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ON A SECOND ORDER BOUNDARY VALUE PROBLEM
WITH SINGULAR NONLINEARITY

Vieri Benci — Anna Maria Micheletti — Edlira Shteto

Abstract. In this paper we investigate in a variational setting, the elliptic
boundary value problem −∆u = sign u/|u|α+1 in Ω, u = 0 on ∂Ω, where Ω
is an open connected bounded subset of RN , and α > 0. For the positive
solution, which is checked as a minimum point of the formally associated
functional

E(u) =
1

2

�
Ω
|∇u|2 +

1

α

�
Ω

1

|u|α ,

we prove dependence on the domain Ω. Moreover, an approximative func-
tional Eε is introduced, and an upper bound for the sequence of mountain
pass points uε of Eε, as ε → 0, is given. For the onedimensional case, all
sign-changing solutions of −u′′ = sign u/|u|α+1 are characterized by their
nodal set as the mountain pass point and n-saddle points (n > 1) of the
functional E.

1. Introduction

This paper is concerned with the singular boundary-value equation

(1.1)

{ −∆u(x) = F ′(u(x)) x ∈ Ω,

u(x) = 0 x ∈ ∂Ω,

2000 Mathematics Subject Classification. 35Q55.
Key words and phrases. Variational methods, elliptic problems, singular nonlinearity.
The first and the second authors are supported by MURST project “Metodi Variazionali

e Topologici nello Studio dei Fenomeni Nonlineari”. The third author is supported by EU
under the RTN Project “Fronts and Singularities”.

c©2006 Juliusz Schauder Center for Nonlinear Studies

1



2 V. Benci — A. M. Micheletti — E. Shteto

where Ω is a sufficiently regular bounded subset of RN , N ≥ 1, and F (u) =
1/(α|u|α) with α > 0.

In the onedimensional case, this equation comes out from some problems in
fluid dynamics and pseudoplastic flow. The boundary value problem

(1.2)

{
τ ′′(v�) +

v�

µτ(v�)µ
= 0, 0 < v� < 1, µ > 0,

τ ′(0) = τ(1) = 0,

arises in the investigation of the hydrodynamical equations for the steady flow
of an incompressible viscous fluid over a semi-infinite flat plate (see [14]). Here
τ is the so-called shear stress, and v� is the component of the velocity parallel
to the plate. In order to satisfy the above problem both these quantities must
be properly normalized. The parameter µ enters in the non-Newtonian relation
between the shear stress τ and the gradient of the parallel velocity v� along the
direction x⊥ perpendicular to the plate,

τ = const ·
(
∂v�

∂x⊥

)1/µ

.

For µ = 1 the above relation describes an ordinary Newtonian fluid. When
µ is larger or smaller than one the fluid is called ‘dilatant’ or ‘pseudoplastic’,
respectively. The pseudoplastic case is investigated in [1].

Positive solutions of the N -dimensional problem have been studied by Cran-
dall et al. in [6], in a general setting of second-order elliptic operators and of a
nonlinearity F (x, s) which is the primitive of a singular function, f(x, s), in the
sense that f is well defined only for s > 0, and lims→0+ f(x, s) = ∞, uniformly
for x ∈ Ω. Existence and uniqueness of the positive solution u ∈ C2(Ω) ∩ C(Ω)
of (1.1) is proved for ∂Ω of C3 class and f ∈ C1(Ω × ]0,∞[), by means of the
upper-lower solution method.

In a later work by Lazer and McKenna [13], which treats the case f(x, u) =
p(x)u−(α+1), is presented a simple proof of the existence and uniqueness of the
positive solution u ∈ C2+γ(Ω) ∩ C(Ω), 0 < γ < 1, when Ω is of C2+γ class.
Moreover, it is proved that u ∈ H1,2

0 (Ω) if and only if α < 2.
In the case f(x, u) = p(x)u−(α+1), there exist some other results on the

behavior of the gradient ∇u of the solution of the problem (1.1) (see [16], [11]).
In [16], a uniform bound for |∇u| in Ω, is obtained assuming suitable hypothesis
on the function p and on Ω. In this work the solution is obtained as the limit of
a sequence of solutions of approximating problems. These solutions are checked
as the minimum points of the relative associated functionals.

Moreover, the case f(x, u) = λq(x, u)+ p(x)u−(α+1) with q non singular, has
been investigated in [4] and recently in [21], showing existence of positive weak
solutions in suitable assumptions on the functions q and p.
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Sign-changing solutions have been studied lately in [15]. The authors assume
that the domain Ω is of C2 class, and such that Ω = Ω1 ∪ Ω2 with Ω1 a C2-
subdomain. Γ = ∂Ω1 is called a free nodal set. Using the very precise information
obtained on the behavior of the positive solution, u, when u→ 0, it is shown the
existence of two solutions u1 and u2 for the problem

(1.3)

−∆u+ PVΓ

(
p(x)
uα+1

)
= 0 in Ω,

u = 0 on ∂Ω ∪ Γ,

u(x) �= 0 in Ω \ Γ,

with u1 = −u2, u1, u2 ∈ C2,γ(Ω\Γ)∪C(Ω), 0 < γ < 1, and PVΓ is the principal
value around Γ, i.e.

(PVΓϕ, ψ) = lim
ε→0

∫
Ω\Sε

ϕψ dx

for ϕ ∈ L1
loc(Ω \ Γ), ψ ∈ C∞

0 (Ω) and Sε = {x ∈ Ω : dist(x,Γ) < ε}. This result
has been proved in dimension one for α > 0 and in more dimensions for α > 2.

Essentially, the solution of (1.3) is made by gluing together the positive
solution uΩ1 and the negative one, −uΩ2 . As the authors observe, it exists a
continuum of solutions when Γ is deformed homeomorphically inside Ω, but in
this setting none of this solutions can be distinguished, even in dimension one.

We use a variational approach to study the equation (1.1). We consider the
formally associated functional

(1.4) EΩ(u) =
1
2

∫
Ω

|∇u|2 dx+
1
α

∫
Ω

1
|u|α dx.

It is obvious that EΩ is not well defined on all H1,2
0 (Ω) because of the singularity

on the nonlinear potential. We assume that the open bounded set Ω is such that
the set EΩ = {u ∈ H1,2

0 (Ω) :
∫
Ω
(1/|u|α) dx < ∞} is not empty. We call Ω

admissible if it satisfies this assumption.
In Chapter 2 we prove (see Theorem 2.14) that if Ω is admissible, the func-

tional EΩ has exactly two minimum points uΩ
+ and −uΩ

+, with uΩ
+ > 0 on Ω,

such that ±uΩ
+ ∈ H1,2

0 (Ω) are solutions of (1.1). We point out weakness of the
regularity assumptions on Ω. (see Remark 2.1). Recalling the result of [15], we
have that if Ω is of C2+γ class, then EΩ �= ∅ implies α < 2.

In Chapter 3 we give some information on the behavior of the minimum
points uΩ

+ > 0 and −uΩ
+ of the functional EΩ depending on the set Ω. We have

a result of monotony (see Lemma 3.1) and a result of convergence of uΩn
+ to uΩ

+

where Ωn is a non decreasing sequence of admissible subsets, and Ω =
⋃

n Ωn is
an admissible subset (see Lemma 3.3). Moreover, in the case of domains of C2

class, we prove the continuous dependence of minimum points ±uΩ
+ with respect

to Ω (see Theorem 3.4).
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In Chapter 4 we prove (see Proposition 4.4) the existence of a mountain pass
point uε for the approximating functional

(1.5) EΩ
ε (u) =

1
2

∫
Ω

|∇u|2 dx+
1
α

∫
Ω

1
(|u| + ε)α

dx for all u ∈ H1,2
0 (Ω),

which is locally Lipschitz continuous; thus it admits the Clarke’s subdifferential.
We prefer to consider the functional EΩ

ε (u) as an approximating functional of
EΩ because of the strict convexity of the function s 
→ 1/(|s|+ ε)α either for
s > 0 or s < 0. In Theorem 4.9 we prove the boundedness of uε in H1,2

0 (Ω) with
respect to ε.

In Chapter 5, for the onedimensional case, we show in Theorem 5.4 that uε

converges to u0 weakly in H1,2
0 ([0, π]), as ε→ 0, where u0 is a point of mountain

pass type for E[0,π]. The only vanishing point of u0 is π/2, and, according to the
definition of McKenna and Reichel, u0 is a “sign-changing solution” of (1.1).

In Theorem 6.6 of Chapter 6, for the onedimensional case we show that a
“sign-changing solution” of (1.1), such that the nodal set divides the interval
[0, π] in equal parts, is characterized by a “variational argument.”

2. Minimum points of the functional E

Let Ω be an open, bounded, connected set in RN . In the following, given
α > 0, we consider the functional E: E → R defined by

(2.1) E(u) = EΩ(u) =
1
2

∫
Ω

|∇u|2 +
1
α

∫
Ω

1
|u|α ,

where E is the subset of H1,2
0 (Ω) defined as

(2.2) E = EΩ =
{
u ∈ H1,2

0 (Ω) :
∫

Ω

1
|u|α <∞

}
.

We can observe that Eω is a cone without internal points such that 0 /∈ EΩ.

Remark 2.1. We can exhibit some cases in which EΩ �= ∅.
(a) Let Ω = ]0, π[ × ]0, π[. We consider

u(x1, x2) = (sinx1 · sinx2)β

with 1/2 < β < 1/α, where α ∈ ]0, 2[. Then, u ∈ EΩ.
(b) Let Ω be of C2 class. We can consider û ∈ H1,2

0 (Ω) such that û > 0
in Ω and

(2.3) û(x) := dist(x, ∂Ω)β , x ∈ Ω̂

where Ω̂ = {x ∈ Ω : dist(x, ∂Ω) < ρ̂}, for some ρ̂ > 0, with 1/2 < β <

1/α. Then if α ∈ ]0, 2[, we have û(x) ∈ EΩ.
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(c) Next, let Ω = Ω1 ∩ Ω2, where Ωi are open bounded connected sets of
C1 class such that ∂Ω1 ∩ ∂Ω2 is a manifold of codimension 2 made of
a finite number of connected components. Then we have that if

u(x) = min(u1(x), u2(x)),

where u1 on Ω1 and u2 on Ω2 are defined as in (2.3), then u ∈ EΩ. We
have easily the same result for Ω =

⋂n
i=1 Ωi, with Ωi open bounded con-

nected sets of C1 class such that
⋂n

i=1 ∂Ωi is a manifold of codimension 2
made of a finite number of connected components.

Definition 2.2. The set Ω is called admissible with respect of the functional
EΩ if Ω is an open bounded connected subset of RN such that EΩ �= ∅.

In the following we assume that Ω is an admissible subset. Moreover, we
denote C+ = {u ∈ H1,2

0 (Ω) : u(x) ≥ 0}. Then C+ ∩ E is a convex cone. We set
E+ = E|C+∩E .

Lemma 2.3. The following hold

(a) E is weakly lower semi-continuous and coercive; so there exists a mini-
mum point of E in E;

(b) E+ has a unique minimum point u+ in C+ ∩ E;
(c) 0 ≤ ∫

Ω ∇u+∇ϕ− ∫
Ω(1/uα

+)ϕ, for all ϕ ∈ H1,2
0 (Ω).

Proof. (a) The coercivity derives from the positivity of
∫

1/|u|α. Using the
Fatou Lemma, we get the weak lower semicontinuity of the functional

∫
1/|u|α

and then the weak lower semicontinuity of E.
(b) By (a) we have the existence of the minimum point of E+ on C+ ∩ E .

Since the real function of the real variable k(s) = 1/|s|α is strictly convex for
s > 0 we get

0 ≤
∫

Ω

dx

(tu1(x) + (1 − t)u2(x))α
≤

∫
Ω

t

(u1(x))α
dx+

∫
Ω

1 − t

(u2(x))α
dx <∞

for t ∈ [0, 1] and u1, u2 ∈ C+ ∩ E . Then E+ is strictly convex on the convex set
C+ ∩ E , which implies the uniqueness of the minimum point of E+ in it.

(c) If t > 0, and ϕ > 0 with ϕ ∈ H1,2
0 (Ω), then u+ + tϕ ∈ C+ ∩E , and we get

(2.4) 0 ≤ E(u+ + tϕ) − E(u+)
t

=
t

2

∫
Ω

|∇ϕ|2 +
∫

Ω

∇u+∇ϕ−
∫

Ω

ϕ

(u+ + ϑtϕ)α+1

for 0 < ϑ = ϑ(x, t) < 1. By Fatou Lemma and (2.4) we have∫
ϕ

uα+1
+

≤ lim inf
tn→0

∫
ϕ

(u+ + ϑntnϕ)α+1
≤ lim

tn→0

tn
2

∫
|∇ϕ|2 +

∫
∇u+∇ϕ.

Then the thesis follows. �
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Remark 2.4. Let us denote by u+ ∈ C+ ∩ E the unique minimum point
of E+ on C+ ∩ E . By the symmetry of E+ we have that any minimum point w,
of E on E is such that |w| = u+. Indeed

E(|w|) = E(w) ≤ E(u+) ≤ E(|w|).
So E(w) = E(u+), |w| = u+, and so u+ is a minimum point of E on all E .

Now let us introduce the perturbed functional Eε:H
1,2
0 (Ω) → R defined by

(2.5) Eε(u) =
1
2

∫
Ω

|∇u|2 +
1
α

∫
Ω

1
(ε+ |u|)α

.

We prefer to consider the functional Eε as an approximating functional of E
because of the strict convexity of the function s 
→ 1/(ε+ |s|)α either for s > 0
or s < 0, which gives straightforward the uniqueness of the non negative and
non positive minimum point, respectively in the positive and negative cone.

We observe that Eε is locally Lipschitz. Thus, the functional Eε admits the
Clarke sub-differential (see [3]). We recall its definition and that of the critical
point.

Definition 2.5. The sub-differential of a functional f , defined in a Banach
space X , is

∂f(u) = {ξ ∈ X∗ : 〈ξ, ϕ〉 ≤ f0(u, ϕ) for all ϕ ∈ X}
where

f0(u, ϕ) := lim sup
w→u, : t↘0

f(w + tϕ) − f(w)
t

.

Moreover, u ∈ X is a critical point for f if 0 ∈ ∂f(u).

Let us now calculate the Clarke sub-differential of our functional Eε. We
consider again Ẽ =

∫
Ω 1/|u|α.

Ẽ0(u, ϕ) = lim
w→u

sup
t↘0

1
t
(Ẽ(w + tϕ) − Ẽ(w))

=
1

εα+1

∫
{u=0}

|ϕ| dx−
∫
{u�=0}

signu
(ε+ |u|)α+1

ϕ.

So we get

(2.6) ∂Eε(u) � ξ = u− i∗
(

signu
(ε+ |u|)α+1

χ{u�=0}

)
− i∗

(
γ

εα+1
χ{u=0}

)
,

where γ ∈ R and |γ| ≤ 1. Here, χ{u�=0}(x) = 1 if u(x) �= 0, and χ{u�=0}(x) = 0
otherwise. Analogously we define χ{u=0}(x).

By definition, we have that u is a weak critical point for the functional Eε if
it exists γ ∈ [−1, 1] such that, for all ϕ ∈ H1,2

0 (Ω)

(2.7) 0 =
∫

Ω

∇u∇ϕ− 1
εα+1

∫
Ω

γϕχ{u=0} +
∫

Ω

signu
(ε+ |u|)α+1

ϕχ{u�=0} .
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Remark 2.6. Arguing as in Lemma 2.3 and Remark 2.4 we get that it exists
a unique minimum point uε

+ ∈ Cε
+ for Eε restricted on the positive cone. By

the symmetry of Eε, uε
+ is a minimum point of Eε on the whole space H1,2

0 (Ω),
hence uε

+ is a weak critical point for Eε; thus it satisfies (2.7).

Lemma 2.7. The set Zε = {x ∈ Ω : uε
+(x) = 0} has zero measure. Moreover,

it holds
−∆uε

+ =
1

(ε+ uε
+)α+1

.

Proof. By contradiction let us suppose that meas(Zε) := |Zε| > 0. Given

ε, we can find two closed subsets F1 and F2 such that F1 ⊂
◦
F2 ⊂ F2 ⊂ Ω and

|Fi ∩ Zε| > 0 for i = 1, 2. We consider the function

χε(x) =

{
1 x ∈ Zε ∩ F1,

0 otherwise.

We choose ϕn ∈ H1,2
0 (F2) such that for any n, ϕn ≥ 0, suppϕn ⊂⊂ F2, and ϕn

converges to χε in L2(F2). Since uε
+ ∈ H2,2

loc (Ω) we get

0 ≤Eε(uε
+ + tϕn) − Eε(uε

+) = t

∫
F2

(
− ∆uε

+ − 1
(ε+ uε

+)α+1

)
ϕn

+ t2
∫

F2

(
1
2
|∇ϕn|2 +

(α+ 1)ϕ2

(ε+ uε
+ + ϑtϕn)α+2

)
= tAn + t2Bn

where t > 0 and 0 < ϑ < 1.
Since limnAn = −(1/εα)|Zε ∩ F1| < 0, for n large enough we get An < 0.

Then for t small enough we obtain tAn + t2Bn < 0. This is a contradiction, so
we get −∆uε

+ = 1/(ε+ uε
+)α+1. �

Lemma 2.8. There exists a > 0 such that, for any ε > 0,

aϕ1(x) ≤ uε
+(x) for all x ∈ Ω

where ϕ1(x) > 0 is an eigenfunction of the first eigenvalue λ1 of the Laplacian
operator −∆.

Proof. We have −∆(uε
+ − aϕ1) = H(x) · (uε

+ − aϕ1) +K(x) where

H(x) =


(ε+ uε

+)−α−1 − (ε+ aϕ)−α−1

uε
+ − aϕ1

uε
+ �= aϕ1,

0 uε
+ = aϕ1,

and
K(x) = (ε+ aϕ1)−α−1 − aλ1ϕ1.

It is easy to check that the function H(x) ∈ L∞(Ω) is negative. Moreover,
K(x) ∈ L∞(Ω), and it exists a > 0, which does not depend on ε, such that
K(x) > 0. Then, by the maximum principle we get our claim. �
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At this point we obtain the following statement

Lemma 2.9. It holds u+(x) > 0 for any x ∈
◦
Ω.

Proof. We have

Eε(uε
+) ≤ Eε(u+) ≤ E(u+), for all ε > 0.

Hence uε
+ is bounded in H1,2

0 (Ω). Thus, it exists a subsequence uεk
+ which con-

verges to u weakly in H1,2
0 (Ω) and punctually a.e. Then u ≥ aϕ1. By Fatou

Lemma and the weak lower semicontinuity of the norm of H1,2
0 (Ω) we get that

E(u) ≤ lim inf Eε(uε
+) ≤ E(u+).

Then by the uniqueness of the minimum point of E on the convex cone C+ ∩ E
we have that u = u+, so we get the claim. �

Lemma 2.10. For any ϕ ∈ C∞
0 (Ω) it holds

(2.8)
∫

Ω

∇u+∇ϕ−
∫

Ω

ϕ

uα+1
+

= 0.

Proof. Given ϕ ∈ C∞
0 (Ω), we can find τ > 0 such that for any t with

t ≤ |τ |, we have u+ + tϕ ∈ C+ ∩ E . It is easy to verify that the real function
t 
→ E(u+ + tϕ) for t ≤ |τ | is of C1 class, and t = 0 is a minimum point. Then
(2.8) follows. �

Remark 2.11. The minimum points of E = EΩ on E = EΩ are exactly
u+ = uΩ

+ and −u+ = −uΩ
+. Indeed, if there exists a sign-changing function w,

which is a minimum point of E, by Remark 2.4 follows that |w| = u+. Hence
we get {x ∈ Ω : u+(x) = 0} �= ∅, which contradicts the strict positivity of u+

proved in Lemma 2.10.
Analogously we get that minimum points of Eε on H1,2

0 (Ω) are exactly uε
+

and −uε
+.

Remark 2.12. By Lemmas 2.10 and 2.9 we get
∫
Ω |∇u+|2 =

∫
Ω 1/uα

+. In-
deed, ∫

Ω

∇u+∇ϕn =
∫

Ω

1
uα+1

+

ϕn,

where ϕn = (u+ − 1/n)+, and suppϕn ⊂⊂ Ω. Since 0 ≤ ϕn ≤ u+ we get the
assert by the Lebesgue convergence theorem.

Remark 2.13. Arguing as in the proof of Lemma 2.9 we get

E(u+) = lim inf
ε→0

Eε(uε
+), uε

+ ⇀ u+ as ε→ 0, ‖u+‖ = lim inf
ε→0

∥∥uε
+

∥∥ .
Hence there exists εk → 0 such that uεk

→ u+ strongly in H1,2
0 (Ω).

By Remark 2.11 and Lemmas 2.9, 2.10, 2.3 and Remark 2.4 we have the
following
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Theorem 2.14. If Ω is an admissible subset of RN , then the functional EΩ

defined by

EΩ(u) =
1
2

∫
Ω

|∇u|2 +
1
α

∫
Ω

1
|u|α for all u ∈ EΩ,

has exactly two minimum points u+ and −u+, with u+ > 0 in
◦
Ω, and it holds:∫

Ω

∇u∇ϕ =
∫

Ω

ϕ

uα+1
+

, for all ϕ ∈ C∞
0 (Ω), suppϕ ⊂⊂ Ω.

Remark 2.15. As we mentioned in the Introduction, in [13] was proved
that if ∂Ω is of C2,γ class, 0 < γ < 1, then the unique positive solution u+ ∈
C2(Ω)∩C(Ω) of (1.1) is in H1,2

0 (Ω) if and only if α < 2. Hence by Theorem 2.14
we get that if EΩ �= ∅ and ∂Ω is of C2,γ class, then α < 2.

3. Dependence of the minimum points of E on the domain

Next we give some information on the behavior of the minimum points u+

and −u+ of E = EΩ with respect to the domain Ω. We recall that for the
moment Ω is an open bounded connected subset of RN such that EΩ �= ∅.

Lemma 3.1 (Monotony). If u1
+ and u2

+ are the positive minimum points of
the functionals EΩ1 and EΩ2 respectively on the admissible subsets Ω1 and Ω2

of Ω, with Ω1 ⊂ Ω2, and u1
+ ≡ 0 in Ω2 \ Ω1, then

u1
+ ≤ u2

+ a.e. in Ω2.

Proof. Let us consider the positive function (u1
+−u2

+)+ ∈ H1
0 (Ω2). We can

observe that the function u1
+ + t(u1

+ − u2
+)+ ∈ C+ ∩ E ⊂ H1

0 (Ω2), for all −1 < t.
Moreover, the function t 
→ E(u1

+ + t(u2
+ − u1

+)+) is of C1 class and t = 0 is a
minimum point. So∫

Ω1

∇u1
+∇(u1

+ − u2
+)+ −

∫
Ω1

(u1
+ − u2

+)+

(u1
+)α+1

= 0.

Concluding, by (c) of Lemma 2.3 we have

0 ≤
∫

Ω2

|∇(u1
+ − u2

+)+|2 =
∫

Ω2

∇(u1
+ − u2

+)+∇(u1
+ − u2

+)+

≤
∫

Ω1

(u1
+ − u2

+)+

(u1
+)α+1

−
∫

Ω2

(u1
+ − u2

+)+

(u2
+)α+1

=
∫

Ω1

(u1
+ − u2

+)+
[

1
(u1

+)α+1
− 1

(u2
+)α+1

]
≤ 0.

Then, (u1
+ − u2

+)+ ≡ 0. �
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Definition 3.2. If {Ωn} is a sequence of admissible subsets of RN such that
Ωn ⊆ Ωn+1 for any n, and Ω =

⋃
n Ωn is also an admissible set, we define the

function

(3.1) un =

{
un

+(x) x ∈ Ωn,

0 x ∈ Ω \ Ωn,

where un
+ is the minimum point of EΩn .

The following result gives a “weak continuity” of the map {Ωn 
→ un}; “weak”
in the sense that it holds only in the case where Ωn is a non decreasing sequence
of admissible subsets of RN .

Lemma 3.3.The sequence {un} defined in (3.1), converges strongly inH1,2
0 (Ω)

to the positive minimum point u+ of the functional EΩ.

Proof. By Lemma 3.1 we have u1 ≤ u2 ≤ . . . ≤ un ≤ . . . ≤ u+. We set

u(x) = sup
n
un(x);

so u1 ≤ u ≤ u+. First we verify that ‖un‖ is bounded. Indeed, by Lemma 2.3(c),
since u+ ≥ un > 0, we have

‖u+‖2 − ‖un‖2 = 〈∇u+ −∇un,∇u+ −∇un〉L2(Ω)(3.2)

= ‖u+ − un‖2 + 2
∫

Ωn

∇un∇(u+ − un)

= ‖u+ − un‖2 + 2
∫

Ωn

u+ − un

uα
n

≥ 0.

In the same way, if we consider un+1 instead of u+ we can prove that ‖un‖ is
increasing. Then, we can assume that the sequence un converges to u weakly in
H1,2

0 (Ω), strongly in L2(Ω) and punctually a.e. in Ω. Hence

(3.3) ‖u‖ ≤ lim inf
n→∞ ‖un‖ ≤ ‖u+‖ .

Moreover, by Lemma 2.10 for any ϕ ∈ C∞
0 (Ω), for n large enough we get

0 =
∫

Ωn

∇un∇ϕ−
∫

Ωn

1
uα+1

n

ϕ.

Since the sequence {1/uα+1
n } is positive and monotone, by Beppo–Levi Theorem

we get

0 =
∫

Ω

∇u∇ϕ−
∫

Ω

1
uα+1

ϕ for all ϕ ∈ C∞
0 (Ω).

Arguing as in Remark 2.12 we get
∫
Ω
|∇u|2 =

∫
Ω

1/uα. Then, by (3.3),

EΩ(u) =
(

1
2

+
1
α

)
‖u‖2 ≤

(
1
2

+
1
α

)
‖u+‖2 = EΩ(u+).

By the uniqueness of the positive minimum point of EΩ we get u ≡ u+. �
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Theorem 3.4 (Continuity of minimum points with respect to the domain).
Let Ωn be a sequence of C2 bounded open connected subsets of RN such that
limn→∞ Ωn = Ω, and let Ω ⊂⊂ Ω∗, where Ω and Ω∗ are of C2 class. Moreover,
let α < 2 and let un

+ and u+ be respectively the positive minimum points of EΩn

and EΩ. We define

un =

{
un

+ in Ωn,

0 in Ω∗,
u =

{
u+ in Ω,

0 in Ω∗ \ Ω.

Then un converges to u in H1,2
0 (Ω∗).

Proof. For a small enough we have Ω−a ⊂ Ωn ⊂ Ωa, for n large, where

Ω−a = {x ∈ Ω : dist(x, ∂Ω) ≥ a}, Ωa = {x ∈ Ω∗ : dist(x, ∂Ω) ≤ a} ∪ Ω.

By Lemma 3.1 we have u−a
+ < un

+ < ua
+, where u±a

+ are respectively the positive
minimum points of EΩa and EΩ−a . By (3.2) we have∥∥u−a

+

∥∥ ≤ ∥∥un
+

∥∥ ≤ ∥∥ua
+

∥∥ .
By Lemma 3.1 and Lemma 4.7 (in the following chapter), letting a→ 0 we have
that u−a

+ and ua
+ converge to u in H1,2

0 (Ω∗). Hence un
+ converges to u. �

4. Boundedness of the mountain pass points uε of Eε

Our aim now is to show the existence of a third critical point of the functional
Eε which changes sign. This will be a mountain pass point for Eε. Referring to
the definition of the (PS) condition for a locally Lipschitz functional we have

Definition 4.1. We say that Eε:H
1,2
0 (Ω) → R satisfies the (PS) condition

if every sequence {un} such that

(a) Eε(un) ≤ c <∞,
(b) there exists γn ∈ [−1, 1] such that

(4.1) un − i∗
[
γn(1 − χn) − signun

(ε+ |un|)α+1
χn

]
→ 0 in H−1,2(Ω),

where χn(x) = 1 if un(x) �= 0 and χn(x) = 0 if un(x) = 0,

admits a subsequence which converges strongly in H1,2
0 (Ω).

Lemma 4.2. Eε satisfies the (PS) condition.

Proof. Let {un} be a (PS) sequence. Then since Eε(un) is bounded, we
have that {un} is bounded in H1,2

0 (Ω). Then we can assume that it converges
to a function u, weakly in H1,2

0 (Ω) and strongly in L2(Ω). Moreover, we can
assume that γn → γ. Next we set

vn = γn(1 − χn) − signun

(ε+ |un|)α+1
χn .
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We have that {vn} is bounded in L2(Ω). Thus we can assume that {vn} converges
to a function v weakly in L2(Ω). Recalling that {un} is a (PS) sequence, for all
ϕ ∈ H1,2

0 (Ω), we get

0 = lim
n

(〈un, ϕ〉H1,2
0 (Ω) − 〈vn, ϕ〉L2(Ω)) = 〈u, ϕ〉H1,2

0 (Ω) − 〈v, ϕ〉L2(Ω).

Then, respectively, for ϕ = un and ϕ = u, we have

(4.2) 0 = lim
n

(‖un‖2
H1,2

0 (Ω) − 〈vn, un〉L2(Ω)) = lim
n

‖un‖2
H1,2

0 (Ω) − 〈v, u〉L2(Ω),

(4.3) 0 = lim
n

(〈un, u〉H1,2
0 (Ω) − 〈vn, u〉L2(Ω)) = ‖u‖2

H1,2
0 (Ω) − 〈v, u〉L2(Ω).

By (4.2) and (4.3), limn ‖un‖2
H1,2

0 (Ω) = ‖u‖2
H1,2

0 (Ω). Hence the claim. �

Lemma 4.3. There exists ρ > 0 such that Eε(u) > Eε(uε
+), for all u with∥∥u− uε

+

∥∥ = ρ, where uε
+ ∈ C+ is the minimum point of Eε.

Proof. The proof is based on an argument of De Figuerido–Solimini which
we adopt for functionals which admits Clarke’s sub-differential. We suppose by
contradiction that, for all ρ > 0,

inf
u∈H1,2

0 (Ω)
{Eε(u) : u ∈ H1,2

0 (Ω)
∥∥u− uε

+} = ρ
∥∥ = Eε(uε

+).

We consider Eε restricted to R = {u : 0 < ρ− δ <
∥∥u− uε

+

∥∥ < ρ + δ}. Let un

be such that
∥∥un − uε

+

∥∥ = ρ and Eε(un) ≤ Eε(uε
+) + 1/n. Now we apply the

Ekeland Variational Principle and obtain a sequence vn such that{
Eε(vn) ≤ Eε(un) ‖un − vn‖ ≤ 1/n,

Eε(vn) ≤ Eε(u) + ‖vn − u‖ /n for all u ∈ R.
Let us choose u = vn + tϕ, where suppϕ ⊂ {x ∈ Ω : vn(x) �= 0}. Then

A(vn, ϕ) := lim sup
v→ϕ, t↘0

Eε(vn + tv) − Eε(vn)
t

= 〈vn, ϕ〉H1,2
0 (Ω) −

1
n

∫
{vn �=0}

sign vn

(ε+ vn)α+1
ϕ,

since
∫
{vn(x)=0} |ϕ| = 0. Moreover, since Eε(vn) ≤ Eε(vn + tϕ) + (t/n) ‖ϕ‖, we

have { −A(vn, ϕ) ≤ ‖ϕ‖ /n,
A(vn, ϕ) = −A(vn,−ϕ) ≤ ‖−ϕ‖ /n.

So |A(vn, ϕ)|
‖ϕ‖ ≤ 1

n
for all ϕ, suppϕ ⊂ {vn(x) �= 0}.

We notice that the map ξ:ϕ 
→ A(vn, ϕ), ϕ ∈ H1,2
0 (Ω), belongs to ∂Eε(vn) ⊂

H−1,2(Ω). So if ξn ∈ ∂Eε(vn), and ‖ξ‖ = minn ‖ξn‖, then

‖ξn‖ ≤ |A(vn, ϕ)|
‖ϕ‖ ≤ 1

n
.
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Using the (PS)-condition we get that vn → v in H1,2
0 (Ω), hence Eε(v) = Eε(uε

+).
Moreover, 0 ∈ ∂Eε(v) and

∥∥v − uε
+

∥∥ = ρ. But this is a contradiction since by
Remark 2.11 we know that uε

+ and uε
− = −uε

+ are the only minimum points
of Eε. �

Proposition 4.4. We have that

cε = min
γ∈Γε

max
u∈γ

Eε(u)

is a weak critical point for the functional Eε where

Γε = {γ ∈ C([0, 1], H1,2
0 (Ω)) : γ(0) = uε

+, γ(1) = uε
−}.

Proof. By Lemmas 4.2 and 4.3, using for example the Deformation The-
orem for nonsmooth functionals proved in [5], we get the existence of a weak
critical point uε for Eε. �

The following steps consist on showing that the set {uε}ε>0 of the mountain
pass point for the perturbed functional Eε is bounded in H1,2

0 (Ω). For this
purpose we build a continuous path from uε

+ to uε−. We can connect uε
+ with

u+, and u− with uε
− by segments, so it suffices to construct only a continuous

path which connects u+ with u−. In the following Ω is a bounded open connected
subset of Rn with boundary C2, and α = 2. We can assume that 0 ≤ x1 ≤ 1 for
any x = (x1, . . . , xN ) ∈ Ω. We slice Ω with an hyperplane Iλ = {x : x1 = λ}. To
simplify, we assume that Ω ∩ Iλ is connected.

Definition 4.5. For 0 ≤ λ ≤ 1 we set Ωλ = {x ∈ Ω : 0 ≤ x1 ≤ λ} with
Ω0 = ∅ and Ω1 = Ω. We define uλ

+ such as to be equal to the positive minimum
point of EΩλ on Ωλ, and uλ

+ ≡ 0 in Ω \ Ωλ.

λn

λ

λn λn λ

λ

λ

λ
Ω

n

I I
u(x,y)

x

y

−

−

u

u+

u+

u

Moreover, we define ũλ
+ to be equal to the positive minimum point of EΩ\Ωλ

on Ω \ Ωλ, and ũλ
+ ≡ 0 on Ωλ. Finally

(4.4) uλ =

{
uλ

+ for x ∈ Ωλ,

−ũλ
+ for x ∈ Ω \ Ωλ,

and we call γ̃ the path λ 
→ uλ.
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Here u0 = −u+ = u− and u1 = u+, where u+ is the positive minimum point
of EΩ. We observe also that since Ω is of C2 class, by Remark 2.1 we have that
Ωλ and Ω \ Ωλ are admissible subsets, so the function uλ is well defined.

Lemma 4.6. When λ→ 0, then uλ
+ converges to 0.

Proof. By Remark 2.12 we have(
1
2

+
1
α

) ∥∥uλ
+

∥∥2
= EΩλ(uλ

+) = min
v∈H1

0 (Ωλ)
EΩλ(v).

If we consider the function

dλ(x) = min[(dist(x, ∂Ω))β , (λ− x1)β ] ∈ H1,2
0 (Ωλ)

where 1/2 < β < 1/α, it is easy to see that EΩλ(dλ) → 0 when λ→ 0. �

Lemma 4.7. Let λn ↘ λ0 ∈ ]0, 1[ as n→ ∞. If we denote by un the function
such that un|Ωλn

≡ uλn
+ and by u0 the function such that u0|Ωλ0

≡ uλ0
+ , then un

converges to u0 strongly in H1,2
0 (Ω).

Proof. By Lemma 3.1 we have u1 ≥ u2 ≥ . . . ≥ un ≥ · · · ≥ u0. We set
u(x) = infn un(x). Analogously to Lemma 3.3 we can show that the sequence
{un} is decreasing, hence bounded. Then we can assume that un converges to
u weakly in H1,2

0 (Ω) and punctually a.e. in Ω. Arguing again as in the proof
of Lemma 3.3, by the monotony of {un} we get

∫
Ωλ0

|∇u|2 =
∫
Ωλ0

1/uα. Then
since 1/u(x) ≤ 1/u0(x) for x ∈ Ωλ0 we obtain

EΩλ0 (u) =
(

1
2

+
1
α

) ∫
Ωλ0

1
uα

≤
(

1
2

+
1
α

) ∫
Ωλ0

1
(u0)α

= EΩ0(u0).

By the uniqueness of the positive minimum point of EΩλ0 we get u = u0. So∥∥u0
∥∥ ≤ limn ‖un‖. Moreover, being un the minimum point of EΩλn we get

EΩλn (un) ≤ EΩλ0 (u0) + EΩλn−Ωλ0 (ũn
+) =

(
1
2

+
1
α

)
(
∥∥u0

∥∥2
+

∥∥ũn
+

∥∥2)

where ũn
+ is the positive minimum point of EΩλn−Ωλ0 . In the same way as in

the previous Lemma we have that ũn
+ converges to 0. Then limn ‖un‖2 ≤ ∥∥u0

∥∥2.
So un → u0 strongly in H1,2

0 (Ω). �

At this point, by (4.4) and Lemmas 3.3, 4.7 and 4.6, we get the continuity
of the path

(4.5) γ̃(λ) = uλ,

which links u+ with u−, is continuous.
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Remark 4.8. Let γ1(t) = tuε
++(1−t)u+ where 0 ≤ t ≤ 1. Since the segment

γ1 = [uε
+, u+] is connected in the convex cone C+ of the positive functions, and

Eε is strictly convex in C+, we get

Eε(tuε
+ + (1 − t)u+) ≤ Eε(u+) ≤ E(u+) for all t ∈ [0, 1].

If we consider γ2(t) = tuε
−+(1−t)u− (γ2 = [uε

−, u−]) with 0 ≤ t ≤ 1, analogously
we get

Eε(tuε
− + (1 − t)u−) ≤ Eε(u−) ≤ E(u−) for all t ∈ [0, 1].

Theorem 4.9. The set {uε} of the mountain pass points for the perturbed
functional Eε is bounded in H1,2

0 (Ω). When εk → 0 there exists a subsequence
{uεk

} which converges to u0 weakly in H1,2
0 (Ω). Moreover, E(u0) ≤ max�γ E,

where the path γ̃ is defined by (4.4).

Proof. Step 1. Eε(uε) ≤ max�γ E.
We consider the path γε = [uε

+, u+] ∪ γ̃ ∪ [u−, uε
−]. By Remark 4.8 and by

the definition of the path γ̃ (see (4.4)), we get

Eε(uε) ≤ max
γε

Eε ≤ max
�γ

Eε ≤ max
�γ

E.

Hence ‖uε‖ is bounded.
Step 2. If ε2 < ε1 then Eε1(uε1) ≤ Eε2(uε2).
Indeed by the convexity of Eε on [uε1

+ , u
ε2
+ ] and [uε1− , u

ε2− ] we get

Eε1 (uε1) ≤ max
[u

ε1
+ ,u

ε2
+ ]∪γε2∪[u

ε1
− ,u

ε2
− ]
Eε1 ≤ max

�γε2

Eε1 ≤ max
�γε2

Eε2

for any path γε2 from uε2
+ to uε2− . Hence the claim.

Step 3. There exists a subsequence {uεk
} such that uεk

⇀ u0 weakly in
H1,2

0 (Ω) and E(u0) ≤ max�γ E.
By Step 1 we get the boundedness of ‖uε‖. Hence we get the first claim. So

we can assume that εk is decreasing to 0 and uεk
⇀ u0 weakly in H1,2

0 (Ω). By
Fatou’s Lemma, by Step 2, and by Step 1 we get

E(u0) ≤ lim inf
k

Eεk
(uεk

) = lim
k
Eεk

(uεk
) ≤ max

�γ
E. �

Lemma 4.10. If wε is a weak critical point of EΩ
ε , we get

−∆wε =
signwε

(ε+ |wε|)α+1
χ{wε �=0}

with wε ∈ H2,2(Ω) ∩C1(Ω).

Proof. By (2.7) we have

−∆wε =
γ

(εα+1)
χ{wε=0} +

signwε

(ε+ |wε|)α+1
χ{wε �=0}
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for some γ such that |γ| < 1. So wε ∈ H2,2(Ω) ∩C1(Ω). Since −∆wε(x) = 0 for
all x such that wε(x) = 0, If we suppose that meas({x : wε(x) = 0}) > 0, we get
that 0 = γ/(εα+1). �

Remark 4.11. We consider the open set Ωε
+ = {x : uε(x) > 0}. Then the

restriction ũε of the weak critical point uε on Ωε
+ coincides with the positive

minimum point of the functional E
Ωε

+
ε . Indeed ũε ∈ H1,2

0 (Ωε
+) is a positive

solution of the equation −∆u = 1/(ε+ u)α+1 on Ωε
+, and by the maximum

principle the positive solution of the previous equation is unique, hence the
claim. Then by regularity we get that ũε ∈ C2(Ωε

+).

Remark 4.12. Let uε be a critical point for Eε with Eε(uε) > Eε(uε
+). Then

uε changes sign. By contradiction, we have −∆uε = (1/(ε+ uε)α+1)χ{uε �=0}, if
uε ≥ 0. If ω ⊂⊂ Ω with ∂ω smooth, we get uε ∈ C2(ω), and by the strong
maximum principle uε > 0 on ω. Then, uε > 0 on Ω, and −∆uε = 1/(ε+ uε)α+1.
If uε + ϕ ≥ 0 we get

Eε(uε + ϕ) − Eε(uε) =
1
2

∫
|∇ϕ|2 + (α+ 1)

∫
ϕ2

(ε+ uε + ϑϕ)α+2
≥ 0

with 0 < ϑ < 1. Hence uε �= u+
ε is a minimum point of Eε on the cone of positive

functions. By uniqueness on Remark 2.6 this is a contradiction.

5. Mountain pass points for Eε in the onedimensional case

In this chapter we assume Ω = [0, π]. Let uε be a weak critical point of the
functional EΩ

ε . We define the nodal set of the function uε as

(5.1) Zε := {x ∈ ]0, π[ : uε(x) = 0}.
Firstly we will characterize the nodal set Zε of the weak critical points of Eε.

Next we will show that for the mountain pass points we have #Zε = 1.

Lemma 5.1. It holds

(a) #Zε < ∞ and the elements of Zε divide the interval [0, π] in νε + 1
equal parts, where νε = #Zε.

(b) If uε is a mountain pass point of Eε, then there exists a sequence εk con-
vergent to zero such that uεk

converges to u0 uniformly and the integer
νεk

is constant for εk small enough.

Proof. (a) Given ε, we consider uε. If uε > 0 for x ∈ ]a, b[ with uε(a) =
uε(b) = 0, then −u′′ε (x) = 1/(ε+ uε(x))α+1 for x ∈ ]a, b[. Hence (u′ε(x))

2 −
2/α(uε(x) + ε)−α is a constant on ]a, b[. So

0 < u′ε(a) = −u′ε(b) =

√
2
α

[
1
εα

− 1
(ε+Mε)α

]
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where Mε is the maximum for uε on [a, b]. Then uε changes sign and there exist
c such that uε(x) < 0 for x ∈ ]b, c[ and uε(c) = 0. It is easy to see that c = 2b−a
and uε(x) = −uε(x+ a− b) for b < x < 2b− a. So we have (a).

(b) By Theorem 4.9 there exists a sequence εk → 0 such that uεk
→ u0

uniformly. Hence π/νεk
is a vanishing point of uεk

. Moreover, π/νεk
is bounded

by the uniform convergence of uεk
; this implies that νεk

is constant for εk small
enough. �

In the following uε is a mountain pass point of Eε.

Lemma 5.2. It is false that #Zε is an odd integer larger or equal than 3.

Proof. By contradiction we assume that #Zε ≥ 3. We define the following
function for |t| ≤ 1

(5.2) wε,t =


(1 + t)2/(α+2)uε

(
x

1 + t

)
0 ≤ x ≤ (1 + t)B,

−(1 − t)2/(α+2)uε

(
2B − x

1 − t

)
(1 + t)B ≤ x ≤ 2B,

uε(x) 2B ≤ x ≤ π.

(5.3) wε,−1 =

 −22/(α+2)uε

(
B − x

2

)
0 ≤ x ≤ 2B,

uε(x) 2B ≤ x ≤ π.

(5.4) wε,+1 =

 22/(α+2)uε

(
x

2

)
0 ≤ x ≤ 2B,

uε(x) 2B ≤ x ≤ π.

We will show first that, for |t| ≤ 1,

(5.5) EΩ
ε (wε,t) < EΩ

ε (uε).

By (5.2) we have

EΩ
ε (wε,t) = E[0,(1+t)B]

ε (wε,t) + E[(1+t)B,2B]
ε (wε,t) + E[2B,π]

ε (uε),

so, it suffices to show that E[0,2B]
ε (wε,t) < E

[0,2B]
ε (uε). Now by a changing

variable argument we get

E[0,(1+t)B]
ε (wε,t) =

1
2
(1 + t)(2−α)/(2+α)

∫ B

0

(u′ε(ξ))
2 dξ(5.6)

+
1
α

∫ B

0

(1 + t) dξ
(ε+ (1 + t)2/(α+2)uε(ξ))α

E[(1+t)B,2B]
ε (wε,t) =

1
2
(1 − t)(2−α)/(2+α)

∫ B

0

(u′ε(ξ))
2 dξ(5.7)

+
1
α

∫ B

0

(1 − t) dξ
(ε+ (1 − t)2/(α+2)uε(ξ))α
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4B3BB0 2B

uε

ε,w −1

ε,w 1

ε,w t

Let us define ϕ(t) = E
[0,(1+t)B]
ε (wε,t) + E

[(1+t)B,2B]
ε (wε,t) for |t| < 1. By

(5.6), (5.7) and by the symmetry of uε with respect to the point B, we get
ϕ(0) = E

[0,2B]
ε (uε). By calculating ϕ′(t) and ϕ′′(t) we have that ϕ′(0) = 0 and

ϕ′′(0) < 0. Hence we have

(5.8) E[0,2B]
ε (wε,t) < E[0,2B]

ε (uε), for 0 < |t| < 1,

which implies (5.5). By (5.3) and (5.4) we have also EΩ
ε (wε,±1) < EΩ

ε (uε).
Next we define the following function for |τ | < 1

vε,τ =



uε(x) 0 ≤ x ≤ 2B,

(1 + τ)2/(α+2)uε

(
x− 2B
1 + τ

)
2B ≤ x ≤ (3 + τ)B,

−(1 − τ)2/(α+2)uε

(
4B − x

1 − τ

)
(3 + τ)B ≤ x ≤ 4B,

uε(x) 4B ≤ x ≤ π.

(5.9)

(5.10) vε,−1 =


uε(x) 0 ≤ x ≤ 2B,

−22/(α+2)uε

(
2B − x

2

)
2B ≤ x ≤ 4B,

uε(x) 4B ≤ x ≤ π.

(5.11) vε,+1 =


uε(x) 0 ≤ x ≤ 2B,

22/(α+2)uε

(
B − x

2

)
2B ≤ x ≤ 4B,

uε(x) 4B ≤ x ≤ π.

Arguing as in the previous case, we consider ϕ̃(τ) = EI3
ε (vε, τ) + EI4

ε (vε, τ)
for |τ | < 1, where I3 = [2B, 3B + Bτ ] e I4 = [3B + Bτ, 4B], and we see that
τ = 0 is the unique strict maximum point for ϕ̃. Moreover, by (5.10) and (5.11)
we get

(5.12) E[2B,4B]
ε (vε,±1) < E[2B,4B]

ε (uε).
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To simplify some notation in the following we consider the case #Zε = 3, and
uε positive in [0, B]. Since uε ∈ C1([0, π]) it is easy to verify that the application
Γ:Q→ H1,2

0 ([0, π]) where Q = {(t, τ) : |t| ≤ 1, |τ | ≤ 1}, defined by

Γ(t, τ) = wε,t|[0,2B] + vε,τ |[2B,4B]

is continuous. Here wε,t|[0,2B]
is the restriction of wε,t to the interval [0, 2B] and

zero on the interval [2B, π]. Analogously we define vε,τ |[2B,4B]. Then we have
that

EΩ
ε (Γ(t, τ)) < EΩ

ε (uε), for all (t, τ) ∈ Q \ {0, 0}.
Indeed, EΩ

ε (Γ(t, τ)) = E
[0,2B]
ε (wε,t)+E

[2B,4B]
ε (vε,τ ), then by (5.8) and (5.12) we

get the claim.
Next we consider the continuous path t 
→ Γ(t, t), t ∈ [0, 1], which links

the positive function Γ(1, 1) to uε in H1,2
0 ([0, π]). Moreover, the map {λ 
→

λuε
+ + (1 − λ)Γ(1, 1)}, with 0 ≤ λ ≤ 1, is in the cone of the positive functions

C+. By the convexity of EΩ
ε on C+ and by the fact that uε

+ is the positive
minimum point of EΩ

ε we get EΩ
ε (λuε

+ +(1−λ)Γ(1, 1)) < EΩ
ε (Γ(1, 1)) < EΩ

ε (uε).
Analogously we build a continuous path from uε to uε− such that uε is the

maximum point of EΩ
ε on this path. So finally, since uε is a strict maximum

point for Eε|Γ(Q\{(0,0)}), it is clear that we can build a path from uε
− to uε

+ such
that the maximum of EΩ

ε on this path is strictly smaller than EΩ
ε (uε). And this

is a contradiction since uε is a mountain pass point. �

We can argue analogously in the cases in which #Zε is an even integer larger
than 2. Indeed we have the following

Lemma 5.3. It is false that #Zε is an even integer larger or equal than 2.

Proof. Let us suppose #Zε = 2 and uε > 0 in ]0, B[. Here B = π/3. We
define

(5.13) Γε(t, τ) =



(1 + t)2/(α+2)uε

(
x

1 + t

)
0 ≤ x ≤ (1 + t)B,

−(1 − t+ τ)2/(α+2)uε

(
(2 + τ)B − x

1 − t+ τ

)
(1 + t)B ≤ x ≤ (2 + τ)B,

(1 − τ)2/(α+2)uε

(
3B − x

1 − τ

)
(2 + τ)B ≤ x ≤ 3B.

Γε(−1, 1) = −32/(α+2)uε

(
B − x

3

)
0 ≤ x ≤ 3B,

Γε

(
1
2
,−1

2

)
=


(

3
2

)2/(α+2)

uε

(
2
3
x

)
0 ≤ x ≤ 3

2
B,(

3
2

)2/(α+2)

uε

(
B − 2

3
x

)
3
2
B ≤ x ≤ 3B,
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where (t, τ) ∈ Q̃. Here

Q̃ = {(t, τ) : |t| < 1, |τ | < 1, τ > t− 1} ∪ {(−1, 1), (1/2,−1/2)}.

Since α < 2 and uε ∈ C1([0, π]), is is easy to see that Γε: Q̃ → H1,2
0 ([0, π]) is

continuous. By calculations of the same type as in those of Lemma 5.2 we can
verify that (0, 0) is the unique maximum point of Eε on Γε(Q̃) since

Eε(Γε(t, τ)) = [(1 + t)(2−α)/(2+α) + (1 − τ)(2−α)/(2+α) + (1 − t+ τ)(2−α)/(2+α)]

·
∫ B

0

(u′ε(ξ))
2 dξ +

1 + t

α

∫ B

0

dξ

(ε+ (1 + t)2/(2+α)uε(ξ))α

+
1 − τ

α

∫ B

0

dξ

(ε+ (1 − τ)2/(2+α)uε(ξ))α

+
1 − t+ τ

α

∫ B

0

dξ

(ε+ (1 − t+ τ)2/(2+α)uε(ξ))α
.

Moreover, we can consider the segment which links the positive function Γε(1/2,
−1/2) to the uε

+ in the cone C+ of the positive functions of H1,2
0 ([0, π]), and

the segment which links the negative function Γε(−1, 1) to the uε
− in the cone

of the negative functions. So we can build a path from uε
+ to uε

− such that the
maximum of EΩ

ε on this path is strictly smaller than EΩ
ε (uε).

3B
2

0 2B 3BB

1
2

1
2Γ(    ,−   )

Γ −1,1(        )

Γ τ(t,  )

uε

This is a contradiction since uε is a mountain pass point. By Lemma 5.2 and
the previous argument we can prove that #Zε is not an even integer. �

At this point we can characterize variationally the function u0 which was
found as the weak limit in H1,2

0 ([0, π]), as ε → 0, of the sequence of mountain
pass points {uε} (see Theorem 4.9).
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Theorem 5.4. The function u0 (defined in the Theorem 4.9) is such that
u0|[0,π/2] = u

[0,π/2]
+ , u0|[π/2,π] = −u[π/2,π]

+ , where u[0,π/2]
+ and u[π/2,π]

+ are respec-
tively the positive minimum points of E[0,π/2] and E[π/2,π]. Moreover,

E[0,π](u0) = inf
γ∈A

max
γ

E[0,π]

where A = {γ: [0, 1] → E [0,π] is continuous γ(0) = u+, γ(1) = −u+}.

Proof. Step 1. u0 changes sign and the only vanishing point in ]0, π[ is π/2.
The restriction of u0 either to ]0, π/2[ or ]π/2, π[ is of C2 class and it satisfies
the equation −u′′0 = 1/|u0|α+1 signu0.

By Lemmas 5.2 and 5.3 and by the existence of a subsequence of uε conver-
gent to u0 in C0-sense (see Theorem 4.9), we get that the only vanishing point
of u0 in ]0, π[ is π/2. Hence for any ϕ ∈ C∞

0 (]0, π/2[) we get∫ π/2

0

u′εϕ
′ =

∫ π/2

0

1
(ε+ uε)α+1

ϕ.

When ε→ 0, by the existence of a subsequence of uε convergent to u0 in C0-sense
and in H1,2

0 (Ω) we get∫ π/2

0

u′0ϕ
′ =

∫ π/2

0

1
uα+1

0

ϕ, for all ϕ ∈ H1,2
0 (Ω).

Hence u0 is a weak solution of −u′′0 = 1/uα+1
0 in the interval [δ, π/2 − δ] for all

δ > 0. Thus, by a regularity argument we have that u0 is of class C2 in ]0, π/2[.
Hence, the claim.

Step 2. The function u0 is the maximum point of the functional E[0,π] re-
stricted to the path γ̃, where γ̃(t) represents a function made by gluing together
the positive minimum point of E[0,π/2(1+t)] with the negative minimum point of
E[π(1+t)/2,π].

Indeed if we consider

u0,t =


(1 + t)2/(α+2)u0

(
x

1 + t

)
0 ≤ x ≤ (1 + t)

π

2
,

−(1 − t)2/(α+2)u0

(
π

2
+
x− (1 + t)π

2

1 − t

)
(1 + t)

π

2
≤ x ≤ π.

we obtain that γ̃(t) = u0,t and

E[0,π](u0,t) = [(1 + t)(2−α)/(2+α) + (1 − t)(2−α)/(2+α)]E[0,π/2](u0).

Then, 0 is a maximum point for the map {t 
→ E[0,π](u0,t)}.
Step 3. E[0,π](u0) = infγ∈A maxγ E

[0,π].
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If L = infγ∈A maxγ E � E(u0), then there exists γ̂ ∈ A such that max�γ E <

E(u0). Now if we consider the path γ̂ε = [uε
+, u+]∪γ̂∪[u−, uε

−]. By the convexity
of Eε on [uε

+, u+] and [u−, uε
−] we get

Eε(uε) ≤ max
�γε

Eε = max
�γ

Eε ≤ max
�γ

E = E(u0).

Hence supεEε(uε) < E(u0). Arguing as in the Step 3 of Theorem 4.9, by the
fact that max�γ E = E(u0), we have

E(u0) ≤ sup
ε
Eε(uε) ≤ max

�γ
E = E(u0).

And this is a contradiction. �

6. Saddle points of Eε in the onedimensional case

If we divide the interval [0, π] is equal parts, Ii, we prove that the function,
made by gluing together the minimum points of EIi

ε , with alternate sign, is a
saddle point of E[0,π]

ε .

Definition 6.1. Let Ii = [(i− 1)π/(n+ 1), iπ/(n+ 1)], i = 1, . . . , n + 1,
n ∈ N, be the equal subintervals of [0, π]. We define the functions u(n)

ε such that

u(n)
ε |Ii := (−1)(i+1)uε,i

+ for all n ∈ N

where uε,i
+ is the positive minimum point of EIi

ε .

To simplify the notation we consider the case n = 2.

Remark 6.2. By (2.7) we can verify that u(2)
ε is a weak critical point of Eε.

By the following inequality we get that ||u(2)
ε || is bounded:

(6.1) E[0,π]
ε (u(2)

ε ) ≤
2∑

i=1

EIi(uIi
+).

Now using Definition 6.1 and Remark 2.13 we get that u(2)
ε converges to u(2)

weakly in H1,2
0 ([0, π]) as ε→ 0, and u(2)|Ii = (−1)i+1uIi

+ .
At this point we define Γ̃ε(t, τ) as in (5.13)

(6.2) Γ̃ε(t, τ) =



(1 + t)2/(α+2)u(2)
ε

(
x

1 + t

)
0 ≤ x ≤ (1 + t)B,

−(1 − t+ τ)2/(α+2)u(2)
ε

(
(2 + τ)B − x

1 − t+ τ

)
,

(1 + t)B ≤ x ≤ (2 + τ)B,

(1 − τ)2/(α+2)u(2)
ε

(
3B − x

1 − τ

)
, (2 + τ)B ≤ x ≤ 3B,
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where u
(2)
ε takes the place of uε. Here B = π/3. Since u

(2)
ε ∈ C1([0, π]) ∩

H2,2([0, π]) and u
(2)
ε is a weak critical point of Eε, we get that Γ̃ε: [−1, 1] ×

[−1, 1] → H1,2
0 ([0, π]) is of C1 class. Hence the following functions

vε
1 := lim

t→0

Γ̃ε(t, 0) − u
(2)
ε

t
, vε

2 := lim
τ→0

Γ̃ε(0, τ) − u
(2)
ε

τ
,

are well defined and we get

(6.3) vε
1 =



2
2 + α

u(2)
ε (x) − x(u(2)

ε )′ 0 ≤ x ≤ π

3
,

− 2
2 + α

u(2)
ε

(
2π
3

− x

)
−

(
2π
3

− x

)
(u(2)

ε )′
(

2π
3

− x

)
π

3
≤ x ≤ 2π

3
,

0
2π
3

≤ x ≤ π,

(6.4) vε
2 =



0 0 ≤ x ≤ π

3
,

− 2
2 + α

u(2)
ε

(
2π
3

− x

)
−

(
x− π

3

)
(u(2)

ε )′
(

2π
3

− x

)
π

3
≤ x ≤ 2π

3
,

− 2
2 + α

u(2)
ε (π − x) + (π − x)(u(2)

ε )′(π − x)
2π
3

≤ x ≤ π.

Let us consider the subspace V ε of H1,2
0 ([0, π]) spanned by vε

1 and vε
2. Then we

have that H1,2
0 ([0, π]) = V ε ⊕W , where

(6.5) W = {w ∈ H1,2
0 ([0, π]) : w(π/3) = w(2π/3) = 0}.

Indeed for u ∈ H1,2
0 ([0, π]) we have u = c1v

ε
1 + c2v

ε
2 + w where w ∈W and

c1 =
u(π/3)
v1(π/3)

, c2 =
u(2π/3)
v2(2π/3)

.

Lemma 6.3. The function u(2)
ε is the unique 2-saddle point of the functional

Eε, i.e.

(6.6) Eε(u(2)
ε ) = inf

φ∈Aε

sup
|t|2+|τ |2≤ρ2

Eε(φ(Γ̃ε(t, τ)))

for some ρ > 0, where

Aε = {φ: Γ̃ε(Bρ(0)) → H1,2
0 ([0, π]) | φ continuous, φ|�Γε(∂Bρ(0)) = id}.

Here Bρ(0) = {(t, τ) ∈ R × R : |t|2 + |τ |2 ≤ ρ2}.
Proof. By Definition 6.1 and by (6.5) we have

(6.7) Eε(u(2)
ε + w) ≥ Eε(u(2)

ε ) for all w ∈W.
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By formulas (6.2), (6.3) and (6.4) we get

(6.8) Γ(t, τ) = u(2)
ε + tv1 + τv2 + o(t, τ).

Analogously as in the proof of Lemma 5.3 we have that u(2)
ε is the unique max-

imum point of Eε on Γ̃ε(Bρ(0)) for ρ small enough. By a version of the Saddle
Point Theorem for locally Lipschitz functionals we get that u(2)

ε is a saddle point
for Eε satisfying (6.6).

At this point we prove that u(2)
ε is the unique two-saddle point of Eε, i.e. it

is the unique saddle point of Eε satisfying (6.6).
If wε is a saddle point satisfying (6.6), then it is a weak critical point for Eε,

hence by Lemma 5.1 and Remark 4.11 we have that the vanishing point of wε

divide the interval [0, π] in a finite number νε of equal parts Ii, and

wε|Ii
= (−1)i+1uε,i

+

where uε,i
+ is the positive minimum point of EIi

ε . If we argue as in Lemma 5.2
and 5.3 we can verify that the number of the vanishing points of wε is exactly 2.
We use respectively for νε ≥ 4 the function

Γ̃(t, τ, s)(x)

=



(1 + t)2/(2+α)u(2)
ε

(
x

1 + t

)
0 ≤ x ≤ (1 + t)B,

−(1 − t+ τ)2/(2+α)u(2)
ε

(
(2 + τ)B − x

1 − t+ τ

)
(1 + t)B ≤ x ≤ (2 + τ)B,

(1 − τ)2/(2+α)u(2)
ε

(
3B − x

1 − τ

)
(2 + τ)B ≤ x ≤ 3B,

−(1 + s)2/(2+α)u(2)
ε

(
x− 3B
1 + s

)
3B ≤ x ≤ (4 + s)B,

(1 − s)2/(2+α)u(2)
ε

(
5B − x

1 − s

)
(4 + s)B ≤ x ≤ 5B,

uε(x) x ≥ 5B,

and for νε = 3 the function

Γ̃(t, τ, s)(x)

=



(1 + t)2/(2+α)u(2)
ε

(
x

1 + t

)
0 ≤ x ≤ (1 + t)B,

−(1 − t+ τ)2/(2+α)u(2)
ε

(
(2 + τ)B − x

1 − t+ τ

)
(1 + t)B ≤ x ≤ (2 + τ)B,

(1 − τ + s)2/(2+α)u(2)
ε

(
(3 + s)B − x

1 − τ + s

)
(2 + τ)B ≤ x ≤ (3 + s)B,

−(1 − s)2/(2+α)u(2)
ε

(
4B − x

1 − s

)
(3 + s)B ≤ x ≤ 4B,
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with B = π/νε. So the number of vanishing point of wε is 2, hence wε = u
(2)
ε .�

Now we get a property which characterizes the solutions of (1.1) found in [15]
which are made by gluing together the minimum point of the functionals EIi

where Ii = [(i− 1)π/(n+ 1), iπ/(n+ 1)].

Theorem 6.4. The function u
(2)
0 ∈ H1,2

0 ([0, π]), such that u(2)|Ii = uIi
+ ,

with Ii = [(i− 1)π/3, iπ/3], i = 1, 2, 3, can be characterized as the weak limit in
H1,2

0 ([0, π]), as ε tends to zero, of u(2)
ε , which is the unique 2-saddle point of Eε.

Moreover,

(6.9) E[0,π](u(2)
0 ) = inf

φ∈A0
max

|t|2+|τ |2≤ρ2
E[0,π](φ(Γ0(t, τ)))

for some ρ > 0, where

A0 = {φ: Γ0(Bρ(0)) → E [0,π] | φ continuous, φ|Γ0(∂Bρ(0)) = id}.

Proof. By Remark 6.2 and Lemma 6.3 we get the first claim. Now we prove
(6.9). Firstly we define

(6.10) Γ0(t, τ) =



(1 + t)2/(α+2) u
(2)
0

(
x

1 + t

)
0 ≤ x ≤ (1 + t)B,

−(1 − t+ τ)2/(α+2)u
(2)
0

(
(2 + τ)B − x

1 − t+ τ

)
(1 + t)B ≤ x ≤ (2 + τ)B,

(1 − τ)2/(α+2)u
(2)
0

(
3B − x

1 − τ

)
(2 + τ)B ≤ x ≤ 3B,

with |t| ≤ 1, |τ | ≤ 1 and B = π/3. We get

E[0,π](Γ0(t, τ)) = [(1 + t)(2−α)/(2+α) + (1 − t+ τ)(2−α)/(2+α)

+ (1 − t)(2−α)/(2+α)]E[0,π/3](u(2)
0 ).

Then (0, 0) is the unique maximum point for the functional

(t, τ) 
→ E[0,π](Γ0(t, τ)) with |t| ≤ 1 and |τ | ≤ 1.

So max|t|2+|τ |2≤ρ2 E[0,π](Γ0(t, τ)) = E[0,π](u(2)
0 ).

Moreover, given ε > 0, we show that it exists an homeomorphism between
the sets S1{tvε

1+τvε
2 ∈ V ε : |t|2+ |τ |2 ≤ ρ2} and S2 = {Γ0(t, τ) : |t|2+ |τ |2 ≤ ρ2},

for some ρ > 0. We set

PV ε(Γ0(t, τ)) := αε(t, τ)vε
1 + βε(t, τ)vε

2

where PV ε :H1,2
0 ([0, π]) → V ε is the projection onto V ε. We have

αε(t, τ) =
Γ0(t, τ)(π/3)

−(π/3)(u(2)
0 )′(π/3)

, βε(t, τ) =
Γ0(t, τ)(2π/3)

−(2π/3)(u(2)
0 )′(2π/3)

,

αε(0, 0) =0, βε(0, 0) = 0.
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Using (6.10) we get that the operator (t, τ) 
→ (αε(t, τ), βε(t, τ)) is an homeo-
morphism between the sets S1 and S2, for t and τ such that |t|2 + |τ |2 ≤ ρ2, for
some ρ > 0. By Definition 6.1 and by the definition of the subspaceW (see (6.5))
we have

E[0,π](u(2)
0 + w) =

3∑
i=1

EIi(u(2)
0 + w) ≥ E[0,π](u(2)

0 ).

By a well-known argument of the topological degree we have that

φ(Γ0(Bρ(0))) ∩W �= ∅

for any φ: Γ0(Bρ(0)) → H1,2
0 ([0, π]) continuous with φ|Γ0(∂Bρ(0)) = id. Then

max
|t|2+|τ |2≤ρ2

E[0,π](φ(Γ0(t, τ))) ≥ E[0,π](u(2)
0 ).

By the fact that max|t|2+|τ |2≤ρ2 E[0,π](Γ0(t, τ)) = E[0,π](u(2)
0 ) we get the claim.�

Remark 6.5. For u(n)
ε with n > 2, the generalization of Lemma 6.3 and

Theorem 6.4 are straightforward. So we can characterize the saddle points of
E

[0,π]
ε by their nodal set. For n-saddle point of E[0,π]

ε we mean a saddle point of
E

[0,π]
ε with respect to the decomposition ofH1,2

0 ([0, π]) of the type: H1,2
0 ([0, π]) =

V̂ ⊕ Ŵ , with dim V̂ = n.

Theorem 6.6. The function u
(n)
0 ∈ H1,2

0 ([0, π]), such that u(n)
0 |Ii = uIi

+ ,
with Ii = [(i− 1)π/(n+ 1), iπ/(n+ 1)], i = 1, . . . , n + 1, can be characterized
as the weak limit in H1,2

0 ([0, π]), as ε tends to zero, of u(n)
ε which is the unique

n-saddle point of Eε. Moreover,

E[0,π](u(n)
0 ) = inf

φ∈A0
max�

n
i=1 |ti|2≤ρ

E[0,π](φ(Γ0(t1, . . . , tn))),

where A0 = {φ: Γ0(Bρ(0)) → E [0,π] | φ continuous, φ|Γ0(∂Bρ(0)) = id}. Here
Bρ(0) = {t := t1, . . . , tn :

∑n
i=1 |ti|2 ≤ ρ2} and

Γ0(t) =



(−1)2(1 + t1)2/(α+2)u
(n)
0

(
x

1 + t1

)
0 ≤ x ≤ (1 + t1)B,

(−1)3(1 − t1 + t2)2/(α+2)u
(n)
0

(
(2 + t2)B − x

1 − t1 + t2

)
(1 + t1)B ≤ x ≤ (2 + t2)B,

(−1)4(1 − t2 + t3)2/(α+2)u
(n)
0

(
(3 + t3)B − x

1 − t2 + t3

)
(2 + t2)B ≤ x ≤ (3 + t3)B,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(−1)n+2(1 − tn)2/(α+2)u
(n)
0

(
(n+ 1)B − x

1 − tn

)
(n+ tn)B ≤ x ≤ (n+ 1)B.
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Here B = π/(n+ 1).

Remark 6.7.Using the definition of McKenna and Reichel introduced in [15],
if we denote by Z = {π/(n+ 1), 2π/(n+ 1), . . . , nπ/(n+ 1)}, we have

d2

dt2
u

(n)
0 (t) + PVZ(u(n)

0 )−(α+1)(t) = 0,

u
(n)
0 (iπ/(n+ 1)) = 0, i = 1, . . . , n+ 1,

where PVZ stands for the principal value centered at π/(n+ 1), 2π/(n+ 1), . . . ,
nπ/(n+ 1), i.e.

〈PVZϕ, ψ〉 = lim
ρ→0

∫ π/(n+1)−ρ

0

+
∫ 2π/(n+1)−ρ

π/(n+1)+ρ

+ . . .+
∫ π

nπ/(n+1)+ρ

ϕ(t)ψ(t) dt

for all ψ ∈ C∞
0 ([0, π]).
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