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ON RANDOM COINCIDENCE POINT THEOREMS

Naseer Shahzad

Abstract. Some random coincidence point theorems are proved. The

results of Benavides et. el. [2], Itoh [8], Shahzad and Latif [23], Tan and
Yuan [24] and Xu [25] are either extended or improved.

1. Introduction

The fundamental theory of random operators is an important branch of sto-
chastic analysis and plays a key role in many applied areas. Random fixed point
theory is the core arround which the theory of random operators has developed.
The systematic study of random fixed points was initiated by the Prague school
of probabilists about fifty years ago. However, it received the attention after
the appearance of the survey paper by Bharucha–Reid [3] in 1976. Since then
this discipline has been developed further, in which several results were estab-
lished in the general framework and many applications presented. We refer the
reader to Beg and Shahzad [1], Benavides, Acedo and Xu [2], Itoh [8], Lin [12],
Liu [13], O’Regan [15], O’Regan and Shahzad [16], Papageorgiou [17, 18], Sehgal
and Singh [20], Shahzad [21], Shahzad and Latif [23], Tan and Yuan [24] and
Xu [25].

Random coincidence point theorems are stochastic generalizations of classical
coincidence point theorems. Recently, Shahzad and Latif proved in [23] a random
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coincidence point theorem for a pair of commuting random operators. The aim
of this note is to prove some coincidence point theorems for a new class of non-
commuting random maps. We also obtain a random common fixed point theorem
for a pair of R-subweakly commuting random maps. Our results improve and
extend the work of Benavides, Acedo and Xu [2], Itoh [8], Shahzad and Latif [23],
Tan and Yuan [24] and Xu [25].

2. Preliminaries

Let (Ω,Σ) be a measurable space and M a subset of a Banach space X =
(X, ‖ · ‖). Let 2M denote the family of all nonempty subsets of M , CB(M) all
nonempty closed bounded subsets of M , K(M) all nonempty compact subsets
of M , and WK(M) all nonempty weakly compact subsets of M , respectively.

A multifunction T : Ω → 2M is called measurable if, for any open subset C

of M ,
T−1(C) = {ω ∈ Ω : T (ω) ∩ C 6= φ} ∈ Σ.

Let ξ: Ω → M be a mapping. Then ξ is called a measurable selector of a multi-
function T : Ω → 2M if ξ is measurable and ξ(ω) ∈ T (ω) for each ω ∈ Ω.

A mapping f : Ω×M → M (resp. T : Ω×M → 2M ) is called a random operator
if, for each x ∈ M , f( · , x) (resp. T ( · , x)) is measurable. A measurable mapping
ξ is called a random coincidence point of random operators f : Ω×M → M and
T : Ω×M → 2M if for each ω ∈ Ω, f(ω, ξ(ω)) ∈ T (ω, ξ(ω)); a random fixed point
of a random operator f (resp. T ) if for each ω ∈ Ω, f(ω, ξ(ω)) = ξ(ω) (resp.
ξ(ω) ∈ T (ω, ξ(ω))).

Let f :M → M and T :M → CB(M) be any mappings. Then T is called

(1) upper (resp. lower) semicontinuous if for any closed (resp. open) subset
V of M , T−1(V ) is closed (resp. open);

(2) continuous if T is both upper and lower semicontinuous.

If T (x) ∈ K(M) for all x ∈ M , then T is continuous if and only if T is
continuous from M into the metric space (K(M),H), where H is the Hausdorff
metric on K(M). The mapping T is said to be f -nonexpansive if

H(T (x), T (y)) ≤ ‖f(x)− f(y)‖ for all x, y ∈ M,

where H is the Hausdorff metric on CB(M). If f = I, the identity map on M ,
then an f -nonexpansive map T is nonexpansive.

The mapping f is called weakly continuous if {xn} converges weakly to x

implies {f(xn)} converges weakly to f(x). If M is convex, then

(3) T is said to be semiconvex if for any x, y ∈ M , z = kx+(1−k)y, where
0 ≤ k ≤ 1, and any x1 ∈ T (x), y1 ∈ T (y), there exists z1 ∈ T (z) such
that

‖z1‖ ≤ max{‖x1‖, ‖y1‖};
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(4) f is called affine if

f(kx + (1− k)y) = kf(x) + (1− k)f(y) for all x, y ∈ M and 0 < k < 1.

The set M is said to be starshaped with respect to q ∈ M if kx+(1−k)q ∈ M

for any x ∈ M and 0 < k < 1. The pair {f, T} is said to be

(5) commuting if fT (x) = Tf(x) for all x ∈ M ; and
(6) R-weakly commuting if for all x ∈ M , fTx ∈ CB(M) and there exists

R > 0 such that

H(Tfx, fTx) ≤ Rd(fx, Tx).

Suppose M is starshaped with respect to q and f(q) = q. Then {f, T} is
called R-subweakly commuting if for all x ∈ M , fTx ∈ CB(M) and there exists
R > 0 such that

H(Tfx, fTx) ≤ Rd(fx,Akx)

for every k ∈ [0, 1], where Akx = kTx + (1 − k)q. Here d(x,A) = inf{‖x − y‖ :
y ∈ A} for A ⊂ M . It is clear that every commuting pair of maps is R-subweakly
commuting.

The following example shows that the converse is not true in general. Con-
sider M = [1,∞). Let T and f be defined by Tx = [1, 4x−3] and fx = 2x2−1 for
all x ∈ M . Then the pair {f, T} is R-subweakly commuting but not commuting.

A mapping T :M → CB(X) is called demiclosed at y0 if {xn} ⊂ M and
yn ∈ T (xn) are sequences such that {xn} converges weakly to x0 and {yn}
converges to y0 in X, then y0 ∈ T (x0).

The space X is said to satisfy Opial’s condition (cf. Opial [14]) if the following
holds: if {xn} converges weakly to x0 and x 6= x0, then

lim inf
n→∞

‖xn − x‖ > lim inf
n→∞

‖xn − x0‖.

A random operator f : Ω×M → M is called continuous (weakly continuous,
etc.) if for each ω ∈ Ω, f(ω, · ) is continuous (weakly continuous, etc.). Similarly,
a random operator T : Ω ×M → CB(M) is called continuous if for each ω ∈ Ω,
T (ω, · ) is continuous. The pair {f, T} of random operators is called R-subweakly
commuting if for each ω ∈ Ω, the pair {f(ω, · ), T (ω, · )} is so.

3. Main results

We begin with the following result.

Theorem 3.1. Let M be a nonempty separable weakly compact subset of
a Banach space X which is starshaped with respect to q ∈ M , and let f : Ω ×
M → M be a continuous affine random operator such that f(ω, q) = q for each
ω ∈ Ω. Let T : Ω×M → K(M) be an f-nonexpansive random operator such that
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T (ω, M) ⊂ f(ω, M). Suppose that the pair {f, T} is R-subweakly commuting
and that one of the following two conditions is satisfied:

(a) (f − T )(ω, · ) is demiclosed at zero for each ω ∈ Ω,
(b) f is weakly continuous and X satisfies Opial’s condition.

Then f and T have a random coincidence point.

Proof. Suppose, first, condition (a) holds. For each n, define Tn: Ω×M →
K(M) by

Tn(ω, x) = knT (ω, x) + (1− kn)q,

where {kn} is a sequence such that 0 < kn < 1 and kn → 1 as n → ∞. Then
each Tn satisfies Tn(ω, M) ⊂ f(ω, M) and

H(Tn(ω, x), Tn(ω, y)) ≤ kn‖f(ω, x)− f(ω, y)‖

for all x, y ∈ M and all ω ∈ Ω. This shows that each Tn is a random f -
contraction. Since the pair {f, T} is R-subweakly commuting, it follows that
f(ω, Tn(ω, x)) ∈ K(M) and

H(Tn(ω, f(ω, x)), f(ω, Tn(ω, x))) = knH(T (ω, f(ω, x)), f(ω, T (ω, x)))

≤ Rknd(f(ω, x), Tn(ω, x))

for all x ∈ M and all ω ∈ Ω. Consequently, for each n, the pair {f, Tn} is
Rkn-weakly commuting. By Beg and Shahzad [1, Theorem 3.1], there exists a
measurable mapping ξn: Ω → M such that f(ω, ξn(ω)) ∈ Tn(ω, ξn(ω)) for all
ω ∈ Ω. For each n, define Ln: Ω → WK(M) by Ln(ω) = w-cl{ξi(ω) : i ≥ n},
where w-cl denotes the weak closure. Let the multifunction L be defined by

L(ω) = w-ls Ln(ω) = {x ∈ M : x = w-lim ξk(ω), ξk(ω) ∈ Ln(k)(ω)},

where {Ln(k)(ω)} is a subsequence of {Ln(ω)}. Because of the separability con-
dition, M is a compact metrizable space for the weak topology. This implies
that

L(ω) =
⋂
k≥1

w-cl
( ⋃

n≥k

Ln(ω)
)

.

Since ω → w-cl(
⋃

n≥k Ln(ω)) is w-measurable for each k, it is measurable by Hess
[7, Lemma 2.1]. Now, Hess [7, Theorem 4.2] also shows that L is measurable.
Since Ln(ω) is contained in a weakly compact subset M of X, it follows that L

is weakly compact valued and so it is closed valued.
An application of the Kuratowski and Ryll–Nardzewski selection theorem

(see [10]) yields that L has a measurable selector ξ. We show that ξ is a random
coincidence point of f and T . Indeed, fix any ω ∈ Ω. Then some subsequence
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{ξm(ω)} of {ξn(ω)} converges weakly to ξ(ω). Further, for each m, there is some
um ∈ T (ω, ξm(ω)) such that

f(ω, ξm(ω))− um = (1− km)(q − um).

This implies that {f(ω, ξm(ω)) − um} converges to 0. Since f(ω, ξm(ω)) −
um ∈ (f − T )(ω, ξm(ω)) and (f − T )(ω, · ) is demiclosed at zero, it follows that
f(ω, ξ(ω)) ∈ T (ω, ξ(ω)).

Suppose now condition (b) holds. Then (f − T )(ω, · ) is demiclosed at zero
(cf. [11]) and the result follows immediately from part (a). �

Corollary 3.2. Let M be a nonempty separable weakly compact starshaped
subset of a Banach space X. Let T : Ω×M → K(M) be a nonexpansive random
operator. Suppose that one of the following two conditions is satisfied:

(a) (I − T )(ω, · ) is demiclosed at zero for each ω ∈ Ω,
(b) X satisfies Opial’s condition.

Then T has a random fixed point.

Recall that a Banach space X is almost smooth (see [9]) if SM(B) is dense
in X∗, where SM(B) is the set of all functionals of X∗ which attain their norm
at a smooth point of the unit ball B. A subset M of X is called Chebyshev if to
each point x of X there exists a unique point of M that is nearest to x.

Corollary 3.3. Let M be a nonempty separable weakly compact Chebyshev
subset of an almost smooth Banach space X, and let f : Ω ×M → M be a con-
tinuous affine random operator. Let T : Ω ×M → K(M) be an f-nonexpansive
random operator such that T (ω, M) ⊂ f(ω, M) for each ω ∈ Ω. Suppose that the
pair {f, T} is R-subweakly commuting and that one of the following two condi-
tions is satisfied:

(a) (f − T )(ω, · ) is demiclosed at zero for each ω ∈ Ω,
(b) X satisfies Opial’s condition.

Then f and T have a random coincidence point.

Proof. Since every weakly compact Chebyshev subset of X is convex ([9]),
the result now follows from Theorem 3.1. �

Corollary 3.4. Let M be a nonempty separable weakly compact Chebyshev
subset of a Hilbert space X, and let f : Ω×M → M be a continuous affine random
operator. Let T : Ω ×M → K(M) be an f-nonexpansive random operator such
that T (ω, M) ⊂ f(ω, M) for each ω ∈ Ω. Suppose that the pair {f, T} is R-
subweakly commuting. Then f and T have a random coincidence point.

Proof. Since every weakly compact Chebyshev subset of X is convex ([9])
and (f−T )(ω, · ) is demiclosed at zero for each ω ∈ Ω (cf. [11]), the result follows
immediately from Theorem 3.1. �
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To prove the next result, we need the following lemma.

Lemma 3.5. Let M be a closed convex subset of a Banach space X, and let
f :M → M be an affine continuous mapping. If T :M → CB(M) is a continuous
multifunction such that f − T is semiconvex, then

(a) for any x, y ∈ M and z = kx + (1− k)y, where 0 ≤ k ≤ 1, we have

d(f(z), T (z)) ≤ max{d(f(x), T (x)), d(f(y), T (y))},

(b) for any r > 0, the set Hr = cl({x ∈ M : d(f(x), T (x)) < r}) is closed
and convex (or equivalently, weakly closed).

Theorem 3.6. Let M be a nonempty separable weakly compact convex subset
of a Banach space X, and let f : Ω × M → M be a continuous affine random
operator. Let T : Ω ×M → K(M) be an f-nonexpansive random operator such
that T (ω, M) ⊂ f(ω, M) for each ω ∈ Ω. Suppose that the pair {f, T} is R-
subweakly commuting and that (f − T )(ω, · ) is semiconvex for each ω ∈ Ω.
Then f and T have a random coincidence point.

Proof. Let {kn} be a sequence such that 0 < kn < 1 and kn → 1 as n →∞.
For each n, define Tn as follows:

Tn(ω, x) = knT (ω, x) + (1− kn)q,

where q = f(ω, q) for all ω ∈ Ω. Then, as in the proof of Theorem 3.1, we have
f(ω, ξn(ω)) ∈ T (ω, ξn(ω)) for all ω ∈ Ω.

Fix ω ∈ Ω. For each n, there is un ∈ T (ω, ξn(ω)) such that

f(ω, ξn(ω))− un = (1− kn)(q − un).

Since M is bounded and kn → 1, it follows that d(f(ω, ξn(ω)), T (ω, ξn(ω))) → 0
as n →∞. Consequently,

inf{d(f(ω, x), T (ω, x)) : x ∈ M} = 0

for all ω ∈ Ω. Define a mapping hn : Ω×M → R by

hn(ω, x) = d(f(ω, x), T (ω, x))− 1
n

, n ≥ 1.

Then, by Rybinski [19, Lemmas 1 and 2], each hn is a Caratheodory function
(that is, continuous in x ∈ M and measurable in ω ∈ Ω). Set

Gn(ω) = {x ∈ M : hn(ω, x) < 0}.

Thus, the multifunction Ln defined by Ln(ω) = cl(Gn(ω)) is measurable and
is closed convex valued (see Lemma 3.5). Since M is weakly compact, by Hess
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[7, Theorem 4.2], L :=
⋂

n≥1 Ln is measurable. The Kuratowski and Ryll–
Nardzewski selection theorem [10] further implies that L has a measurable se-
lector ξ. This ξ is the desired random coincidence point of f and T . �

Corollary 3.7. Let M be a nonempty separable weakly compact convex
subset of a Banach space X. Let T : Ω×M → K(M) be a nonexpansive random
operator. Suppose that (I − T )(ω, · ) is semiconvex for each ω ∈ Ω. Then T has
a random fixed point.

Theorem 3.8. Let M , f , T and q have the same meanings as in The-
orem 3.1. If for any x ∈ M and ω ∈ Ω, limn→∞ fn(ω, x) exists whenever
f(ω, x) ∈ T (ω, x), then f and T have a common random fixed point.

Proof. Fix ω ∈ Ω and let ξ be a random coincidence point of f and T .
Since f and T commute at coincidence points, it follows that

fn(ω, ξ0(ω)) = fn−1(ω, f(ω, ξ0(ω))) ∈ T (ω, fn−1(ω, ξ0(ω))).

Let ξ(ω) = limn→∞ fn(ω, ξ0(ω)). Then, taking n →∞, we get ξ(ω)∈T (ω, ξ(ω)).
Also ξ(ω) = f(ω, ξ(ω)). The mapping ξ: Ω → M is the pointwise limit of mea-
surable mappings and so it is measurable by Di Bari and Vetro [4, Lemma 3].
Hence ξ is a common random fixed point of f and T . �

Remarks 3.9. (a) It is well-known [6] that a closed bounded convex sub-
set M of a Frechet space (that is, a complete metrizable locally convex space) X

is weakly compact if and only if for every closed convex subset N of M , each con-
tinuous affine self-map of N has a fixed point. Consequently, the existence of a
fixed point q of f(ω, · ) for each ω ∈ Ω in Corollaries 3.3 and 3.4 and Theorem 3.6
follows. We further add that an affine continuous map is weakly continuous (see
[5]) and so the weak continuity of f is not required as well.

(b) In Theorem 3.1 the assumption that f(ω, q) = q for all ω ∈ Ω becomes
redundant when M is convex.

(c) Theorem 3.1 improves [23, Theorem 3.1] in the following ways:

(i) for each ω ∈ Ω, the range of f(ω, · ) need not be M ; and
(ii) the pair {f, T} may be non-commuting (more precisely, R-subweakly

commuting).

Theorem 3.1 applies when f = I, so it generalizes [2, Corollaries 3.1 and 3.2], [8,
Theorem 3.4] and [24, Theorem 3.4]. It also improves [25, Theorem 1(ii)], where
X is strictly convex and M is convex and has the fixed point property.

(d) Theorem 3.8 extends [23, Theorem 3.3] to a class of non-commuting maps.
(e) The proof of Theorem 3.8 suggests the following general result.
“Let M be a nonempty separable complete subset of a metric space X, and

let f : Ω ×M → M and T : Ω ×M → CB(M) be continuous random operators.
Suppose that f and T commute at coincidence points and that for any x ∈ M
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and ω ∈ Ω, limn→∞ fn(ω, x) exists whenever f(ω, x) ∈ T (ω, x). If f and T have
a random coincidence point, then they have a common random fixed point.”

We further remark that the existence of a random coincidence point may be
replaced by the existence of a deterministic coincidence point.

Now, we suppose that every closed convex subset of M has the fixed point
property for continuous affine mappings. Recall that the metric d is said to be
µ-monotone if there exists 0 ≤ µ ≤ 1 such that d(λx, 0) ≤ µd(x, 0) for every
x 6= 0 and 0 ≤ λ ≤ 1.

Theorem 3.10. Let M be a nonempty closed bounded convex subset of a sep-
arable Frechet space X with µ-monotone metric, and let f : Ω × M → M be a
continuous affine random operator. Let T : Ω×M → K(M) be an f-nonexpansive
random operator such that T (ω, M) ⊂ f(ω, M) for each ω ∈ Ω. Suppose that the
pair {f, T} is R-subweakly commuting and that one of the following two condi-
tions is satisfied:

(a) (f − T )(ω, · ) is demiclosed at zero for each ω ∈ Ω,
(b) (f − T )(ω, · ) is semiconvex for each ω ∈ Ω.

Then f and T have a random coincidence point.

Proof. As in the proof of Theorems 3.1 and 3.6, it can be shown that
there exists a measurable mapping ξn such that f(ω, ξn(ω)) ∈ T (ω, ξn(ω)) for
all ω ∈ Ω. Clearly, M is weakly compact.

For each n, define Ln: Ω → WK(M) by Ln(ω) = w-cl{ξi(ω) : i ≥ n} when
(a) holds or by Ln(ω) = cl(Gn(ω)) when (b) holds, where Gn(ω) = {x ∈ M :
d(f(ω, x), T (ω, x)) < 1/n}. Then, as in Shahzad and Khan [22], L :=

⋂
n≥1 Ln

is measurable and L has a measurable selector ξ. This ξ is the desired random
coincidence point of f and T . �

Corollary 3.11. Let M be a nonempty closed bounded convex subset of
a separable Frechet space X with µ-monotone metric. Let T : Ω ×M → K(M)
be a nonexpansive random operator. Suppose that that one of the following two
conditions is satisfied:

(a) (I − T )(ω, · ) is demiclosed at zero for each ω ∈ Ω,
(b) (I − T )(ω, · ) is semiconvex for each ω ∈ Ω.

Then T has a random fixed point.

Remark 3.12. Theorem 3.10 (in particular, Corollary 3.11) generalizes [25,
Theorem 1(ii)].
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