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ON THE TOPOLOGY OF THE EIGENFIELDS

Vladimir I. Arnold

Dedicated to the memory of Olga A. Ladyzhenskaya

Abstract. Topological properties of the eigenfields dependence on the

eigenvalue position is discussed for the cases, where the variety of the eigen-
field vanishing does not divide the oscillating domain into pieces.

1. Introduction

R. Courant had proved that the zero level set of the n-th eigenfunction sub-
divides the oscillating domain in at most n connected components.

In the present note we consider the eigenfields case, where the zero level set’s
codimension is larger and where it does not subdivide the oscillating domain.
For instance, if the field’s components number is equal to the oscillating domain
dimension the zeros places are generically isolated points. The theorem, proved
below, provides some information on the topological complexity of this picture,
depending on the eigenfields number (in the natural ordering λ1 ≤ λ2 ≤ . . . of
the eigenvalues of the minus Laplace operator, where each eigenvalue is repeated
according to its multiplicity, providing the number n of an eigenvalue λ to be
the maximal m, for which λm = λ).

Consider a closed connected two-dimensional Riemannian manifold M and
two eigefunctions u, v of the Laplace operator on it with the same eigenvalue Λ
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of the minus Laplace operator:

∆u = −Λu, ∆v = −Λv.

Definition. A connected component of the domain

G = {z ∈ M : u(z)v(z) 6= 0}

is called positive, if the integral of the scalar product of the gradients of the
functions u2 and v2 along the domain G is not negative.

Theorem. The number N of the positive connected components of the do-
main G does not exceed the number n of the (independent) eigenfields, for which
the number of the minus Laplace operator eigenvalue does not exceed the num-
ber 2Λ:

N ≤ n(2Λ).

The number N measures in some sense the topological complexity of the
mapping t:G → P 1 of the domain G into the projective line of the directions on
the plane with coordinates u and v:

t(z) = [v(z):u(z)].

The topological complexity of the mapping t might be evaluated by the degree
of the natural mapping to P 1 of the one-dimensional complex, whose points are
the connected components of the level lines t−1(T ) for T ∈ P 1.

Remark 1. I do not know, whether the total number Ñ of all the connected
components of the domain G is bounded in terms of Λ. One might imagine the
eigenfields, having small number n(Λ), defining domains G with arbitrary large
numbers of the connected components (and of the zeros) for the convenient
metrics on S2 or on T 2.

Remark 2. The conjectures on the boundedness of the topological complex-
ity (in terms of the eigenvalue number) had been formulated by the author many
times (see, e. g.,[2] and [3], containing also some ideas of such bounds, different
from those, discussed in the present article).

In the general case of an m-dimensional field on a d-dimensional manifold
the zeros set is generically of dimension d−m, and for d > m one should bound
rather the d−m-dimensional Betti number then the zeros number.

Of course, the fields are in the general case sections of a bundle with a d-
dimensional base space and an m-dimensional fiber (describing, for instance, the
oscillations of a d-dimensional manifold in its d + m-dimensional neighbouring).

The bound should be provided by the eigenfield’s number in the space of the
fields, rather than functions. In the case of an oscillating domain with boundary
one should consider the eigenfields verifying some boundary conditions, providing
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the usual variational description of the eigenvalues, as being the critical values
of some quadratic form (generalizing the Dirichlet form) along the constancy
sphere of the second form (generalizing the function square’s integral).

Below we shall only discuss the 2-dimensional case, m = d = 2, on a closed
manifold with no boundaries (the periodic boundary conditions case being in-
cluded).

The zeros of the field will be supposed to be nondegenerated, the set of the
zeros will be therefore a smooth manifold of dimension d−m (of dimension zero
in our case). Even when m = d, the degeneration is able to produce the zeros
set of dimension, greater than d−m (or to produce singularities of this set).

Already in the infinitely-degenerated case (of dimension greater that d−m of
the zeros set) one may hope to find the upper bounds, say, for the number of the
connected components of the zeros set (or for the d−m-dimensional Betti number
of this manifold, whose dimension exceeds d−m), but these degenerations will
not be studies in the present article.

A topological study of the degenerations of the zero level line of an eigenfunc-
tion of the Laplace operator on a two-dimensional manifold had been published
by V. N. Karpushkin ([4], [5]). He proved, in particular, that the number of
the (simplest) singular points does not exceed the eigenfunction number if the
oscillating surface Euler characteristic vanishes.

However, already in dimension 3 there are no published bounds for the num-
bers (and for the multiplicities) of the zeros surface singularities of an eigenfunc-
tion.

It is interesting, however, that these singularities are the same, as those of the
harmonic functions zeros sets. In the case of the oscillating surfaces Karpushkin
associated to each singular point some multiplicity, similar to the Milnor number,
but these multiplicities are still to be described in dimension 3 or higher.

In the case, when the number m of the components of the field exceeds the
oscillating domain dimension, it is natural to expect some Sturm theory type
bounds for the linking numbers of the field’s graph with the zero section in
terms of the eigenvalue, but these bounds had not been published yet (these
generalized linking numbers are interesting homotopical invariants, rather than
numbers, if m > d + 1).

2. The variational method of the estimation
of the topological complexity of the eigenfield

The eigenfunctions (or eigenfields) of the minus Laplace operator with the
eigenvalue Λ verify the relation between the Dirichlet integral and the Hilbert
integral ∫

(∇u)2 ds = Λ
∫

u2 ds,
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being the eigenvectors of the Dirichlet quadratic form with respect to the Hilbert
space metrics form in the space of the functions (of the fields).

Consider the integral

(2.1) IΛ[u] =
∫

(∇u)2 ds− Λ
∫

u2 ds.

In terms of this quadratic functional the eigenvalue Λ has the following (evi-
dent) variational definition: if the integral IΛ is nowhere positive on some N -
dimensional real vector subspace of the space of the fields u then N ≤ n (a vector
subspace of dimension n, where IΛ[a] ≤ 0, does exist: it is generated by the
eigenfields, whose eigenvalues of the minus Laplace operator, do not exceed Λ).

Therefore, finding N different places, in which neighbourhoods one is able
to construct the fields, at which the functional IΛ is nonpositive, one deduces,
that N ≤ n: the number N of such nonpositivity places is bounded from above by
number n of the eigenvalue Λ (counting the eigenvalues taking the multiplicities
into account).

We shall now show, that the positive connected components of the comple-
ment to the union of the level lines ({u = 0}, {v = 0}) of two eigenfunctions
with the same eigenvalue Λ are such nonpositivity places:

N ≤ n(2Λ),

as is stated in the above theorem.

Remark. Simple topological reasoning below relates the total number Ñ of
the connected components of the manifold {uv 6= 0} to the number d0 of the
points of the (transversal) intersection of the curves {u = 0} and {v = 0}.

Topological Lemma. If two closed smooth curves {u = 0} and {v = 0}
on a smooth closed surface of Euler characteristic χ intersect transversally, the
intersection points number being α0, then holds the inequality(

α0 =
( eN∑

i=1

χi

)
− χ

)
≤ (Ñ − χ),

where Ñ is the number of the connected components of the manifold {uv 6= 0}
and where the numbers χi are the Euler characteristics of these connected com-
ponents.

The lemma is proved below, in Section 4.
We get from the lemma an upper bound for the number α0 of the zeros of

the eigenfield (u, v):
α0 ≤ Ñ − χ,

which would provide the upper bound for α0 in terms of the eigenvalue Λ when-
ever the connected components number Ñ would be bounded in terms of Λ.
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3. The proof of the upper bound
for the number of the positive connected components

Fixing a positive connected component, define the function

w =

{
uv in the fixed connected component,

0 otherwise.

We shall see, that the value of the quadratic functional I2Λ at this function is
nonpositive: I2Λ[w] ≤ 0.

The variational method of Section 2 provides then the inequality

N ≤ n(2Λ),

bounding the number N of such positive components.
To calculate the value of the quadratic form I2Λ on the function w, note, that

w = 0 on the boundary of the intergration domain. Therefore, the intergration
by parts inside this domain provides the identity

(3.1)
∫

(∇w)2 ds = −
∫

w(∆w) ds.

We shall also use the identity

(3.2) ∆(uv) = u(∆v) + v(∆u) + 2(∇u,∇v),

following from the product’s gradient calculation,

∇(uv) = u(∇v) + v(∇u),

taking into account the divergences of the summands:

div(u grad v) = u(div grad v) + (gradu, grad v) = u(∆v) + (∇u,∇v).

Now apply these formulas to calculate the quadratic form I2Λ value at the
function w. Formulas (2.1), (3.1), (3.2) imply the expressions

I2Λ[w] =
∫

(∇w)2 ds− 2Λ
∫

w2 ds = −
∫

w(∆w) ds− 2Λ
∫

w2 ds

= −
∫

uv
(
u(∆v) + v(∆u)

)
ds− 2

∫
uv(∇u,∇v) ds− 2Λ

∫
u2v2 ds.

In the case ∆u = −Λu, ∆v = −Λv we deduce, that

I2Λ[w] =
∫

Λuv uv ds +
∫

Λvu uv ds− 2Λ
∫

v2u2 ds− 2
∫

vu(∇u,∇v) ds

= −2
∫

vu(∇u,∇v) ds.

The last integral is nonnegative, since we integrate along a positive component.
Thus, the quadratic form value I2Λ[w] is nonpositive, and therefore N ≤ n(2Λ)
according to the variational method of Section 2. The theorem is thus proved.
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Remark. The theorem remains valid for m ≤ d eigenfunctions on a d-
dimensional manifold having the same eigenvalue Λ of the minus Laplace op-
erator: the number of the positive connected components of the complement to
the union of the m zero level hypersurfaces of the m eigenfunctions does not
exceed the number n(mΛ) of the (independent) eigenfields, whose eigenvalues do
not exceed the quantity mΛ: N ≤ n(mΛ). The positivity of the connected com-
ponent means here the nonnegativity of the integral along this component of the
following function

Q =
∑

i<j≤m

[( ∏
k 6=i,j

(u2
k)

)
(∇(u2

i ),∇(v2
j ))

]
.

The proof differs from the one presented above (for m = d = 2) only in the use
of the following formula for the Laplacian of the product:

∆
( m∏

i=1

ui

)
=

m∑
i=1

(( ∏
k 6=i

uk

)
(∆ui)

)
+ 2

∑
i<j

(( ∏
k 6=i,j

uk

)
(∇ui,∇uj)

)
.

In the case of the eigenfunctions, for which

∆ui = −Λiui,

the preceding identity provides for w =
∏m

i=1(ui) the quadratic form value

−w(∆w) =
( m∑

i=1

Λi

) ( m∏
j=1

u2
j

)
− 2Q.

For m equal eigenvalues Λi ≡ Λ we get for the coefficients of the term w2,
written above, the value

∑m
i=1 Λi = mΛ. It provides the upper bound n(mΛ) for

the connected components number, since the integral of −2Q along our positive
domain is non positive.

The method, described above, provides also the upper bounds for the num-
bers of the connected components of the subsets of the m-fold product of the
oscillating domain with itself, the subsets being defined either by the condition(
u1(x1)u2(x2) . . . um(xm)

)
6= 0, or by the condition det

(
ui(xj)

)
6= 0.

The second condition is related to the Fermi–Dirac antisymmetric eigenfunc-
tions of an m-particles system and with the upper bound of the topological
complexity of the linear combinations of the eigenfunctions, corresponding to
different eigenvalues.

These upper bounds include rather the products, than the sums, of the num-
bers n(mΛ) since one have to consider rather the tensor products of the eigen-
functions spaces, than their direct products.

The upper bound, published in [1] of the number of the connected compo-
nents of the domain, where a linear combination of the eigenfunctions is different
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from zero (by the highest number of the eigenfunction, involved in the combina-
tion) is wrong for d > 1, as O.Viro had shown already for the spherical functions
on S2, when I had explained him the real algebraic geometry corollaries of the
bounds of [1].

4. Topological bounds

To prove the topological Lemma, formulated in Section 2, denote by α1 the
number of the segments, into which the intersection points subdivide the union
of the two curves {u = 0} and {v = 0} (intersecting transversally).

The Euler characteristics additivity implies the (Euler) identity

(4.1) α0 − α1 +
∑

χi = χ.

The α1 segments have 2α1 ends. The ends number is also equal to 4α0, each
transversal intersection point being the end point of four connected parts of the
intersecting curves.

Thus, 2α1 = 4α0, α1 = 2α0, and therefore the identity (4.1) takes the form
α0− 2α0 +

∑
χi = χ, that is the form α0 = (

∑
χi)−χ, proving the Topological

Lemma of Section 2, since the Euler characteristic χi of each of the Ñ connected
components of the complement to the union of the curves does not exceed one,
and thus

∑
χi ≤ Ñ .

Remark. In the case of 2 eigenfunctions (u, v) on a three-dimensional ori-
ented closed connected manifold (where m = 2, d = 3 in the notation of Sec-
tion 2) our reasoning also provides some upper bound for the number of the
smooth intersection curves of the eigenfunctions vanishing surfaces, {z : u(z) =
v(z) = 0}.

The number of the curves of zero level of both eigenfunctions does not exceed
the sum Ñ + (b1)/2, where b1 denotes the one-dimensional Betti number of the
zeros surface of one of the eigenfunctions, Ñ being the number of the connected
components of the domain {z : u(z)v(z) 6= 0}.

To prove this bound, note, that if the eigenfunction v is sufficiently close
to u, then the different connected components of the surface {z :u(z)=0, v(z) 6=
0} generate different small semineighbourhood components, forming different
connected components of the three-dimensional manifold {z : u(z)v(z) 6= 0}.

We obtain this way the upper bound for the number of the connected closed
curves {u = v = 0}, being the sum of the number Ñ of the three-dimensional
components and of the dimension of the image of the mapping from the one-
dimensional homology space of the curves union into the one-dimensional ho-
mology space of the surface {u = 0}.
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The dimension of this image does not exceed the number (b1)/2, since a sur-
face of genus g = (b1)/2 carries no sets of g + 1 mutually disjoint closed curves
(which property had been the Riemann initial definition of the genus).

Unfortunately, I have no universal bound for the Betti number b1 (of the
zeros surface of an eigenfunction) in terms of the eigenvalue. I do not know,
whether this number b1 might be arbitrary large for a suitable choice of the
Riemann metrics (say, on S3 or on T 3) for the eigenfunction, whose eigenvalue
number is small (even for the first nonconstant eigenfunction).

The author is greatefull to the reviewer, who insisted that the positivity
condition should be carefully discussed.
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