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LAGRANGIAN SYSTEMS
WITH LIPSCHITZ OBSTACLE ON MANIFOLDS

SERGIO LANCELOTTI — MARCO MARZOCCHI

ABSTRACT. Lagrangian systems constrained on the closure of an open sub-
set with Lipschitz boundary in a manifold are considered. Under suitable
assumptions, the existence of infinitely many periodic solutions is proved.

1. Introduction

The study of Lagrangian functionals of the form

1
(L1) () = / L(s,7(s),7'(s)) ds

on a manifold M, where L(s, (¢,v)):R x TM — R, costitutes a well studied
topic in Mechanics and Global analysis. In particular, about the existence and
multiplicity of periodic solutions v of the associated Euler equation, we refer
the reader to [1], where the case in which M is a compact manifold without
boundary is considered. Starting from [1], some extensions have been considered
in the literature, when M is embedded in an Euclidean space. In [3] the case
where M is a compact submanifold with boundary in R™ has been considered.
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In such a case, the associated Euler equation has the form
d
(1.2) %(DUL(&’Y,’YI)) *DqL(s,’Ya’Y/) € N’y(s)Ma
where N, M is the outer normal cone to M at g. The main feature is that the
natural domain of the functional (1.1) is

(1.3) X ={y € WH2(0,1;R™) : v(0) = y(1),~(s) € M for all s}

which is naturally a metric space, but not a smooth manifold (even with bound-
ary). Moreover, solutions 7 of (1.2) are not of class C?, but only W2 and
satisfy (1.2) almost everywhere. In the same direction, the case in which M is a
compact p-convex subset of R” has been considered in [4]. The class of p-convex
subsets [8] includes in particular subsets with corners of convex type and con-
cave parts of class C2. This direction of research was started by [18], where the
case of an n-dimensional submanifold with boundary of class C? in R™ had been
considered.

Another development has been started more recently in [11], [19], considering
the case in which M is the closure of a bounded open subset of R™ with Lipschitz
boundary. Also in this case the set X is naturally only a metric space. Moreover,
since in this case we cannot expect the solution 7 of (1.2) to be of class C*, the
Euler equation itself requires a reformulation.

The purpose of this paper is to consider the intrinsic case in which M is the
closure of a bounded open subset of a differentiable manifold N, instead of R™,
and also to relax the convexity condition on L, which was in [19] of uniform
quadratic type, to the mere convexity with coercivity of order p > 1.

Our approach follows the lines of [19], but it is completely intrinsic. Of course
the lack of strict convexity in L causes new technical difficulties.

The paper is organized as follows: in Section 2 we state our main results,
while Section 3 is devoted to some recalls of nonsmooth analysis. Finally, in
Section 4 we prove the main results.

2. Statement of the main results

Let N be a differentiable manifold without boundary of class C? and M C
N. In the sequel, each v € WP(a,b; N) will be identified with its continuous
representative ¥: [a,b] — N. We set

WhYP(a,b; M) := {y € W"P(a,b; N) : v(s) € M for each s € [a,b]}.

REMARK 2.1. Let g and g be two Riemannian structures on N and let d
and d be the induced distances on N. Then there exists a continuous function
c: N — 0, 00| such that, for all ¢ € N and all v € T;N,

9(@)(v,v) < e(@)g(g)(v,v),  g(@)(v,v) < e(g)g(q)(v,v).
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In particular, for every compact subset K C N there exists C > 0 such that, for
all g1,¢2 € K,

d(q1,q2) < Cd(qa, g2), d(qr,q2) < Cd(qa, g2).

Let 1 < p < oo and L:R x TN — R be a function of class C* such that there
exist two continuous functions ¢, k: M — ]0,00[ and d € R such that for every
s € R and ¢ € M one has
(2.1) k(g)|v|P —d < L(s,q,v) <c(q)(1+|vP) forallve TyN,

(2.2) |D(q,0)L(5,q,v)] < c(q)(1+ |v[P) forallve T,N,
(2.3) L(s,q, -) is convex on TyN,
where [v] = \/g(q)(v,v).

In (2.1), (2.2) we mean that N is provisionally endowed with a Riemannian
structure. By Remark 2.1 the above conditions do not depend on the Riemannian
structure chosen on V.

In charts, (2.1), (2.2) mean that for every s € R and ¢ € M it is

k(g)vP —d < L(s,q,v) <c(q)(1+ |vP) forallveT,N,
|DyL(s,q,v)| <e(g)(1+ |v|P) forall ve TyN,
|DyL(s,q,v)] <c(q)(1+ |vfP) forall ve TyN.

Let us remark that (2.1), (2.3) imply that for every s € R, ¢ € M and any
v,w € T¢N we have

Dy L(s,q,v)w| <e(g)(1 + [vf~")]w]

namely, in charts,
Dy L(s,q,v)] < E(q)(1 + [P,
where ¢t M — 10, 0o[ is continuous.
Define a continuous functional f, : W'P(a,b; M) — R by

b
fasl) = [ Ls.7(5).7/(5)) ds.
Given a Riemannian structure on N, for every ~,n € WP(a,b; M) we set
b
dirn) = [ dlas)n(s) ds,

doo (7, 1) =max{d(y(s),n(s)) : a < s < b},

where d is the distance on N associated with the Riemannian structure.
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DEFINITION 2.2. We say that v € WYP(a,b; M) is L-stationary, if it is not
possibile to find r,¢,0 > 0 and a map

Hi{n € WHP(a,b; M) = doc(n, ) <7, fap(n) < fap(y) +1} % [0,7]
— WP (a,b; M)
such that:
(a) H is continuous from the product of the topology of the uniform con-
vergence and that of R to that of the uniform convergence;
(b) for every n € WHP(a,b; M) with deo(n,7) <7, fas(n) < fap(y)+7r and
t € [0, r] we have

H(n,t)(a) =n(a), H(n,t)(b) = n(b),
dy (H(nvt)a 77) < ct, fa,b(H(nat)) < fa,b(n) —ot.

Again we mean that the assertion holds after introducing a Riemannian struc-
ture on N. By Remark 2.1 this definition does not depend on the choice of the

Riemannian structure itself.

PROPOSITION 2.3. Let v € WP(a,b; M) be L-stationary. Then for every
[, B] C [a,b] the restriction v)(q,g) is L-stationary.

PROOF. Set 5 = v|[q,5- By contradiction, assume that there exist r,c,o > 0
and

H:{n € WHP(a, 3; M) : deo(1,7) <75 fa,5(n) fa,s(3) + 1} x [0,7]
— WP (a, B; M)
according to Definition 2.2.

We claim that there exists ' € ]0,r[ such that if n € W1P(a,b; M) with
doo(n,y) < v and fop(n) < fau(y) + 7/, then fo 3(0) < fa,s(y) + r, where
M= M[ag)-

Again by contradiction, let (n,) € WP(a,b; M) with 7, convergent to ~y
with respect to the uniform convergence and limsupy, fou(nn) < fap(7y) such
that fo g(Mh) > fa,s(7) + 7. By (2.1) and (2.3) we have

limsup fo,5(7,) <limsup fqp(ns) — lim inf/ L(s,nn,np,) ds
h h h Ja,b[\]ev, B

Sfa,b(’)/) - / L(S7’Yv’y/) ds = faﬂ(a)v
la,b[\]a, 8]

whence a contradiction. Then, for any n € WP (a,b; M) define

K:{n € WYP(a,b; M) : doo(n,7) <75 far(n) < fap(y) +7"} x [0,7]
— WhP(a,b; M)
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by
H(,t)(s) if s € o, 0],
K(n,t)(s) = { .
n(s) if s ¢ [a, B].
It is readily seen that KC has all the properties required in Definition 2.2. It
follows that - is not L-stationary, which is absurd. O

DEFINITION 2.4. Let I be an interval in R with int(I) # (). A continuous
map v:I — M is said to be a generalized solution of the Lagrangian system
associated to L on M, if every s € int(I) admits a neighbourhood [a, b] in I such
that 7|[q,,) belongs to WP (a,b; M) and is L-stationary.

DEFINITION 2.5. Given T > 0, a T-periodic generalized solution of the La-
grangian system associated to L on M is a generalized solution v: R — M which
is periodic of period T

We now state our main existence result.

THEOREM 2.6. Assume that M is the closure of an open subset of N with
locally Lipschitz boundary. Suppose also that M is compact, 1-connected and
non-contractible in itself and that

(2.4) L(s+1,q,v) = L(s,q,v) for all s € R and all (¢,v) € TN.

Then there exists a sequence () of 1-periodic generalized solutions of the La-
grangian system associated to L on M with

1
li;gn/ L(s,7n(s),7(s)) ds = +o0.
0

The notion of generalized solution we have introduced follows the approach
of [11, Definition 3.3] and [19, Definition 2.6] and has the advantage to be in-
trinsically connected to M, although quite indirect. However, at least in the
particular case p = 2, it is possibile to deduce further informations on the gen-
eralized solutions.

For every ¢ € M, denote by NyM the normal cone to M at ¢ (see e.g.
Definition 3.2 below).

THEOREM 2.7. Letp = 2 and assume that there exists a continuous function
w: N — 10, 00[ such that for every s € R, g € M it is

D, L(s,q,v)(v —w) — DyL(s,q,w) (v — w) > w(q)|v —w|* for all v,w € T,N.

Lety € WY2(a,b; M) be L-stationary. Then~y € WY (a,b; M), Dg,0)L(5,7,7")
€ L™(a,b; T*(T'N)) and there exist a finite Borel measure y on ]a,b| and a boun-
ded Borel function v:]a,b[ — T*N such that v(s) € Ny )M for p-a.e. s € |a,b]

and
b

b
[ Pl bo,3,7)6.8) s = [ 6y

a
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for any & € Wy (a,b; TN) with 6(s) € Ty (syN for every s € [a,b].

Also in this assertion we mean that IV is provisionally endowed with a Rie-
mannian structure. Since « is continuous, by Remark 2.1 the assertion is inde-
pendent of the choice of the structure.

PROOF OF THEOREM 2.7. By Proposition 2.3, we may assume that v([a, b])
is contained in a coordinated neighbourhood. Then the assertion follows from
[19, Theorem 2.10]. O

3. Some relevant results of nonsmooth analysis

In the first part of this section let N be a differentiable manifold of class C?
and M be the closure of an open set in N with locally Lipschitz boundary.

If X is a Banach space, £ C X and = € E, we denote by T, FE the tangent
cone to E at z, according to [6]. We also denote by B,.(x) the open ball of center
x and radius r.

DEFINITION 3.1. Let x € E and v € X. We say that v is hypertangent to E
at x if there exists § > 0 such that Bs(z) + [0,0]Bs(v) C E. Let us denote by
Hyp, E the set of the v’s hypertangent to E at x.

DEFINITION 3.2. Let ¢ € M and v € T,N. We say that v is tangent to M
at q if there exists a chart (U, ) at g such that dp(q)v € Tyqyp(U N M). The
set of the v’s tangent to M at ¢ is denoted by T,M and is called the tangent
cone to M at q.

We say that v is hypertangent to M at q if there exists a chart (U, ) at
g such that dp(q)v is hypertangent to o(U N M) at ¢(¢). The set of the v’s
hypertangent to M at ¢ is denoted by Hyp,M and is called the hypertangent
cone to M at g. Finally, we set NyM = {p € T;N : ¢(v) <0 for all v € T M}.
Ny M is called the normal cone to M at q.

REMARK 3.3. For every ¢ € M it is Hyp,M # 0 (see [6]) and Hyp,M C
T M.

THEOREM 3.4. There exists a section v: N — TN of class C* such that

v(q) € HypgM  for all g € M.

PRroOF. For all ¢ € N, let
Hyp,M if g € M,
U(q) = o
T,N  ifge N\ M.

Then for every ¢ € N, ¥(q) is convex in TN and for every ¢ € N there exists
a chart (U, ) at ¢ such that

(M) (de(€) (T (€))) # 0.

13
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It follows that there exists v: N — TN of class C! with v(q) € ¥(q) for every
q € N, hence the assertion. O

LEMMA 3.5. Let N be a submanifold of class C? of R™, M be the closure of
an open subset of N with locally Lipschitz boundary, A be an open subset of R™
with N C A and m: A — N be a retraction of class C? such that m is Lipschitz
continuous of constant 2. Then there exists a map v: N — R™ of class C' such
that the following facts hold:

(a) for any q € N we have v(q) € Tq]\~f;
(b) for any q € M there exists § > 0 such that
£ € Bs(q),
g L TON e e e
7 en w(&+1tv) €1n ;
0<t<é,

v € Bs(v(q)),
(¢) for every compact subset K C M there exist 7,2 > 0 satisfying
w((1=t)q + tn(€ + pr(€))) € M

whenever g € M, € € K, cg—¢& <p<Tandte0,1].

PrOOF. By Theorem 3.4 there exists a map v: N — R" of class C' such
that for any ¢ € N it is v(q) € TqJ\Nf.

To prove (b), assume by contradiction that ¢ € M, &, — q, tp, — 07 and
v — v(q) with 7(&,) € M and 7(&, + tauy) € int(M).

Let (U,¢) be the chart at ¢ such that ¢:U — T,IN, »(q) = 0 and 7(q +
©(£)) = ¢ for any ¢ € U; in particular, v(q) € Hypop(U N M).
Then we have

@(m(&n + thun)) ¢ int(p(U N M)).
Since

@(m(&n + thon)) = o(m(&n)) + taldlp o m)(En)vn + €n)
with €, — 0 in TqJ\N/', it follows that d[y o 7|(&n)vp + € € Tqﬁ and
(m(&n + thvn)) € int (p(U N M))

for large h, which is absurd.
Now let us prove (c). By contradiction, let (gy) in M, (&) in K, (t5) in
[0,1], pr — O with hlgn — &n| < prn < 1/h and

7((1 = tn)gn + tam (& + prv(€n))) ¢ M.

Up to a subsequence &, — € in K, g, — & in M and t), — ¢ in [0,1]. Tt is

m(&n + phpvh(éh)) - Qh)>.

T((1 = th)gn + tnw(€n + prv(€n))) = W(Qh + thph(
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On the other hand,

m(&n + pnv(€n)) —an u(©) _ (& + pnv(§)) — & — prv(8)
Ph Ph

n &h— qn N (& + prv(&n)) — m(&n + phV(f))'

Ph Ph
By [11, Theorem 4.4], it is

(&n + pnv (&) — & — prr(§)
Ph

lim 2 —0.
h

Moreover, by the lipschitzianity of 7 it is also

(& + prv(En)) — m(€n + prr(€))
Ph

] < 2u(&n) — ()]

It follows that

lim m(&n + pnv(En)) —an _ u(e),
Ph
hence by (a) it is
7T<qh Ftupn <7T(§h + pnv(€n)) — %)) cif
Ph

for large h, which is a contradiction.

DEFINITION 3.6. A subset E of N is said to be a LNR in NV if there exists an
open neighbourhood U of F in N and a locally Lipschitzian retraction r: U — FE.

THEOREM 3.7. The set M is a LNR in N.

PROOF. By [14, §2, Theorems 2.10 and 2.14], we may assume that N is
a smooth submanifold of R™. By [14, §4, Theorem 5.1], there exist an open
subset A of R™ with N C A and a retraction m: A — N of class C* such that 7
is Lipschitz continuous of constant 2. Let v: N — R™ be as in Lemma 3.5. By
(b) of Lemma 3.5, for every ¢ € M there exists d, > 0 such that

¢ € By, (9),

if m(6) € M, then 7(§+ tv) € int(M).
0 <t <dy,
v €Bs,(v(q)),

Let 0;, € ]0, 4] be such that

§+tv(€) € Bs,(9),
then v(§) € Bs,/2(v(q)),

£ { ¢ € By, (q),
€ — gl + 84 |v(&) —v(q)] < 02 /4.

0<t<d,
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For every ¢ € M, define
Uy =1{€ € By (q) s m(&+0pp(€) eint(M)}, U= ] U,

qeEM

For every £ € U, let T(§) = min{¢t > 0 : w(§ + tv(€)) € M}. It is easy to see
that, if ¢ € M and & € U, then

T(§) < by, &+T(EV(E) €Bs,(a), m(E+T(Er() €M

and

(3.1) if {0<t<5q’ th (E+TEWE) +tv)e M
' v € By, (v(q), vE

Let now ¢ € M and &, & € Uy with & # &. We set

o= ;qusl — &+ T(E)W(E) — (&)

and
v= &) - (6~ & + TE)W(&) -~ ¥(&).

We have s € ]0,9,] and v € Bs, (v(q)). If we consider t = T(&;) + s, an easy
calculation shows that

S +tv(§2) = & + T(&)v(&1) + sv.
By (3.1) it follows that 7(&2 + tv(&2)) € M, hence T'(&2) < t. Therefore we get

T(&) < T(6) +5 < T(6) + £ (16 — &l + (&) ~ (&)
q
exchanging the role of & and & we have

T(&) = T(&)] < ;(I& — ol + 0glv(&1) —v(&)),

hence T is locally Lipschitzian. If follows that the map U — M defined by
r(§) = w(§ + T(&v()) is a locally Lipschitzian retraction. Therefore M is an
LNR in R", in particular in N. O

In the second part of this section, we recall some abstract notions and results
of nonsmooth analysis.

Let Y be a metric space endowed with the metric d and let f:Y — R be
a function. We set

epi(f) = {(u, ) € Y x R: f(u) < A}.

In the following, Y x R will be endowed with the metric

d((u, N), (v, 1)) = (d(u,0)* + (A = p)*)1/?

and epi(f) with the induced metric.
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DEFINITION 3.8. For every u € Y with f(u) € R, we denote by |df|(u) the
supremum of the ¢’s in [0, co[ such that there exist » > 0 and a continuous map

H: (Br(u, f(u) Nepi(f)) x [0,7] =Y

satisfying
AH (0,0, 0,0) <t F(H((0,0),8)) < pi— ot
whenever (v, 1) € By (u, f(u)) Nepi(f) and t € [0, r].
The extended real number |df|(u) is called the weak slope of f at u.

The above notion has been introduced in [9], following an equivalent ap-
proach. When f is continuous, it has been independently introduced also in [17],
while a variant appears in [15], [16]. The version we have recalled here is taken
from [2].

PROPOSITION 3.9. Let u € Y with f(u) € R. Assume there exist r,c,0 > 0
and a continuous map

H:{v € B.(u): f(v) < f(u)+7} x[0,r] =Y
such that for any v € B,(u) with f(v) < f(u) +r and any t € [0,7] it is
d(H(v,t),v) < ct, f(H(v,t)) < f(v) — ot.
Then we have |df|(u) > o/c.
PROOF. See [11, Proposition 2.3]. O

Now, according to [8], we define a function Gs:epi(f) — R by G¢(u, A) = A.
Of course, G is Lipschitzian of constant 1.

PROPOSITION 3.10. For every u € Y with f(u) € R, we have f(u) =
Gr(u, f(u)) and

il J(w) if |[dGr|(u, f(u 1
df|(u) = ¢ /T —[dG¢](u, f(u))? f dGy|(u, f(u)) <1,

00 if |dGy|(u, f(u)) = 1.

PROOF. See [2, Proposition 2.3]. O

The previous proposition allows us to reduce, at some extent, the study of
the general function f to that of the continuous function G;. For this purpose,
the next result will be useful.

PROPOSITION 3.11. Let (u,A) € epi(f) with f(u) < X. Assume that for
every € > 0 there exist r > 0 and a continuous map

H:{v€B,(u): flv) <A+r} x[0,7r] =Y
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such that for any v € B,.(u) with f(v) < A+7r and any t € [0,7] it is

S

(H(v,t),v) < et,
F(H(v, 1)) < (1= 1) f(v) +1(f(u) + &)
Then we have |dGs|(u, A) = 1.
PrROOF. See [10, Corollary 2.11]. O
Definition 3.8 may be simplified, when f is continuous.

PROPOSITION 3.12. Let f:Y — R be continuous. Then |df|(u) is the supre-
mum of the o’s in [0, 4+00[ such that there exist r > 0 and a continuous map

H:B,(u) x [0,7] =Y
satisfying
(3.2) d(H(v,t),v) <t, f(H(v,t)) < f(v) — at,
whenever v € B,.(u) and t € [0,7].
PROOF. See [2, Proposition 2.2]. O

By means of the weak slope, we can now introduce the two main notions of
critical point theory.

DEFINITION 3.13. We say that uw € Y is a (lower) critical point of f, if
f(u) € R and |df|(u) = 0. We say that ¢ € R is a (lower) critical value of f, if
there exists a (lower) critical point w € Y of f with f(u) = c.

REMARK 3.14. Let d be another metric on Y and let u € Y. Assume that
there exist a neighbourhood U of u and ¢ > 0 such that, for all v,w € U,

d(v,w) < cd(v, w), d(v,w) < cd(v, w).
Then one has |df|(u) = 0 if and only if |df|(u) = 0, where |df|(u) is the weak
slope with respect to d.

DEFINITION 3.15. Let ¢ € R. A sequence (uy) in Y is said to be a Palais—
Smale sequence at level ¢ ((PS)c-sequence, for short) for f, if f(up) — ¢ and
df|(un) — 0.

We say that f satisfies the Palais—-Smale condition at level ¢ ((PS)., for short),
if every (PS).-sequence (uy) for f admits a convergent subsequence (up, ) in Y.

DEFINITION 3.16. A topological space Z is said to be weakly locally con-
tractible, if every u € Z admits a neighbourhood U which is contractible in Z.
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THEOREM 3.17. Let Y be weakly locally contractible with catY = oo, let
1Y — R be continuous and bounded from below and assume that {u € Y :
f(u) < ¢} is complete and (PS). hold for every ¢ € R. Then there exists a
sequence (up) of critical points of f with f(up) — co.

PROOF. See [7, Theorem 3.6] and [5, Theorem 1.4.13]. O
COROLLARY 3.18. Let Z be a metrizable tolopogical space and f:Z — R

a continuous function. Assume that

(a) Z is weakly locally contractible and catZ = oo;
(b) for every c € R, the set {u € Z: f(u) <c} is compact.

Then, for every compatible metric on Z, there exists a sequence (uy) of critical
points of f with f(up) — oo.

4. Proof of the main results

In the first part of this section, let N be a differentiable manifold of class C?
and M be a LNR in N. Let us consider

A(M) = {y € C([0,1]; M) : 7(0) = (1)}

endowed with the uniform topology (A(M) is called the free loop space of M)
and

X ={y e W"(0,1; M) : 7(0) = 4(1)}.

Let L: R x TN — R be a function of class C! satisfying (2.1)—(2.4) and define a
lower semicontinuous functional f: A(M) — RU {oo} by

| Hea@eas e x
00 ifye AIM)\ X.

f(y) =

In the following, we will consider the metrizable topological space epi(f), en-
dowed with the topology induced by A(M) x R, and the continuous function
Grrepi(f) — R.

Given a Riemannian structure on N, for every v,n € W1P(0,1; M), we set
as before

mmmzédmwmm@7

doo(v,m) = max{d(y(s),n(s)) : 0 < s <1},

where d is the distance on N associated with the Riemannian structure.
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LEMMA 4.1. Consider a Riemannian structure on N. Let (yy) be a sequence
in WHP(0,1; M) convergent to v € WHP(0,1; M) with respect to the topology
induced by di and such that (f(yp)) is bounded. Then (yy) is convergent to -y
with respect to the uniform convergence.

PROOF. Let U be an open subset of M with U compact such that ([0, 1]) C
U. First of all we claim that v, ([0,1]) C U for h large enought. By contradiction,
let hy — oo and (sx) C [0,1] such that v, (sx) € U. Up to a subsequence we
have that s — s € [0,1] and v, — v a.e. in [0,1]. Let a € [0,1] be such
that vy, (a) — ~v(a). Assume that a < s. It follows that, for k large enough,
there exists by € |a, sx] such that vy, ([a,bx]) € U and v, (by) € U. Since U is
compact, there exists C' > 0 such that, by (2.1),

br

br bk
/ L5, s, ) ds > / (k) [P — d) ds > / (Clh, P — d) ds.

Moreover, again by (2.1), we have

a 1
/ L(s, Yy, Y, ) ds + / L(s, Yy, Y, ) ds > —d(1 — by, + a).
0 bk

It follows that

1 by
f(ryhk):/ L(S,’tha%%)dszc/ "Y;Lk|pd8—d
0 a

Hence for every o, 7 € [a, bi] with 7 < o we have

o o 1/p
phlde s ([ i opa) o - o

b 1/p 1/p ,
< ([ ritopa) o - < (LoD g

It follows that (74, ) is equi-uniformly continuous on [a,bg]. Up to a further
subsequence we have that v, (bg) — 2 € OU. Since inf{d(y(a),y) : y € OU} > 0,
if a is sufficiently closed to s a contradiction follows.

Ao, (@) m (1) < [

Arguing as above, for any s, € [0, 1] we have that

1/p
don(s)mie) = (F291D) g

Since (f(yz)) is bounded, we deduce that (v;) is equi-uniformly continuous on
[0,1]. Therefore it is easy to see that () is convergent to v with respect to the

uniform convergence. O
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THEOREM 4.2. Consider any Riemannian structure on N and define on
epi(f) the metric

(4.1) d((7, ), (0, 1)) = Vi (7,7)% + A — f2.

Then the following facts hold:

(a) the metric d is compatible with the topology of epi(f);

(b) the set of critical points of Gr:epi(f) — R does not depend on the Rie-
mannian structure;

(c) if (v, A) € epi(f) is a critical point of Gy with f(y) = A, then v is the
restriction to [0,1] of a 1-periodic generalized solution of the Lagrangian
system associated to L on M.

PROOF. (a) is an easy consequence of Lemma 4.1; (b) follows from Remarks
2.1 and 3.14. Let us consider property (c). First, let us prove that v is L-
stationary on [0,1]. By contradiction, assume that there exist r,¢,o > 0 and

H:{n e WHP(0,1,M) : dos(n,y) <7, f(n) < f(y) +r} x[0,7] = WHP(0,1; M)

continuous from the product of the uniform convergence and that of R to that
of the uniform convergence such that

H(n,)(0) =n(0), H(n,t)(1) =n(1),
di(H(n,t),n) <ct,  f(H(n,t)) < f(n) —ot.

If v € ]0,7[ is such that if n € WLP(0,1; M) with dq(n,v) < " and f(n) <
f(y) + 7', then dos(n,v) < r. Then the restriction of H to

{ne Wh'P(0,1;M) : di(n,v) <r', f(n) < f(y)+7'} x[0,7]

satisfies the assumptions of Proposition 3.9. It follows that « is not a critical
point of f, a contradiction.

Finally, if we define

= L f 1 <s<1
N Y
T\® 2 2~ § ’
it turns out that also 7 is L-stationary on [0, 1], whence the assertion. O

LEMMA 4.3. Define £: A([0,1]; N) = RU {oo} by

ey [ eras yyvex
00 if v € A([0,1]; N) \ X.
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Then epi(f) is homotopically equivalent to epi(E).

ProoOF. By (2.1), for every v € X we have

éo) < | wamo+m, 7 < lleollao(€r) + 1)

korx

Define ®:epi(f) — epi(€) and P:epi(E) — epi(f) by

QWA)Z(%A;MMQ+d07 B N) = (s el (A + 1))

Then ¥ and, by Lemma 4.1, ® are continuous and it is readily seen that ¥ o ®
is homotopic to the identity of epi(f) while ® o ¥ is homotopic to the identity
of epi(&). O

LEMMA 4.4. Let U be an open subset of R™ and let
AYU) = {y e WHP(0,1;U) = 7(0) = (1)}
endowed with the WP -metric. Then there exists a continuous map
K:AU) x [0,1] — A(U)

such that

K(v,0)=v, K(v,1) € AYU) for ally € AU),
K(-,1): AU) — AY(U) is continuous,
KAL) x [0,1]) € AY(D),

IO lp < 1Y'llp for ally € AY(U) and all t € [0,1].

PROOF. Let (pc) be a sequence of mollifiers of class C$° on R™. Let Roy = 7y
and for every € > 0 let

Rﬂ@=4&w4wm%

where 7: R — U is 1-periodic such that 7;g ;) = 7. It turns out that there exists
a continuous function A: A(U) — 10, 1] such that for every v € A(U) it is

R.(s) e U for all € €10, A(v)], and all s € [0,1].

Let K: A(U) x [0,1] — A(U) defined by K(v,t) = Ryx(y)7- It is readily seen that
K satisfies all the properties required and the assertion follows. O
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LEMMA 4.5. The map 7:epi(€) — A(M) defined by 7(y,\) = v is a homo-
topy equivalence (epi(€) is endowed with the product of the uniform topology and
that of R).

PROOF. Arguing as in the proof of Theorem 3.7, we may assume that IV is
a smooth submanifold of R™ and we may consider an open subset A of R with
N C A and aretraction m: A — N of class C'*° such that 7 is Lipschitz continuous
of constant 2. Since M is a LNR in N, there exists an open neighbourhood U of
M in N and a locally Lipschitzian retraction r: U — M. Since rom: 7= *(U) — M
is a locally Lipschitzian retraction, then M is also a LNR in R". Now taking into
account Lemma 4.4 the proof follows the same argument of [11, Theorem 5.3].0]

THEOREM 4.6. The map m:epi(f) — A(M) defined by 7w(vy,\) = 7 is a
homotopy equivalence (epi(f) is endowed with the product of the uniform topology
and that of R).

ProoF. Combining Lemmas 4.3 and 4.5 the assertion follows. g

From now on, we assume that M is the closure of an open subset in NV with
locally Lipschitz boundary. By Theorem 3.7, M is a LNR in N.

THEOREM 4.7. Consider a Riemannian structure on N and the metric de-
fined in (4.1). Let (v, A) be in epi(f) such that f(v) < A\. Then

|[dGl(v, A) = 1.

PROOF. Arguing as in the proof of Theorem 3.7, we may assume that IV is
a smooth submanifold of R™ and we may consider an open subset A of R with
N C A and aretraction m: A — N of class C*° such that 7 is Lipschitz continuous
of constant 2. Therefore we may also consider the function LRx AxR" 5 R
such that L is a Cl-extension of L to R x A x R™ and such that there exist two
continuous functions ¢, kA — 10,00[ and d € R such that for every (s, q,v) €
R x A x R™ one has

(4.2) IDyL(s,q,0)| <&a)(L + [v]?),
(4.3) DL (s,q,0)| <&q)(1+ o),
(4.4) L(s,q,v) > k(q)|v|” — d,
(4.5) L(s,q, - ) is convex.

First of all we claim that there exist # > 0 and C' > 0 such that for every
n1,n2 € X with ||, — 7]|lec <7 and for every t € [0,1] it is

/0 (E (s, + 002 — 1)), 7 (o + £ — m)),) — E(s,ma )] ds

1 1
SCt(lJr/ L(s,m,ni)dSJr/ L(s,nzmé)dS)IIm—nzlloo-
0 0
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Let € > 0 be such that if n € WHP(0,1;R") with ||[n — v||ec < € then n €
W1tP(0,1; A). Since 7 is of class C* and Lipschitz continuous of constant 2,
there exists £ € ]0,¢] and C' > 2 such that for every 71,7, € WP(0,1; A) with
[I7: — Ylloo < € and for every & € R™ it is

m(m) = w(m2)] < Clm —mels [« (m) = ' (m2))€] < Cliy = ma €.

Now let n1,m2 € X with ||7; — 7]l <Z and let ¢ € [0,1]. For every 9 € [0, 1] we
have

(4.6) lm +9(7" (m + t(n2 —m))m — 1)l
=0y + (7" (m + t(nz — )y — 7' (m)ny)|
<l Clnz —mllnil < C(nil + Inal)

for some C > 0. Unless reducing £, we may suppose that ¢, k are constants on
{n € WHP(0,1; A) : doo(n,7y) < E}. Furthermore, applying Lagrange’s Theorem,
(4.2), (4.3) and (4.6) it is, for some ¥ € [0, 1],

L(s,m(m +t(n2 —m)), 7' (m + t(n2 — m))nh) — L(s,m1, 1)
=DyL(s,m + 9(m(n + t(n2 —m)) —m), m

+ (7" (m + t(ne —m))ny —n1)) - (w(m + t(772 m)) —m)
+ Dy L(s,m1 + O(m (1 +t(nz —m)) —m),n
+ (" (m + t(ne —m))ny —ny)) - (7' (m + t(nz — )L —m)

SC+ |y + 9 (e + tlne —n))ny = n)IP) w0+ ¢(n2 —m1)) — m(m)|
+ C(1+[n) + (' (m + t(nz —m))mhy —np)P~)
7 (i + (e — m))nh — 7 (m)ny |
< Cot(1+ |y + 07" (1 + t(n2 — mu))my — m)[P)lm — el
+ Cot(1+ |y + 9(x (1 + t(n2 — m))my — )P~ Dt llm — m2
< Cst(1+ |m|P + [malP)m — nal + Cst(1+ i [P~4 + [nalP~ ") i lm — n2]
= Cst(1+ |0y [P + [ma ") lm = n2l + Cat(ni| + [m [P + i l[na P~ m = nel

for some C3 > 0. It follows that

1 ~
/0 [ (s, + 072 — 1)), (mn + £ — m))) — L, mu )] dis

< Cst(1+2]my |15+ Iallf + 0t llx + Il 215~ ) = n2lc
< Cat(L+[lmlly + Inallp)In = n2lleo
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for some Cy > 0. Finally, applying (4.4) we may find C' > 0 such that

/0 [L(s,m(m + t(nz — m)), 7 (m + t(n2 — m))ni) — L(s,m1.my)] ds

1 1
§&G+/l@mwm®+/1@mw@%ﬁm—wm
0 0

and the claim follows. Let ¢ > 0, K = ([0,1]) and let £ C > 0 be as before.

Let Cy = C(1+2X+¢). Let now 7 and ¢ be as in (c¢) of Lemma 3.5, and let

V(s) = v(s) + pr(v(s)),
where p € ]0,7] is such that

I73) =l < min {5, 552 fwo) < 50)+ 5,

Let r € ]0,¢/2] be such that if ||n— |1 < r with f(n) < A+, then || — V|l <
min{p/¢,e/4,/8Cs,€}. Then, again by (c) of Lemma 3.5 it is possible to define

a continuous map
Hi{ne X :ln—rli<r, f(n) <A+r}x[0,r] =X

by
H(n,t) =7((1 = t)n+tn(7)).
It is

[H(n,t) = nllee < 2t[[7(F) = nlleo < 2t(IT(F) = Yoo + 17 — Mlloc) < et

and hence also
[H(n,t) =l < et.

Since L is convex with respect to the third variable, we get

f(H(n,t))

= [ Elsomtn-+ 63) = 1)+ em(5) )+t 05 — 1) s
1~

< [ Elscmto-+(a5) = ) 0+ x3) — ) ds
4%LAE@ww+ﬂﬂ%—n»fm+ﬂﬂ%—wDM0%%%

—Aiwmm+aﬂ%—m%ﬂm+aﬂ%—mmvw.
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Furthermore, it is

] / 7+ t((F) — )7 (n + t(x(3) — ) — L(s, )] ds

Ct(1+ f(n) + fm oA (D) = oo
<6t<1 22+ )(I7(F) = Voo + 1y = o) < 1

and
1

[L(s,m(n + t(x(3) = m), 7' (n + t(x(F) = n)) (7 27)")

S~

- E(577T Oa7 (71' ofy\)/)] ds

ST+ F() + fw oA () —
<CUL+22+)(Im(A) = Yl + 17 = lloc) < Tt

Therefore we finally get

£ 0) < f0) + oo+ (SoR) = 500+ 5 )1 < 1) + €7 G) ~ S00) +)

and the assertion follows from Proposition 3.11. O

Finally, we can prove Theorem 2.6.

PrOOF. Now assume also that M is compact, 1-connected and non-contrac-
tible in itself. By Theorem 3.7, we have that M is a LNR in NN, in particular
an absolute neighbourhood retract. From [13, Corollary 1.4] it follows that
catA(M) = oco. Moreover, A(M) also is an absolute neighbourhood retract,
hence weakly locally contractible. On the other hand, by Theorem 4.6 A(M)
is homotopically equivalent to epi(f). Therefore cat epi(f) = oo and epi(f) is
weakly locally contractible. Let now ¢ € R and consider the sublevel

G5 = {(,\) € A(M) x R : f(y) < A < c}.

Since M is compact, from (2.1) and Ascoli’s theorem we deduce that Gf is
compact. By Corollary 3.18, there exists a sequence (7, Ap) of critical points of
G$ with respect to the metric (4.1) with A, — co. By Theorem 4.7 we have that
An = f(yn). From (c) of Theorem 4.2 the assertion follows. O

The next two results correspond to the well-known equation d/ds H = — DL,
where H is the Hamiltonian function associated with L.

THEOREM 4.8. Let v € WYP(a,b; M) be L-stationary. Assume that L does
not depend on s. Then the map {s — D,L(v,v" )y — L(v,7')} is constant a.e.

PROOF. Arguing as in the proof of Theorem 4.7, we may assume that N
is a smooth submanifold of R™, A is an open subset of R" with N C A and
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L: AXR™ — R is a C'-extension of L to A x R" satisfying (4.2)—(4.5). Assume,
for a contradiction, that there exists ¢ € C2°(a,b) such that

b ~
o= %/ {[DyL(7,7") -~ = L(v,7)]¢} ds > 0.

Let 7 > 0 be such that 7[|¢’||cc < 1 and let 4: [a, b] x [0,7] — [a, b] be the smooth
function such that

A=Y\ t) —te (A t) forall A€ [a,b] and all ¢ € [0,7].

Unless reducing r we may suppose that the functions ¢, k in (4.2)-(4.4) are
constants on {n € WP(a,b; M) : deo(n,7) < 7}. Define H: {n € W1P(a,b; M) :
doo(1,7) <7, fap(m) < fap(y) +7} % [0,7] > WP (a,b; M) by

H(n,t) (1) =1 (1 —tp(p)) -

It is easy to see that H is continuous from the product topology of the uniform
convergence and of R to that of the uniform convergence and that

Hn,t)(a) =n(a),  H(n,t)(d) = n(b).

Moreover, by (4.4)
b
dy (H(,1). 1) = / 0k — tio()) — ()] dp

b
— / 17 (1 — Bp () 11 — b ()| i

St(/ab O g C”) /(/ 1=l d“) "

<= ] "o dA)w( / "t in ) "

o e
§0t< / <L<n<A>,n'<A>>+d>dA) < Ctlfan(y) + 1+ d(b— a))7,

for some C > 0. Following the same argument of the proof of [19, Theorem 5.10)

we also have
fa,b(H(na t)) = fa,b(n) + t@(n7 t)

where

b ~
On,t) =/ {—DUL(TI(/\),(l =t (WA (V) 0" (Ve (W (A 1))

¢ (YA 1))

Tt (g | ™

+ L(n(\), (1 =t (YA, 1))/ (V)
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We claim that, for r sufficiently small, we have ©(n,t) < —o for any n €
WP (a,b; M) with doo (1,7) <7, fan(n) < fas(y)+7rand 0 <t <r. By contra-
diction, let (n,) be a sequence in WP (a, b; M) uniformly convergent to v with
fap(n) < fap(y)+1/h and (t5) be a non negative sequence convergent to 0 such
that ©(np, tn) > —o. Because of (4.4) and f, is lower semicontinuous, we have
that fo5(nn) — fap(y). Again by (4.4) (ny) is bounded in W1 (a,b; M) and up
to a subsequence 7, — 7' in LP(a,b; M). Therefore [1 — tr¢’(¥(-,t1))]m, = 7
in LP(a,b; M). We have that

b ~
J OO =t GO DR O)) = L) )] A
/ DIV, (1= 77 (A) + 7,(N) - (1 (A) — 7/ (A))
s / YO ) DL (3(N), (1 — )iy (N)
01—t (O )T (N) - 7 (A) dA.
y (4.3) we have that D,L(v, (1 — 1)y + 1},) € LP (a,b; M) and hence
/ DLE((0), (1= 77 (N) + 70 (N) - (B () — /() dA — 0.

Again by (4.3) we have that

b
/ ¢ (A 1)) Dy L(Y(N), (1 = 9)nh (A) + 91 — tr’ (A t))]mh (A)) - 75 (A) dA

is bounded. Therefore we have that

b b
| It Ol ar = [ Za0).(0)
By [12, Lemma 3.1] applied to the function F(\, &) = L(v()), &) we obtain that
Ly [t = ta' (- ta)ln) = L(v,7')  in L(a,b; M),
DyL(3, [t = ta' (- ta)lih) — DuL(v,7)  in L¥ (a,b; M)

and there exists ¥ € L'(a,b; M) such that |n,|P < U. For some t € ]0,1[ we
have that

LN, [1 = tr’ (O tr)]m (A) = LY [ = ! (1)) ] (V)
= DyL((1 = t)y(N) + tn(A), [1 = ta' (N, )15 (V) - (m(A) = ¥(V)).-

By (4.2) we deduce that qu((l — )y +tnn, [1—the’ (b(- tn)|n,) € LP (a, b; M)
and hence

[L(n, (1= tne (-, t)Imf) = L(v, [L = ' (¥ (-, t))]mp)] = 0 in L' (a, b; M).
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It follows that
Lmn, [1 = tr' (0 t))lng) = L(,7') - in L' (a, b5 M),
Fix € > 0, let § > 0 such that for any £'-measurable subset Q C Ja,b| with
L1(Q) < & we have
/ BN AN < 5 for all B € L (a,b; M),
Q

Let R > 0 be such that £'({\ € [a,b] : |, (\)| > R}) < 8. Let ), = {\ € [a,]] :
I, (A)] > R} and Q) = {X € [a,b] : [n;,(N)| < R}. By (4.3) we have

b ~
/IQLWMMﬂfM¢WOJOMMM)
— Dy L(y(A), [1 = tr' (0 t)) ] (V) [P dx

< 6u+wumu+/ 1Dy B (M), 11—t (60 tn)) (V)
Qn o

— Dy L(v(A\), [1 =t (O t)) ] (V)P dx

<5+ [ DI 1 =t WO

— DyL(y(N), [1 = tn’ (W (A, )5, ()P dA.
Since the map

{A = Dy L(mn(N), [1 = tre’ (W 1)), (V) = DuL(v(N),
[1 = tre" (A, tn))Imh (M)]}

is uniformly continuous on €2}, for i sufficiently large we have

1D Zm ). [ =t WOt N) = D)

h

(1= tu' (WO t)lp, VDI dr < .
It follows that
1D L(nn, [1 = tag’ (W (- tn))mh) — DuL(y, [1 = tag’ (0 (- tn))]p) | — 0.
Therefore
DyL(nn, [1 = tn’ (W (-, tn)]my) — DuL(7,7) in L¥ (a,b; M)

and we deduce that
b
Onstn) = [ (-DoE7") ' + '} A = 20

a contradiction. Finally, we have f, ,(H(n,t)) < fop(n) — ot. It follows that
is not L-stationary, a contradiction. O
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THEOREM 4.9. Let v € W1P(a,b; M) be L-stationary. Assume that for
every s € R and g € M one has

(4.7 |DsL(s,q,v)| <c(@)(1+ [v|P), forallve TN,
(4.8) L(s,q, -) is strictly convex on TyN.

Then the map {s — D,L(s,v,7 )y — L(s,v,7")} belongs to Wt(a,b) and we
have

b b
‘/WJ@%ﬂV—MWMN¢®:/DJ@%MM@
for all p € C°(a,b).

PRrROOF. Arguing as in the proof of Theorem 4.7, we may assume that N
is a smooth submanifold of R™, A is an open subset of R™ with N C A and
L:R x A xR" — R is a C'-extension of L to R x A x R" satisfying (4.2)-(4.4)
and such that for every (s,q,v) € R x A x R™ one has

(4.9) |€SE(87 g, v)] < clg)(1 + [o]”),

(4.10) L(s,q, -) is strictly convex.

Assume, for a contradiction, that there exists ¢ € C¢°(a,b) such that

1 b ~ ~ ~
o= 5/ {[DyL(3,7,7) -7 — L(s,7,7")]¢ — DsL(s,7,7" )¢} ds > 0.
Arguing as in the proof of Theorem 4.8 we may introduce the continuous map

H:{n € WHP(a,b; M) : des(n,7) <7, fap(n) < fap(y) +7} % [0,7]
— WP (a,b; M)

defined by

H(n, ) (1) = n (n — te(p))
satisfying the following facts:

H(n,t)(a) = n(a), H(n,t)(b) = n(b),
dy (H(n,1),m) < Ct (fap(7) + 7+ d(b— a))'/?,
Jap(H(n,t)) < fap(n) +1O(n,t)
where C > 0,
b ~
@mw:/’P¢u+wmwwwxmmﬂfwuwwwuw»mwwmm
— DL+ OO\ 1) (b (X 1)), (V). (1 — ' (D (A, )0/ (V) - 7' (N (A, 1))
+wa&m&u—WW@MWﬂm@wﬁ”>w

and 0 < 9(\, t) < 1.
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We claim that, for r sufficiently small, we have O(n,t) < —o for any 7 €
WP (a,b; M) with doo(,7) < 7, fap(n) < fap(y) +7r and 0 < t < r. By
contradiction, let (n;,) be a sequence in W (a, b; M) uniformly convergent to
with fo5(nn) < fap(7) + £ and (¢,) be a non negative sequence convergent to 0
such that O(np,t,) > —o. Because of (4.4) and f, is lower semicontinuous, we
have that fo () — fap(7). Again by (4.4) (np,) is bounded in WP (a,b; M)
and up to a subsequence 7, — v in WP (a,b; M). On the other hand, we have

b~ b~
/ LA, 7 (A) dA — / E(01(A). 7/ () dA

b b
— Fun(m) — o) — / L (), (0) dA + / EO0 (), 7 (A) dA.

Taking into account (4.2), we get that

b~ b~
/ LA, 7, (V) dA — / £ 10,7/ () dA.

By [20, Theorem 3] applied to the function ®(\,§) = L(A, ~v(A), &) it follows that
nj, is strongly convergent to 4 in LP(a,b; M); hence n, — v in WP (a,b; M).
Because of (4.2), (4.3) and (4.9), we have that

b
e(nhvth) - / {[7DUL(A/73 7/) .,-y/ +L(A77a7,)}(pl +D9L(>‘a’y?’}/)¢} dX\ = 720’7

a contradiction. Finally, we have f,,(H(n,t)) < fap(n) — ot. It follows that
is not L-stationary, a contradiction. O
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