On random coincidence point theorems

Naseer Shahzad

DOI: http://dx.doi.org/10.12775/TMNA.2005.020

Abstract


Some random coincidence point theorems are proved. The
results of Benavides et al. [< i> Random fixed points of set-valued
operators< /i> , Proc. Amer. Math. Soc. < b> 124< /b> (1996), 831–838], Itoh
[< i> Random fixed point theorems with an application to random differential equations
in Banach spaces< /i> , J. Math. Anal. Appl. < b> 67< /b> (1979), 261–273],
Shahzad and Latif [< i> A random coincidence point theorem< /i> , J. Math. Anal. Appl.
< b> 245< /b> (2000), 633–638], Tan and Yuan [< i> Random fixed point theorems and approximation< /i> ,
Stochastic
Anal. Appl. < b> 15< /b> (1997), 103–123] and Xu [< i> Some random fixed point theorems for
condensing and nonexpansive operators< /i> ,
Proc. Amer. Math. Soc. < b> 110< /b> (1990), 495–500] are either
extended or improved.

Keywords


Random coincidence point; random fixed point; random operator; measurable selection; weak upper limit

Full Text:

FULL TEXT

Refbacks

  • There are currently no refbacks.

Partnerzy platformy czasopism