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ON THE FUČÍK SPECTRUM FOR ELLIPTIC SYSTEMS

Eugenio Massa — Bernhard Ruf

Abstract. We propose an extension of the concept of Fuč́ık spectrum to

the case of coupled systems of two elliptic equations, we study its struc-

ture and some applications. We show that near a simple eigenvalue of the
system, the Fuč́ık spectrum consists (after a suitable reparametrization)

of two (maybe coincident) 2-dimensional surfaces. Furthermore, by varia-

tional methods, parts of the Fuč́ık spectrum which lie far away from the
diagonal (i.e. from the eigenvalues) are found. As application, some ex-

istence, non-existence and multiplicity results to systems with eigenvalue

crossing (“jumping”) nonlinearities are proved.

1. Introduction

In this work we propose an extension of the concept of Fuč́ık spectrum for
the case of coupled systems of two equations, we study its structure and some
applications.

The notion of Fuč́ık spectrum was introduced for the scalar Laplace problem
in [10] and [4]; it is defined as the set Σscal ⊆ R2 of the points (λ+, λ−) for which
there exists a non trivial solution of the problem

(1.1)

{
−∆u = λ+u+ − λ−u− in Ω,

Bu = 0 in ∂Ω,
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where Ω is a bounded domain in Rn, u±(x) = max{0,±u(x)} and Bu = 0
represents Dirichlet or Neumann boundary conditions.

We will consider here the following generalization to the case of coupled
systems: we will call Fuč́ık problem the system

(1.2)


−∆u = λ+v+ − λ−v− in Ω,

−∆v = µ+u+ − µ−u− in Ω,

Bu = Bv = 0 in ∂Ω,

and we define the Fuč́ık spectrum as the set

Σ = {(λ+, λ−, µ+, µ−) ∈ R4 such that (1.2) has nontrivial solutions}.

For the scalar problem, in dimension n = 1 the Fuč́ık spectrum Σscal is
explicitly known and consists of curves in R2 containing the diagonal points
(λk, λk). In dimension n ≥ 2, the Fuč́ık spectrum is only partially known; we
recall some important known cases:

• The so-called trivial part of the spectrum, corresponding to positive or
negative solutions.

• If λk is a simple eigenvalue, then the Fuč́ık spectrum in (λk−1, λk+1)2

consists of two curves (maybe coincident) which pass through the point
(λk, λk), see [11], [18]; for the case of multiple eigenvalues, see [15].

• The first nontrivial curve, passing through the point (λ2, λ2), see [8].

The knowledge of the Fuč́ık spectrum is important in many applications such
as oscillations of suspension bridges (see e.g. [12], [17]), motions of ships (floating
beam) in water ([14]), stationary solutions for the equation of competing species
([5]), etc. We believe that also the systems considered here will prove useful in
applications.

Also, we recall that if a variational characterization of the Fuč́ık spectrum is
known, then other interesting results can be obtained, cf. [2], [8], [9] and [3].

In this paper we will first deduce some properties of the set Σ and of the
corresponding non trivial solutions for the Fuč́ık system (1.2). This will serve to
obtain the main results, i.e. to find nontrivial points in the Fuč́ık spectrum. In
Section 5 we will characterize the Fuč́ık spectrum for points near a simple eigen-
value of the system: it consists, after a suitable reparametrization of the Fuč́ık
spectrum which in fact reduces the parameters to three, of exactly two (maybe
coincident) spectral surfaces of dimension 2. Furthermore, in Section 6 we will
use a variational characterization to obtain also points of the Fuč́ık spectrum
which are “far away” from the diagonal points.

More precisely, we will prove the following results (here H is H1
0 (Ω) for the

Dirichlet problem and H1(Ω) for the Neumann problem):
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Theorem 1.1. Let λk, k ≥ 2, be a simple eigenvalue of the Laplacian with
corresponding eigenfunction φk, and let d = min(λk+1 − λk, λk − λk−1). Then
for every fixed pair (γ, δ) satisfying 0 ≤ |δ| ≤ γ < d/6, there exists a unique
λk+ ∈ [λk − 3γ, λk + 3γ] such that system (1.2) with coefficients

λ+ = µ+ = λk+, λ− = λk+ − γ, µ− = λk+ − δ,

has a (unique) solution (u, v) ∈ H ×H with (u, v) · (φk, φk) = 2 ([L2(Ω)]2 scalar
product). Moreover, a second value λk− is obtained by imposing (u, v)·(φk, φk) =
−2, and no solution exists with (u, v) · (φk, φk) = 0.

Theorem 1.2. For any r, s ∈ (0,∞), we can find and characterize varia-
tionally one point in Σ of the form

λ+ = µ+ = λ1 + ξ, λ− = λ1 + sξ, µ− = λ1 + rξ,

for some ξ > 0, where λ1 is the first eigenvalue of the Laplacian.

Observe that this result implies the existence of points in Σ which are “far”
from the diagonal λ+ = µ+ = λ− = µ−, since we are not asking r, s to be near
to 1.

We will also see that the points found in Theorem 1.2 form a continuum in Σ
which contains the second eigenvalue of the Laplacian.

As a consequence of the Theorems 1.1 and 1.2 we will also see that the
Fuč́ık spectrum for the system is much richer than that for the scalar problem.
Actually, it is known that the linear spectrum for the system consists of λk

and −λk, where λk, k ∈ N, are the eigenvalues of the scalar problem, and the
corresponding eigenfunctions are always composed by a pair of eigenfunctions (in
fact, the same eigenfunction) of the scalar problem. In contrast with this, we will
prove in Section 7 the existence of nontrivial solutions of the Fuč́ık problem for
the system that have no relation with any solution of the scalar Fuč́ık problem
and for which at least three of the four products u+v+, u+v−, u−v+ and u−v−

are not identically zero.
Finally, as an application we will consider the problem of existence of solu-

tions for sublinear perturbations of system (1.2), i.e. we consider systems with
“eigenvalue crossing” (or “jumping”) nonlinearities:

Let f1, f2 ∈ C(Ω× R) such that (uniformly for x ∈ Ω)

lim
s→∞

f1(x, s)
s

= λ, lim
s→−∞

f1(x, s)
s

= λ− γ,

lim
s→∞

f2(x, s)
s

= λ, lim
s→−∞

f2(x, s)
s

= λ− δ.
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Then, in dependence on the location of λ with respect to the Fuč́ık spectrum,
the system

(1.3)


−∆u = f1(x, v) + h1(x) in Ω,

−∆v = f2(x, u) + h2(x) in Ω,

Bu = Bv = 0 on ∂Ω,

has either a solution for all h1, h2 ∈ L2(Ω), or it has no solution for some h1, h2 ∈
L2(Ω), and at least two solutions for other h1, h2 ∈ L2(Ω). More precisely, we
will show:

Theorem 1.3. Let γ, δ be as in Theorem 1.1 and λ ∈ [λk − 3γ, λk + 3γ].
Then, problem (1.3) has a solution for any h1, h2 ∈ L2(Ω) provided that λ < λk−

or λ > λk+. If instead λk− < λ < λk+, let (h1, h2)⊥ denote the component
of (h1, h2) orthogonal (in the [L2(Ω)]2 scalar product) to (φk, φk) and set 2s =∫
Ω
(h1 + h2)φk; then there exist two real numbers S and S1, which depend on

(h1, h2)⊥, such that problem (1.3) has no solution for s < S and at least two
solutions for s > S1.

The above three theorems will be proven in the Sections 5, 6 and 5.4, respec-
tively.

2. Some properties of Σ
and of the corresponding nontrivial solutions

In this section we will derive some properties of Σ and of the corresponding
nontrivial solutions. We begin with

2.1. Some useful identities. By testing the first equation of (1.2) against
v and the second against u one gets

(2.1)
∫

Ω

∇u∇v = λ+

∫
Ω

(v+)2 + λ−
∫

Ω

(v−)2 = µ+

∫
Ω

(u+)2 + µ−
∫

Ω

(u−)2.

By testing the first with u and the second with v one gets∫
Ω

|∇u|2 = λ+

∫
Ω

v+u− λ−
∫

Ω

v−u,∫
Ω

|∇v|2 = µ+

∫
Ω

u+v − µ−
∫

Ω

u−v,

while by using only the positive and negative parts the following relations are
obtained: ∫

Ω

|∇u+|2 = λ+

∫
Ω

v+u+ − λ−
∫

Ω

v−u+,(2.2) ∫
Ω

|∇u−|2 = −λ+

∫
Ω

v+u− + λ−
∫

Ω

v−u−,(2.3)
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Ω

|∇v+|2 = µ+

∫
Ω

u+v+ − µ−
∫

Ω

u−v+,(2.4) ∫
Ω

|∇v−|2 = −µ+

∫
Ω

u+v− + µ−
∫

Ω

u−v−.(2.5)

For the Neumann problem (φ1 = const.), by testing both equations with φ1

one gets

(2.6) λ+

∫
Ω

v+ = λ−
∫

Ω

v− and µ+

∫
Ω

u+ = µ−
∫

Ω

u−.

For the Dirichlet problem, instead, one cannot uncouple the equations and
then obtains, by testing both with φ1 and first summing them and then sub-
tracting:

(2.7) (λ+ − λ1)
∫

Ω

v+φ1 + (µ+ − λ1)
∫

Ω

u+φ1

= (λ− − λ1)
∫

Ω

v−φ1 + (µ− − λ1)
∫

Ω

u−φ1,

(2.8) (λ+ + λ1)
∫

Ω

v+φ1 − (µ+ + λ1)
∫

Ω

u+φ1

= (λ− + λ1)
∫

Ω

v−φ1 − (µ− + λ1)
∫

Ω

u−φ1.

2.2. Symmetries of the Fuč́ık spectrum. The following properties may
be easily verified:

Lemma 2.1. If (u, v, λ+, λ−, µ+, µ−) satisfy (1.2) then

(a) (u, δv, λ+/δ, λ−/δ, δµ+, δµ−) satisfy (1.2) for any δ > 0,
(b) (u,−v,−λ−,−λ+,−µ+,−µ−) satisfy (1.2),
(c) (v, u, µ+, µ−, λ+, λ−) satisfy (1.2),
(d) (−u,−v, λ−, λ+, µ−, µ+) satisfy (1.2).

2.3. Solutions which change sign or not. Now we deduce some prop-
erties of the nontrivial solutions of (1.2) corresponding to a point in Σ; these
properties will help us to understand better the structure of Σ.

We first consider the Dirichlet case:

Proposition 2.2. With Dirichlet boundary conditions, let (u, v) be a solu-
tion of (1.2) with coefficients λ±, µ±, then:

(a) Both u and v change sign or none of the two.
(b) If both u and v change sign then all the coefficients have the same sign

(and no one is zero); in fact, when they are positive
√
λ+µ+ > λ1 and√

λ−µ− > λ1 and when they are negative
√
λ+µ− > λ1,

√
λ−µ+ > λ1.

(c) If u and v do not change sign then they are both non zero multiples of φ1

and two of the coefficients are respectively δλ1 and λ1/δ for some real
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δ 6= 0, while the others may be any real. In particular if we normalize
by imposing the two coefficients to be equal we have the cases

u = v = φ1 and λ+ = µ+ = λ1,

u = v = −φ1 and λ− = µ− = λ1,

u = −v = φ1 and λ− = µ+ = −λ1,

u = −v = −φ1 and λ+ = µ− = −λ1.

Proof. (a) Let (without loss of generality) u ≥ 0 and µ+ ≥ 0, then equation
(2.5) gives

∫
Ω
|∇v−|2 ≤ 0.

(b) To prove that no coefficient may be zero, suppose without loss of gener-
ality λ+ = 0 and λ− ≥ 0: then (2.2) gives

∫
Ω
|∇u+|2 ≤ 0, contradiction.

Let now, without loss of generality, λ+ > 0. This implies λ− > 0, otherwise
(2.3) would give

∫
Ω
|∇u−|2 ≤ 0, contradiction. Then by equation (2.1) at least

one of the other coefficients must be positive and reasoning as above the last one
is too.

Finally, let all coefficients be positive (the argument for the case in which they
are all negative is analogous) and deduce from equations (2.2)–(2.5), Poincaré
and Hölder inequalities that

λ1‖u+‖2L2 < ‖∇u+‖2L2 ≤ λ+‖u+‖L2‖v+‖L2 ,

λ1‖v+‖2L2 < ‖∇v+‖2L2 ≤ µ+‖u+‖L2‖v+‖L2 ,

λ1‖u−‖2L2 < ‖∇u−‖2L2 ≤ λ−‖u−‖L2‖v−‖L2 ,

λ1‖v−‖2L2 < ‖∇v−‖2L2 ≤ µ−‖u−‖L2‖v−‖L2 ,

(the inequalities on the left are strict since equality holds only for multiples of
φ1, which is not the case); by multiplying the first two and the second two and
taking the square root, we deduce

λ1‖u+‖L2‖v+‖L2 <
√
λ+µ+‖u+‖L2‖v+‖L2 ,

λ1‖u−‖L2‖v−‖L2 <
√
λ−µ−‖u−‖L2‖v−‖L2 ,

which imply the result since ‖u±‖L2‖v±‖L2 > 0.
(c) Consider the case u, v ≥ 0: then, from (2.2) and (2.4), λ+, µ+ > 0 while

λ− and µ− may be any real. Now, if (λ+, µ+) were not of the form (δλ1, λ1/δ) for
some real δ > 0, then, by using the symmetry (a) in Lemma 2.1, we could obtain
the existence of a point (λ̃+, λ̃−, µ̃+, µ̃−) in Σ with (λ̃+ − λ1)(µ̃+ − λ1) > 0 and
such that the corresponding nontrivial solutions are positive multiples of u and
v; then equation (2.7) would give a contradiction. Finally, with such coefficients
u and v result to be multiples of φ1.

The other cases may be proven by a similar argument. �

For the Neumann problem we obtain the corresponding result:
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Proposition 2.3. With Neumann boundary conditions, let (u, v) be a solu-
tion of (1.2) with coefficients λ±, µ±:

(a) Both u and v change sign or none of the two.
(b) If both u and v change sign then all the coefficients have the same sign

(and no one is zero).
(c) If u and v do not change sign then they are both multiples of φ1 (one

of the two may be zero) and one of the coefficients is λ1 = 0 while
the others may be any real. If both u and v are nonzero, then two
of the coefficients must be λ1 = 0. In particular if we normalize the
eigenfunctions we have the cases

u = v = φ1 and λ+ = µ+ = 0,

u = v = −φ1 and λ− = µ− = 0,

u = −v = φ1 and λ− = µ+ = 0,

u = −v = −φ1 and λ+ = µ− = 0,

u = φ1 (resp. u = −φ1), v = 0 and µ+ = 0 (resp. µ− = 0),

u = 0, v = φ1 (resp. v = −φ1) and λ+ = 0 (resp. λ− = 0).

Proof. (a) Let u ≥ 0, then by (2.6) µ+ = 0 and then v is a constant, that
is it does not change sign.

(b) If at least one coefficient is not zero then the result follows from equations
(2.1) and (2.6). If one is zero then in the same way one would obtain that they
must be all zero, but in this case the solutions would be constants and so would
not change sign.

(c) By the same argument as in the previous point. �

3. A more concise definition of the Fuč́ık spectrum

From Propositions 2.2 and 2.3 we have already a complete description of the
Fuč́ık spectrum when the nontrivial solutions do not change sign. Thus we may
concentrate on the case in which the solutions change sign. Moreover, the points
in Σ with (all) negative coefficients may be obtained from points with positive
coefficients by the symmetry (b) in Lemma 2.1.

But we may do more: by the symmetries of the spectrum (see Lemma 2.1),
we see that four parameters are redundant to describe this non trivial part of
the spectrum. More precisely, if we restrict to the case in which the solutions
change sign and the coefficients are positive, we may always make a change of the
unknown functions (that is, to exploit the symmetry (a) in Lemma 2.1), in order
to obtain one single point that represents the whole curve generated by this
symmetry for δ ∈ R+. In particular, we may choose δ such that δµ+ = λ+/δ.
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Thus, we may consider the problem

(3.1)


−∆u = λ+v+ − λ−v− in Ω,

−∆v = λ+u+ − µ−u− in Ω,

Bu = Bv = 0 on ∂Ω.

In view of this we define what we will call Fuč́ık spectrum from now on:

(3.2) Σ̂ = Σ̂t ∪ Σ̂nt;

here Σ̂t denotes the trivial part

(3.3) Σ̂t = {(λ+, λ−, µ−) ∈ R3 : λ±, µ− ≥ 0

and (3.1) has nontrivial solutions which do not change sign},

and Σ̂nt the non trivial part

(3.4) Σ̂nt = {(λ+, λ−, µ−) ∈ R3 : λ±, µ− > 0

and (3.1) has nontrivial solutions which (both) change sign}.

With this new definition we see that Σ̂nt still has the following symmetries:

Proposition 3.1. If (u, v, λ+, λ−, λ+, µ−) satisfy (3.1) then

(a) (v, u, λ+, µ−, λ+, λ−) satisfy (3.1),
(b) (−u,−

√
λ−/µ−v,

√
λ−µ−, λ+

√
µ−/λ−,

√
λ−µ−, λ+

√
λ−/µ−) satisfy

(3.1).

That is

(λ+, λ−, µ−) ∈ Σ̂ ⇒ (λ+, µ−, λ−) ∈ Σ̂,

(λ+, λ−, µ−) ∈ Σ̂nt ⇒

(√
λ−µ−, λ+

√
µ−

λ−
, λ+

√
λ−

µ−

)
∈ Σ̂nt.

Moreover, the set Σ̂t may be explicitly calculated from Propositions 2.2
and 2.3:

• for the Dirichlet case

Σ̂t = {λ+ = λ1} ∪ {λ−, µ− > 0, λ−µ− = λ2
1};

where the plane {λ+ = λ1} corresponds to the family of solutions u =
v = kφ1, k > 0, while the surface {λ−, µ− > 0, λ−µ− = λ2

1} corre-
sponds to the family u =

√
λ−/µ−v = −hφ1, h > 0;

• for the Neumann problem

Σ̂t = {λ+ = 0} ∪ {λ− = 0} ∪ {µ− = 0};
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where the tree planes {λ+ = 0}, {λ− = 0} and {µ− = 0} correspond
respectively to the solutions (u = kφ1, v = hφ1 : h, k ≥ 0), (v = −φ1,
u = 0) and (u = −φ1, v = 0).

Finally, we can prove that Σ̂nt lies completely in one of the regions bounded
by Σ̂t: in fact

Proposition 3.2. (λ+, λ−, µ−) ∈ Σ̂nt implies λ+ > λ1 and
√
λ−µ− > λ1.

Proof. For the Neumann case (φ1 = 0) this is trivial by the definition
of Σ̂nt. For the Dirichlet case this follows straightforward from point (b) in
Proposition 2.2. �

Up to this point we have given a complete description of Σ̂t and we exhib-
ited regions where we may guarantee the absence of points in Σ̂; now we will
present some points in Σ̂nt, and we will give some properties of the corresponding
nontrivial solutions of problem (3.1).

A first set of points in Σ̂nt may be obtained from the Fuč́ık spectrum for the
scalar problem Σscal: in fact

Lemma 3.3. If (λ+, λ−) ∈ Σscal with λ± > λ1, then (λ+, λ−, λ−) ∈ Σ̂nt.

Proof. Let u be the non trivial solution for the scalar problem correspond-
ing to (λ+, λ−); then the pair (u, u) satisfies problem (3.1) with coefficients
(λ+, λ−, λ−); moreover, since λ± > λ1, it is known that u changes sign, and
then (λ+, λ−, λ−) ∈ Σ̂nt. �

A general property of the nontrivial solutions corresponding to points in Σ̂nt

is given in the following proposition:

Proposition 3.4. Let (λ+, λ−, µ−) ∈ Σ̂nt and (u, v) be a corresponding
nontrivial solution: then u+v+ 6≡ 0 and u−v− 6≡ 0.

Proof. In the equations (2.2)–(2.5), we have that the left hand sides must
be all strictly positive since u and v both change sign; then

∫
Ω
u+v+ > 0 and∫

Ω
u−v− > 0. �

Remark 3.5. The above proposition depends on our choice to consider
λ+ > 0: obviously, by the symmetry (b) in Lemma 2.1, one sees that for λ+ < 0
one finds u+v− 6≡ 0 and u−v+ 6≡ 0.

4. Extension of some classical results

In the introduction we have briefly recalled some properties of the Fuč́ık
spectrum for the scalar case. In this section we show how we can recover some
of these results in the case of the system.
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4.1. The linear spectrum of the system. Consider first the eigenvalue
problem

(4.1)


−∆u = λv in Ω,

−∆v = λu in Ω,

Bu = Bv = 0 on ∂Ω,

Let E = H ×H. If we denote by 0 ≤ λ1 < λ2 ≤ λ3 ≤ . . . ≤ λk ≤ . . . the eigen-
values of −∆ in H and with (φk, k = 1, 2, . . . ) the corresponding eigenfunctions,
taken orthogonal and normalized with ‖φk‖L2 = 1 and φ1 > 0, then it is known
that the eigenvalues of problem (4.1) are:

• λk, k = 1, 2, . . . (with corresponding eigenfunctions the pairs (φk, φk)),
• −λk, for k = 1, 2, . . . (with corresponding eigenfunctions the pairs

(φk,−φk)).

In view of the above structure, we define

E+ = {(u, v) ∈ E : u = v}, E− = {(u, v) ∈ E : u = −v},
E+

n = {(u, v) ∈ E : u = v ∈ span{φ1, . . . , φn}},
E−n = {(u, v) ∈ E : u = −v ∈ span{φ1, . . . , φn}},

and finally one notes that

E = E+ ⊕ E−, En = E+
n ⊕ E−n .

4.2. Regions void of spectral points. Consider now the problem

(4.2)


−∆u = λv + f in Ω,

−∆v = λu+ g in Ω,

Bu = Bv = 0 on ∂Ω,

with f, g ∈ L2(Ω); summing and subtracting the equations one gets, with
straightforward computations,

(−∆− λ)(u+ v) = f + g in Ω,

(−∆ + λ)(u− v) = f − g in Ω,

Bu = Bv = 0 on ∂Ω.

Then, if ±λ 6∈ σ(−∆), one may invert the operators. Let

u =
∞∑

i=1

uiφi, v =
∞∑

i=1

viφi, f =
∞∑

i=1

fiφi and g =
∞∑

i=1

giφi,

then

ui =
1

λi − λ

fi + gi

2
+

1
λi + λ

fi − gi

2
=
λifi + λgi

λ2
i − λ2

,

vi =
1

λi − λ

fi + gi

2
− 1
λi + λ

fi − gi

2
=
λfi + λigi

λ2
i − λ2

.
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Thus, we may consider the operator (well defined for ±λ 6∈ σ(−∆))

Tλ: [L2(Ω)]2 → [L2(Ω)]2, (f, g) 7→ (u, v)

where (u, v) is the (unique) solution of problem (4.2); simple computations give

‖Tλ‖ =
1
dλ
,

where dλ = dist({±λ}, σ(−∆)).
Let now p = (λ+, λ−, µ+, µ−) ∈ R4, and define

(4.3)
Mp

λ : [L2(Ω)]2 → [L2(Ω)]2,

(u, v) 7→ ((λ+ − λ)v+ − (λ− − λ)v−, (µ+ − λ)u+ − (µ− − λ)u−).

It is clear that Mp
λ is Lipschitz with constant mp

λ

mp
λ = max{|λ+ − λ|, |λ− − λ|, |µ+ − λ|, |µ− − λ|}.

Making use of these operators we may prove the following result:

Proposition 4.1. If λ±, µ− > 0 are such that λk < λ+/δ, λ−/δ, δλ+, δµ− <

λk+1 for some δ > 0, k ≥ 1, then (λ+, λ−, µ−) 6∈ Σ̂.

The analogue of this result for the scalar problem asserts that if both coeffi-
cients are between two consecutive eigenvalues, then (λ+, λ−) is not in the Fuč́ık
spectrum (see for example [4]).

We remark that by Proposition 3.2 we already knew a region without points
in Σ̂; proposition 4.1 provides more of such regions.

Proof. Let p = (λ+, λ−, µ+, µ−) ∈ R4: problem (1.2) may be written as

(4.4) (u, v) = TλM
p
λ(u, v);

so we have, for u = (u, v), y = (y, z)

‖TλM
p
λu− TλM

p
λy‖[L2]2 ≤

mp
λ

dist(±λ, σ(−∆))
‖u− y‖[L2]2 .

Thus, if we consider two consecutive eigenvalues λk < λk+1 and we suppose
λk < λ±, µ± < λk+1, we may set

λ =
max{λ+, λ−, µ+, µ−}+ min{λ+, λ−, µ+, µ−}

2

and we obtain that TλM
p
λ is a contraction and then problem (4.4) (and so prob-

lem (1.2)) admits a unique solution: the trivial one.
Finally, considering the symmetries in Lemma 2.1, we obtain the claim. �

4.3. Some implications for the degree. Another useful known property
of the Fuč́ık spectrum which may be recovered in our case is the following:
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Lemma 4.2. Let p = (λ+, λ−, λ+, µ−), p̃ = (λ̃+, λ̃−, λ̃+, µ̃−) with all compo-
nents positive, and λ such that ±λ /∈ σ(−∆); if the line

S = {t(λ̃+, λ̃−, µ̃−) + (1− t)(λ+, λ−, µ−), t ∈ [0, 1]}

never intersects Σ̂, then

Deg(id− TλM
p
λ , B1, 0) = Deg(id− TλM

ep
λ , B1, 0),

where Deg is the Leray–Schauder degree, and B1 = B1(0) the unit ball in L2×L2.
Moreover, if p = (λ, λ, λ, λ) then Deg(id− TλM

p
λ , B1, 0) 6= 0.

Proof. Consider Deg(id − Tλ(tM ep
λ + (1 − t)Mp

λ), B1, 0): it is well defined
since Tλ is compact, Mp

λ and M ep
λ are continuous and the hypothesis that S never

intersects Σ̂ avoids the existence of solutions in ∂B1; then it is constant.
Finally, for p = (λ, λ, λ, λ), Mp

λ = 0 and so

Deg(id− TλM
p
λ , B1, 0) = Deg(id, B1, 0) 6= 0. �

Corollary 4.3. Deg(id − TλM
p
λ , B1, 0) is constant if the coefficients in

the vector p are such that λ+ = µ+ and (λ+, λ−, µ−) is in a path connected
component of {λ+, λ−, µ− > 0} \ Σ̂.

Remark 4.4. Since for λ+ < λ1 and λ−, µ− > 0 no solution of (3.1) exists,
we may assert, by the same argument, that Deg(id − TλM

p
λ , B1, 0) is the same

for all such points (also for λ+ < 0); in fact, it is zero, as will be proved below.
The above result may be applied to the following perturbed nonlinear prob-

lem:

(4.5)


−∆u = λ+v+ − λ−v− + g1(x, u, v) + h1(x) in Ω,

−∆v = µ+u+ − µ−u− + g2(x, u, v) + h2(x) in Ω,

Bu = Bv = 0 in ∂Ω,

where we assume h1,2 ∈ L2(Ω), g1,2 ∈ C0(Ω× R2) with

(4.6) lim
s→±∞

g1,2(x, s, t)
s

= 0, lim
t→±∞

g1,2(x, s, t)
t

= 0

uniformly with respect to x ∈ Ω and to t (resp. s) in R. Then we have

Theorem 4.5. If λ+ = µ+ and (λ+, λ−, µ−) belongs to a path connected
component of the set {λ+, λ−, µ− > 0}\Σ̂ containing points with λ̃+ = λ̃− = µ̃−,
then problem (4.5) has a solution for any h1, h2 ∈ L2(Ω).

Proof. We sketch the proof, which is analogous to that in [10]. The idea is
to find a zero of the map

S: [L2(Ω)]2 → [L2(Ω)]2, u 7→ u− Tλ(Mp
λu +G(u) + h),
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where Tλ and Mp
λ are defined as before with λ = λ̃+ and p = (λ+, λ−, µ+, µ−);

G:u 7→ (g1(x, u, v), g2(x, u, v)) is the Nemytskĭı operator for the nonlinearities
g1 and g2, and h = (h1, h2). Since TλM

p
λ is compact and p /∈ Σ, one obtains the

estimate
‖u− TλM

p
λu‖[L2]2 ≥ C‖u‖[L2]2 .

One then obtains an a priori estimate for the solutions of 0 = u − Tλ(Mp
λu +

t(G(u) + h)) for t ∈ [0, 1]: first estimate

(4.7) C‖u‖[L2]2 ≤ ‖u− TλM
p
λu‖[L2]2

= t‖Tλ(G(u) + h)‖[L2]2 ≤ t‖Tλ‖(‖G(u) + h‖[L2]2);

then, from hypothesis (4.6) one gets, for any ε > 0, ‖G(u)‖[L2]2 ≤ ε‖u‖[L2]2 +Cε,
and so, from (4.7)

(C − tε‖Tλ‖)‖u‖[L2]2 ≤ t‖Tλ‖(Cε + ‖h‖[L2]2).

This last estimate allows to use degree theory (on a sufficiently large ball BR)
and Lemma 4.2 to assert that

Deg(id− Tλ(Mp
λ +G( · ) + h), BR, 0) = Deg(id− TλMλ), BR, 0)

= Deg(id, BR, 0) 6= 0;

then there exists a solution. �

Since multiplying the unknown functions by a constant does not affect the
hypotheses we have on g1,2 and h1,2, we may generalize the above result as
follows:

Corollary 4.6. The same result of Theorem 4.5 holds for (λ+, λ−, µ+, µ−)
with λ+ 6= µ+, if it may be transformed into a point as in the hypotheses of
Theorem 4.5 through one of the symmetries in Lemma 2.1.

Observe that for the Dirichlet problem we obtained (see Section 3) that
the region {λ+, λ−, µ− > 0, λ+ < λ1, or

√
λ−µ− < λ1} contains no point in Σ̂nt,

and so it is divided by Σ̂t into the three subregions

R1 = {0 < λ+ < λ1, 0 <
√
λ−µ− < λ1},

R2 = {0 < λ+ < λ1,
√
λ−µ− > λ1},

R3 = {λ+ > λ1, 0 <
√
λ−µ− < λ1}.

It follows from Lemma 4.2 that Deg(id− TλM
p
λ , B1, 0) 6= 0 if the coefficients in

the vector p are such that µ+ = λ+ and (λ+, λ−, µ−) is in R1, since this region
contains points of the form (λ, λ, λ) with λ /∈ σ(−∆).

The following theorem is concerned with the remaining two regions:
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Theorem 4.7. If the coefficients in the vector p are such that µ+ = λ+ and
(λ+, λ−, µ−) is in R2 or R3, then Deg(id− TλM

p
λ , B1, 0) = 0.

Proof. By the proof of theorem 4.5, it is sufficient to provide two examples
of systems like (4.5) with coefficients in each of the two regions, for which there
exists no solution.

Consider the case λ+ = µ+ = λ1 − ε and λ− = µ− = λ1 + ε for a suitable
ε > 0 small enough, with g1 = g2 = 0: by multiplying the two equations by φ1,
integrating, then integrating by parts and summing one gets

−ε
∫

Ω

(|v|+ |u|)φ1 +
∫

Ω

(h1 + h2)φ1 = 0,

which gives rise to a contradiction if
∫
Ω
(h1 + h2)φ1 < 0.

The case λ+ = µ+ = λ1 + ε and λ− = µ− = λ1 − ε is analogous. �

5. The Fuč́ık spectrum in the neighborhood of a simple eigenvalue

In this section we show that in the neighborhood of each point in Σ̂ corre-
sponding to a simple eigenvalue of the Laplacian, we can find a continuum of
points in Σ̂. Indeed, we show that through each such point there pass exactly
two (maybe coincident) 2-dimensional surfaces belonging to Σ̂.

The techniques we use are inspired from [18].

5.1. Statement of the result. We introduce the following notation: as-
sume (without restriction) λ+ > λ−, and set

λ = λ+, γ = λ− λ−, δ = λ− µ−.

Then the system (3.1) becomes

(5.1)


−∆u = λv + γv− in Ω,

−∆v = λu+ δu− in Ω,

Bu = Bv = 0 on ∂Ω,

which we will consider in the vectorial form:

(5.2) −∆
(
u

v

)
= λ

(
v

u

)
+
(
γ(v)−

δ(u)−

)
.

Assume that λk, k ≥ 1, is a simple eigenvalue of the Laplacian on H, and let

d =

{
min {λk+1 − λk, λk − λk−1} if k ≥ 2,

λ2 − λ1 if k = 1.

We assume throughout this section that

(5.3) 0 ≤ |δ| ≤ γ <
d

6
.
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We denote by 〈 · , · 〉 the scalar product and by ‖ · ‖ the norm in L2, and by · the
scalar product in [L2]2.

Theorem 1.1 will be proved in the following form:

Theorem 5.1. For every fixed pair (γ, δ) satisfying (5.3) there exists a unique
λk+ ∈ [λk − 3γ, λk + 3γ] such that system (5.1) has a (unique) solution (u, v) ∈
H ×H with (u, v) · (φk, φk) = 2; in the same way, there exists a unique λk− ∈
[λk − 3γ, λk + 3γ] such that system (5.1) has a (unique) solution (u, v) ∈ H ×H
with (u, v) · (φk, φk) = −2. On the other hand, there exist no nontrivial solutions
(u, v) with (u, v) · (φk, φk) = 0, for λ ∈ [λk − 3γ, λk + 3γ].

Thus, we obtain

Theorem 5.2. Through each point (λk, λk, λk) ∈ Σ̂ corresponding to a sim-
ple eigenvalue of the linear system there pass exactly two (maybe coincident)
“Fuč́ık surfaces”, parametrized by λ = λk+(γ, δ) and λ = λk−(γ, δ), for which
system (5.1) (and hence system (3.1)) admits nontrival solutions.

Remark 5.3. We will always suppose λk− < λk+, since this may always be
obtained by taking −φk in place of φk.

Remark 5.4. We observe that by Lemma 3.3 we already know some parts
of the surfaces obtained in Theorem 5.2: the curves coming from the scalar Fuč́ık
spectrum. This provides also examples of both, the case in which the two points
λk+, λk− coincide, and the case in which they are distinct (for example, in the
one dimensional Dirichlet problem they coincide for k even and are distinct for
k odd).

5.2. Lyapunov–Schmidt reduction. We introduce the following nota-
tions: let E1, E2 and F be subspaces of E such that

E1 = E− ⊕ E+
k−1, F = [(φk, φk)]⊥ = E1 ⊕ E2, E1 ⊥ E2,

P :E → [(φk, φk)]⊥, P1:E → E1, P2:E → E2 orthogonal projections.

We want to apply a Lyapunov–Schmidt procedure. Thus, we consider for
fixed s ∈ R the system

(5.4) −∆
(
u

v

)
= λ

(
v

u

)
+ P

(
γ(sφk + v)−

δ(sφk + u)−

)
,

with (u, v) ∈ F .
Observe that, since the considered subspaces are orthogonal and invariant

with respect to the operator −∆, the projections commute with this operator
and one has, for every u, ũ ∈ E, u · Piũ = Piu · Piũ (i = 1, 2) in the scalar
product of E.

We prove several lemmas:
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Lemma 5.5. Assume that (5.3) holds, and that

λ ∈ [λk − 3γ, λk + 3γ].

Assume that (u, v) = (u1, v1) + (u2, v2) ∈ E1 ⊕E2 solves system (5.4). Then we
have

‖u2‖2 + ‖v2‖2 ≤ c1|s|2
γ

d
with c1 ≤ 4,(5.5)

‖u1‖2 + ‖v1‖2 ≤ c2|s|2
γ

d
with c2 ≤ 4.(5.6)

In particular, we conclude that u2 = v2 = u1 = v1 = 0, if s = 0, that is, no
nontrivial solution of (5.4) exists in F .

Proof. Multiplying the vectorial equation (5.4) by (v1, u1) ∈ E1 and inte-
grating over Ω yields

2
∫

Ω

∇u1∇v1 = λ(‖v1‖2+‖u1‖2)+γ
∫

Ω

(v1+v2+sφk)−v1+δ
∫

Ω

(u1+u2+sφk)−u1

and thus, setting Ω−v := {x ∈ Ω|v + sφk < 0}, and similarly for Ω−u

λ(‖v1‖2 + ‖u1‖2)− λk−1(‖v1‖2 + ‖u1‖2)

≤ γ
∫

Ω−v

[
1
2
|v1|2 +

1
2
(|v1|2 + |v2|2 + |sφk|2)

]
+ |δ|

∫
Ω−u

[
1
2
|u1|2 +

1
2
(|u1|2 + |u2|2 + |sφk|2)

]
and then, using λ− λk−1 ≥ λk − λk−1 − |λ− λk| ≥ d− 3 γ

(5.7) (d− 4γ)(‖v1‖2 + ‖u1‖2) ≤ (λ− λk−1 − γ)(‖v1‖2 + ‖u1‖2)

≤ γ

2
‖v2‖2 +

|δ|
2
‖u2‖2 +

1
2
(γ + |δ|)|s|2

≤ γ

[
1
2
(‖v2‖2 + ‖u2‖2) + |s|2

]
.

Next, multiplying the vectorial equation (5.4) by (u2, v2) ∈ E2 and integrating,
gives

0 =
∫

Ω

(|∇u2|2 + |∇v2|2)− 2λ
∫

Ω

u2v2

+ γ

∫
Ω−v

(v1 + v2 + sφk)u2 + δ

∫
Ω−u

(u1 + u2 + sφk)v2

≥ (λk+1 − λ)(‖u2‖2 + ‖v2‖2)−
γ

2
{(‖v1‖2 + ‖v2‖2 + |s|2) + ‖u2‖2}

− |δ|
2
{(‖u1‖2 + ‖u2‖2 + |s|2) + ‖v2‖2}
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and hence, using that (λk+1−λ−γ/2−|δ|/2) ≥ [d−|λ−λk|−γ/2−|δ|/2] ≥ d−4γ,
and relation (5.7)

(d− 4γ)(‖u2‖2 + ‖v2‖2) ≤
γ

2
‖v1‖2 +

|δ|
2
‖u1‖2 +

1
2
(γ + |δ|)|s|2

≤ γ

2
(‖v1‖2 + ‖u1‖2) + γ|s|2

≤ γ

2
γ

d− 4 γ

[
1
2
(‖v2‖2 + ‖u2‖2) + |s|2

]
+ γ|s|2.

Thus [
d− 4γ − γ2

4(d− 4γ)

]
(‖v2‖2 + ‖u2‖2) ≤ γ

(
1 +

γ

2(d− 4γ)

)
|s|2,

which yields

‖v2‖2 + ‖u2‖2 ≤
γ

d

1 + γ
2(d−4γ)

1− 4γ
d

(
1 + γ

16(d−4γ)

) |s|2 =:
γ

d
c1|s|2.

This gives (5.5). An easy calculation shows that c1 ≤ 4. Relation (5.6) now
follows by combining (5.7) with (5.5):

‖v1‖2 + ‖u1‖2 ≤
γ

d

d

d− 4γ

[
γ

2d
c1 + 1

]
|s|2 =:

γ

d
c2|s|2.

One checks that also c2 ≤ 4. �

Proposition 5.6. Let γ, δ be as in Lemma 5.5. Then, once fixed s = 1, for
every λ as in Lemma 5.5 there exists a unique (u, v) ∈ F which solves system
(5.4). Furthermore, (u, v) depends continuously on λ.

Proof. Write (5.4) as

A

(
u

v

)
:=
(
−∆ − λ

−λ −∆

)(
u

v

)
= P

(
γ(sφk + v)−

δ(sφk + u)−

)
=: Q

(
u

v

)
.

One notes that A:F → F is invertible, and so we can write equivalently

(5.8)
(
u

v

)
= A−1Q

(
u

v

)
.

One shows as in [18], using Lemma 5.5, that there exists K > 0 such that(
u

v

)
6= τA−1Q

(
u

v

)
, for all

(
u

v

)
with

∥∥∥∥(uv
)∥∥∥∥ ≥ K and for all τ ∈ [0, 1].

Thus, by the Leray–Schauder principle there exists a solution (u, v) ∈ F ∩BK(0)
of (5.8), and thus of system (5.4).

The uniqueness is a special case of Lemma 5.7 below. Finally, the continuous
dependence on the parameters λ is easily seen, see also [18]. �
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Lemma 5.7. Let γ, δ be as in Lemma 5.5, and suppose that there exist two
values λ and λ̃ in [λk − 3γ, λk + 3γ] such that system (5.4) with s = 1 has
nontrivial solutions (u, v) and (ũ, ṽ) in F . Then, for 0 ≤ |δ| ≤ γ < d/6, we have

‖u− ũ‖2 + ‖v − ṽ‖2 ≤ 4c20(|λ̃− λ|2)

where c0 = (c1γ/d)1/2/(d− 9γ/2), c1 as in (5.5).

Proof. As before, we write (u, v) = (u1, v1) + (φk, φk) + (u2, v2), and sim-
ilarly for (ũ, ṽ). Subtracting the two vectorial systems (5.2), multiplying the
resulting equation by (v1 − ṽ1, u1 − ũ1) ∈ E1 and integrating gives

0 =2
∫

Ω

∇(u1 − ũ1)∇(v1 − ṽ1)− 〈λv1 − λ̃ṽ1, v1 − ṽ1〉 − 〈λu1 − λ̃ũ1, u1 − ũ1〉

− γ〈(v1 + φk + v2)− − (ṽ1 + φk + ṽ2)−, v1 − ṽ1〉
− δ〈(u1 + φk + u2)− − (ũ1 + φk + ũ2)−, u1 − ũ1〉.

We estimate (using 〈λv1 − λ̃ṽ1, v1 − ṽ1〉 = λ‖v1 − ṽ1‖2 +(λ− λ̃)〈ṽ1, v1 − ṽ1〉, the
analogue for u1, ũ1 and |a− − b−| ≤ |a− b|)

(λ− λk−1)(‖v1 − ṽ1‖2 + ‖u1 − ũ1‖2)
≤ |λ̃− λ| (|〈ṽ1, v1 − ṽ1〉|+ |〈ũ1, u1 − ũ1〉|)

+ γ‖v1 + v2 − (ṽ1 + ṽ2)‖‖v1 − ṽ1‖
+ |δ| ‖u1 + u2 − (ũ1 + ũ2)‖‖u1 − ũ1‖

≤ |λ̃− λ| (‖ṽ1‖‖v1 − ṽ1‖+ ‖ũ1‖‖u1 − ũ1‖)

+ γ‖v1 − ṽ1‖2 +
γ

2
‖v2 − ṽ2‖2 + |δ| ‖u1 − ũ1‖2 +

|δ|
2
‖u2 − ũ2‖2

and hence, arguing as in Lemma 5.5, and using (5.6)

(5.9) (d− 3γ − γ)(‖v1 − ṽ1‖2 + ‖u1 − ũ1‖2)

≤ |λ̃− λ|
√
c2
γ

d
(‖v1 − ṽ1‖+ ‖u1 − ũ1‖) +

γ

2
(‖v2 − ṽ2‖2 + ‖u2 − ũ2‖2).

Next, subtract again the two vectorial systems, multiply the resulting equation
by (u2 − ũ2, v2 − ṽ2) ∈ E2, integrate and estimate as before∫

Ω

|∇(u2 − ũ2)|2 +
∫

Ω

|∇(v2 − ṽ2)|2 − λ〈v2 − ṽ2, u2 − ũ2〉 − λ〈u2 − ũ2, v2 − ṽ2〉

≤ |λ− λ̃| (|〈ṽ2, u2 − ũ2〉|+ |〈ũ2, v2 − ṽ2〉|)
+ γ‖v1 + v2 − (ṽ1 + ṽ2)‖‖u2 − ũ2‖
+ |δ| ‖u1 + u2 − (ũ1 + ũ2)‖‖v2 − ṽ2‖
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and hence, using Lemma 5.5 and estimating ‖v1 + v2 − (ṽ1 + ṽ2)‖‖u2 − ũ2‖ ≤
(‖v1 − ṽ1‖2 + ‖v2 − ṽ2‖2 + ‖u2 − ũ2‖2)/2,

(λk+1 − λ)(‖u2 − ũ2‖2 + ‖v2 − ṽ2‖2) ≤ |λ− λ̃|
√
c1
γ

d
(‖u2 − ũ2‖+ ‖v2 − ṽ2‖)

+
γ + |δ|

2
(‖v2 − ṽ2‖2 + ‖u2 − ũ2‖2) +

γ

2
‖v1 − ṽ1‖2 +

|δ|
2
‖u1 − ũ1‖2

which gives, arguing as in Lemma 5.5,

(5.10) (d− 3γ − γ)(‖u2 − ũ2‖2 + ‖v2 − ṽ2‖2)

≤ |λ− λ̃|
√
c1
γ

d
(‖u2 − ũ2‖+ ‖v2 − ṽ2‖) +

γ

2
(‖v1 − ṽ1‖2 + ‖u1 − ũ1‖2).

Adding (5.9) and (5.10) gives(
d− 4γ − γ

2

)
(‖v − ṽ‖2 + ‖u− ũ‖2)

≤ |λ̃−λ|
√
c2
γ

d
(‖v1− ṽ1‖+ ‖u1− ũ1‖)+ |λ− λ̃|

√
c1
γ

d
(‖u2− ũ2‖+ ‖v2− ṽ2‖).

Using c1 = c2, and setting c0 = (c1γ/d)1/2/(d− 9γ/2), we get

‖v − ṽ‖2 + ‖u− ũ‖2

≤ c0|λ̃− λ| (‖ṽ1 − v1‖+ ‖ũ1 − u1‖+ ‖ũ2 − u2‖+ ‖ṽ2 − v2‖)

≤ 1
2
|λ̃− λ|2c20 +

1
2
‖ṽ1 − v1‖2 +

1
2
|λ̃− λ|2c20 +

1
2
‖ũ1 − u1‖2

+
1
2
|λ̃− λ|2c20 +

1
2
‖ũ2 − u2‖2 +

1
2
|λ̃− λ|2c20 +

1
2
‖ṽ2 − v2‖2

and then
‖ũ− u‖2 + ‖ṽ − v‖2 ≤ 4c20|λ̃− λ|2. �

5.3. The reduced equation. Multiplying the vectorial equation (5.2) by
(φk, φk) and integrating over Ω yields (with s = 1)

λk[1 + t(λ)]− λ[1− t(λ)]− γ

∫
Ω

[(1− t(λ))φk + v(λ)]−φk

+ λk[1− t(λ)]− λ[1 + t(λ)]− δ

∫
Ω

[(1 + t(λ))φk + u(λ)]−φk = 0.

Here t(λ)φk + u(λ) and −t(λ)φk + v(λ) denote the unique solutions in F =
[(φk, φk)]⊥ given by Proposition 5.6, where for convenience we wrote separately
the component t(φk,−φk).

So, consider the map Γ+: [λk − 3γ, λk + 3γ] ⊂ R → R defined by

(5.11) λ 7→ Γ+(λ) = 2(λk − λ)− γ

∫
Ω

[(1− t(λ))φk + v(λ)]−φk

− δ

∫
Ω

[(1 + t(λ))φk + u(λ)]−φk.
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We show

Proposition 5.8. For 0 ≤ |δ| ≤ γ < d/6 there exists a unique point λk+ ∈
(λk − 3γ, λk + 3γ) such that Γ+(λk+) = 0.

Proof. First we estimate, using Lemma 5.5 (we will omit in the notation
the dependence on λ in u, v and t)∣∣∣∣γ ∫

Ω

[(1− t)φk + v]−φk + δ

∫
Ω

[(1 + t)φk + u]−φk

∣∣∣∣
≤ γ

∫
[(1−t)φk+v<0]

φ2
k + γ‖ − tφk + v‖+ |δ|

∫
[(1+t)φk+u<0]

φ2
k + |δ|‖tφk + u‖

≤ γ(2 + ‖tφk + u‖+ ‖ − tφk + v‖)

≤ γ
(

2 +
1
2
‖tφk + u‖2 +

1
2
‖ − tφk + v‖2 + 1

)
≤ γ
(

3 +
1
2
(c1 + c2)

γ

d

)
≤ 4γ.

To conclude we prove that Γ+(λk − 3γ) > 0 and Γ+(λk + 3γ) < 0:

Γ+(λk − 3γ) = 6γ − γ

∫
Ω

[(1− t)φk + v]−φk − δ

∫
Ω

[(1 + t)φk + u]−φk

≥ 6γ − γ

(
3 +

1
2
(c1 + c2)

γ

d

)
> 0

and

Γ+(λk + 3γ) = − 6γ − γ

∫
Ω

[(1− t)φk + v]−φk − δ

∫
Ω

[(1 + t)φk + u]−φk

≤ − 6γ + γ

(
3 +

1
2
(c1 + c2)

γ

d

)
< 0.

Hence, the proposition is proved, except for the uniqueness, which follows from
the following lemma. �

Lemma 5.9. The mapping Γ+ is strictly decreasing, in the sense that

(Γ+(λ)− Γ+(λ̃))(λ− λ̃) < 0 for λ 6= λ̃.

Proof. We have, assuming again 0 ≤ |δ| ≤ γ, and using Lemma 5.7{
2λ̃ − 2λ− γ

∫
Ω

[((1− t)φk + v)− − ((1− t̃)φk + ṽ)−]φk

− δ

∫
Ω

[((1 + t)φk + u)− − ((1 + t̃)φk + ũ)−]φk

}
(λ− λ̃)

≤ − 2|λ− λ̃|2 + γ(‖(t̃− t)φk + v − ṽ‖+ ‖(t− t̃)φk + u− ũ‖)|λ− λ̃|

≤ − 2|λ− λ̃|2 +
γ2

2
‖(t̃− t)φk + v − ṽ‖2 +

γ2

2
‖(t− t̃)φk + u− ũ‖2 + |λ̃− λ|2

= − |λ̃− λ|2 + γ22c20|λ̃− λ|2;



On the Fuč́ık Spectrum for Elliptic Systems 215

the last expression is negative provided that γ22c20 < 1; this is the case, since

γ22c20 = γ22
c1γ/d

(d− 9γ/2)2
< γ22

c1
6(3γ/2)2

=
4c1
27

< 1. �

Proof of Theorems 5.1 and 1.1. The case (u, v) · (φk, φk) = 2 follows
from Propositions 5.6 and 5.8; the same procedure provides the result for the
case (u, v) · (φk, φk) = −2. In fact, we get a unique solution for the system

A

(
u

v

)
= P

(
γ(−sφk + v)−

δ(−sφk + u)−

)
,

as in proposition 5.6, and then we find a zero λk− of the increasing function

Γ−: [λk − 3γ, λk + 3γ] ⊂ R → R,

(5.12) λ 7→ Γ̃−(λ) = − 2(λk − λ)− γ

∫
Ω

[(−1− t(λ))φk + v(λ)]−φk

− δ

∫
Ω

[(−1 + t(λ))φk + u(λ)]−φk.

Finally, in the case (u, v) · (φk, φk) = 0 (which means (u, v) ∈ F and so s = 0),
a solution of (5.2) would also be a solution of (5.4), but this was excluded in the
last claim of Lemma 5.5. �

5.4. The inhomogeneous problem. We will consider in this section the
system (1.3), written in the form

(5.13)


−∆u = λv + γv− + g1(x, v) + h1 in Ω,

−∆v = λu+ δu− + g2(x, u) + h2 in Ω,

Bu = Bv = 0 on ∂Ω,

so that one has g1,2 ∈ C(Ω × R), lims→±∞ g1,2(x, s)/s = 0 and h1,2 ∈ L2; we
will consider this system in the vectorial form:

(5.14) −∆
(
u

v

)
= λ

(
v

u

)
+
(
γv−

δu−

)
+
(
g1(x, v) + h1

g2(x, u) + h2

)
.

We will now prove Theorem 1.3: we consider λ ∈ [λk−3γ, λk +3γ] fixed and
prove

Proposition 5.10. Let γ, δ, λ be as in Theorem 1.3. Then, for every s ∈ R
there exists a (not necessarily unique) (u, v) ∈ F which solves

(5.15) −∆
(
u

v

)
= λ

(
v

u

)
+ P

(
γ(sφk + v)−

δ(sφk + u)−

)
+ P

(
g1(x, sφk + v) + h1

g2(x, sφk + u) + h2

)
.
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Proof. Proceeding as in Proposition 5.6 and denoting by Qs

( u

v

)
and Gs

( u

v

)
the last two terms in (5.15), one needs to show that there exists K > 0 such
that

(5.16)
(
u

v

)
6= τA−1

[
Qs

(
u

v

)
+Gs

(
u

v

)]
,

if
∥∥∥∥(uv

)∥∥∥∥ ≥ K and for all τ ∈ [0, 1],

so that, by the Leray–Schauder principle, there exists a solution (u, v) ∈ F ∩
BK(0) of (5.15).

To prove this, one supposes the existence of sequences (un, vn) ∈ F with
‖(un, vn)‖ → ∞ and τn ∈ [0, 1] for which inequality (5.16) does not hold; then
one divides the system by ‖(un, vn)‖, defines (Un, Vn) = (un, vn)/‖(un, vn)‖ and
obtains

A

(
Un

Vn

)
= τn

1
‖(un, vn)‖

[
Qs

(
un

vn

)
+Gs

(
un

vn

)]

= τnP

 γ

(
s

‖(un, vn)‖
φk + Vn

)−
δ

(
s

‖(un, vn)‖
φk + Un

)−
+ τnP


g1(x, sφk + vn) + h1

‖(un, vn)‖
g2(x, sφk + un) + h2

‖(un, vn)‖

 ,

where the right hand side is bounded in [L2]2 and then (since A−1 is compact)
we may assume (Un, Vn) → (U, V ) ∈ F in the [L2]2 norm (then (U, V ) is not
trivial) and τn → τ̃ ∈ [0, 1]. Then

1
‖(un, vn)‖

Qs

(
un

vn

)
→ P

(
γV −

δU−

)
,

1
‖(un, vn)‖

Gs

(
un

vn

)
→ 0,

and then one concludes (
U

V

)
= A−1P

(
τ̃ γV −

τ̃ δU−

)
.

Thus (U, V ) is a nontrivial solution in F of (5.4) with s = 0 (and coefficients τ̃ δ,
τ̃ γ, with τ̃ ∈ [0, 1]), which is excluded by the last claim in Lemma 5.5. �

Observe that we do not know if the solution obtained in the above lemma
is unique; however, by the topological properties of the topological degree, we
may assert as in [18] that there exists a continuum of solutions connecting two
arbitrary values of s.

Now we consider on the space R× F the (continuous) map Φ: R× F → R,
defined by

(5.17) (s, (u, v)) 7→ 2(λk − λ)s− γ

∫
Ω

[sφk + v]−φk − δ

∫
Ω

[sφk + u]−φk

−
∫

Ω

[g1(sφk + v)]φk −
∫

Ω

[g2(sφk + u)]φk,
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and the set

T = {(s, (u, v)) ∈ R× F : (s, (u, v)) satisfies system (5.15)}.

Lemma 5.11. Given H > 0, there exists CH > 0 such that

|Φ(s, (u, v))| ≤ CH , for (s, (u, v)) ∈ T and |s| ≤ H.

Moreover, we have:

for s →∞ : lim Φ(s, (u, v)) = −∞ if (s, (u, v)) ∈ T and λ > λk+,

limΦ(s, (u, v)) = ∞ if (s, (u, v)) ∈ T and λ < λk+,

for s → −∞ : limΦ(s, (u, v)) = ∞ if (s, (u, v)) ∈ T and λ > λk−,

lim Φ(s, (u, v)) = −∞ if (s, (u, v)) ∈ T and λ < λk−.

Proof. The first part of the claim follows as in Proposition 5.10: indeed,
if we assume that the sequence (un, vn) considered in the proof gives equality
in equation (5.16) for τ = 1 but together with a bounded sequence sn instead
of considering a fixed s ∈ R, then we get the same contradiction, furnishing an
estimate for any solution with s in a bounded set, and then for Φ.

Now let χ = ±1 and suppose sn → χ∞ and (sn, (un, vn)) ∈ T . We first claim
that ‖(un, vn)‖/|sn| is bounded: otherwise suppose ‖(un, vn)‖/|sn| → ∞ and
proceed as in Proposition 5.10, dividing the system by ‖(un, vn)‖ and considering
the sequence (Un, Vn) = (un, vn)/‖(un, vn)‖:

A

(
Un

Vn

)
=

1
‖(un, vn)‖

[
Qsn

(
un

vn

)
+Gsn

(
un

vn

)]

= P

 γ

(
sn

‖(un, vn)‖
φk + Vn

)−
δ

(
sn

‖(un, vn)‖
φk + Un

)−
+ P


g1(x, snφk + vn) + h1

‖(un, vn)‖
g2(x, snφk + un) + h2

‖(un, vn)‖

 ;

again the right hand side is bounded in [L2]2 since we are assuming ‖(un, vn)‖/|sn|
→ ∞, and then we may assume (Un, Vn) → (U, V ) ∈ F in the [L2]2 norm, with
(U, V ) nontrivial, and again deduce

1
‖(un, vn)‖

Qsn

(
un

vn

)
→ P

(
γV −

δU−

)
,

1
‖(un, vn)‖

Gsn

(
un

vn

)
→ 0,

and then (
U

V

)
= A−1P

(
γV −

δU−

)
,

which is impossible.
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Now divide the system by |sn|, let (Un, Vn) = (un, vn)/|sn| (observe that this
is bounded by the previous claim) and obtain

A

(
Un

Vn

)
=

1
|sn|

[
Qsn

(
un

vn

)
+Gsn

(
un

vn

)]

= P

(
γ(χφk + Vn)−

δ(χφk + Un)−

)
+ P


g1(x, snφk + vn) + h1

|sn|
g2(x, snφk + un) + h2

|sn|

 ,

so that again (Un, Vn) → (U, V ) ∈ F in the [L2]2 and now

1
|sn|

Qsn

(
un

vn

)
→ P

(
γ(χφk + V )−

δ(χφk + U)−

)
,

1
|sn|

Gsn

(
un

vn

)
→ 0.

Then (
U

V

)
= A−1P

(
γ(χφk + V )−

δ(χφk + U)−

)
,

and then it is the unique solution obtained in Proposition 5.6 (or the analogue
in the case χ = −1).

Now divide also equation (5.17) by |sn|:

Φ(sn, (un, vn))
|sn|

= 2(λk − λ)χ− γ

∫
Ω

[χφk + Vn]−φk − δ

∫
Ω

[χφk + Un]−φk

−
∫

Ω

[g1(snφk + vn)]
|sn|

φk −
∫

Ω

[g2(snφk + un)]
|sn|

φk,

where again the last two terms go to zero and so we have (compare with (5.11)
and (5.12) and use the fact that (U, V ) is the unique solution of Proposition 5.6)

lim
Φ(sn, (un, vn))

|sn|
= 2(λk − λ)χ− γ

∫
Ω

[χφk + V ]−φk − δ

∫
Ω

[χφk + U ]−φk

=

{
Γ+(λ) for χ = 1,

Γ−(λ) for χ = −1.

Finally, we know by Proposition 5.8, Lemma 5.9 and the analogues for Γ−,
that Γ+(λ)(λ− λk+) < 0 and Γ−(λ)(λ− λk−) > 0 and this concludes the proof
of the lemma. �

Proof of Theorem 1.3. The equation which still has to be satisfied in
order to obtain a solution of problem ((5.13)) is

Φ(s, (u, v)) =
∫

Ω

(h1 + h2)φk, with (s, (u, v)) ∈ T.

By Lemma 5.11 and the existence of a connected component in T going from
s → −∞ to s → ∞, one deduces that there exists a solution for any value of∫
Ω
(h1 + h2)φk when the two limits have opposite sign, while one deduces the

existence of at least two solutions for
∫
Ω
(h1+h2)φk sufficiently (in dependence of
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the other components of (h1, h2)) positive when both limits are positive. The ex-
istence of no solution for sufficiently negative values of the integral follows from
the same limits and the boundedness of Φ(s, (u, v)) in T when s is bounded. �

Remark 5.12. As done in Section 4.3 for system (4.5), the result in Theo-
rem 1.3 may be extended to the case in which we have different coefficients for
u and v, provided the new system may be transformed into system 5.13 through
one of the changes of unknowns used in Lemma 2.1.

6. Variational characterization of points
in the Fuč́ık spectrum above the first positive eigenvalue

In this section we take a variational approach to finding points in the Fuč́ık
spectrum. We will find a variational characterization of a continuum of points
in Σ̂nt with arbitrary ratios (λ−−λ1)/(λ+−λ1) and (µ−−λ1)/(λ+−λ1), which
passes through the point (λ2, λ2, λ2).

In particular we will prove Theorem 1.2 in the form:

Theorem 6.1. For any r, s ∈ (0,∞), we can find and characterize one
intersection of the halfline {(λ1 + t, λ1 + st, λ1 + rt), t > 0} with Σ̂nt.

The possibility to obtain a continuum in Σ̂nt passing through (λ2, λ2, λ2) will
be proved in Proposition 6.8 below.

6.1. A strongly indefinite functional. To obtain the variational charac-
terization for our problem, we will proceed basically as in [16] (see also in [8], [2]
for similar procedures), that is, we will find critical points of the functional

J1:E = H ×H → R,

u = (u, v) 7→ J1(u) =
∫

Ω

2∇u∇v − λ1

∫
Ω

(u2 + v2),(6.1)

constrained to the set in equation (6.6) below: the constrained critical points of
J1 will be nontrivial solutions of problem (3.1).

However, here we encounter the difficulty that the principal part of the func-
tional is strongly indefinite, that is, there exist two infinite dimensional subspaces
of E on which it is unbounded from above and from below, respectively. This
follows from the following lemma (see Section 4.1 for the definitions of the con-
sidered spaces)

Lemma 6.2.∫
Ω

2∇u∇v ≥ λk+1

∫
Ω

(u2 + v2) for u = (u, v) ∈ (E− ⊕ E+
k )⊥,(6.2) ∫

Ω

2∇u∇v ≤ −λk+1

∫
Ω

(u2 + v2) for u = (u, v) ∈ (E−k ⊕ E+)⊥,(6.3)
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Ω

2∇u∇v ≤ λk

∫
Ω

(u2 + v2) for u = (u, v) ∈ E− ⊕ E+
k ,(6.4) ∫

Ω

2∇u∇v ≥ −λk

∫
Ω

(u2 + v2) for u = (u, v) ∈ E−k ⊕ E+.(6.5)

Proof. In (E− ⊕ E+
k )⊥ one has u = v and then∫

Ω

2∇u∇v = 2
∫

Ω

|∇u|2 ≥ 2λk+1

∫
Ω

u2 = λk+1

∫
Ω

(u2 + v2),

proving (6.2). Then observe that∫
Ω

2∇u∇v =
1
2

∫
Ω

|∇(u+ v)|2 − |∇(u− v)|2

and that for u ∈ E− ⊕ E+
k one has (u+ v, u+ v) ∈ E+

k , then∫
Ω

2∇u∇v ≤ 1
2

∫
Ω

|∇(u+ v)|2 ≤ λk
1
2

∫
Ω

(u2 + v2 + 2uv) ≤ λk

∫
Ω

(u2 + v2),

proving (6.4).
The same argument gives the other two estimates. �

6.2. Finite dimensional approximation. As a consequence of the strong
indefiniteness of the functional J1 the classical linking theorems may not be
applied. Some of the techniques used in approaching this kind of problems may
be seen in [1], [7], [13], [6].

In particular, we will use here an approximation technique, that is, we will
restrict the functional to a sequence of finite dimensional subspaces of E, in order
to obtain (with classical linking theorems) critical points for these restrictions;
then we will prove that from this sequence one can deduce the existence of a
critical point for the functional in the whole space E.

This technique is known as Galerkin approximation procedure; one example
of its application to this kind of problem may be seen in [6].

Let r, s ∈ (0,∞), n > 1 and define

Qr,s =
{
u ∈ E :

∫
Ω

(u+)2 + r(u−)2 + (v+)2 + s(v−)2 = 1
}
,(6.6)

Qr,s,n = Qr,s ∩ En,(6.7)

Ln = Qr,s ∩ (E−n ⊕ E+
1 ).(6.8)

Then consider

(6.9) dn = inf
γ∈Γn

sup
u∈γ(Bn+1)

J1(u)

where

(6.10) Γn = {γ ∈ C0(Bn+1, Qr,s,n) : γ|∂Bn+1 is a homeomorphism onto Ln},
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and Bh = {(x1, . . . , xh) ∈ Rh :
∑h

i=1 x
2
i ≤ 1}.

We claim that

Proposition 6.3. The values dn are critical values constrained to Qr,s,n for
the restriction to En of the functional J1. Moreover, up to a subsequence, dn →
d > 0 for n→∞, and the critical points corresponding to the values dn converge
to a nontrivial solution of problem (3.1), with coefficients (λ1+d, λ1+sd, λ1+rd),
which then is a point in Σ̂nt.

We first prove some lemmas:

Lemma 6.4. For u = (u, v) ∈ Qr,s we have

1
max{r, s, 1}

≤
∫

Ω

u2 + v2 ≤ 1
min{r, s, 1}

.

Proof.

1
max{r, s, 1}

=

∫
Ω
(u+)2 + (v+)2 + r(u−)2 + s(v−)2

max{r, s, 1}

≤
∫

Ω

(u+)2 + (v+)2 + (u−)2 + (v−)2 =
∫

Ω

u2 + v2

≤
∫
Ω
(u+)2 + (v+)2 + r(u−)2 + s(v−)2

min{r, s, 1}
=

1
min{r, s, 1}

. �

The following lemma establishes a kind of Palais–Smale property for the
functional J1 (or more general ones) constrained to Qr,s.

Lemma 6.5. Let (α+, α−, β+, β−) ∈ R4 and the sequence {un} = {(un, vn)}
⊆ Qr,s with un ∈ En, be such that

(6.11)
∣∣∣∣ ∫

Ω

2∇un∇vn −
∫

Ω

β+(u+
n )2 + β−(u−n )2 + α+(v+

n )2 + α−(v−n )2
∣∣∣∣ ≤ C

and, for all (ψ, φ) ∈ En,

(6.12)
∫

Ω

∇un∇φ+∇vn∇ψ −
∫

Ω

(β+u+
n − β−u−n )ψ + (α+v+

n − α−v−n )φ

= δn

∫
Ω

(u+
n − ru−n )ψ + (v+

n − sv−n )φ,

for a suitable sequence {δn} ⊆ R. Then, up to a subsequence, un
E−→ u =

(u, v) ∈ Qr,s and δn → δ ∈ R, such that for all (ψ, φ) ∈ E,

(6.13)
∫

Ω

∇u∇φ+∇v∇ψ −
∫

Ω

(β+u+ − β−u−)ψ + (α+v+ − α−v−)φ

= δ

∫
Ω

(u+ − ru−)ψ + (v+ − sv−)φ.
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Proof. Since {(un, vn)} ⊆ Qr,s, it is a bounded sequence in [L2(Ω)]2. By
choosing φ = vn and ψ = un in (6.12) one gets∫

Ω

2∇un∇vn −
∫

Ω

β+(u+
n )2 + β−(u−n )2 + α+(v+

n )2 + α−(v−n )2

= δn

∫
Ω

(u+
n )2 + r(u−n )2 + (v+

n )2 + s(v−n )2 = δn

and then δn is bounded by (6.11).
By choosing φ = un and ψ = vn in (6.12) one gets, by the boundedness of δn

in R and of (un, vn) in [L2]2, that
∫
Ω
|∇un|2 + |∇vn|2 is bounded, which implies

that un and vn are also bounded in H. Then, up to a subsequence, δn → δ ∈ R
and un → u ∈ E, weakly in E and strongly in [L2]2. The strong convergence
in [L2]2 implies that u ∈ Qr,s. Then we obtain (6.13) for a given (ψ, φ) ∈ Eh

by taking limit in (6.12) and, since
⋃

h∈N Eh is dense in E, this remains true for
arbitrary (ψ, φ) ∈ E.

Finally, we show that the convergence of un to u = (u, v) is in fact strong.
Let Pn:H → span{φ1, . . . , φn} be the orthogonal projection map, then Pnu→ u

and Pnv → v in H and so Pnu−un → 0 and Pnv−vn → 0 in L2. Then consider
equation (6.12) with φ = un − Pnu and ψ = 0:∫

Ω

∇un∇(un−Pnu) =
∫

Ω

(α+v+
n −α−v−n )(un−Pnu)+δn

∫
Ω

(v+
n −sv−n )(un−Pnu);

the right hand side tends to zero and then∫
Ω

∇un∇(un − u+ u− Pnu) → 0,

that is ∫
Ω

|∇un|2 −
∫

Ω

∇u∇un +
∫

Ω

∇un∇(u− Pnu) → 0

and since also the last term tends to zero, we conclude that ‖∇un‖L2 → ‖∇u‖L2

and then un → u strongly in H.
The same argument gives vn → v strongly in H. �

Finally, we estimate the functional J1 on γ(∂Bn+1) and γ(Bn+1), respec-
tively, in order to apply the linking theorem:

Lemma 6.6. J1|γ(∂Bn+1) ≤ 0 for any γ ∈ Γn.

Proof. Since γ(∂Bn+1) ⊆ Qr,s ∩ (E−n ⊕ E+
1 ) we have, by Lemma 6.2,

J1(u) ≤ (λ1 − λ1)
∫

Ω

u2 + v2 = 0, for all u ∈ γ(∂Bn+1). �
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Lemma 6.7. There exist ζ, η > 0 such that ζ > infγ∈Γn
supu∈γ(Bn+1) J1(u) >

η > 0, for any n > 1.

Proof. By a topological degree argument one sees that for all γ ∈ Γn, there
exists a point u ∈ γ(Bn+1)∩ (E−n ⊕E+

1 )⊥, the orthogonal being intended in En;
for such u one has (we use Lemmas 6.4 and 6.2)

J1(u) ≥ (λ2 − λ1)
∫

Ω

u2 + v2 ≥ λ2 − λ1

max{r, s, 1}
> 0.

Moreover, one may easily build a map γ̃ ∈ Γn such that γ̃(Bn+1) ⊆ E−n ⊕ E+
2 ,

so that (again using Lemmas 6.4 and 6.2)

sup
u∈eγ(Bn+1)

J1(u) ≤ (λ2 − λ1)
∫

Ω

u2 + v2 ≤ λ2 − λ1

min{r, s, 1}
. �

Now we are in the position to give the

Proof of Proposition 6.3 and Theorems 6.1 and 1.2. The above
lemmas allow to apply a linking theorem to obtain that the levels dn are critical
values constrained to Qr,s,n for the restriction to En of the functional J1, that is
there exist, for n > 1, un = (un, vn) ∈ Qr,s,n and δn ∈ R such that J1(un) = dn

and∫
Ω

∇un∇φ+∇vn∇ψ − λ1

∫
Ω

unψ + vnφ = δn

∫
Ω

(u+
n − ru−n )ψ + (v+

n − sv−n )φ,

for all (ψ, φ) ∈ En. By choosing φ = vn and ψ = un one gets∫
Ω

2∇un∇vn − λ1

∫
Ω

u2
n + v2

n = dn = δn.

Moreover, we have the estimates ζ > dn > η > 0 and then we may apply
Lemma 6.5 to obtain that (up to a subsequence) δn = dn → d ∈ [η, ζ] (then
d > 0) and un

E−→ u = (u, v) ∈ Qr,s such that, for all (ψ, φ) ∈ E,∫
Ω

∇u∇φ+∇v∇ψ =
∫

Ω

((λ1+d)u+−(λ1+rd)u−)ψ+((λ1+d)v+−(λ1+sd)v−)φ

implying that (λ1+d, λ1+sd, λ1+rd) ∈ Σ̂nt and u is the corresponding nontrivial
(being in Qr,s) solution: indeed, this point is in Σ̂, and since d > 0 it does not
belong to Σ̂t (which is explicitly known).

Theorems 6.1 and 1.2 follow immediately from Proposition 6.3. �

6.3. A continuum in Σ̂nt passing through (λ2, λ2, λ2). In this section
we make more precise the notation introduced in equations (6.9) and (6.10): in
particular we will denote dn, d by dn(r, s), d(r, s) and Γn by Γn,r,s, in order to
make explicit the parameters r, s we are considering.

We will prove:
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Proposition 6.8. Fixed a compact interval [a, b] ⊆ (0,∞) with a < 1 < b,
it is possible to choose the subsequence in Proposition 6.3 in such a way that the
limit points (λ1 + d(r, s), λ1 + sd(r, s), λ1 + rd(r, s)) ∈ Σ̂nt describe, for (r, s) ∈
[a, b]2, a continuum which passes through the point (λ2, λ2, λ2).

First we need

Lemma 6.9. Fixed a compact interval [a, b] ⊆ (0,∞), the sequence of func-
tions of r, s: dn(r, s): [a, b]2 → R is (uniformly) equicontinuous.

Proof. The claim would follow if we proved

(6.14) |dn(r, s)− dn(ρ, σ)| ≤ C(|r − ρ|+ |s− σ|) for |r − ρ|+ |s− σ| < D,

where C and D do not depend neither on n nor on (r, s) ∈ [a, b]2.
First note that, looking at the definitions in equations (6.6) and (clGam-

manone), it is clear that the projection map:

P
(ρ,σ)
(r,s) :Qr,s → Qρ,σ,

(u, v) 7→ (u, v)
(
∫
Ω
(u+)2 +

∫
Ω
(v+)2 + ρ

∫
Ω
(u−)2 + σ

∫
Ω
(v−)2)1/2

gives a one to one relation between the elements of the two families Γn,r,s and
Γn,ρ,σ, for any n ∈ N:

P̃
(ρ,σ)
(r,s) : Γn,r,s → Γn,ρ,σ, γ 7→ P

(ρ,σ)
(r,s) ◦ γ.

By the inf sup characterization (6.9), fixed ε > 0 there exists γ ∈ Γn,r,s such that

x := sup
u∈γ(Bn+1)

J1(u) < dn(r, s) + ε.

Then consider

(6.15) y := sup
u∈P

(ρ,σ)
(r,s) ◦γ(Bn+1)

J1(u)

= sup
u∈γ(Bn+1)

J1(u)∫
Ω
(u+)2 +

∫
Ω
(v+)2 + ρ

∫
Ω
(u−)2 + σ

∫
Ω
(v−)2

.

Since (u, v) ∈ Qr,s, we have
∫
Ω
(u−)2 ≤ 1/r and

∫
Ω
(v−)2 ≤ 1/s, so that∫

Ω

(u−)2,
∫

Ω

(v−)2 ≤ 1
a
,

and the denominator in (6.15) is 1+ (ρ− r)
∫
Ω
(u−)2 +(σ− s)

∫
Ω
(v−)2. By using

1/(1 + ξ + η) ≤ 1 + 2|ξ|+ 2|η|, for |ξ|+ |η| < 1/2, we get

1
1 + (ρ− r)

∫
Ω
(u−)2 + (σ − s)

∫
Ω
(v−)2

≤ 1 +
2
a
(|r − ρ|+ |s− σ|)
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for (|r − ρ|+ |s− σ|) < a/2. Then, by (6.9), since P (ρ,σ)
(r,s) ◦ γ ∈ Γn,ρ,σ, we have

dn(ρ, σ) ≤ y ≤ x(1 +
2
a
(|r − ρ|+ |s− σ|))

< (dn(r, s) + ε)(1 +
2
a
(|r − ρ|+ |s− σ|));

this provides

dn(ρ, σ)− dn(r, s) ≤ dn(r, s)
2
a
(|r − ρ|+ |s− σ|) + ε(1 +

2
a
(|r − ρ|+ |s− σ|)).

To conclude, we know by the proof of Lemma 6.7 that

(6.16)
λ2 − λ1

max{b, 1}
≤ λ2 − λ1

max{r, s, 1}
≤ dn(r, s) ≤ λ2 − λ1

min{r, s, 1}
≤ λ2 − λ1

min{a, 1}
,

and then

dn(ρ, σ)−dn(r, s) ≤ λ2 − λ1

min{a, 1}
2
a
(|r − ρ|+ |s− σ|)+ε

(
1+

2
a
(|r − ρ|+ |s− σ|)

)
,

valid for |r − ρ|+ |s− σ| < a/2.
Since we may estimate analogously the difference dn(r, s) − dn(ρ, σ), and ε

is arbitrary, we get the claimed estimate (6.14). �

Proof of Proposition 6.8. The equicontinuous and equibounded (by
equation (6.16)) sequence dn(r, s) admits a subsequence converging uniformly
to a continuous function d̃(r, s), by the Ascoli Arzelá theorem.

Observe that in Proposition 6.3 we obtained the levels d and the nontrivial
solutions (u, v) but we had no idea whether they were unique. However, if we
apply the procedure which proves Proposition 6.3 to the subsequence obtained
here, we are sure to converge to the levels d̃(r, s) above, that is to a continuous
function.

To conclude, we just need to see that for r = s = 1 the resulting point in
Σ̂nt is indeed (λ2, λ2, λ2): in fact, it follows from (6.16) that dn(1, 1) = λ2 − λ1

for any n > 1. �

7. Behaviour of the nontrivial solutions

As mentioned in the introduction, we will prove now that there exist points
in Σ̂nt which are not related to any point in the Fuč́ık spectrum of the scalar
problem.

It is interesting to remark that in the case of the linear spectrum of systems,
the eigenvalues and the corresponding nontrivial solutions are always related to
those of the scalar problem; actually, as seen in Section 4.1, the latter consist of
pairs of eigenfunctions (in fact, the same eigenfunction) of the scalar problem,
and so at least two of the four products u+v+, u+v−, u−v+, and u−v− are
identically zero.
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We prove here (we restrict to Dirichlet boundary conditions) that for points
of the Fuč́ık spectrum of the form (λ+, µ−, λ−) with µ− 6= λ− (i.e. if Lemma 3.3
does not apply), the corresponding nontrivial solutions u and v have opposite
sign is some region. More precisely, we prove the following

Proposition 7.1. Consider the Dirichlet problem with ∂Ω sufficiently reg-
ular. If (λ+, µ−, λ−) ∈ Σ̂nt with µ− 6= λ− then for the corresponding nontrivial
solutions u, v at least three of the products u+v+, u+v−, u−v+, u−v− are not
identically zero.

Proof. First we claim that u, v are in fact classical solutions: since weak
solutions of problem (3.1) are by definition in H1(Ω), then the right hand sides in
the equations are in Lp1 for some p1 > 2, which gives, by a boot strap argument,
u, v ∈ W 2,p1 and so also u, v ∈ Lp2 for a p2 > p1; by iterating this procedure
one obtains u, v ∈ W 2,p for any p > 2, but then the right hand sides are at
least W 1,p, giving (again by boot strap) u, v ∈W 3,p for any p > 2, which finally
implies u, v ∈ C2(Ω) ∪ C(Ω), and then they are classical solutions, as claimed.

This regularity allows us to consider the nodal domains of u and v, that is
those maximal connected opens subsets of {x ∈ Ω : u(x) 6= 0} and of {x ∈ Ω :
v(x) 6= 0}, and also to apply, later, the strong maximum principle.

Suppose now, for the sake of contradiction, that the positive and negative
nodal domains of u and v coincide (observe that by the definition of Σ̂nt there
exist at least one positive and one negative nodal domain).

In any positive nodal domain ω+, the functions (u, v) satisfy
−∆u = λ+v in ω+,

−∆v = λ+u in ω+,

u = v = 0 on ∂ω+,

and then u = v = φ1,ω+ , where φ1,ω+ is a positive multiple of the first eigen-
function of the Laplacian with Dirichlet boundary conditions in ω+.

In a similar way, we have that in any negative nodal domain ω−, the functions
(u, v) satisfy 

−∆u = λ−v in ω−,

−∆v = µ−u in ω−,

u = v = 0 on ∂ω−.

By replacing the function u with the scaled function U = u
√
µ−/λ− one gets

−∆U =
√
λ−µ−v in ω−,

−∆v =
√
λ−µ−U in ω−,

U = v = 0 on ∂ω−,
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and then U = u
√
µ−/λ− = v = −φ1,ω− where φ1,ω− is a positive multiple of the

first eigenfunction of the Laplacian with Dirichlet boundary conditions in ω−.
Now, by subtracting the equations in (3.1) (remember that we are assuming

that u+v− ≡ u−v+ ≡ 0) we obtain

(7.1)

{
−∆(u− v) = λ+(v+ − u+) + µ−u− − λ−v− in Ω,

u− v = 0 on ∂Ω,

but, by the computations above, u+ − v+ ≡ 0 while µ−u− − λ−v− = µ−u− −
λ−
√
µ−/λ−u− = (µ− −

√
µ−λ−)u− 6= 0.

This means that the right hand side in (7.1) does not change sign and then,
by the strong maximum principle, the C2(Ω) ∪ C0(Ω) function u− v may not be
zero in the sets ω+: contradiction. �

A remark on the one dimensional case. If we concentrate on the one
dimensional case, where everything is simpler, it is known that the eigenfunctions
of the scalar problem (and then also of the system) are of the form sin(

√
|λ|x),

while the nontrivial solutions of the scalar Fuč́ık problem are built by suitably
gluing bumps of the form sin(

√
λ+x) and − sin(

√
λ−x).

What appears new in the Fuč́ık problem for the system is the existence of
regions where u and v have opposite sign even if the coefficients are all positive
(observe that the proof in Proposition 7.1 is given for the Dirichlet problem, but
in dimension one it is simple to extend it also to the Neumann problem): in
these regions we then have sign(−u′′) = −sign(u) and sign(−v′′) = −sign(v) and
then u and v have also a component of the form of the hyperbolic functions sinh
and cosh.
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