assume there exists q > N such that g ∈ Lq/p(Ω). If u ∈
W 1,p

0 (Ω) is a weak solution of

−∆pu = g in Ω, u = 0 on ∂Ω,

then u ∈ L∞(Ω) and there exists a constant C = C(p, q,N,Ω) > 0 such that

‖u‖∞ ≤ C‖g‖1/(p−1)
q/p .

Proof. The result for p > N is trivial. We only consider 1 < p < N since
it is similar for p = N . The proof is very similar to that of [31, Theorem 8.15],
so we will be sketchy and indicate the differences. Denote k = ‖g‖1/(p−1)

q/p . For
β ≥ 1 and M > k, define

H(z) =

{
zβ − kβ for k ≤ z ≤M,

βMβ−1(z −M) +Mβ − kβ for z > M.
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Denote w = u+ + k and define

v = G(w) =
∫ w

k

|H ′(s)|p ds.

Using v as a testing function, we obtain∫
Ω

|∇u|p−2∇u · ∇G(w) =
∫

Ω

gG(w),

which implies∫
Ω

|∇H(w)|p ≤
∫

Ω

|g|wG′(w) ≤ k−p+1

∫
Ω

|g|wp|H ′(w)|p.

By Sobolev inequality and Hölder inequality,

Sp‖H(w)‖p
p∗ ≤ ‖wH ′(w)‖p

qp/(q−p).

Letting M →∞, we obtain

S1/p
p ‖wβ − kβ‖p∗ ≤ β‖wβ‖q,

where q = qp/(q − p). So,

S1/p
p ‖w‖β

βp∗ ≤ S1/p
p kβ |Ω|1/p∗ + β‖w‖β

βq.

Since k ≤ w, we obtain

‖w‖βχq ≤ (Cβ)1/β‖w‖βq,

where C = |Ω|1/p∗−1/q + S
−1/p
p and χ = N(q − p)/q(N − p) > 1. Since β ≥ 1 is

arbitrary, we have w ∈ Lr for all r ≥ 1. Taking β = χm (m = 0, 1, . . . ) in the
last inequality, we come to

‖w‖χnq ≤
∞∏

m=0

(Cχm)χ−m

‖w‖q = C‖w‖q,

where C = C(p, q,N,Ω). Letting n→∞, we arrive at

‖w‖∞ ≤ C‖w‖q.

So,
‖u+‖∞ ≤ C(‖u‖p∗ + ‖g‖1/(p−1)

q/p ).

But from the equation, the Sobolev inequality and Hölder inequality yield

Sp‖u‖p
p∗ ≤ ‖u‖q/(q−p)‖g‖q/p ≤ C‖u‖p∗‖g‖q/p.

Then we have
‖u+‖∞ ≤ C‖g‖1/(p−1)

q/p .

Similarly,
‖u−‖∞ ≤ C‖g‖1/(p−1)

q/p .

Combining the last two inequalities gives the result. �



256 Sh. Li — Zh. Liu

Proof of Theorem 1.6. For every n ∈ N and λ ∈ R, consider the bound-
ary value problem

(4.1)n,λ

{
−∆pu = gn,λ(x, u) in Ω,

u = 0 on ∂Ω,

whose solutions correspond to critical points of

Jn,λ(u) =
1
p

∫
Ω

|∇u|p −
∫

Ω

Gn,λ(x, u), u ∈W 1,p
0 (Ω).

In view of the definition of gn,λ(x, t), (g5) and (h), we see that Jn,λ is an even
functional. Jn,λ satisfies (PS) condition on W 1,p

0 (Ω) for each n ∈ N and each
λ ∈ R since, in the definition of gn,λ, p < µ < p∗.

At the present stage, we fix n ∈ N and λ ∈ R. We prove that Jn,λ has
infinitely many critical points. Take a sequence of vectors {ek}∞1 ⊂ W 1,p

0 (Ω)
such that the vectors are linearly independent and ‖e‖1,p = 1. Denote Ek =
span{e1, . . . , ek} (k = 1, 2, . . . ). For any k, in view of the definition of gn,λ and
the fact that µ > p, there exists Rk > 1 such that

Jn,λ(u) < 0, u ∈ Ek, ‖u‖1,p ≥ Rk.

Set Dk = {u ∈ Ek | ‖u‖1,p ≤ Rk} and define

Gk = {h ∈ C(Dk,W
1,p
0 (Ω)) | h is odd and h(u) = u on ∂Dk}, k = 1, 2, . . . ,

Γj = {h(Dk \ Y ) | h ∈ Gk, k ≥ j, Y ∈ Σ, and γ(Y ) ≤ k − j},

and
cn,λ,j = inf

B∈Γj

max
u∈B

Jn,λ(u), j = 1, 2, . . . .

Clearly, each cn,λ,j is finite and

cn,λ,1 ≤ cn,λ,2 ≤ . . . ≤ cn,λ,j ≤ . . . .

We assert that there exists j0 ∈ N such that for any n∗ ∈ N, there exists
λ∗ = λ∗(n∗) > 0 such that if n ∈ {1, . . . , n∗} and |λ| ≤ λ∗ then cn,λ,j0 ≥ 1/2p.
For proving this, we only consider 1 < p < N since it is similar for p ≥ N .
For any B ∈ Γj , by Lemma 4.3, we see that γ(B ∩ T ) ≥ j, where T = {u ∈
W 1,p

0 (Ω) | ‖u‖1,p = 1}. Define g:B ∩ T → M as g(u) = u/‖u‖p. Then, since
B ∩ T is compact, g is continuous. So, γ(g(B ∩ T )) ≥ j and, by the definition
of λj , there exists vj ∈ g(B ∩ T ) such that I(vj) ≥ λj . Let uj ∈ B ∩ T be such
that g(uj) = vj . Then

1 =
∫

Ω

|∇uj |p ≥ λj

∫
Ω

|uj |p.

By (g5), (h), (g7) and the definition of gn,λ, there is a constant c > 0 depending
only on g with the property that, for any n∗ ∈ N, there exists a number λ∗ =
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λ∗(n∗, h) > 0 such that, for all n ∈ {1, . . . , n∗}, all |λ| ≤ λ∗, all x ∈ Ω, and all
t ∈ R,

Gn,λ(x, t) ≤

{
ct2 for |t| ≤ 1,

c|t|p + (Sp∗/p
p /4p)|t|p∗ for |t| ≥ 1.

So, if p ≤ 2, then

Jn,λ(uj) ≥
1
p
− c

∫
Ω

|uj |p −
S

p∗/p
p

4p

∫
Ω

|uj |p
∗
≥ 3

4p
− c

λj
.

If p > 2, then

Jn,λ(uj) ≥
1
p
− c

∫
Ω

(u2
j + |uj |p)−

S
p∗/p
p

4p

∫
Ω

|uj |p
∗
≥ 3

4p
− c1

((
1
λj

)2/p

+
1
λj

)
.

By Lemma 4.4 there exists j0 such that for any n∗ ∈ N, if n ∈ {1, . . . , n∗}
and |λ| ≤ λ∗ then Jn,λ(uj0) ≥ 1/2p, which implies, since B ∈ Γj0 is arbitrary,
cn,λ,j0 ≥ 1/2p. According to [40, Propositions 9.30 and 9.33], for n ∈ {1, . . . , n∗}
and |λ| ≤ λ∗, Jn,λ has an unbounded sequence of solutions

±un,λ,j0 ,±un,λ,j0+1, . . . ,±un,λ,j0+j , . . .

corresponding to an unbounded sequence of positive critical values

cn,λ,j0 , cn,λ,j0+1, . . . , cn,λ,j0+j , . . . .

By Lemma 4.2, we have, for n ∈ {1, . . . , n∗} and |λ| ≤ λ∗,

Jn,λ(u) ≤ J∗(u), u ∈W 1,p
0 (Ω),

where
J∗(u) =

1
p

∫
Ω

|∇u|p − C1

∫
Ω

|u|µ + C2|Ω|, u ∈W 1,p
0 (Ω).

Therefore, for n ∈ {1, . . . , n∗}, |λ| ≤ λ∗, and j ≥ j0,

Jn,λ(un,λ,j) = cn,λ,j ≤ c∗j := inf
B∈Γj

max
u∈B

J∗(u).

Since un,λ,j are solutions of (4.1)n,λ, by Lemma 2.3 we see that and j ≥ j0,

Jn,λ(un,λ,j) ≥
(

1
p
− 1
µ

) ∫
Ω

|∇un,λ,j |p − (m2 + δ)|Ω|.

for n ∈ {1, . . . , n∗}, |λ| ≤ λ∗. Combining the last two inequalities, we obtain,
for n ∈ {1, . . . , n∗}, |λ| ≤ λ∗, and j ≥ j0,

(4.2) ‖un,λ,j‖p
1,p ≤ (p−1 − µ−1)−1(c∗j + (m2 + δ)|Ω|).

If p > N then W 1,p
0 (Ω) ↪→ L∞(Ω). So, for any j ≥ j0 there is a constant Cj > 0

with the property that, for any n∗ ∈ N, if n ∈ {1, . . . , n∗} and |λ| ≤ λ∗ then

(4.3) ‖un,λ,j‖∞ ≤ Cj .
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We assert that (4.3) is also valid in the case 1 < p < N . Multiplying (4.1)n,λ

with |un,λ,j |Nun,λ,j and taking integral, by Lemma 4.1(b), we have, for n ∈
{1, . . . , n∗}, |λ| ≤ λ∗, and j ≥ j0,∫

Ω

|∇(|un,λ,j |N/pun,λ,j)|p ≤ δ

∫
Ω

|un,λ,j |p
∗+N + C(δ).

By Lemma 4.5, un,λ,j ∈ Lq(Ω) for any q > 1 and therefore |un,λ,j |N/pun,λ,j ∈
W 1,p

0 9Ω). Using (4.2), Sobolev inequality and Holder inequality, we have

Sp

( ∫
Ω

|un,λ,j |(N+p)p∗/p

)p/p∗

≤ δ

(∫
Ω

|un,λ,j |p
∗
)α(p∗+N)/p∗( ∫

Ω

|un,λ,j |p
∗(N+p)/p

)(1−α)(p∗+N)p/((N+p)p∗)

+ C(δ)

≤ δC ′j

( ∫
Ω

|un,λ,j |p
∗(N+p)/p

)(1−α)(p∗+N)p/((N+p)p∗)

+ C(δ),

where C ′j depends only on j and 0 < α < 1 satisfies

α

p∗
+

(1− α)p
(N + p)p∗

=
1

p∗ +N
.

It is easy to see that (1 − α)(p∗ + N) = N + p. Then, choosing δ = δ(j) small
enough, we have, for n ∈ {1, . . . , n∗}, |λ| ≤ λ∗, and j ≥ j0,

‖un,λ,j‖(N+p)p∗/p ≤ C ′′j ,

for some constant C ′′j depending only on j. By Lemma 4.1(a), a direct compu-
tation shows that, there exists a constant C ′′′j depending only on j such that, for
n ∈ {1, . . . , n∗}, |λ| ≤ λ∗, and j ≥ j0,

‖gn,λ(un,λ,j)‖(N+p)/p ≤ C ′′′j .

Then Lemma 4.6 implies, for n ∈ {1, . . . , n∗}, |λ| ≤ λ∗, and j ≥ j0, (4.3) is valid.
If p = N , then we obtain (4.3) in a similar way by [31, Theorem 7.15]. For any
j ∈ N, choose n∗ = n∗(j) > 0 such that tn∗ > max{Cj0 , Cj0+1, . . . , Cj0+j−1}.
Denote λj = λ∗(n∗, h). If |λ| ≤ λj then, for k = j0, . . . , j0 + j − 1,

‖un∗,λ,k‖∞ ≤ Ck ≤ tn∗ .

Hence, (P2)λ has at least j pairs of solutions ±un∗,λ,j0+k, k = 0, . . . , j − 1.
According to [11], [35], [43], these solutions are in C1,α(Ω) for some 0 < α < 1.�

Proof of Corollary 1.10. Let v = λ1/(q−p)u. Then (P3)±λ is trans-
formed to {

−∆pv = |v|q−2v ± λ−(r−p)/(q−p)|v|r−2v in Ω,

v = 0 on ∂Ω.
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Then one get the result easily from Theorem 1.6. �

Proof of Corollary 1.14. Let v = λ1/(q−p)u. Then (P4)±λ is converted
to {

−∆pv = |v|q−2v ± λ−(r−q)/(q−p)|v|r−2v in Ω,

v = 0 on ∂Ω.
The result comes also from Theorem 1.6 easily. �
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Birkhäuser, Boston, 1993.

[19] F.-C. St. Cirstea and V. D. Radulescu, On a double bifurcation quasilinear problem

arising in the study of anisotropic continuous media, Proc. Edinburgh Math. Soc. 44

(2001), 527–548.

[20] D. C. Clark, A variant of Lusternik–Schnirelman theory, Indiana Univ. Math. J. 22
(1972), 65–74.

[21] E. N. Dancer and Y. Du, Existence of changing sign solutions for some semilinear

problems with jumping nonlinearities at zero, Proc. Roy. Soc. Edinburgh Sect. A 124
(1994), 1165–1176.

[22] , Multiple solutions of some semilinear elliptic equations via the generalized Con-

ley index, J. Math. Anal. Appl. 189 (1995), 848–871.

[23] G. C. Dong and S. J. Li, On the existence of infinitely many solutions of the Dirichlet
problem for some nonlinear elliptic equations, Sci. Sinica Ser. A 25 (1982), 468–475.

[24] Y. Du, Exact multiplicity and S-shaped bifurcation curve for some semilinear elliptic

problems from combustion theory, SIAM J. Math. Anal. 32 (2000), 707–733.
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