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LAGRANGIAN SYSTEMS
WITH LIPSCHITZ OBSTACLE ON MANIFOLDS

Sergio Lancelotti — Marco Marzocchi

Abstract. Lagrangian systems constrained on the closure of an open sub-
set with Lipschitz boundary in a manifold are considered. Under suitable

assumptions, the existence of infinitely many periodic solutions is proved.

1. Introduction

The study of Lagrangian functionals of the form

(1.1) f(γ) =
∫ 1

0

L(s, γ(s), γ′(s)) ds

on a manifold M , where L(s, (q, v)): R × TM → R, costitutes a well studied
topic in Mechanics and Global analysis. In particular, about the existence and
multiplicity of periodic solutions γ of the associated Euler equation, we refer
the reader to [1], where the case in which M is a compact manifold without
boundary is considered. Starting from [1], some extensions have been considered
in the literature, when M is embedded in an Euclidean space. In [3] the case
where M is a compact submanifold with boundary in Rn has been considered.
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In such a case, the associated Euler equation has the form

(1.2)
d

ds
(DvL(s, γ, γ′))−DqL(s, γ, γ′) ∈ Nγ(s)M,

where NqM is the outer normal cone to M at q. The main feature is that the
natural domain of the functional (1.1) is

(1.3) X = {γ ∈W 1,2(0, 1; Rn) : γ(0) = γ(1), γ(s) ∈M for all s}

which is naturally a metric space, but not a smooth manifold (even with bound-
ary). Moreover, solutions γ of (1.2) are not of class C2, but only W 2,∞ and
satisfy (1.2) almost everywhere. In the same direction, the case in which M is a
compact p-convex subset of Rn has been considered in [4]. The class of p-convex
subsets [8] includes in particular subsets with corners of convex type and con-
cave parts of class C2. This direction of research was started by [18], where the
case of an n-dimensional submanifold with boundary of class C2 in Rn had been
considered.

Another development has been started more recently in [11], [19], considering
the case in which M is the closure of a bounded open subset of Rn with Lipschitz
boundary. Also in this case the set X is naturally only a metric space. Moreover,
since in this case we cannot expect the solution γ of (1.2) to be of class C1, the
Euler equation itself requires a reformulation.

The purpose of this paper is to consider the intrinsic case in which M is the
closure of a bounded open subset of a differentiable manifold N , instead of Rn,
and also to relax the convexity condition on L, which was in [19] of uniform
quadratic type, to the mere convexity with coercivity of order p > 1.

Our approach follows the lines of [19], but it is completely intrinsic. Of course
the lack of strict convexity in L causes new technical difficulties.

The paper is organized as follows: in Section 2 we state our main results,
while Section 3 is devoted to some recalls of nonsmooth analysis. Finally, in
Section 4 we prove the main results.

2. Statement of the main results

Let N be a differentiable manifold without boundary of class C2 and M ⊆
N . In the sequel, each γ ∈ W 1,p(a, b;N) will be identified with its continuous
representative γ̃: [a, b] → N . We set

W 1,p(a, b;M) := {γ ∈W 1,p(a, b;N) : γ(s) ∈M for each s ∈ [a, b]}.

Remark 2.1. Let g and g̃ be two Riemannian structures on N and let d
and d̃ be the induced distances on N . Then there exists a continuous function
c:N → ]0,∞[ such that, for all q ∈ N and all v ∈ TqN ,

g(q)(v, v) ≤ c(q)g̃(q)(v, v), g̃(q)(v, v) ≤ c(q)g(q)(v, v).
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In particular, for every compact subset K ⊆ N there exists C > 0 such that, for
all q1, q2 ∈ K,

d(q1, q2) ≤ Cd̃(q1, q2), d̃(q1, q2) ≤ Cd(q1, q2).

Let 1 < p <∞ and L: R×TN → R be a function of class C1 such that there
exist two continuous functions c, k:M → ]0,∞[ and d ∈ R such that for every
s ∈ R and q ∈M one has

k(q)|v|p − d ≤ L(s, q, v) ≤ c(q)(1 + |v|p) for all v ∈ TqN,(2.1)

|D(q,v)L(s, q, v)| ≤ c(q)(1 + |v|p) for all v ∈ TqN,(2.2)

L(s, q, · ) is convex on TqN,(2.3)

where |v| =
√
g(q)(v, v).

In (2.1), (2.2) we mean that N is provisionally endowed with a Riemannian
structure. By Remark 2.1 the above conditions do not depend on the Riemannian
structure chosen on N .

In charts, (2.1), (2.2) mean that for every s ∈ R and q ∈M it is

k(q)|v|p − d ≤ L(s, q, v) ≤ c(q)(1 + |v|p) for all v ∈ TqN,

|DqL(s, q, v)| ≤ c(q)(1 + |v|p) for all v ∈ TqN,

|DvL(s, q, v)| ≤ c(q)(1 + |v|p) for all v ∈ TqN.

Let us remark that (2.1), (2.3) imply that for every s ∈ R, q ∈ M and any
v, w ∈ TqN we have

|DvL(s, q, v)w| ≤ ĉ(q)(1 + |v|p−1)|w|

namely, in charts,

|DvL(s, q, v)| ≤ ĉ(q)(1 + |v|p−1),

where ĉ:M → ]0,∞[ is continuous.
Define a continuous functional fa,b:W 1,p(a, b;M) → R by

fa,b(γ) =
∫ b

a

L(s, γ(s), γ′(s)) ds.

Given a Riemannian structure on N , for every γ, η ∈W 1,p(a, b;M) we set

d1(γ, η) =
∫ b

a

d(γ(s), η(s)) ds,

d∞(γ, η) =max{d(γ(s), η(s)) : a ≤ s ≤ b},

where d is the distance on N associated with the Riemannian structure.
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Definition 2.2. We say that γ ∈ W 1,p(a, b;M) is L-stationary, if it is not
possibile to find r, c, σ > 0 and a map

H: {η ∈W 1,p(a, b;M) : d∞(η, γ) < r, fa,b(η) < fa,b(γ) + r} × [0, r]

→W 1,p(a, b;M)
such that:

(a) H is continuous from the product of the topology of the uniform con-
vergence and that of R to that of the uniform convergence;

(b) for every η ∈W 1,p(a, b;M) with d∞(η, γ) < r, fa,b(η) < fa,b(γ)+ r and
t ∈ [0, r] we have

H(η, t)(a) = η(a), H(η, t)(b) = η(b),

d1(H(η, t), η) ≤ ct, fa,b(H(η, t)) ≤ fa,b(η)− σt.

Again we mean that the assertion holds after introducing a Riemannian struc-
ture on N . By Remark 2.1 this definition does not depend on the choice of the
Riemannian structure itself.

Proposition 2.3. Let γ ∈ W 1,p(a, b;M) be L-stationary. Then for every
[α, β] ⊆ [a, b] the restriction γ|[α,β] is L-stationary.

Proof. Set γ̂ = γ|[α,β]. By contradiction, assume that there exist r, c, σ > 0
and

H: {η ∈W 1,p(α, β;M) : d∞(η, γ̂) < r, fα,β(η)fα,β(γ̂) + r} × [0, r]

→W 1,p(α, β;M)

according to Definition 2.2.
We claim that there exists r′ ∈ ]0, r[ such that if η ∈ W 1,p(a, b;M) with

d∞(η, γ) < r′ and fa,b(η) < fa,b(γ) + r′, then fα,β(η̂) < fα,β(γ̂) + r, where
η̂ = η|[α,β].

Again by contradiction, let (ηh) ⊆ W 1,p(a, b;M) with ηh convergent to γ

with respect to the uniform convergence and lim suph fa,b(ηh) ≤ fa,b(γ) such
that fα,β(η̂h) ≥ fα,β(γ̂) + r. By (2.1) and (2.3) we have

lim sup
h

fα,β(η̂h) ≤ lim sup
h

fa,b(ηh)− lim inf
h

∫
]a,b[\]α,β[

L(s, ηh, η
′
h) ds

≤fa,b(γ)−
∫

]a,b[\]α,β[

L(s, γ, γ′) ds = fα,β(γ̂),

whence a contradiction. Then, for any η ∈W 1,p(a, b;M) define

K: {η ∈W 1,p(a, b;M) : d∞(η, γ) < r′, fa,b(η) < fa,b(γ) + r′} × [0, r′]

→W 1,p(a, b;M)
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by

K(η, t)(s) =

{
H(η̂, t)(s) if s ∈ [α, β],

η(s) if s /∈ [α, β].
It is readily seen that K has all the properties required in Definition 2.2. It
follows that γ is not L-stationary, which is absurd. �

Definition 2.4. Let I be an interval in R with int(I) 6= ∅. A continuous
map γ: I → M is said to be a generalized solution of the Lagrangian system
associated to L on M , if every s ∈ int(I) admits a neighbourhood [a, b] in I such
that γ|[a,b] belongs to W 1,p(a, b;M) and is L-stationary.

Definition 2.5. Given T > 0, a T -periodic generalized solution of the La-
grangian system associated to L on M is a generalized solution γ: R →M which
is periodic of period T .

We now state our main existence result.

Theorem 2.6. Assume that M is the closure of an open subset of N with
locally Lipschitz boundary. Suppose also that M is compact, 1-connected and
non-contractible in itself and that

(2.4) L(s+ 1, q, v) = L(s, q, v) for all s ∈ R and all (q, v) ∈ TN.

Then there exists a sequence (γh) of 1-periodic generalized solutions of the La-
grangian system associated to L on M with

lim
h

∫ 1

0

L(s, γh(s), γ′h(s)) ds = +∞.

The notion of generalized solution we have introduced follows the approach
of [11, Definition 3.3] and [19, Definition 2.6] and has the advantage to be in-
trinsically connected to M , although quite indirect. However, at least in the
particular case p = 2, it is possibile to deduce further informations on the gen-
eralized solutions.

For every q ∈ M , denote by NqM the normal cone to M at q (see e.g.
Definition 3.2 below).

Theorem 2.7. Let p = 2 and assume that there exists a continuous function
ω:N → ]0,∞[ such that for every s ∈ R, q ∈M it is

DvL(s, q, v)(v − w)−DvL(s, q, w)(v − w) ≥ ω(q)|v − w|2 for all v, w ∈ TqN.

Let γ ∈W 1,2(a, b;M) be L-stationary. Then γ ∈W 1,∞(a, b;M), D(q,v)L(s, γ, γ′)
∈ L∞(a, b;T ∗(TN)) and there exist a finite Borel measure µ on ]a, b[ and a boun-
ded Borel function ν: ]a, b[ → T ∗N such that ν(s) ∈ Nγ(s)M for µ-a.e. s ∈ ]a, b[
and ∫ b

a

D(q,v)L(s, γ, γ′)(δ, δ′) ds = −
∫ b

a

ν(δ) dµ
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for any δ ∈W 1,1
0 (a, b;TN) with δ(s) ∈ Tγ(s)N for every s ∈ [a, b].

Also in this assertion we mean that N is provisionally endowed with a Rie-
mannian structure. Since γ is continuous, by Remark 2.1 the assertion is inde-
pendent of the choice of the structure.

Proof of Theorem 2.7. By Proposition 2.3, we may assume that γ([a, b])
is contained in a coordinated neighbourhood. Then the assertion follows from
[19, Theorem 2.10]. �

3. Some relevant results of nonsmooth analysis

In the first part of this section let N be a differentiable manifold of class C2

and M be the closure of an open set in N with locally Lipschitz boundary.
If X is a Banach space, E ⊆ X and x ∈ E, we denote by TxE the tangent

cone to E at x, according to [6]. We also denote by Br(x) the open ball of center
x and radius r.

Definition 3.1. Let x ∈ E and v ∈ X. We say that v is hypertangent to E
at x if there exists δ > 0 such that Bδ(x) + [0, δ]Bδ(v) ⊆ E. Let us denote by
HypxE the set of the v’s hypertangent to E at x.

Definition 3.2. Let q ∈ M and v ∈ TqN . We say that v is tangent to M
at q if there exists a chart (U,ϕ) at q such that dϕ(q)v ∈ Tϕ(q)ϕ(U ∩M). The
set of the v’s tangent to M at q is denoted by TqM and is called the tangent
cone to M at q.

We say that v is hypertangent to M at q if there exists a chart (U,ϕ) at
q such that dϕ(q)v is hypertangent to ϕ(U ∩M) at ϕ(q). The set of the v’s
hypertangent to M at q is denoted by HypqM and is called the hypertangent
cone to M at q. Finally, we set NqM = {ϕ ∈ T∗

qN : ϕ(v) ≤ 0 for all v ∈ TqM}.
NqM is called the normal cone to M at q.

Remark 3.3. For every q ∈ M it is HypqM 6= ∅ (see [6]) and HypqM ⊆
TqM .

Theorem 3.4. There exists a section ν:N → TN of class C1 such that

ν(q) ∈ HypqM for all q ∈M.

Proof. For all q ∈ N , let

Ψ(q) =

{
HypqM if q ∈M,

TqN if q ∈ N \M.

Then for every q ∈ N , Ψ(q) is convex in TqN and for every q ∈ N there exists
a chart (U,ϕ) at q such that ⋂

ξ∈U

(dϕ(ξ)(Ψ(ξ))) 6= ∅.
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It follows that there exists ν:N → TN of class C1 with ν(q) ∈ Ψ(q) for every
q ∈ N , hence the assertion. �

Lemma 3.5. Let Ñ be a submanifold of class C2 of Rn, M̃ be the closure of
an open subset of Ñ with locally Lipschitz boundary, A be an open subset of Rn

with Ñ ⊆ A and π:A → Ñ be a retraction of class C2 such that π is Lipschitz
continuous of constant 2. Then there exists a map ν: Ñ → Rn of class C1 such
that the following facts hold:

(a) for any q ∈ Ñ we have ν(q) ∈ TqÑ ;
(b) for any q ∈ M̃ there exists δ > 0 such that

if


ξ ∈ Bδ(q),

π(ξ) ∈ M̃,

0 < t ≤ δ,

v ∈ Bδ(ν(q)),

then π(ξ + tv) ∈ int(M̃);

(c) for every compact subset K ⊆ M̃ there exist r̂, ĉ > 0 satisfying

π((1− t)q + tπ(ξ + ρν(ξ))) ∈ M̃

whenever q ∈ M̃ , ξ ∈ K, ĉ|q − ξ| ≤ ρ ≤ r̂ and t ∈ [0, 1].

Proof. By Theorem 3.4 there exists a map ν: Ñ → Rn of class C1 such
that for any q ∈ Ñ it is ν(q) ∈ TqÑ .

To prove (b), assume by contradiction that q ∈ M̃ , ξh → q, th → 0+ and
vh → ν(q) with π(ξh) ∈ M̃ and π(ξh + thvh) /∈ int(M̃).

Let (U,ϕ) be the chart at q such that ϕ:U → TqÑ , ϕ(q) = 0 and π(q +
ϕ(ξ)) = ξ for any ξ ∈ U ; in particular, ν(q) ∈ Hyp0ϕ(U ∩ M̃).
Then we have

ϕ(π(ξh + thvh)) /∈ int(ϕ(U ∩ M̃)).

Since
ϕ(π(ξh + thvh)) = ϕ(π(ξh)) + th(d[ϕ ◦ π](ξh)vh + εh)

with εh → 0 in TqÑ , it follows that d[ϕ ◦ π](ξh)vh + εh ∈ TqÑ and

ϕ(π(ξh + thvh)) ∈ int(ϕ(U ∩ M̃))

for large h, which is absurd.
Now let us prove (c). By contradiction, let (qh) in M̃ , (ξh) in K, (th) in

[0, 1], ρh → 0 with h|qh − ξh| ≤ ρh ≤ 1/h and

π((1− th)qh + thπ(ξh + ρhν(ξh))) /∈ M̃.

Up to a subsequence ξh → ξ in K, qh → ξ in M̃ and th → t in [0, 1]. It is

π((1− th)qh + thπ(ξh + ρhν(ξh))) = π

(
qh + thρh

(
π(ξh + ρhν(ξh))− qh

ρh

))
.
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On the other hand,

π(ξh + ρhν(ξh))− qh
ρh

− ν(ξ) =
π(ξh + ρhν(ξ))− ξh − ρhν(ξ)

ρh

+
ξh − qh
ρh

+
π(ξh + ρhν(ξh))− π(ξh + ρhν(ξ))

ρh
.

By [11, Theorem 4.4], it is

lim
h

π(ξh + ρhν(ξ))− ξh − ρhν(ξ)
ρh

= 0.

Moreover, by the lipschitzianity of π it is also∣∣∣∣π(ξh + ρhν(ξh))− π(ξh + ρhν(ξ))
ρh

∣∣∣∣ ≤ 2|ν(ξh)− ν(ξ)|.

It follows that

lim
h

π(ξh + ρhν(ξh))− qh
ρh

= ν(ξ),

hence by (a) it is

π

(
qh + thρh

(
π(ξh + ρhν(ξh))− qh

ρh

))
∈ M̃

for large h, which is a contradiction. �

Definition 3.6. A subset E of N is said to be a LNR in N if there exists an
open neighbourhood U of E in N and a locally Lipschitzian retraction r:U → E.

Theorem 3.7. The set M is a LNR in N .

Proof. By [14, §2, Theorems 2.10 and 2.14], we may assume that N is
a smooth submanifold of Rn. By [14, §4, Theorem 5.1], there exist an open
subset A of Rn with N ⊆ A and a retraction π:A→ N of class C∞ such that π
is Lipschitz continuous of constant 2. Let ν:N → Rn be as in Lemma 3.5. By
(b) of Lemma 3.5, for every q ∈M there exists δq > 0 such that

if


ξ ∈ Bδq (q),

π(ξ) ∈M,

0 < t ≤ δq,

v ∈ Bδq
(ν(q)),

then π(ξ + tv) ∈ int(M).

Let δ′q ∈ ]0, δq] be such that

if

{
ξ ∈ Bδ′

q
(q),

0 ≤ t ≤ δ′q,
then


ξ + tν(ξ) ∈ Bδq (q),

ν(ξ) ∈ Bδq/2(ν(q)),

|ξ − q|+ δq|ν(ξ)− ν(q)| ≤ δ2q/4.
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For every q ∈M , define

Uq = {ξ ∈ Bδ′
q
(q) : π(ξ + δ′qν(ξ)) ∈ int(M)}, U =

⋃
q∈M

Uq.

For every ξ ∈ U , let T (ξ) = min{t ≥ 0 : π(ξ + tν(ξ)) ∈ M}. It is easy to see
that, if q ∈M and ξ ∈ Uq, then

T (ξ) < δ′q, ξ + T (ξ)ν(ξ) ∈ Bδq (q), π(ξ + T (ξ)ν(ξ)) ∈M

and

(3.1) if

{
0 ≤ t ≤ δq,

v ∈ Bδq
(ν(q)),

then π(ξ + T (ξ)ν(ξ) + tv) ∈M.

Let now q ∈M and ξ1, ξ2 ∈ Uq with ξ1 6= ξ2. We set

s =
2
δq

(|ξ1 − ξ2|+ T (ξ1)|ν(ξ1)− ν(ξ2)|)

and
v = ν(ξ2)−

1
s
(ξ1 − ξ2 + T (ξ1)(ν(ξ1)− ν(ξ2))).

We have s ∈ ]0, δq] and v ∈ Bδq
(ν(q)). If we consider t = T (ξ1) + s, an easy

calculation shows that

ξ2 + tν(ξ2) = ξ1 + T (ξ1)ν(ξ1) + sv.

By (3.1) it follows that π(ξ2 + tν(ξ2)) ∈M , hence T (ξ2) ≤ t. Therefore we get

T (ξ2) ≤ T (ξ1) + s ≤ T (ξ1) +
2
δq

(|ξ1 − ξ2|+ δq|ν(ξ1)− ν(ξ2)|);

exchanging the role of ξ1 and ξ2 we have

|T (ξ1)− T (ξ2)| ≤
2
δq

(|ξ1 − ξ2|+ δq|ν(ξ1)− ν(ξ2)|),

hence T is locally Lipschitzian. If follows that the map r:U → M defined by
r(ξ) = π(ξ + T (ξ)ν(ξ)) is a locally Lipschitzian retraction. Therefore M is an
LNR in Rn, in particular in N . �

In the second part of this section, we recall some abstract notions and results
of nonsmooth analysis.

Let Y be a metric space endowed with the metric d and let f :Y → R be
a function. We set

epi(f) = {(u, λ) ∈ Y × R : f(u) ≤ λ}.

In the following, Y × R will be endowed with the metric

d((u, λ), (v, µ)) = (d(u, v)2 + (λ− µ)2)1/2

and epi(f) with the induced metric.
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Definition 3.8. For every u ∈ Y with f(u) ∈ R, we denote by |df |(u) the
supremum of the σ’s in [0,∞[ such that there exist r > 0 and a continuous map

H: (Br(u, f(u)) ∩ epi(f))× [0, r] → Y

satisfying
d(H((v, µ), t), v) ≤ t, f(H((v, µ), t)) ≤ µ− σt,

whenever (v, µ) ∈ Br(u, f(u)) ∩ epi(f) and t ∈ [0, r].
The extended real number |df |(u) is called the weak slope of f at u.

The above notion has been introduced in [9], following an equivalent ap-
proach. When f is continuous, it has been independently introduced also in [17],
while a variant appears in [15], [16]. The version we have recalled here is taken
from [2].

Proposition 3.9. Let u ∈ Y with f(u) ∈ R. Assume there exist r, c, σ > 0
and a continuous map

H: {v ∈ Br(u) : f(v) < f(u) + r} × [0, r] → Y

such that for any v ∈ Br(u) with f(v) < f(u) + r and any t ∈ [0, r] it is

d(H(v, t), v) ≤ ct, f(H(v, t)) ≤ f(v)− σt.

Then we have |df |(u) ≥ σ/c.

Proof. See [11, Proposition 2.3]. �

Now, according to [8], we define a function Gf : epi(f) → R by Gf (u, λ) = λ.
Of course, Gf is Lipschitzian of constant 1.

Proposition 3.10. For every u ∈ Y with f(u) ∈ R, we have f(u) =
Gf (u, f(u)) and

|df |(u) =


|dGf |(u, f(u))√

1− |dGf |(u, f(u))2
if |dGf |(u, f(u)) < 1,

∞ if |dGf |(u, f(u)) = 1.

Proof. See [2, Proposition 2.3]. �

The previous proposition allows us to reduce, at some extent, the study of
the general function f to that of the continuous function Gf . For this purpose,
the next result will be useful.

Proposition 3.11. Let (u, λ) ∈ epi(f) with f(u) < λ. Assume that for
every ε > 0 there exist r > 0 and a continuous map

H: {v ∈ Br(u) : f(v) < λ+ r} × [0, r] → Y
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such that for any v ∈ Br(u) with f(v) < λ+ r and any t ∈ [0, r] it is

d(H(v, t), v) ≤ εt,

f(H(v, t)) ≤ (1− t)f(v) + t(f(u) + ε).

Then we have |dGf |(u, λ) = 1.

Proof. See [10, Corollary 2.11]. �

Definition 3.8 may be simplified, when f is continuous.

Proposition 3.12. Let f :Y → R be continuous. Then |df |(u) is the supre-
mum of the σ’s in [0,+∞[ such that there exist r > 0 and a continuous map

H: Br(u)× [0, r] → Y

satisfying

(3.2) d(H(v, t), v) ≤ t, f(H(v, t)) ≤ f(v)− σt,

whenever v ∈ Br(u) and t ∈ [0, r].

Proof. See [2, Proposition 2.2]. �

By means of the weak slope, we can now introduce the two main notions of
critical point theory.

Definition 3.13. We say that u ∈ Y is a (lower) critical point of f , if
f(u) ∈ R and |df |(u) = 0. We say that c ∈ R is a (lower) critical value of f , if
there exists a (lower) critical point u ∈ Y of f with f(u) = c.

Remark 3.14. Let d̃ be another metric on Y and let u ∈ Y . Assume that
there exist a neighbourhood U of u and c > 0 such that, for all v, w ∈ U ,

d(v, w) ≤ cd̃(v, w), d̃(v, w) ≤ cd(v, w).

Then one has |df |(u) = 0 if and only if |d̃f |(u) = 0, where |d̃f |(u) is the weak
slope with respect to d̃.

Definition 3.15. Let c ∈ R. A sequence (uh) in Y is said to be a Palais–
Smale sequence at level c ((PS)c-sequence, for short) for f , if f(uh) → c and
|df |(uh) → 0.

We say that f satisfies the Palais–Smale condition at level c ((PS)c, for short),
if every (PS)c-sequence (uh) for f admits a convergent subsequence (uhk

) in Y .

Definition 3.16. A topological space Z is said to be weakly locally con-
tractible, if every u ∈ Z admits a neighbourhood U which is contractible in Z.
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Theorem 3.17. Let Y be weakly locally contractible with catY = ∞, let
f :Y → R be continuous and bounded from below and assume that {u ∈ Y :
f(u) ≤ c} is complete and (PS)c hold for every c ∈ R. Then there exists a
sequence (uh) of critical points of f with f(uh) →∞.

Proof. See [7, Theorem 3.6] and [5, Theorem 1.4.13]. �

Corollary 3.18. Let Z be a metrizable tolopogical space and f :Z → R
a continuous function. Assume that

(a) Z is weakly locally contractible and catZ = ∞;
(b) for every c ∈ R, the set {u ∈ Z : f(u) ≤ c } is compact.

Then, for every compatible metric on Z, there exists a sequence (uh) of critical
points of f with f(uh) →∞.

4. Proof of the main results

In the first part of this section, let N be a differentiable manifold of class C2

and M be a LNR in N . Let us consider

Λ(M) = {γ ∈ C([0, 1];M) : γ(0) = γ(1)}

endowed with the uniform topology (Λ(M) is called the free loop space of M)
and

X = {γ ∈W 1,p(0, 1;M) : γ(0) = γ(1)}.

Let L: R× TN → R be a function of class C1 satisfying (2.1)–(2.4) and define a
lower semicontinuous functional f : Λ(M) → R ∪ {∞} by

f(γ) =


∫ 1

0

L(s, γ(s), γ′(s)) ds if γ ∈ X,

∞ if γ ∈ Λ(M) \X.

In the following, we will consider the metrizable topological space epi(f), en-
dowed with the topology induced by Λ(M) × R, and the continuous function
Gf : epi(f) → R.

Given a Riemannian structure on N , for every γ, η ∈ W 1,p(0, 1;M), we set
as before

d1(γ, η) =
∫ 1

0

d(γ(s), η(s)) ds,

d∞(γ, η) = max{d(γ(s), η(s)) : 0 ≤ s ≤ 1},

where d is the distance on N associated with the Riemannian structure.
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Lemma 4.1. Consider a Riemannian structure on N . Let (γh) be a sequence
in W 1,p(0, 1;M) convergent to γ ∈ W 1,p(0, 1;M) with respect to the topology
induced by d1 and such that (f(γh)) is bounded. Then (γh) is convergent to γ

with respect to the uniform convergence.

Proof. Let U be an open subset of M with U compact such that γ([0, 1]) ⊆
U . First of all we claim that γh([0, 1]) ⊆ U for h large enought. By contradiction,
let hk → ∞ and (sk) ⊆ [0, 1] such that γhk

(sk) 6∈ U . Up to a subsequence we
have that sk → s ∈ [0, 1] and γhk

→ γ a.e. in [0, 1]. Let a ∈ [0, 1] be such
that γhk

(a) → γ(a). Assume that a < s. It follows that, for k large enough,
there exists bk ∈ ]a, sk] such that γhk

([a, bk]) ⊆ U and γhk
(bk) 6∈ U . Since U is

compact, there exists C > 0 such that, by (2.1),∫ bk

a

L(s, γhk
, γ′hk

) ds ≥
∫ bk

a

(k(γhk
)|γ′hk

|p − d) ds ≥
∫ bk

a

(C|γ′hk
|p − d) ds.

Moreover, again by (2.1), we have∫ a

0

L(s, γhk
, γ′hk

) ds+
∫ 1

bk

L(s, γhk
, γ′hk

) ds ≥ −d(1− bk + a).

It follows that

f(γhk
) =

∫ 1

0

L(s, γhk
, γ′hk

) ds ≥ C

∫ bk

a

|γ′hk
|p ds− d.

Hence for every σ, τ ∈ [a, bk] with τ ≤ σ we have

d(γhk
(σ), γhk

(τ)) ≤
∫ σ

τ

|γ′hk
(t)| dt ≤

( ∫ σ

τ

|γ′hk
(t)|p dt

)1/p

|σ − τ |1/p′

≤
( ∫ bk

a

|γ′hk
(t)|p dt

)1/p

|σ − τ |1/p′
≤

(
f(γhk

) + d

C

)1/p

|σ − τ |1/p′
.

It follows that (γhk
) is equi-uniformly continuous on [a, bk]. Up to a further

subsequence we have that γhk
(bk) → x ∈ ∂U . Since inf{d(γ(a), y) : y ∈ ∂U} > 0,

if a is sufficiently closed to s a contradiction follows.
Arguing as above, for any s, t ∈ [0, 1] we have that

d(γh(s), γh(t)) ≤
(
f(γh) + d

C

)1/p

|s− t|1/p′
.

Since (f(γh)) is bounded, we deduce that (γh) is equi-uniformly continuous on
[0, 1]. Therefore it is easy to see that (γh) is convergent to γ with respect to the
uniform convergence. �
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Theorem 4.2. Consider any Riemannian structure on N and define on
epi(f) the metric

(4.1) d((γ, λ), (η, µ)) =
√
d1(γ, η)2 + |λ− µ|2.

Then the following facts hold:

(a) the metric d is compatible with the topology of epi(f);
(b) the set of critical points of Gf : epi(f) → R does not depend on the Rie-

mannian structure;
(c) if (γ, λ) ∈ epi(f) is a critical point of Gf with f(γ) = λ, then γ is the

restriction to [0, 1] of a 1-periodic generalized solution of the Lagrangian
system associated to L on M .

Proof. (a) is an easy consequence of Lemma 4.1; (b) follows from Remarks
2.1 and 3.14. Let us consider property (c). First, let us prove that γ is L-
stationary on [0,1]. By contradiction, assume that there exist r, c, σ > 0 and

H: {η ∈W 1,p(0, 1;M) : d∞(η, γ) < r, f(η) < f(γ) + r} × [0, r] →W 1,p(0, 1;M)

continuous from the product of the uniform convergence and that of R to that
of the uniform convergence such that

H(η, t)(0) = η(0), H(η, t)(1) = η(1),

d1(H(η, t), η) ≤ ct, f(H(η, t)) ≤ f(η)− σt.

If r′ ∈ ]0, r[ is such that if η ∈ W 1,p(0, 1;M) with d1(η, γ) < r′ and f(η) <
f(γ) + r′, then d∞(η, γ) < r. Then the restriction of H to

{η ∈W 1,p(0, 1;M) : d1(η, γ) < r′, f(η) < f(γ) + r′} × [0, r′]

satisfies the assumptions of Proposition 3.9. It follows that γ is not a critical
point of f , a contradiction.

Finally, if we define

γ̂(s) =


γ

(
s+

1
2

)
if 0 ≤ s ≤ 1

2
,

γ

(
s− 1

2

)
if

1
2
≤ s ≤ 1,

it turns out that also γ̂ is L-stationary on [0, 1], whence the assertion. �

Lemma 4.3. Define E : Λ([0, 1];N) → R ∪ {∞} by

E(γ) =


∫ 1

0

|γ′(s)|p ds if γ ∈ X,

∞ if γ ∈ Λ([0, 1];N) \X.
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Then epi(f) is homotopically equivalent to epi(E).

Proof. By (2.1), for every γ ∈ X we have

E(γ) ≤
∥∥∥∥ 1
k ◦ γ

∥∥∥∥
∞

(f(γ) + d), f(γ) ≤ ‖c ◦ γ‖∞(E(γ) + 1).

Define Φ: epi(f) → epi(E) and Ψ: epi(E) → epi(f) by

Φ(γ, λ) =
(
γ,

∥∥∥∥ 1
k ◦ γ

∥∥∥∥
∞

(λ+ d)
)
, Ψ(γ, λ) = (γ, ‖c ◦ γ‖∞(λ+ 1)).

Then Ψ and, by Lemma 4.1, Φ are continuous and it is readily seen that Ψ ◦ Φ
is homotopic to the identity of epi(f) while Φ ◦ Ψ is homotopic to the identity
of epi(E). �

Lemma 4.4. Let U be an open subset of Rn and let

Λ1(U) = {γ ∈W 1,p(0, 1;U) : γ(0) = γ(1)}

endowed with the W 1,p-metric. Then there exists a continuous map

K: Λ(U)× [0, 1] → Λ(U)

such that

K(γ, 0) = γ, K(γ, 1) ∈ Λ1(U) for all γ ∈ Λ(U),

K( · , 1): Λ(U) → Λ1(U) is continuous,

K(Λ1(U)× [0, 1]) ⊆ Λ1(U),

‖[K(γ, t)]′‖p ≤ ‖γ′‖p for all γ ∈ Λ1(U) and all t ∈ [0, 1].

Proof. Let (ρε) be a sequence of mollifiers of class C∞c on Rn. Let R0γ = γ

and for every ε > 0 let

Rεγ(s) =
∫

R
ρε(s− t) γ(t) dt,

where γ: R → U is 1-periodic such that γ|[0,1] = γ. It turns out that there exists
a continuous function λ: Λ(U) → ]0, 1] such that for every γ ∈ Λ(U) it is

Rεγ(s) ∈ U for all ε ∈ ]0, λ(γ)], and all s ∈ [0, 1].

Let K: Λ(U)× [0, 1] → Λ(U) defined by K(γ, t) = Rtλ(γ)γ. It is readily seen that
K satisfies all the properties required and the assertion follows. �
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Lemma 4.5. The map π̃: epi(E) → Λ(M) defined by π̃(γ, λ) = γ is a homo-
topy equivalence (epi(E) is endowed with the product of the uniform topology and
that of R).

Proof. Arguing as in the proof of Theorem 3.7, we may assume that N is
a smooth submanifold of Rn and we may consider an open subset A of Rn with
N ⊆ A and a retraction π:A→ N of class C∞ such that π is Lipschitz continuous
of constant 2. Since M is a LNR in N , there exists an open neighbourhood U of
M inN and a locally Lipschitzian retraction r:U →M . Since r◦π:π−1(U) →M

is a locally Lipschitzian retraction, then M is also a LNR in Rn. Now taking into
account Lemma 4.4 the proof follows the same argument of [11, Theorem 5.3].�

Theorem 4.6. The map π̂: epi(f) → Λ(M) defined by π̃(γ, λ) = γ is a
homotopy equivalence (epi(f) is endowed with the product of the uniform topology
and that of R).

Proof. Combining Lemmas 4.3 and 4.5 the assertion follows. �

From now on, we assume that M is the closure of an open subset in N with
locally Lipschitz boundary. By Theorem 3.7, M is a LNR in N .

Theorem 4.7. Consider a Riemannian structure on N and the metric de-
fined in (4.1). Let (γ, λ) be in epi(f) such that f(γ) < λ. Then

|dGf |(γ, λ) = 1.

Proof. Arguing as in the proof of Theorem 3.7, we may assume that N is
a smooth submanifold of Rn and we may consider an open subset A of Rn with
N ⊆ A and a retraction π:A→ N of class C∞ such that π is Lipschitz continuous
of constant 2. Therefore we may also consider the function L̃: R× A× Rn → R
such that L̃ is a C1-extension of L to R×A×Rn and such that there exist two
continuous functions c̃, k̃:A → ]0,∞[ and d ∈ R such that for every (s, q, v) ∈
R×A× Rn one has

|DqL̃(s, q, v)| ≤ c̃(q)(1 + |v|p),(4.2)

|DvL̃(s, q, v)| ≤ c̃(q)(1 + |v|p−1),(4.3)

L̃(s, q, v) ≥ k̃(q)|v|p − d,(4.4)

L̃(s, q, · ) is convex.(4.5)

First of all we claim that there exist ε > 0 and C > 0 such that for every
η1, η2 ∈ X with ‖ηi − γ‖∞ ≤ ε and for every t ∈ [0, 1] it is∣∣∣∣ ∫ 1

0

[L̃(s, π(η1 + t(η2 − η1)), π′(η1 + t(η2 − η1))η′1)− L̃(s, η1, η′1)] ds
∣∣∣∣

≤ Ct

(
1 +

∫ 1

0

L̃(s, η1, η′1) ds+
∫ 1

0

L̃(s, η2, η′2) ds
)
‖η1 − η2‖∞.
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Let ε > 0 be such that if η ∈ W 1,p(0, 1; Rn) with ‖η − γ‖∞ ≤ ε then η ∈
W 1,p(0, 1;A). Since π is of class C∞ and Lipschitz continuous of constant 2,
there exists ε ∈ ]0, ε] and C̃ ≥ 2 such that for every η1, η2 ∈ W 1,p(0, 1;A) with
‖ηi − γ‖∞ ≤ ε and for every ξ ∈ Rn it is

|π(η1)− π(η2)| ≤ C̃|η1 − η2|, |[π′(η1)− π′(η2)]ξ| ≤ C̃|η1 − η2||ξ|.

Now let η1, η2 ∈ X with ‖ηi − γ‖∞ ≤ ε and let t ∈ [0, 1]. For every ϑ ∈ [0, 1] we
have

|η′1 + ϑ(π′(η1 + t(η2 − η1))η′1 − η′1)|(4.6)

= |η′1 + ϑ(π′(η1 + t(η2 − η1))η′1 − π′(η1)η′1)|
≤ |η′1|+ C̃|η2 − η1||η′1| ≤ Ĉ(|η′1|+ |η′2|)

for some Ĉ > 0. Unless reducing ε, we may suppose that c̃, k̃ are constants on
{η ∈W 1,p(0, 1;A) : d∞(η, γ) < ε}. Furthermore, applying Lagrange’s Theorem,
(4.2), (4.3) and (4.6) it is, for some ϑ ∈ [0, 1],

L̃(s,π(η1 + t(η2 − η1)), π′(η1 + t(η2 − η1))η′1)− L̃(s, η1, η′1)

=DqL̃(s, η1 + ϑ(π(η1 + t(η2 − η1))− η1), η′1
+ ϑ(π′(η1 + t(η2 − η1))η′1 − η′1)) · (π(η1 + t(η2 − η1))− η1)

+DvL̃(s, η1 + ϑ(π(η1 + t(η2 − η1))− η1), η′1
+ ϑ(π′(η1 + t(η2 − η1))η′1 − η′1)) · (π′(η1 + t(η2 − η1))η′1 − η′1)

≤C(1 + |η′1 + ϑ(π′(η1 + t(η2 − η1))η′1 − η′1)|p)|π(η1 + t(η2 − η1))− π(η1)|
+ C(1 + |η′1 + ϑ(π′(η1 + t(η2 − η1))η′1 − η′1)|p−1)

· |π′(η1 + t(η2 − η1))η′1 − π′(η1)η′1|
≤C2t(1 + |η′1 + ϑ(π′(η1 + t(η2 − η1))η′1 − η′1)|p)|η1 − η2|

+ C2t(1 + |η′1 + ϑ(π′(η1 + t(η2 − η1))η′1 − η′1)|p−1)|η′1||η1 − η2|
≤C3t(1 + |η′1|p + |η′2|p)|η1 − η2|+ C3t(1 + |η′1|p−1 + |η′2|p−1)|η′1||η1 − η2|
=C3t(1 + |η′1|p + |η′2|p)|η1 − η2|+ C3t(|η′1|+ |η′1|p + |η′1||η′2|p−1)|η1 − η2|

for some C3 > 0. It follows that

∣∣∣∣ ∫ 1

0

[L̃(s, π(η1 + t(η2 − η1)), π′(η1 + t(η2 − η1))η′1)− L̃(s, η1, η′1)] ds
∣∣∣∣

≤C3t(1 + 2‖η′1‖p
p + ‖η′2‖p

p + ‖η′1‖1 + ‖η′1‖p‖η′2‖p−1
p )‖η1 − η2‖∞

≤C4t(1 + ‖η′1‖p
p + ‖η′2‖p

p)‖η1 − η2‖∞
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for some C4 > 0. Finally, applying (4.4) we may find C > 0 such that∣∣∣∣ ∫ 1

0

[L̃(s, π(η1 + t(η2 − η1)), π′(η1 + t(η2 − η1))η′1)− L̃(s, η1, η′1)] ds
∣∣∣∣

≤Ct
(

1 +
∫ 1

0

L̃(s, η1, η′1) ds+
∫ 1

0

L̃(s, η2, η′2) ds
)
‖η1 − η2‖∞

and the claim follows. Let ε > 0, K = γ([0, 1]) and let ε, C > 0 be as before.
Let C2 = C(1 + 2λ+ ε). Let now r̂ and ĉ be as in (c) of Lemma 3.5, and let

γ̂(s) = γ(s) + ρν(γ(s)),

where ρ ∈ ]0, r̂] is such that

‖π(γ̂)− γ‖∞ ≤ min
{
ε

4
,
ε

8C2
, ε

}
, f(π ◦ γ̂) ≤ f(γ) +

ε

4
.

Let r ∈ ]0, ε/2[ be such that if ‖η− γ‖1 < r with f(η) < λ+ r, then ‖η− γ‖∞ ≤
min{ρ/ĉ, ε/4, ε/8C2, ε}. Then, again by (c) of Lemma 3.5 it is possible to define
a continuous map

H: {η ∈ X : ‖η − γ‖1 < r, f(η) < λ+ r} × [0, r] → X

by

H(η, t) = π((1− t)η + tπ(γ̂)).

It is

‖H(η, t)− η‖∞ ≤ 2t‖π(γ̂)− η‖∞ ≤ 2t(‖π(γ̂)− γ‖∞ + ‖γ − η‖∞) ≤ εt

and hence also

‖H(η, t)− η‖1 ≤ εt.

Since L̃ is convex with respect to the third variable, we get

f(H(η, t))

=
∫ 1

0

L̃(s, π(η + t(π(γ̂)− η)), π′(η + t(π(γ̂)− η))(η′ + t((π ◦ γ̂)′ − η′))) ds

≤
∫ 1

0

L̃(s, π(η + t(π(γ̂)− η)), π′(η + t(π(γ̂)− η))η′) ds

+ t

[ ∫ 1

0

L̃(s, π(η + t(π(γ̂)− η)), π′(η + t(π(γ̂)− η))(π ◦ γ̂)′) ds

−
∫ 1

0

L̃(s, π(η + t(π(γ̂)− η)), π′(η + t(π(γ̂)− η))η′) ds
]
.
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Furthermore, it is∣∣∣∣ ∫ 1

0

[L̃(s, π(η + t(π(γ̂)− η)), π′(η + t(π(γ̂)− η))η′)− L̃(s, η, η′)] ds
∣∣∣∣

≤Ct(1 + f(η) + f(π ◦ γ̂))‖π(γ̂)− η‖∞
<Ct(1 + 2λ+ ε)(‖π(γ̂)− γ‖∞ + ‖γ − η‖∞) ≤ ε

4
t

and ∣∣∣∣ ∫ 1

0

[L̃(s, π(η + t(π(γ̂)− η)), π′(η + t(π(γ̂)− η))(π ◦ γ̂)′)

− L̃(s, π ◦ γ̂, (π ◦ γ̂)′)] ds
∣∣∣∣

≤Ct(1 + f(η) + f(π ◦ γ̂))‖π(γ̂)− η‖∞
<Ct(1 + 2λ+ ε)(‖π(γ̂)− γ‖∞ + ‖γ − η‖∞) ≤ ε

4
t.

Therefore we finally get

f(H(η, t)) ≤ f(η) +
ε

4
t+

(
f(π ◦ γ̂)− f(η) +

ε

2

)
t ≤ f(η) + t(f(γ)− f(η) + ε)

and the assertion follows from Proposition 3.11. �

Finally, we can prove Theorem 2.6.

Proof. Now assume also that M is compact, 1-connected and non-contrac-
tible in itself. By Theorem 3.7, we have that M is a LNR in N , in particular
an absolute neighbourhood retract. From [13, Corollary 1.4] it follows that
catΛ(M) = ∞. Moreover, Λ(M) also is an absolute neighbourhood retract,
hence weakly locally contractible. On the other hand, by Theorem 4.6 Λ(M)
is homotopically equivalent to epi(f). Therefore cat epi(f) = ∞ and epi(f) is
weakly locally contractible. Let now c ∈ R and consider the sublevel

Gc
f = {(γ, λ) ∈ Λ(M)× R : f(γ) ≤ λ ≤ c}.

Since M is compact, from (2.1) and Ascoli’s theorem we deduce that Gc
f is

compact. By Corollary 3.18, there exists a sequence (γh, λh) of critical points of
Gc

f with respect to the metric (4.1) with λh →∞. By Theorem 4.7 we have that
λh = f(γh). From (c) of Theorem 4.2 the assertion follows. �

The next two results correspond to the well-known equation d/dsH = −DsL,
where H is the Hamiltonian function associated with L.

Theorem 4.8. Let γ ∈ W 1,p(a, b;M) be L-stationary. Assume that L does
not depend on s. Then the map {s 7→ DvL(γ, γ′)γ′ − L(γ, γ′)} is constant a.e.

Proof. Arguing as in the proof of Theorem 4.7, we may assume that N
is a smooth submanifold of Rn, A is an open subset of Rn with N ⊆ A and



248 S. Lancelotti — M. Marzocchi

L̃:A×Rn → R is a C1-extension of L to A×Rn satisfying (4.2)–(4.5). Assume,
for a contradiction, that there exists ϕ ∈ C∞

c (a, b) such that

σ :=
1
2

∫ b

a

{[DvL̃(γ, γ′) · γ′ − L̃(γ, γ′)]ϕ′} ds > 0.

Let r > 0 be such that r‖ϕ′‖∞ < 1 and let ψ: [a, b]× [0, r] → [a, b] be the smooth
function such that

λ = ψ(λ, t)− tϕ (ψ(λ, t)) for all λ ∈ [a, b] and all t ∈ [0, r].

Unless reducing r we may suppose that the functions c, k in (4.2)–(4.4) are
constants on {η ∈ W 1,p(a, b;M) : d∞(η, γ) < r}. Define H: {η ∈ W 1,p(a, b;M) :
d∞(η, γ) < r, fa,b(η) < fa,b(γ) + r} × [0, r] →W 1,p(a, b;M) by

H(η, t)(µ) = η (µ− tϕ(µ)) .

It is easy to see that H is continuous from the product topology of the uniform
convergence and of R to that of the uniform convergence and that

H(η, t)(a) = η(a), H(η, t)(b) = η(b).

Moreover, by (4.4)

d1(H(η, t), η) =
∫ b

a

|η(µ− tϕ(µ))− η(µ)| dµ

= t

∫ b

a

|η′(µ− θϕ(µ))||1− tϕ′(µ)| dµ

≤ t
( ∫ b

a

|η′(λ)|p 1
|1− θϕ′(ψ(λ, θ))|p

dλ

)1/p( ∫ b

a

|1− tϕ′(µ)|p
′
dµ

)1/p′

≤ t

(1− θ‖ϕ′‖∞)p

( ∫ b

a

|η′(λ)|p dλ
)1/p( ∫ b

a

|1− tϕ′(µ)|p
′
dµ

)1/p′

≤Ct
( ∫ b

a

(L(η(λ), η′(λ)) + d) dλ
)1/p

< Ĉt(fa,b(γ) + r + d(b− a))1/p,

for some Ĉ > 0. Following the same argument of the proof of [19, Theorem 5.10]
we also have

fa,b(H(η, t)) = fa,b(η) + tΘ(η, t)

where

Θ(η, t) =
∫ b

a

[
−DvL̃(η(λ), (1− tϕ′(ψ(λ, t)))η′(λ)) · η′(λ)ϕ′(ψ(λ, t))

+ L̃(η(λ), (1− tϕ′(ψ(λ, t)))η′(λ))
ϕ′(ψ(λ, t))

1− tϕ′(ψ(λ, t))

]
dλ.
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We claim that, for r sufficiently small, we have Θ(η, t) ≤ −σ for any η ∈
W 1,p(a, b;M) with d∞(η, γ) < r, fa,b(η) < fa,b(γ)+ r and 0 ≤ t ≤ r. By contra-
diction, let (ηh) be a sequence in W 1,p(a, b;M) uniformly convergent to γ with
fa,b(ηh) < fa,b(γ)+1/h and (th) be a non negative sequence convergent to 0 such
that Θ(ηh, th) > −σ. Because of (4.4) and fa,b is lower semicontinuous, we have
that fa,b(ηh) → fa,b(γ). Again by (4.4) (ηh) is bounded in W 1,p(a, b;M) and up
to a subsequence η′h ⇀ γ′ in Lp(a, b;M). Therefore [1 − thϕ

′(ψ( · , th))]η′h ⇀ γ′

in Lp(a, b;M). We have that∫ b

a

[L̃(γ(λ),[1− thϕ
′(ψ(λ, th))]η′h(λ))− L̃(γ(λ), γ′(λ))] dλ

=
∫ b

a

DvL̃(γ(λ), (1− τ)γ′(λ) + τη′h(λ)) · (η′h(λ)− γ′(λ)) dλ

+ th

∫ b

a

ϕ′(ψ(λ, th))DvL̃(γ(λ), (1− ϑ)η′h(λ)

+ ϑ[1− thϕ
′(ψ(λ, th))]η′h(λ)) · η′h(λ) dλ.

By (4.3) we have that DvL̃(γ, (1− τ)γ′ + τη′h) ∈ Lp′
(a, b;M) and hence∫ b

a

DvL̃(γ(λ), (1− τ)γ′(λ) + τη′h(λ)) · (η′h(λ)− γ′(λ)) dλ→ 0.

Again by (4.3) we have that∫ b

a

ϕ′(ψ(λ, th))DvL̃(γ(λ), (1− ϑ)η′h(λ) + ϑ[1− thϕ
′(ψ(λ, th))]η′h(λ)) · η′h(λ) dλ

is bounded. Therefore we have that∫ b

a

L̃(γ, [1− thϕ
′(ψ(λ, th))]η′h) dλ→

∫ b

a

L̃(γ(λ), γ′(λ)) dλ.

By [12, Lemma 3.1] applied to the function F(λ, ξ) = L̃(γ(λ), ξ) we obtain that

L̃(γ, [1− thϕ
′(ψ( · , th))]η′h) ⇀ L̃(γ, γ′) in L1(a, b;M),

DvL̃(γ, [1− thϕ
′(ψ( · , th))]η′h) → DvL̃(γ, γ′) in Lp′

(a, b;M)

and there exists Ψ ∈ L1(a, b;M) such that |η′h|p ≤ Ψ. For some t ∈ ]0, 1[ we
have that

L̃(ηh(λ), [1− thϕ
′(ψ(λ, th))]η′h(λ))− L̃(γ(λ), [1− thϕ

′(ψ(λ, th))]η′h(λ))

= DqL̃((1− t)γ(λ) + tηh(λ), [1− thϕ
′(ψ(λ, th))]η′h(λ)) · (ηh(λ)− γ(λ)).

By (4.2) we deduce that DqL̃((1− t)γ+ tηh, [1− thϕ′(ψ( · , th))]η′h) ∈ Lp′
(a, b;M)

and hence

[L̃(ηh, [1− thϕ′(ψ( · , th))]η′h)− L̃(γ, [1− thϕ′(ψ( · , th))]η′h)] ⇀ 0 in L1(a, b;M).
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It follows that

L̃(ηh, [1− thϕ
′(ψ( · , th))]η′h) ⇀ L̃(γ, γ′) in L1(a, b;M).

Fix ε > 0, let δ > 0 such that for any L1-measurable subset Ω ⊆ ]a, b[ with
L1(Ω) < δ we have ∫

Ω

Φ(λ) dλ <
ε

2
for all Φ ∈ L1(a, b;M).

Let R > 0 be such that L1({λ ∈ [a, b] : |η′h(λ)| > R}) < δ. Let Ωh = {λ ∈ [a, b] :
|η′h(λ)| > R} and Ω′

h = {λ ∈ [a, b] : |η′h(λ)| ≤ R}. By (4.3) we have∫ b

a

|DvL̃(ηh(λ), [1− thϕ
′(ψ(λ, th))]η′h(λ))

−DvL̃(γ(λ), [1− thϕ
′(ψ(λ, th))]η′h(λ))|p

′
dλ

≤
∫

Ωh

C(1 + Ψ(λ)) dλ+
∫

Ω′
h

|DvL̃(ηh(λ), [1− thϕ
′(ψ(λ, th))]η′h(λ))

−DvL̃(γ(λ), [1− thϕ
′(ψ(λ, th))]η′h(λ))|p

′
dλ

<
ε

2
+

∫
Ω′

h

|DvL̃(ηh(λ), [1− thϕ
′(ψ(λ, th))]η′h(λ))

−DvL̃(γ(λ), [1− thϕ
′(ψ(λ, th))]η′h(λ))|p

′
dλ.

Since the map

{λ→ [DvL̃(ηh(λ), [1− thϕ
′(ψ(λ, th))]η′h(λ))−DvL̃(γ(λ),

[1− thϕ
′(ψ(λ, th))]η′h(λ))]}

is uniformly continuous on Ω′
h, for h sufficiently large we have∫

Ω′
h

|DvL̃(ηh(λ), [1− thϕ
′(ψ(λ, th))]η′h(λ))−DvL̃(γ(λ),

[1− thϕ
′(ψ(λ, th))]η′h(λ))|p

′
dλ <

ε

2
.

It follows that

‖DvL̃(ηh, [1− thϕ
′(ψ( · , th))]η′h)−DvL̃(γ, [1− thϕ

′(ψ( · , th))]η′h)‖p′ → 0.

Therefore

DvL̃(ηh, [1− thϕ
′(ψ( · , th))]η′h) → DvL̃(γ, γ′) in Lp′

(a, b;M)

and we deduce that

Θ(ηh, th) →
∫ b

a

{[−DvL̃(γ, γ′) · γ′ + L̃(γ, γ′)]ϕ′} dλ = −2σ,

a contradiction. Finally, we have fa,b(H(η, t)) ≤ fa,b(η) − σt. It follows that γ
is not L-stationary, a contradiction. �
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Theorem 4.9. Let γ ∈ W 1,p(a, b;M) be L-stationary. Assume that for
every s ∈ R and q ∈M one has

|DsL(s, q, v)| ≤ c(q)(1 + |v|p), for all v ∈ TqN,(4.7)

L(s, q, · ) is strictly convex on TqN.(4.8)

Then the map {s 7→ DvL(s, γ, γ′)γ′ − L(s, γ, γ′)} belongs to W 1,1(a, b) and we
have ∫ b

a

[DvL(s, γ, γ′)γ′ − L(s, γ, γ′)]ϕ′ ds =
∫ b

a

DsL(s, γ, γ′)ϕds

for all ϕ ∈ C∞
c (a, b).

Proof. Arguing as in the proof of Theorem 4.7, we may assume that N
is a smooth submanifold of Rn, A is an open subset of Rn with N ⊆ A and
L̃: R× A× Rn → R is a C1-extension of L to R× A× Rn satisfying (4.2)–(4.4)
and such that for every (s, q, v) ∈ R×A× Rn one has

|DsL̃(s, q, v)| ≤ c̃(q)(1 + |v|p),(4.9)

L̃(s, q, · ) is strictly convex.(4.10)

Assume, for a contradiction, that there exists ϕ ∈ C∞
c (a, b) such that

σ :=
1
2

∫ b

a

{[DvL̃(s, γ, γ′) · γ′ − L̃(s, γ, γ′)]ϕ′ −DsL̃(s, γ, γ′)ϕ} ds > 0.

Arguing as in the proof of Theorem 4.8 we may introduce the continuous map

H: {η ∈W 1,p(a, b;M) : d∞(η, γ) < r, fa,b(η) < fa,b(γ) + r} × [0, r]

→W 1,p(a, b;M)

defined by
H(η, t)(µ) = η (µ− tϕ(µ))

satisfying the following facts:

H(η, t)(a) = η(a), H(η, t)(b) = η(b),

d1(H(η, t), η) < Ĉt (fa,b(γ) + r + d(b− a))1/p
,

fa,b(H(η, t)) ≤ fa,b(η) + tΘ(η, t)

where Ĉ > 0,

Θ(η, t) =
∫ b

a

[
DsL̃(λ+ tϑ(λ, t)ϕ(ψ(λ, t)), η, (1− tϑ(λ, t)ϕ′(ψ(λ, t)))η′)ϕ(ψ(λ, t))

−DvL̃(λ+ tϑ(λ, t)ϕ(ψ(λ, t)), η(λ), (1− tϕ′(ψ(λ, t)))η′(λ)) · η′(λ)ϕ′(ψ(λ, t))

+ L̃(ψ(λ, t), η(λ), (1− tϕ′(ψ(λ, t)))η′(λ))
ϕ′(ψ(λ, t))

1− tϕ′(ψ(λ, t))

]
dλ

and 0 < ϑ(λ, t) < 1.
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We claim that, for r sufficiently small, we have Θ(η, t) ≤ −σ for any η ∈
W 1,p(a, b;M) with d∞(η, γ) < r, fa,b(η) < fa,b(γ) + r and 0 ≤ t ≤ r. By
contradiction, let (ηh) be a sequence in W 1,p(a, b;M) uniformly convergent to γ
with fa,b(ηh) < fa,b(γ) + 1

h and (th) be a non negative sequence convergent to 0
such that Θ(ηh, th) > −σ. Because of (4.4) and fa,b is lower semicontinuous, we
have that fa,b(ηh) → fa,b(γ). Again by (4.4) (ηh) is bounded in W 1,p(a, b;M)
and up to a subsequence ηh ⇀ γ in W 1,p(a, b;M). On the other hand, we have∫ b

a

L̃(λ, γ(λ), η′h(λ)) dλ−
∫ b

a

L̃(λ, γ(λ), γ′(λ)) dλ

= fa,b(ηh)− fa,b(γ)−
∫ b

a

L̃(λ, ηh(λ), η′h(λ)) dλ+
∫ b

a

L̃(λ, γ(λ), η′h(λ)) dλ.

Taking into account (4.2), we get that∫ b

a

L̃(λ, γ(λ), η′h(λ)) dλ→
∫ b

a

L̃(λ, γ(λ), γ′(λ)) dλ.

By [20, Theorem 3] applied to the function Φ(λ, ξ) = L̃(λ, γ(λ), ξ) it follows that
η′h is strongly convergent to γ′ in Lp(a, b;M); hence ηh → γ in W 1,p(a, b;M).
Because of (4.2), (4.3) and (4.9), we have that

Θ(ηh, th) →
∫ b

a

{[−DvL̃(λ, γ, γ′) · γ′ + L̃(λ, γ, γ′)]ϕ′ +DsL̃(λ, γ, γ′)ϕ} dλ = −2σ,

a contradiction. Finally, we have fa,b(H(η, t)) ≤ fa,b(η) − σt. It follows that γ
is not L-stationary, a contradiction. �
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