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Abstract. In this paper we deal with the Peano phenomenon for general

initial-boundary value problems of quasilinear parabolic equations with ar-
bitrary even order space derivatives.

The nonlinearity is assumed to be a continuous or continuously Fréchet

differentiable function. Using a method of transformation to an operator
equation and employing the theory of proper, Fredholm (linear and non-

linear) and Nemitskĭı operators, we study the existence of solution of the

given problem and qualitative and quantitative structure of its solution and
bifurcation sets. These results can be applied to the different technical and

natural science models.

Introduction

The Peano phenomenon of the existence of a solution continuum of the initial
value problem for ordinary differential systems is well-known. This phenomenon
has been studied by many autors in [3]–[5], [8], [17], [28]. The structure of
solution sets for second order partial differential problems was observed in the
authors papers [12], [13].

In this paper we shall study the existence, nonuniqueness and generic prop-
erties of quasilinear parabolic initial-boundary value problems for the equation
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of an even order with the continuous and continuously differentiable nonlineari-
ties and the general boundary value condition. In the case of continuous nonlin-
earities we use the Nikol’skĭı decomposition theorem from [30, p. 233] for linear
Fredholm operators, the global inversion theorem of [9], [6] and [7, pp. 42–43]
and the Ambrosetti solution quantitive results from [2, p. 216]. In the considera-
tion on surjectivity the generalized Leray–Schauder condition is employed which
is similar to that one in [20]. Stronger results are attained by the main Quinn
and Smale theorem from [23] and [25] for nonlinear Fredholm operators in the
case of differential nonlinearities.

The present results allow us to observe different problems describing dy-
namics of mechanical processes (bending, vibration), physical-heating processes,
reaction-diffusion processes in chemical and biological technologies or in the ecol-
ogy.

1. The formulation of problem, assumptions and spaces

The set Ω ⊂ Rn for n ∈ N means a bounded domain with the boundary ∂Ω.
The real number T will be positive and Q := (0, T ] × Ω, Γ := (0, T ] × ∂Ω. If
the multiindex k = (k1, . . . , kn) is given with |k| =

∑n
i=1 ki, then we use the

notation Dk
x for the differential operator ∂|k|/(∂xk1

1 . . . ∂xkn
n ) and Dt for ∂/∂t. If

the modul |k| = 0 then Dk
x means an identity mapping. The symbol clM means

the closure of the set M in Rn.
In this paper we consider the nonlinear differential equation of an arbitrary

even order 2b (b is a positive integer)

(1.1) A(t, x,Dt, Dx)u + f(t, x,D
γ

xu) = g(t, x) for (t, x) ∈ Q,

where

A(t, x,Dt, Dx)u := Dtu−
∑
|k|=2b

ak(t, x)Dk
xu−

∑
0≤|k|≤2b−1

ak(t, x)Dk
xu

and D
γ

x u is a vector function whose components are derivatives Dγ
xu with the

different multiindex 0 ≤ |γ| ≤ 2b− 1.
The system of boundary conditions is given by the vector equation with b

components

(1.2) B(t, x,Dx)u|cl Γ := (B1(t, x, Dx)u, . . . , Bb(t, x,Dx)u)T |cl Γ = 0

in which

Bj(t, x,Dx)u :=
∑

0≤|k|≤rj

bjk(t, x)Dk
xu

for an integer 0 ≤ rj ≤ 2b− 1 and j = 1, . . . , b.
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Further the initial value homogeneous condition

(1.3) u(0, x) = 0 for x ∈ cl Q

is considered.
Here the given functions are following mappings:

ak: clQ → R for 0 ≤ |k| ≤ 2b,

bjk: cl Γ → R for 0 ≤ |k| ≤ rj , j = 1, . . . , b,

f : clQ× Rκ → R,

where κ is a positive integer given by the inequality

κ ≤
(

n− 1
0

)
+

(
n

1

)
+

(
n + 1

2

)
+ . . . +

(
n + |γ| − 2
|γ| − 1

)
+

(
n + |γ| − 1

|γ|

)
and g: clQ → R.

We shall be employed with parabolic problem (1.1)–(1.3) in the following
sence:

The hypothesis (P) of the uniform parabolicity. We shall say that
equation (1.1) or the differential operator A(t, x, Dt, Dx) is uniformly parabolic
with parameter δ in the sense of I. G. Petrovskĭı on cl Q (or shortly parabolic) if
and only if for the main part

A0(t, x, Dt, Dx)u = Dtu−
∑
|k|=2b

ak(t, x)Dk
xu

of the equation (1.1) there exists δ > 0 such that the inequality

(1.4) (−1)b+1
∑
|k|=2b

ak(t, x)σk1
1 . . . σkn

n ≥ δ

( n∑
i=1

σ2
i

)b

is true for all (t, x) ∈ cl Q and all (σ1, . . . , σn) ∈ Rn.
For the correctness of problem (1.1)–(1.3) we have to stay a complementary

condition for the boundary operators Bj , j = 1, . . . , b (see [19, pp. 14–16]).

Definition 1.1 (The reduction polynomial). Let (t0, x0) ∈ cl Γ, (ν1, . . . , νn)
be a unit inner normal vector to ∂Ω in x0 and ξ = (ξ1, . . . , ξn) be a vector from
the tangential space T∂Ω(x0) to ∂Ω at the point x0 and τ be a complex parameter.
Denote by

Γx0 := {(q, ξ) ∈ C× T∂Ω(x0) : |q|+ ‖ξ‖2b
Rn > 0

and Re q ≥ −δ1‖ξ‖2b
Rn , where δ1 ∈ (0, δ)}.

Here δ > 0 is a constant from the parabolicity condition (1.4). Now, let us
take the complex roots τ+

j (t0, x0, q, ξ) ∈ C for j = 1, . . . , b with the positive
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imaginary part of the 2bth degree polynomial A0(t0, x0, q, i(ξ + τν)) in τ for an
arbitrary (q, ξ) ∈ Γx0 . Then the polynomial of the degree b in the variable τ

A+(t0, x0, q, ξ, τ) =
b∏

j=1

(τ − τ+
j (t0, x0, q, ξ))

is called the reduction polynomial.

Remark 1.2. For any (q, ξ) ∈ Γx0 the polynomial A0(t0, x0, q, i(ξ + τν))
has just 2b conjugate complex roots and so the reduction polynomial is correctly
defined. Really, if there exist a real root τ of

A0(t0, x0, q, i(ξ + τν)) = q − (−1)b
∑
|k|=2b

ak(t, x)(ξ1 + τν1)k1 . . . (ξn + τνn)kn

for some (q, ξ) ∈ Γx0 then from condition (1.4) we get

0 =Re A0(t0, x0, q, i(ξ + τν)) ≥ Re q + δ[(ξ1 + τν1)2 + . . . + (ξn + τνn)2]b

=Re q + δ[ξ2
1 + . . . + ξ2

n + τ2]b > Re q + δ1[ξ2
1 + . . . + ξ2

n]b ≥ 0

which gives a contradiction.

Using the denotations from Definition 1.1 we can pronounce:

The hypothesis (C) of the uniform complementarity. Define an oper-
ator

B0(t, x,Dx) = (B10(t, x,Dx), . . . , Bb0(t, x,Dx))T

formed by the main parts of the operators Bj(t, x,Dx) for j = 1, . . . , b. Namely

Bj0(t, x,Dx)u =
∑
|k|=rj

bjk(t, x)Dk
xu, j = 1, . . . , b.

For (t0, x0) ∈ cl Γ and (q, ξ) ∈ Γx0 we put

C(t0, x0, ξ, τ) := B0(t0, x0, i(ξ + τν)),

the column matrix whose rows are polynomials in τ of the degree at most 2b−1.
Further by C+(t0, x0, q, ξ, τ) we note the column matrix which elements are

remainders of a division of polynomials from the matrix C(t0, x0, ξ, τ) by the
reduction polynomial A+(t0, x0, q, ξ, τ).

Let elements c+
j (t0, x0, q, ξ, τ) for j = 1, . . . , b of the matrix C+(t0, x0, q, ξ, τ)

have the polynomial form

c+
j (t0, x0, q, ξ, τ) =

b∑
l=1

djl(t0, x0, q, ξ)τ l−1, j = 1, . . . , b.
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We shall say that problem (1.1)–(1.3) satisfies the uniform complementary con-
dition (C) if and only if the rang of the matrix

D(t0, x0, q, ξ) = (djl(t0, x0, q, ξ))b
j,l=1

is b for all (t0, x0) ∈ cl Γ and all (q, ξ) ∈ Γx0 .
With respect to the continuity of |det D(t0, x0, q, ξ)| the complementary con-

dition (C) and the condition

• there is a constant δ+ > 0 such that for all (t0, x0) ∈ cl Γ and all
(q, ξ) ∈ Γx0 satisfying the equation |q|+ ‖ξ‖2b

Rn = 1, the inequality

|det D(t0, x0, q, ξ)| ≥ δ+

holds,

are mutually equivalent.

Remark 1.3. If we consider a second order differential operator

A(t, x,Dt, Dx)u =
n∑

i,j=1

aij(t, x)Diju +
n∑

i=1

ai(t, x)Diu + a0(t, x)u

and

B(t, x,Dx)u =
n∑

i=1

bi(t, x)Diu + b0(t, x)u

then the uniform complementary condition (C) with the constant δ+ > 0 repre-
sents the inequality

n∑
i=1

bi(t, x)|ξi + τ+(t, x, q, ξ)νi| > δ+

for all (t, x) ∈ cl Γ, (q, ξ) ∈ Γx.

Now, we define for problem (1.1)–(1.3) a compatibility condition. With re-
spect to [19, p. 21] we have

The hypothesis (Q) of the compatibility. Let 0 ≤ rj ≤ 2b − 1 for
j = 1, . . . , b be an order of the differential operator Bj(t, x,Dx) from (1.2). We
shall say that problem (1.1)–(1.3) satisfies the compatibility condition (Q) if and
only if for all indices j for which rj = 0 the equality

(1.5) bjk(0, x)g(0, x)− bjk(0, x)f(0, x, ∅)|x∈∂Ω = 0

holds for |k| = rj = 0 and ∅ ∈ Rκ is the zero vector.

Remark 1.4. In the case, if rj is a positive integer for all j = 1, . . . , b,
then the associated compatibility condition of problem (1.1)–(1.3) is satisfied
automatically by the homogenity of boundary (1.2) and initial condition (1.3).
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To formulate a smoothness assumption we define Hölder spaces. The deno-
tations

〈u〉st,µ,Q := sup
(t,x),(s,x)∈cl Q

t6=s

|u(t, x)− u(s, x)|
|t− s|µ

,

〈u〉yx,ν,Q := sup
(t,x),(t,y)∈cl Q

x6=y

|u(t, x)− u(t, y)|
‖x− y‖ν

Rn

,

will be used.

Definition 1.5. Let α ∈ (0, 1) and l be a nonnegative integer.

(a) The Banach space of continuous on clQ functions u: clQ → R with the
continuous derivatives Dk

xu on cl Q for 1 ≤ |k| ≤ l and with the norm

‖u‖l,Q =
∑

0≤|k|≤l

sup
(t,x)∈cl Q

|Dk
xu(t, x)|

will be denoted by Cl
x(cl Q, R).

(b) The symbol C
l/(2b), l
t,x (cl Q, R) represents the Banach space of continuous

functions u: clQ → R with the continuous derivatives Dk0
t Dk

xu for 1 ≤
2bk0 + |k| ≤ l on cl Q and with the norm

‖u‖l/(2b),l,Q =
∑

0≤2bk0+|k|≤l

sup
(t,x)∈cl Q

|Dk0
t Dk

xu(t, x)|.

(c) The symbol Cl+α
x (cl Q, R) means the Banach space of continuous func-

tion u: clQ → R with the continuous derivatives Dk
xu for |k| = 1, . . . , l

on cl Q and with the finite norm

‖u‖l+α,Q = ‖u‖l,Q +
∑
|k|=l

〈Dk
xu〉yx,α,Q.

(d) By the symbol C
(l+α)/(2b), l+α
t,x (cl Q, R) we shall denote the Banach space

of continuous functions u: clQ → R with the continuous derivatives Dk
xu

for |k| = 1, . . . , l and Dk0
t Dk

xu for 1 ≤ 2bk0 + |k| ≤ l on clQ and with
the finite norm

‖u‖(l+α)/(2b),l+α,Q = ‖u‖l/(2b),l,Q +
∑

2bk0+|k|=l

〈Dk0
t Dk

xu〉yx,α,Q

+
∑

0<l+α−2bk0−|k|<2b

〈Dk0
t Dk

xu〉st,(l+α−2bk0−|k|)/(2b),Q.

(See also 11, p. 147.)
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Definition 1.6. Let r ∈ (1,∞) and Ω ⊂ Rn be a bounded domain. We
shall say that boundary ∂Ω belongs to the class Cr if and only if:

(a) There exists a tangential space T∂Ω(x) to ∂Ω in any point x ∈ ∂Ω.
(b) Assume y ∈ ∂Ω and let (y; z1, . . . , zn) be a local orthonormal coordinate

system with the center y and with the axis zn oriented like the inner
normal to ∂Ω at the point y. Then there exists a number b > 0 such
that for every y ∈ ∂Ω there is an neighbourhood O(y) ⊂ Rn of y and a
function F ∈ Cr(cl B, R), where the part of boundary

∂Ω ∩O(y) = {(z′, F (z′)) ∈ Rn : z′ = (z1, . . . , zn−1) ∈ B} and

B = {z′ ∈ Rn−1 : ‖z′‖Rn−1 < b}.

Here Cr(cl B, R) is a space of the functions Cl(cl B, R) for l = [r] and with the
finite norm ‖u‖l+α,Q whereby α = r − [r] ∈ (0, 1) and r = l + α.

Definition 1.7. Let Ω ⊂ Rn be a domain and ∂Ω ∈ Cr for some r >

1. Put Sy := ∂Ω ∩ O(y) and Γy = (0, T ] × Sy for y ∈ ∂Ω, where O(y) is a
neighbourhood of the point y (see Definition 1.6). Let again α ∈ (0, 1) and l

be a nonnegative integer. The symbol C
(l+α)/(2b), l+α
t,x (cl Γ, R) means the Banach

space of continuous functions u: cl Γ → R with the continuous derivatives Dk
xu

for |k| = 1, . . . , l and Dk0
t Dk

x for 1 ≤ 2bk0 + |k| ≤ l on cl Γ and with the finite
norm

‖u‖(l+α)/(2b),l+α,Γ = sup
y∈∂Ω

‖u‖(l+α)/(2b),l+α,Γy
.

The norm on the right-hand side of the last equality is defined by Defini-
tion 1.5(d) such that we write in it Γy instead of Q.

The hypothesis (Sl+α) of the smoothness. Let α ∈ (0, 1) and l be a non-
negative integer. We shall say that problem (1.1)–(1.3) satisfies the smoothness
condition (Sl+α) if and only if

(a) the coefficients of the operator A(t, x,Dt, Dx) from (1.1) satisfy

ak ∈ C
(l+α)/(2b),(l+α)
t,x (cl Q, R),

(b) the coefficients of B(t, x,Dx) from (1.2) satisfy

bik ∈ C
(l+α+2b−rj)/(2b), l+α+2b−rj

t,x (cl Γ, R)

for 0 ≤ rj < 2b− 1 for j = 1, . . . , b,
(c) ∂Ω ∈ Cl+α+2b.

In the conclusion of this section we pronounce the existence and unique-
ness theorem of the classical solution of problem (1.1)–(1.3) with the nonlinear
member f = 0.
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Proposition 1.8 (see [19, p. 21] and [15, pp. 182–183]). Let the conditions
(P), (C) and (Sα) be satisfied for α ∈ (0, 1). A necessary and sufficient condition
for the existence and uniqueness of the solution

u ∈ C
(2b+α)/(2b),2b+α
t,x (cl Q, R)

of linear problem (1.1)–(1.3) for f = 0 is

g ∈ C
α/(2b),α
t,x (cl Q, R)

with the compatibility condition (Q). Moreover, there exists a constant c > 0
“independent of g” such that

c−1‖g‖α/(2b),α,Q ≤ ‖u‖(2b+α)/(2b),2b+α,Q ≤ c‖g‖α/(2b),α,Q.

2. Preliminary notions and general results

In this part we remind some notions and assertions from the nonlinear func-
tional analysis applied in the fundamental lemmas and theorems.

Throughout this paper we shall assume that X and Y are Banach spaces
either both over the real or complex field.

In the Zeidler books [33, p. 667] and [32, pp. 365–366] we find the following
definitions of the linear and nonlinear Fredholm operator.

Definition 2.1. The linear operator F :X → Y is called the Fredholm map-
ping if and only if

(a) F is continuous on X and
(b) dim N(F ) < ∞ and codim R(F ) = dimY/R(F ) < ∞,

where the kernel N(F ) of F and R(F ) = F (X) are closed sets in X and Y ,
respectively. The index ind F of the operator F is defined as the difference
dim N(F )− codimR(F ).

The following proposition gives the necessary and sufficient condition for a
linear operator to be Fredholm.

Proposition 2.2 (S. M. Nikol’skĭı, [30, p. 233]). A linear bounded operator
A:X → Y is Fredholm of the zero index if and only if A = C + T , where
C:X → Y is a linear homeomorphism and T :X → Y is a linear completely
continuous operator.

Definition 2.3. The nonlinear operator F :D(F ) ⊂ X → Y defined on the
open set D(F ) is called a Fredholm mapping if and only if:

(a) F ∈ C1(D(F ), Y ) and
(b) the Fréchet derivative F ′(u):X → Y is a linear Fredholm operator for

every u ∈ D(F ).
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If the index ind F ′(u) is constant for all u ∈ D(F ), then we call this number the
index of F and write it as ind F .

Remark 2.4. According to the perturbation invariance of the index in
Proposition 8.14 from [32, p. 366] that indF ′(u) is constant on D(F ) whenever
D(F ) is connected set and

ind F = dim N(F ′(u))− codim R(F ′(u)), u ∈ D(F ).

For the compact perturbation of C1-Fredholm operator we shall use the fol-
lowing proposition.

Proposition 2.5 (E. Zeidler [33, p. 672]). Let A:D(A) ⊂ X → Y be a
C1-Fredholm operator on the open set D(A) and B:D(A) → Y be a compact
mapping from the class C1. Then A + B:D(A) → Y is a Fredholm (possibly
nonlinear) operator with the same index as A at each point of D(A).

Definition 2.6. Let D ⊂ X be a nonempty open set and F :D → Y .

(a) A point u0 ∈ D is called a regular point of F if and only if the Fréchet
derivative F ′(u0):X → Y is a linear homeomorphism of X onto Y (i.e.
bijective and both F ′(u0) and (F ′(u0))−1 are continuous mappings).

(b) If u1 ∈ D is not regular point of F , then it is called a singular point
of F .

(c) The point u2 ∈ D be called a critical point of F if and only if the
equation F ′(u2)h = 0 ∈ Y has a nontrivial solution h ∈ X. The critical
point of F is a singular point of F .

(d) The image F (u3) of a singular point u3 ∈ D is called a singular value
of F . If S ⊂ D is a set of all singular points of F :D → Y , then F (S)
is called a set of all singular values of F and Y \ F (S) is a set of all
regular values of F .

(e) A subset of a topological space Z is residual if and only if it is a countable
intersection of dense and open subset of Z.

By the Baire theorem in any complete metric space or locally compact Haus-
dorff topological space, a residual set is dense in this space.

Definition 2.7. Consider the operator F :X → Y (in general nonlinear).

(a) F is called proper (or σ-proper) if and only if for each compact set
K ⊆ Y the set F−1(K), is compact (or a countable union of compact
sets).

(b) The mapping F is closed if and only if for each closed set S ⊂ X the
set of images F (S) is closed in Y .

(c) F is called a coercive mapping if and only if for each bounded set S ⊂ Y

the set F−1(S) is bounded in X.
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Remark 2.8.

(a) Clearly F is coercive if and only if

lim
‖u‖X→∞

‖F (u)‖Y = ∞.

(b) If X and Y are finite dimensional Euclidean spaces and F :X → Y is
continuous on X, then F is proper if and only if F is coercive (see [24,
pp. 57–58]).

The most important theorem for nonlinear Fredholm mappings is due to
S. Smale [25, p. 862] and Quinn [23]. It is also in [7, pp. 11–12] and [21, p. 217].

Proposition 2.9 (A Smale–Quinn Theorem). If F :X → Y is a Fredholm
mapping (possible nonlinear) of the class Ck in the Fréchet sence and either

(a) X has a countable basis (S. Smale), or
(b) F is σ-proper (Quinn),

then the set RF of all regular values of F is residual in Y . Moreover, if F is
proper, then RF is open and dense set in Y .

Definition 2.10. The mapping F :X → Y is called a local C1-diffeomor-
phism at u0 ∈ X if and only if there exists a neighbourhood U1(u0) ⊂ X of u0

and U2(F (u0)) ⊂ Y of F (u0) such that

(a) F is bijective, and
(b) both F and F−1 are C1 mappings.

Proposition 2.11 (A Local Inverse Mapping Theorem, [32, p. 172]). Let
F :U(u0) ⊂ X → Y be a C1-mapping in the Frèchet sense. Then F is a local
C1-diffeomorphism at u0 if and only if u0 is a regular point of F .

Proposition 2.12 ([22], [24, p. 89]). Let dim Y ≥ 3 and F :X → Y be
a Fredholm mapping of the zero index. If u0 ∈ X is an isolated singular point
of F , then F is locally invertible at u0.

Definition 2.13. Let M1, M2 be two metric spaces and F :M1 → M2.

(a) The mapping F is called locally injective at the point u0 ∈ M1 if and
only if there is a neighbourhood U(u0) of u0 such that F is injective in
U(u0). F is locally injective in M1 if and only if it is locally injective at
each point u ∈ M1.

(b) Let the mapping F be continuous on M1. Then F is called locally
invertible at the point u0 ∈ M1 if and only if there is a neighbour-
hood U1(F (u0)) of F (u0) such that F is homeomorphism of U(u0) onto
U1(F (u0)). F is locally invertible in M1 if and only if it is locally in-
vertible at each point u ∈ M1.
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(c) Let F be continuous on M1. We denote by Σ the set of all point u ∈ M1

at which F is not locally invertible. The set M1 \ Σ is open and Σ is
closed in M1.

The following proposition says on the number of solutions of the operator
equation F (u) = q.

Proposition 2.14 (Ambrosetti Theorem, [2, p. 216]). Let F ∈ C(X, Y ) be
a proper mapping. Then the cardinal number cardF−1(q) of the set F−1(q) is
constant and finite (it may be zero) for every q taken from the same component
(nonempty and connected subset) of the set Y \ F (Σ).

A relation between the local invertibility and homeomorphism of X onto Y

gives the global inverse mapping theorem.

Proposition 2.15 (R. Cacciopoli [9], E. Zeidler [32, p. 174]). Let F ∈
C(X, Y ) be a locally invertible mapping in X. Then F is a homeomorphism
of X onto Y if and only if F is proper.

The following propositions give necessary and sufficient conditions for the
proper mapping.

Proposition 2.16 (See [32, p. 176], [24, p. 49], [28, p. 20]). Let F ∈
C(X, Y ).

(a) If F is proper, then F is a nonconstant closed mapping.
(b) If dim X = ∞ and F is a nonconstant closed mapping, then F is proper.

Proposition 2.17 (See [24, pp. 58–59], [32, p. 498] and [28, p. 20]). Suppose
that F :X → Y and F = F1 + F2, where

(a) F1:X → Y is a continuous proper mapping on X, and
(b) F2:X → Y is completely continuous, or
(c) F :X → X, F = I−F2, where I:X → X is the identity and F2:X → X

is a condensing map (for the definition see [10, p. 69]).

Then

(i) The restriction of the mapping F to an arbitrary bounded closed set in
X is a proper mapping.

(ii) If moreover, F is coercive, then F is a proper mapping.

Definition 2.18. Let F := I − f :X → X be a field (I:X → X is the
identity mapping).

(a) We shall say that F is strictly surjective if and only if it is
• a condensing field (i.e. f is condensing), and
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• for each y ∈ X there is a sequence {rk}k∈N ⊂ R such that

lim
k→∞

rk = ∞ and deg (F − y, U(0, rk), 0) 6= 0

for every k ∈ N . Here U(0, r) = {u ∈ X : ‖u‖X ≤ r}.
(b) We shall say that F is strictly solvable if and only if it is

• a condensing field, and
• there exists a sequence {rk}k∈N ⊂ R such that limk→∞ rk = ∞

and deg (F,U(0, rk), 0) 6= 0 for every k ∈ N .

In both definitions the degree of a condensing field is understood in the sense
given in [10, pp. 69, 71–72].

Remark 2.19. It is clear that if F is strictly surjective, then it is surjective
and if F is strictly solvable, then it is also solvable (i.e. there is x ∈ X with
F (x) = 0). Moreover, if F is strictly surjective, then it is stricty solvable, too.

Now we can formulate some sufficient conditions for the surjectivity of an
operator.

Proposition 2.20 (See [28, pp. 24 and 27]). Let X be a real Banach space.
Suppose

(a) P = I − f :X → X is a condensing field,
(b) P is coercive,
(c) there exists a strictly solvable field G = I − g:X → X and R > 0 such

that, for all solutions u ∈ X of the equation

P (u) = kG(u)

and for all k < 0, the estimation ‖u‖X < R holds.

Then the following statements are true:

(i) P is a proper mapping,
(ii) P is strictly surjective,
(iii) cardP−1(q) is constant, finite and nonzero for every q from the same

connected component of the set Y \ P (Σ).

Proposition 2.21 (Schauder invariance of domain theorem [32, p. 705]). Let
F : (M ⊆ X) → X is continuous and locally compact perturbation of identity on
the open nonempty set M in the Banach space X. Then:

(a) If F is locally injective on M so F is an open mapping.
(b) If F is injective on M so F is a homeomorphism from M onto the open

set F (M).
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3, A nonlinear problem and Green function

Using results on the Green function for problem (1.1)–(1.3) with f = 0 we
shall study the existence of the given nonlinear problem from Section 1.

Definition 3.1 (Green function). A function of four variables G:D(G) → R
with the values G(t, x; τ, ξ) for

(t, x; τ, ξ) ∈ D(G) = {(t, x; τ, ξ) ∈ cl Q× cl Q : 0 ≤ τ < t ≤ T, x, ξ ∈ Ω}

and with the following properties:

(i) G is a continuous function on D(G).
(ii) G has the first derivative with respect to t and the derivatives of |k|th

order Dk
xG for 1 ≤ |k| ≤ 2b on D(G).

(iii) G is defined by the equality

G(t, x; τ, ξ) = Z(t, x; τ, ξ)− v(t, x; τ, ξ), (t, x; τ, ξ) ∈ D(G),

where Z:D(G) → R is a fundamental solution of equation (1.1) with f = 0
(for the definition see [14, p. 63]) and the function v:D(G) → R satisfies the
initial-boundary value problem

(a) A(t, x,Dt, Dx)v(t, x; τ, ξ) = 0 for (t, x; τ, ξ) ∈ D(G),
(b) v(t, x; τ, ξ)|t=τ = 0, if at least one of points x or ξ lies inside of the

domain Ω,
(c) Bj(t, x,Dx)v(t, x; τ, ξ) = Bj(t, x,Dx)Z(t, x; τ, ξ) for (t, x) ∈ cl Γ and

j = 1, . . . , b

is called the Green function of linear problem (1.1)–(1.3) with f = 0.

The following proposition says on the existence and estimations of the Green
function.

Proposition 3.2 ([15, pp. 182–183]). Let α ∈ (0, 1) and the assumptions
(P), (C), (Sα) be satisfied. Then:

(a) there exists the Green function of linear problem (1.1)–(1.3) with f = 0
which has derivatives Dk0

t Dk
xG for 0 ≤ 2bk0 + |k| ≤ 2b, thereby the

estimations

(3.1) |Dk0
t Dk

xG(t, x; τ, ξ)|

≤ c1(t− τ)−(n+2bk0+|k|)/(2b) exp
{
− c2

‖x− ξ‖r
Rn

(t− τ)1/(2b−1)

}
for (t, x; τ, ξ) ∈ D(G),

(3.2) |Dk0
t Dk

xG(t, x; τ, ξ)−Dk0
t Dk

xG(t, y; τ, ξ)|

≤ c1‖x− y‖α
Rn(t− τ)−(n+2bk0+|k|+α)/(2b) exp

{
− c2

‖x∗ − ξ‖r
Rn

(t− τ)1/(2b−1)

}
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for (t, x; τ, ξ), (t, y; τ, ξ) ∈ D(G), if

2bk0 + |k| = 2b, ‖x∗ − ξ‖Rn = min{‖x− ξ‖Rn , ‖y − ξ‖Rn},

(3.3) |Dk0
t Dk

xG(t, x; τ, ξ)−Dk0
t Dk

xG(s, x; τ, ξ)|
≤ c1(t− s)(2b(1−k0)−|k|+α)/(2b)(s− τ)−(n+2b+α)/(2b)

· exp
{
− c2

‖x− ξ‖r
Rn

(t− τ)1/(2b−1)

}
for (t, x; τ, ξ), (s, x; τ, ξ) ∈ D(G) such that τ < s < t and 0 < 2bk0+|k| ≤
2b hold.

Here r = 2b/(2b−1) and the constants c1, c2 depend on δ and δ+ from hypotheses
(P) and (C), respectively, on the constant which bounds the associated norms of
all coefficients ak, bjk from (1.1)–(1.2), respectively, on the measure of the variety
∂Ω from condition (Sα) and on the numbers n, b, rj for j = 1, . . . , b and α, T .

(b) If moreover to the hypotheses of (a) we take g ∈ C
α/2,α
t,x (cl Q, R) and

hypotheses (Q) for f = 0, then the function u: clQ → R defined by

(3.4) u(t, x) =
∫ t

0

dτ

∫
Ω

G(t, x; τ, ξ)g(τ, ξ) dξ

is a solution of linear problem (1.1)–(1.3) for f = 0 and belongs to
C

(2b+α)/(2b),2b+α
t,x (cl Q, R). Hence, the operator L:D(L) onto−→ R(L) where

Lu = A(t, x,Dx, Dt)u and

D(L) = {u ∈ C
(2b+α)/(2b),2b+α
t,x (cl Q, R) : B(t, x,Dx)u|Γ = 0, ut=0 = 0},

R(L) = {g ∈ C
α/2,α
t,x (cl Q, R) : g(t, x)|t=0, x∈∂Ω = 0}

has the inverse
L−1:R(L) onto−→ D(L)

defined by (3.4).
(c) There exists an extension

L−1:L2(cl Q, R) onto−→ R(L−1) ⊂ L2(cl Q, R)

of the operator L−1 (see (b)) and

(L−1g)(t, x) =
∫ t

0

dτ

∫
Ω

G(t, x; τ, ξ)g(τ, ξ) dξ

for g ∈ L2(cl Q, R) (see [1], [27], [26] and [15, pp. 183, 212]).

Remark 3.3.

(a) Pay attention to Proposition 3.2. The exponent k0 takes only values
0, 1. Estimation (3.2) holds either for the pair (k0, |k|) = (1, 0) or
(0, 2b). The estimate does not hold for k0 = |k| = 0.
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(b) Statement (c) of Proposition 3.2 says that for g ∈ L2(cl Q, R) the inte-
gral ∫ t

0

dτ

∫
Ω

G(t, x; τ, ξ)g(τ, ξ) dξ

gives a mild solution of (1.1)–(1.3) with f = 0. (It is a classical solution
of this problem for a sufficiently smooth right-hand side g.)

Lemma 3.4. Let assumptions (P), (C), (Sα) be satisfied for some α ∈ (0, 1).
Then

(3.5) |Dk0
t Dk

xG(t, |; τ, ξ) ≤ c(t− τ)−µ‖x− ξ‖2bµ−(n+2bk0+|k|)
Rn

for 0 ≤ 2bk0 + |k| ≤ 2b and µ ≤ (n + 2bk0 + |k|)/(2b), thereby 0 ≤ τ < t ≤ T

and x, ξ ∈ cl Ω, x 6= ξ. The positive constant c does not depend on t, x, τ , ξ.

Proof. From (3.1)

|Dk0
t Dk

xG(t, |; τ, ξ) ≤ c1(t− τ)−µ‖x− ξ‖2bµ−(n+2bk0+|k|)
Rn

· [‖x− ξ‖2b
Rn/(t− τ)](n+2bk0+|k|−2bµ)/(2b)

· exp{−c2[‖x− ξ‖2b
Rn/(t− τ)]1/(2b−1)}.

Since n + 2bk0 + |k| − 2bµ ≥ 0 and ‖x− ξ‖Rn < diam Ω so for 0 < δ ≤ t− τ ≤ T

the estimation (3.5) is true. If 0 < t− τ < δ, then with respect to

lim
y→∞

yu exp{−cyv} = 0

for every u, v ∈ R and c > 0, we get estimation (3.5). �

Remark 3.5. For any x = (x1, . . . , xn) ∈ Rn the inequalities

(3.6) cn

n∑
i=1

|xi| ≤ ‖x‖Rn ≤
n∑

i=1

|xi|

holds for cn ∈ (0, 1/(
√

2)n−1), n ∈ N independent of x.

The aim of this part is to show that nonlinear problem (1.1)–(1.3) has at least
one mild solution u ∈ C2b−1

x (cl Q, R) for continuous functions f and g. Then we
formulate examples of nonuniquely solvable problems.

Theorem 3.6 (The existence theorem). Let hypotheses (P), (C), (Q), (Sα)
for α ∈ (0, 1) be satisfied and g: clQ → R be a continuous function at cl Q. Let
f : clQ × Rκ → R be continuous and bounded function at cl Q × Rκ, where κ is
the positive integer given in the formulation of problem (1.1)–(1.3). Then there
is at least one mild solution u ∈ C

|γ|
x (cl Q, R) for 0 ≤ |γ| ≤ 2b− 1 of (1.1)–(1.3).

Proof. We use the Leray–Schauder fixed point theorem from [32, p. 56].
First, from Proposition 3.2(c) we can see that the mild solution u ∈ C

|γ|
x (cl Q, R)
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of problem (1.1)–(1.3) satisfies the equation

u(t, x) =
∫ t

0

dτ

∫
Ω

G(t, [; τ, ξ)g(τ, ξ)− f(τ, ξ,D γu(τ, ξ))] dξ(3.7)

=: (Su)(t, x) for (t, x) ∈ cl Q

and on the contrary the solution v ∈ C
|γ|
x (cl Q, R) satisfying (3.7) is a mild

solution of (1.1)–(1.3).
Let us take an arbitrary u ∈ C

|γ|
x (cl Q, R) where 0 ≤ |γ| ≤ 2b−1. Then there

is a constant M > 0 such that

|g(t, x)− f(t, x,D γ
xu(t, x))| ≤ M

for all (t, x) ∈ cl Q. Put estimation (3.5) into (3.7) and embed cl Ω into the ball

B(x, R) := {ξ ∈ Rn : ‖x− ξ‖Rn ≤ R, R > 0}

for every x ∈ cl Ω. Then

|(Dk
xSu)(t, x)| ≤ Mc

1− µ
T 1−µ

∫
Ω

‖x− ξ‖2bµ−(n+|k|)
Rn dξ

≤ Mc

1− µ
T 1−µ

∫
B(x,R)

‖x− ξ‖2bµ−(n+|k|)
Rn dξ.

Hence, putting x = (x1, . . . , xn), ξ = (ξ1, . . . , ξn) and using the spherical trans-
formation

ξ1 =x1 + r cos ϕ1,

ξ2 =x2 + r sinϕ1 cos ϕ2,

. . . . . . . . . . . . . . . . . . . . . . . .

ξn−1 =xn−1 + r sinϕ1 sinϕ2 . . . sinϕn−2 cos ϕn−1,

ξn =xn + r sinϕ1 sinϕ2 . . . sinϕn−2 sinϕn−1,

for r ∈ (0, R〉, ϕi ∈ (0, π), i = 1, . . . , n − 2 and ϕn−1 ∈ (0, 2π) in the last
integral, we get the estimation (the Jacobi determinant of this transformation is
rn−1 sinn−2 ϕ1 sinn−3 ϕ2 . . . sinϕn−2 6= 0):

|(Dk
x Su)(t, x)| ≤ 2πn−1T 1−µR2bµ−|k|Mc/(2bµ− |k|)(1− µ) := dk

for (t, x) ∈ cl Q and |k|/(2b) < µ < 1, where |k| = 0, . . . , 2b− 1. This considera-
tion implies the inclusion

(3.8) S(G(0, d)) ⊂ G(0, d), d ≤
∑

0≤|k|≤2b−1

dk,

where

G(0, d) := {v ∈ C |γ|
x (cl Q, R) : ‖v‖

C
|γ|
x (cl Q,R)

≤ d, 0 ≤ γ ≤ 2b− 1}.
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To prove the relative compactnes of the set S(G(0, d)) we apply Ascoli–Arzelà
theorem [31, p. 85]. The equi-boundedness of S(G(0, d)) follows from (3.8).
For the equi-continuity of S(G(0, d)), observe the difference ((t, x), (s, y) ∈ cl Q,
t < s, y = (y1, . . . , yn))

(3.9) |(Dγ
xSu)(t, x) − (Dγ

xSu)(s, y)|

≤M

∫ t

0

dτ

∫
Ω

|Dγ
xG(t,−; τ, ξ)Dγ

xG(t, [; τ, ξ)y]| dξ

+ M

∫ t

0

dτ

∫
Ω

|Dγ
xG(t, [; τ, ξ)y]−Dγ

xG(s, y; τ, ξ)| dξ

+ M

∫ s

t

dτ

∫
Ω

|Dγ
xG(s, y; τ, ξ)| dξ.

To estimate the first integral of (3.9) we use the mean value theorem, estimation
(3.5) from Lemma 3.4 and inequalities (3.6) for the difference

(3.10) |Dγ
xG(t, x; τ, ξ)−Dγ

xG(t, y; τ, ξ)| ≤
n∑

i=1

|xi − yi||Dγ(i)
x G(t, x∗i , τ, ξ)|

≤ c

cn
‖x− y‖Rn(t− τ)−µ

n∑
i=1

‖x∗i − ξ‖2bµ−(n+|γ(i)|)
Rn .

Here the multiindex γ(i) = (γ1, . . . , γi−1, γi + 1, γi+1, . . . , γn) ∈ Rn and x∗i =
(y1, . . . , yi−1, zi, xi+1, . . . , xn) ∈ Rn. The point zi lies between the numbers xi

and yi, |γ(i)|/(2b) ≤ µ < 1 and ‖x− y‖Rn > ‖x− x∗i ‖Rn . By the last inequality
we obtain for |γ| = 0, . . . , 2b− 2

(3.11) J1, |γ| :=
∫ t

0

dτ

∫
Ω

|Dγ
xG(t,−; τ, ξ)Dγ

xG(t, [; τ, ξ)y]| dξ ≤ C0‖x− y‖Rn ,

where the constant C0 > 0 does not depend on t, x, y.
In the case |γ| = 2b − 1, we take the points x, y, ξ ∈ cl Ω satisfying the

inequality 2‖x−y‖Rn
< ‖ξ−x‖Rn

. Then, by the triangle inequalities, it is obvious
that ‖x − y‖Rn < ‖x∗i − ξ‖Rn . Hence ‖x − ξ‖Rn ≤ ‖x − x∗i ‖Rn + ‖x∗i − ξ‖Rn <

‖x − y‖Rn
+ ‖x∗i − ξ‖Rn

< 2‖x∗i − ξ‖Rn
. From estimation (3.10) we obtain the

inequality

|Dγ
xG(t,−; τ, ξ)Dγ

xG(t, [; τ, ξ)y]|
≤ (c/cn) · ‖x− y‖Rn

(t− τ)−µn (2−1‖x− ξ‖Rn
)2bµ−(n+2b).

If we put B1 = {ξ ∈ Rn : ‖ξ − x‖Rn > 2‖x − y‖Rn}, B2 = Rn − B1 and for
m ∈ N , m > 2 B3 = {ξ ∈ Rn : ‖ξ − x‖Rn ≤ m ‖x − y‖Rn} such that Ω ⊂ B3,
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then we have for (2b− 1 + α)/(2b) ≤ µ < 1, α ∈ (0, 1)

J1,2b−1 ≤ (n c/cn)2n+2b−2bµ

·
[ ∫ t

0

dτ

∫
B1∩B3

(t− τ)−µ

(
‖x− y‖Rn‖x− ξ‖2bµ−(n+2b)

Rn

)
dξ

+
∫ t

0

dτ

∫
B2

(t− τ)−µ‖x− y‖Rn
‖x− ξ‖2bµ−(n+2b)

Rn
dξ

]
≤C1‖x− y‖2bµ−(2b−1)

Rn
, C1 > 0.

Again employing the mean value theorem and (3.5) we find t∗ ∈ (t, s) such
that

|Dγ
xG(t, y; τ, ξ)−Dγ

xG(s, y; τ, ξ)| = |DtD
γ
xG(t∗, y; τ, ξ)|(s− t)

≤ c(s− t)(t− τ)−µ‖y − ξ‖2bµ−(n+2b+|γ|)
Rn

for µ ≤ (n+2b+ |γ|)/(2b) (0 < t−τ < t∗− τ), 0 ≤ |γ| ≤ 2b−1. Hence, if we put
S1 = {ξ ∈ cl Ω : ‖y − ξ‖Rn < (s− t)1/(2b)} and S2 = clΩ− S1, then by estimate
(3.5) we get for the two last integral members of (3.9) (0 ≤ |γ| ≤ 2b− 1)

(3.12) J2,|γ| :=
∫ t

0

dτ

∫
Ω

|Dγ
xG(t, [; τ, ξ)y]−Dγ

xG(s, y; τ, ξ)|dξ

+
∫ s

t

dτ

∫
Ω

|Dγ
xG(s, y; τ, ξ)|dξ

≤
∫ t

0

dτ

∫
S1

|Dγ
xG(t, [; τ, ξ)y]| dξ +

∫ s

0

dτ

∫
S1

|Dγ
xG(s, y; τ, ξ)| dξ

+
∫ t

0

dτ

∫
S2

|Dγ
xG(t, [; τ, ξ)y]−Dγ

xG(s, y; τ, ξ)| dξ

+
∫ s

t

dτ

∫
S2

|Dγ
xG(s, y; τ, ξ)| dξ

≤ c

∫ t

0

dτ

∫
S1

(t− τ)−λ‖y − ξ‖2bλ−(n+|γ|)
Rn dξ

+ c

∫ s

0

dτ

∫
S1

(s− τ)−ν‖y − ξ‖2bν−(n+|γ|)
Rn dξ

+ c

∫ t

0

dτ

∫
S2

(s− t)(t− τ)−µ‖y − ξ‖2bµ−(n+2b+|γ|)
Rn dξ

+ c

∫ s

t

dτ

∫
S2

(s− τ)−σ‖y − ξ‖2bσ−(n+|γ|)
Rn dξ

for 0 < λ ≤ (n + |γ|)/(2b), 0 < ν ≤ (n + |γ|)/(2b), 0 < µ ≤ (n + 2b + |γ|)/(2b)
and 0 < σ ≤ (n + |γ|)/(2b). If apply the spherical transformation for ξ with the
center y and radius r ∈ (0, (s − t)1/(2b)) in the two integrals over S1, such for



Topological Structure of Solution Sets to Parabolic Problems 331

|γ|/(2b) < λ < 1 and |γ|/(2b) < ν < 1

(2.13)
∫ t

0

dτ

∫
S1

(t− τ)−λ‖y − ξ‖2bλ−(n+|γ|)
Rn dξ

≤ 2πn−1T 1−λ(s− t)(2bλ−|γ|)/(2b)/(2bλ− |γ|)(1− λ)

and

(3.14)
∫ t

0

dτ

∫
S1

(s− τ)−ν ‖y − ξ‖2bν−(n+|γ|) dξ

≤ 2πn−1T 1−ν(s− t)(2bν−|γ|)/(2b)/(2bν − |γ|)(1− ν).

If we embed the set S2 into the set

B(y, (s− t)1/(2b), R) := {ξ ∈ Rn : (s− t)1/(2b) ≤ ‖y − ξ‖Rn ≤ R, R > 0} ⊃ S2

and we use the spherical substitution for ξ with the center y and radius r ∈
((s − t)1/(2b), R) in the two integrals over S2, then we get for |γ|/(2b) < µ < 1
and |γ|/(2b) < σ < 1

(3.15) (s− t)
∫ t

0

dτ

∫
S2

(t− τ)−µ ‖y − ξ‖2bµ−(n+2b+|γ|)
Rn dξ

≤ 2πn−1T 1−µ(s− t)(2bµ−|γ|)/(2b)/(2b + |γ| − 2bµ)(1− µ)

and

(3.16)
∫ s

t

dτ

∫
S2

(s− τ)−σ ‖y − ξ‖2bσ−(n+|γ|)
Rn dξ

≤ 2πn−1R2bσ−|γ|(s− t)1−σ/(2bσ − |γ|)(1− σ).

From inequality (3.9) and estimations (3.11)–(3.16) we can conclude that the
operator S is compact. �

The following examples ilustrate a non-uniqueness of classical solution of
(1.1)–(1.3) type initial-boundary value problems.

Example 3.7. Consider the two Neumann type initial-boundary value prob-
lems (parabolic and non-parabolic)

∂u

∂t
= ±∂2u

∂x2
+ f(t, x, u), (t, x) ∈ (0, T 〉 × Ω = Q,(3.1∗)

∂u

∂x
(t, 0) =

∂u

∂x
(t, 1) = 0, t ∈ 〈0, T 〉,(3.2∗)

u(0, x) = 0, x ∈ Ω.(3.3∗)
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(a) If f(t, x, u) = |u|α, α ∈ (0, 1), the given problem has a continuum of the
solutions ur ∈ C1,2

t,x (cl Q, R) for r ∈ (0, T )

ur(t, x) =

{
0 if (t, x) ∈ 〈0, r〉 × Ω,

(1− α)1/(1−α)(t− r)1/(1−α) if (t, x) ∈ (r, T 〉 × Ω,

u0(t, x) = (1− α)1/(1−α)t1/(1−α) and uT (t, x) = 0 are solutions of (3.1∗)–(3.3∗),
too.

(b) Similarly, if f(t, x, u) = |u|1/2 − au, a > 0, we have a continuum of
solutions of (3.1∗)–(3.3∗) for r ∈ (0, T )

ur(t, x) =


0 if (t, x) ∈ 〈0, r〉 × Ω,

1
a2

(
1− exp

{
− a

2
(t− r)

})2

if (t, x) ∈ (r, T 〉 × Ω.

The functions u0(t, x) = (1/a2)(1− exp{−at/2})2, uT (t, x) = 0 are solutions of
the given problem, too.

(iii) We obtain an analogical situation for f(t, x, u) = tβ |u|α with α ∈ (0, 1)
and β > 0. Other nonlinearities f can be taken, too.

Example 3.8 (see [18, p. 48]). (i) Consider the initial-boundary value prob-
lem for the nonlinear equation

(3.1∗∗)
∂u

∂t
=

∂2u

∂x2
+

√
2
π

∣∣∣∣ ∫ π

0

u(t, y) sin y dy

∣∣∣∣1/2

sinx

+

√
2
π

∣∣∣∣ ∫ π

0

u(t, y) sin 2y dy

∣∣∣∣1/2

sin 2x

for (t, x) ∈ (0, T 〉 × (0, π), with the Dirichlet type boundary value condition

(3.2∗∗) u(t, 0) = u(t, π) = 0, t ∈ 〈0, T 〉

and the initial value condition

(3.3∗∗) u(0, x) = 0, x ∈ 〈0, π〉.

A continuum of solutions belonging to C1,2
t,x (cl Q, R) of this problem represents

the set of functions

ur(t, x) = ar(t) sinx + br(t) sin 2x, (t, x) ∈ cl Q

for r ∈ 〈0, T 〉. Here for r ∈ (0, T )

ar(t) =

{
0 if t ∈ 〈0, r〉,
(1− exp{−(t− r)/2})2 if t ∈ (r, T 〉,

and

br(t) =

{
0 if t ∈ 〈0, r〉,
1
16

(1− exp{−2(t− r)})2 if t ∈ (r, T 〉.
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Further, a0(t) = (1 − exp{−t/2})2, aT (t) = 0 = bT (t), b0(t) = (1/16)(1 −
exp{−2t})2.

The functions ar and br: 〈0, T 〉 → R are the solutions of the initial value
problems

du

dt
+ a = |a|1/2, t ∈ (0, T 〉, a(0) = 0,

db

dt
+ 4b = |b|1/2, t ∈ (0, T 〉, b(0) = 0,

respectively.

4. Operator formulation and fundamental lemmas

Consider the following operators:

(a)

(4.1) A:X → Y,

where

(Au)(t, x) = A(t, x,Dt, Dx)u(t, x) = Dtu(t, x)−
∑

0≤|k|≤2b

ak(t, x)Dk
xu(t, x),

for (t, x) ∈ cl Q, u ∈ X,

X = {u ∈ C1,2b
t,x (cl Q, R):Bj(t, x,Dx)u|Γ = 0, j = 1, . . . , b,

u(0, x) = 0 for x ∈ cl Q}

and Y = C(cl Q, R).
(b) The Nemitskĭı operator for the function f from (1.1)

(4.2) N :X → Y,

where (Nu)(t, x) = f(t, x,D
γ

x u(t, x)) for (t, x) ∈ cl Q, u ∈ X.
(c) The operator

(4.3) F :X → Y,

where (Fu)(t, x) = (Au)(t, x) + (Nu)(t, x) for (t, x) ∈ cl Q, u ∈ X.

Together with the solution sets of given problem (1.1)–(1.3) we shall search
the bifurcation points sets.

Definition 4.1.

(a) A couple (u, g) ∈ X×Y will be called the bifurcation point of (1.1)–(1.3)
if and only if u is a solution of this problem and there exists a sequence
{gk}k∈N ⊂ Y such that limk→∞ gk = g in Y and initial-boundary value
problem (1.1)–(1.3) with g = gk has at least two different solutions
uk, vk for each k ∈ N and limk→∞ uk = limk→∞ vk = u in X.
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(b) The set of all solutions u ∈ X of (1.1)–(1.3) (or the set of all functions
g ∈ Y ) such that (u, g) is a bifurcation point of (1.1)–(1.3) will be called
the domain of bifurcation (resp. the bifurcation range) of (1.1)–(1.3).

Example 4.2. The point (ur, 0) ∈ X×Y for r ∈ 〈0, T 〉 is a bifurcation point
of the Neumann problem from Example 3.7(a) and (b). Really, there is the zero
sequence {gk}k∈N , where gk = 0 for k ∈ N , of the right-hand side of (1.1) for
which there exist two different sequences of solutions

{uk}k∈N = {ur(k+1)/(k+2)}k∈N and {vk}k∈N = {u(rk)/(k+1)}k∈N

with the same limit ur ∈ X. �

The following equivalence result is true.

Lemma 4.3.

(a) The function u ∈ X is a solution of initial-boundary value problem
(1.1)–(1.3) for g ∈ Y if and only if Fu = g.

(b) The couple (u, g) ∈ X × Y is a bifurcation point of (1.1)–(1.3) if and
only if Fu = g and u is a point at which F is not locally invertible, i.e.
u ∈ Σ (see Definition 2.13).

Proof. The first assertion is clear.
(b) If (u, g) is a bifurcation point of (1.1)–(1.3), then with respect to Defi-

nition 4.1 we get Fu = g, Fuk = gk = Fvk, uk 6= vk. Thus F is not locally
injective at u. Hence, F is not locally invertible at u, i.e. u ∈ Σ. Conversely,
if F is not locally invertible at u and Fu = g, then F is not locally injective
at u. Hence, it follows that the couple (u, g) ∈ X × Y is a bifurcation point
of (1.1)–(1.3). �

The following lemma gives sufficient conditions for the operator A to be of
Fredholm type.

Lemma 4.4. Let the operator A from (4.1) satisfy smoothness hypothesis
(Sα), α ∈ (0, 1) and

(A.1) There exists a linear homeomorphism H:X → Y with

Hu = Dtu−H(t, x,Dx)u, u ∈ X,

where

H(t, x,Dx)u =
∑
|k|=2b

ak(t, x)Dk
xu +

∑
0≤|k|≤2b−1

hk(t, x)Dk
xu

satisfying (Sα), α ∈ (0, 1).
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Then:

(a) dim X = ∞.
(b) The operator A:X → Y is a linear bounded Fredholm operator of the

zero-index.

Proof. (a) We use the decomposition theorem from [29, p. 139]: Let Z be
a linear space and 0 6= x∗:Z → R be a linear mapping on Z and x0 ∈ Z \ M ,
where M = {x ∈ Z : x∗(x) = 0}. Then every element x ∈ Z can be expressed
by the formula

x =
x∗(x)
x∗(x0)

x0 + m,

where m ∈ M , i.e. there is a one-dimensional subspace L1 of Z such that Z =
L1 ⊕M .

Now, we put

Ml = {u ∈ C1,2b
t,x (cl Q, R) : Bj(t, x,Dx)u|Γ = 0 for j = 1, . . . , l}

for l = 1, . . . , b. We see that C1,2b
t,x (cl Q, R) ⊃ M1 ⊃ . . . ⊃ Mb. There exist

one-dimensional spaces Ll for l = 1, . . . , b such that

C1,2b
t,x (cl Q, R) = L1 ⊕M1, M1 = L2 ⊕M2, . . . , Mb−1 = Lb ⊕Mb.

If we put

Mb+1 = {u ∈ C1,2b
t,x (cl Q, R) : Bj(t, x,Dx)u|Γ = 0 for j = 1, . . . , b,

u(0, x) = 0 on cl Ω} = D(A) = X ⊂ Mb,

then we can write

C1,2b
t,x (cl Q, R) = L1 ⊕ . . .⊕ Lb ⊕Mb(4.4)

= L1 ⊕ . . .⊕ Lb ⊕ Lb+1 ⊕Mb+1

= L1 ⊕ . . .⊕ Lb ⊕ Lb+1 ⊕X,

where Lb+1 is a one-dimensional subspace of Mb. Since

dim C1,2b
t,x (cl Q, R) = ∞,

from (4.4) we get dim X = ∞.
(b) Since the coeficients ak for 0 ≤ |k| ≤ 2b are continuous on the compact

set cl Q there is a positive constant K > 0

‖Au‖Y ≤ K(‖Dtu‖Y +
∑

0≤|k|≤2b

‖Dk
xu‖Y ) = K‖u‖X

for all u ∈ X, whence the operator A is bounded on X.
By Proposition 2.2 [30, p. 233], it is sufficient to show that

Au = Hu + (H(t, x,Dx)−A(t, x,Dx))u := Hu + Tu,
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thereby the mapping T :X → Y is the linear completely continuous operator. It
will be proved by the Ascoli–Arzelà theorem from [31, p. 85].

From the hypothesis (Sα), the equi-boundedness of

Tu =
∑

0≤|k|≤2b−1

(hk(t, x)− ak(t, x))Dk
xu

holds at the bounded set S ⊂ X, i.e. there is a constant K1(n, α, T, Ω) > 0 such
that ‖Tu‖Y ≤ K1‖u‖X for all u ∈ S.

With respect to (Sα) we obtain for all u ∈ S and (t, x), (s, y) ∈ cl Q

|Tu(t, x)−Tu(s, y)|

≤
∑

0≤|k|≤2b−1

|(hk − ak)(t, x)− (hk − ak)(s, y)| : |Dk
xu(t, x)|

+
∑

0≤|k|≤2b−1

|hk(s, y)− ak(s, y)| : |Dk
xu(t, x)−Dk

xu(s, y)|

≤K2

∑
0≤|k|≤2b−1

|(hk − ak)(t, x)− (hk − ak)(s, y)|

+ K3

∑
0≤|k|≤2b−1

|Dk
xu(t, x)−Dk

xu(s, y)|,

where K2, K3 are positive constants only dependent of n, α, T , Ω. Using as-
sumption (Sα) for the first member and the mean value theorem for the second
member in the previous estimation, we obtain

|Tu(t, x)−Tu(s, y)|
≤K2K4card{k : 0 ≤ |k| ≤ 2b− 1}[|t− s|α/(2b) + ‖x− y‖α

Rn ]

+ K3

∑
0≤|k|≤2b−1

[
|DtD

k
xu(t∗, x)||t− s|+

n∑
i=1

|Dk(i)
x u(t, x∗i )||xi − yi|

]
.

Here t∗ lays between t and s, x∗i = (y1, . . . , yi−1, ξi, xi+1, . . . , xn) with ξi laying
between xi and yi. The modul of multiindex k(i) = (k1, . . . , ki−1, ki +1, . . . , kn)
is |k(i)| = |k|+ 1 ≤ 2b for i = 1, . . . , n.

For |t−s| < δ, ‖x−y‖Rn < δ with a sufficienly small δ > 0 the every member
of the last inequality is smaller than a fixed arbitrary ε > 0. This proves the
equi-continuity of the set T (S). �

Corollary 4.5. Let L mean the set of all linear differential operators A =
Dt−A(t, x,Dx):X → Y satisfying the hypothesis (Sα), α ∈ (0, 1). Then, for each
A ∈ L, the initial boundary value homogeneous problem: Au = 0, (1.2), (1.3)
has a nontrivial solution or any A ∈ L is a linear bounded Fredholm operator of
the zero index.
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Proof. Really, if there exists an operator A ∈ L such that the problem
Au = 0, (1.2), (1.3) has only trivial solution, then A is a homeomorphism of
X onto Y . Then, by Lemma 4.4, all operators of L are Fredholm of the zero
index. �

Lemma 4.6. Suppose

(N.1) f ∈ C(cl Q× Rκ, R).

Then the Nemitskĭı operator N :X → Y from (4.2) is completely continuous
on X.

Proof. For any bounded set S ⊂ X the N is equi-bounded in Y . Also, for
|t−s|2 +‖x−y‖2

Rn < δ2 with a sufficiently small δ > 0 we get the equi-continuity
of N . �

Lemma 4.7. Let (Sα), (A.1), (N.1) and an almost coercivity condition

(F.1) Let r be an integer 0 ≤ r ≤ 2b − 1. Suppose that coefficients ak and
hk of operators A and H from (4.1) and (A.1), respectively are equal
for |k| = r + 1, . . . , 2b at cl Q and there is a multiindex k with |k| = r

for which ak 6= hk at cl Q. Put a = max{|γ|, r}. Moreover, we assume,
there exists a constant Ka > 0 such that the inequality

(4.5) ‖u‖a, Q =
∑

0≤|k|≤a

sup
(t,x)∈cl Q

|Dk
xu(t, x)| ≤ Ka

holds for all solutions u ∈ X of problem (1.1)–(1.3) with the right–hand
sides g from bounded set S ⊂ Y .

be satisfied. Then:

(a) F from (4.3) is coercive on X.
(b) F is proper and continuous.

Proof. (a) We need to prove that if the set S ⊂ Y is bounded in Y , then
the set of arguments F−1(S) ⊂ X is bounded in X.

By (4.5) and assumption (F.1) it follows that the set F−1(S) is bounded in
the norm ‖ · ‖a,Q. Hence and by (N.1) one obtains the estimation ‖Nu‖Y ≤ K4

for all u ∈ F−1(S). From Lemma 4.4(b) also ‖Au‖Y ≤ ‖Fu‖Y + ‖Nu‖Y ≤ K5

for any u ∈ F−1(S), where K4, K5 are positive constants.
On the other hand, condition (A.1) ensures the existence and uniqueness of

the solution u ∈ X of the linear equation Hu = y for any y ∈ Y and (see the
Green representation of solution from Proposition 3.2 and the estimation (3.5))
the estimation

(4.6) ‖u‖X ≤ K6‖y‖Y , K6 > 0, u ∈ F−1(S)
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is true. Then for u ∈ F−1(S) we have

Hu = Au +
∑

0≤|k|≤2b

(ak(t, x)− hk(t, x))Dk
xu.

With respect to (Sα) and (F.1)

‖y‖Y = ‖Hu‖Y ≤‖Au‖Y +
∑

0≤|k|≤r

‖ak − hk‖Y ‖Dk
xu‖Y

≤K5 + K7‖u‖r, Q ≤ K5 + K7‖u‖a, Q ≤ K5 + K7Ka, K7 > 0.

Hence and by (4.6)

‖u‖X ≤ K6(K5 + K7Ka), u ∈ F−1(S).

(b) Since dim X = ∞ and A is a nonconstant and closed mapping on X,
then by Proposition 2.16(b) it is proper on X. From Lemma 4.6 the operator
N is completely continuous on X. From (b) of this lemma F is coercive on X.
Proposition 2.17(b) concludes the proof of (b) and the proof of Lemma 4.7. �

The following lemma gives conditions for the continuous F -differentiability
of the Nemitskĭı operator N .

Lemma 4.8. Let the Nemitskĭı operator N :X → Y satisfy the condition
(N.1) and

(N.2) ∂f/∂vβ ∈ C(cl Q × Rκ, R) for the multiindices β with the modul 0 ≤
|β| ≤ 2b − 1, where κ represents the number of the components in the
vector function vβ = D

β

xu from (1.1).

Then

(a) the operator N is continuously Fréchet differentiable on X, i.e. N ∈
C1(X, Y ).

(b) If moreover (Sα) for α ∈ (0, 1) holds, then F ∈ C1(X, Y ).

Proof. (a) We need prove that the Fréchet derivative N ′:X → L(X, Y )
defined by the equation

(4.7) N ′(u)h(t, x) =
∑

0≤|β|≤2b−1
card{β}=κ

∂f

∂vβ
[t, x, D

γ

x u(t, x)]Dβ
xh(t, x)

is continuous on X for every u, h ∈ X. Here β = (β1, . . . , βn) represents every
multiindex γ = (γ1, . . . , γn) appearing in the nonlinearity f . It is sufficient to
show for every fixed v ∈ X the condition:

∀ε > 0 ∃δ(ε, v) > 0 ∀u ∈ X, ‖u− v‖X < δ ⇒ ‖N ′u−N ′v‖L(X,Y ) < ε,
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i.e.

(4.8) sup
h∈X, ‖h‖X≤1

‖N ′(u)h−N ′(v)h‖Y < ε.

Let us take an arbitrary ε > 0 and u ∈ X such that ‖u − v‖X < δ, i.e.
|Dtu(t, x) − Dtv(t, x)| < δ and |Dk

xu(t, x) − Dk
xv(t, x)| < δ for all multiindices

0 ≤ |k| ≤ 2b on clQ. Hence with the respect to the uniform continuity of ∂f/∂vβ

for 0 ≤ |β| ≤ 2b− 1 on every compact subset of cl Q× Rκ we get

|N ′(u)h(t, x)−N ′(v)h(t, x)|

≤
∑

0≤|β|≤2b−1
card{β}=κ

∣∣∣∣ ∂f

∂vβ
[t, x, D

γ

x u(t, x)]− ∂f

∂vβ
[t, x,D

γ

x v(t, x)]
∣∣∣∣|Dβ

xh(t, x)| < ε

for ‖h‖X ≤ 1 and all (t, x) ∈ cl Q. It finishes the proof of (4.8).
(b) We easily see that Fréchet derivative F ′:X → L(X, Y ) is defined by the

equation

F ′(u)h(t, x) = Dth(t, x)−
∑

0≤|k|≤2b

ak(t, x)Dk
xh(t, x) + N ′(u)h(t, x)

for u, h ∈ X. Hence and by (c) of Theorem 5.2 we get F ∈ C1(X, Y ). �

Lemma 4.9. Let the hypotheses (Sα), α ∈ (0, 1), (A.1), (N.1) and (N.2) be
satisfied. Then F = A + N :X → Y is a nonlinear Fredholm operator of the zero
index on X.

Proof. According to Lemma 4.4(b) the operator A:X → Y is a linear
continuous and C1-Fredholm mapping of the zero index. By Lemma 4.6 the
operator N :X → Y is compact. By Lemma 4.8 it belongs to the classs C1.
Then Proposition 2.5 implies that F is a nonlinear Fredholm operator with the
zero index. �

5. The structure of solution sets
for continuous nonlinearities

The first result for that proper mapping F is given by the following theorem.

Theorem 5.1. Let hypotheses (Sα) for α ∈ (0, 1), (A.1), (N.1) hold. Then:

(a) For any compact set of the right-hand sides g ∈ Y of (1.1) the corres-
ponding set of all solutions of (1.1)–(1.3) is a countable union of compact
sets.

(b) For u0 ∈ X there exists a neighbourhood U(u0) of u0 and U(F (u0)) of
F (u0) ∈ Y such that for each g ∈ U(F (u0)) there is a unique solution
of (1.1)–(1.3) if and only if the operator F is locally injective at u0.
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(c) Let moreover (F.1) hold. Then for any compact set of the right–hand
sides g ∈ Y from (1.1), the set of all solutions of (1.1)–(1.3) is compact
(possibly empty).

Proof. (a) Since F = A+N (see (4.3)) by the decomposition of A = C +T

(Proposition 2.2) we have F = C + (T + N) where C is a continuous and proper
mapping from X onto Y (see Proposition 2.16), A is a Fredholm operator of the
zero index, T and N are completly continuous mappings. Since X is a countable
union of closed balls in X, so with respect to Proposition 2.17(a) the operator
F is σ-proper (continuous). Lemma 4.3(a) implies the assertion (a).

(b) Suppose that F is injective in a neighbourhood U(u0) of u0 ∈ X. From
the decomposition (for H see Lemma 4.4)

F = H + (T + N)

we obtain H−1F = I + H−1(T + N) which is a completely continuous and
injective perturbation of the identity I:X → Y in U(u0). According to Proposi-
tion 2.21(a) the set H−1F (U(u0)) is open in X and the restriction H−1F |U(u0) is
a homeomorphism of U(u0) onto H−1F (U(u0)). Therefore F is locally invertible
at u0. Again by Lemma 4.3() we obtain (b).

(c) By Lemma 4.7(b) the operator F :X → Y is proper which implies the
given assertion and includes the proof of Theorem 5.1. �

On futher qualitative and quantitative properties of solutions of (1.1)–(1.3)
the following theorem says.

Theorem 5.2. Let the hypotheses (Sα), α ∈ (0, 1), (A.1), (N.1), (F.1) be
satisfied. For solutions of (1.1)–(1.3) the following statements are true:

(a) The set of solutions for each g ∈ Y is compact (possibly empty).
(b) The set R(F ) = {g ∈ Y : there exists at least one solution u ∈ X of

(1.1)–(1.3)} is closed and connected in Y .
(c) The domain of bifurcation Db is closed in X and the bifurcation range

Rb is closed in Y . The set F (X \Db) is open in Y .
(d) If Y \ Rb 6= ∅, then each component of Y \ Rb is a nonempty open set

(i.e. domain).
(e) If Y \Rb 6= ∅, the number ng of solutions is finite and constant (it may

be zero) on each component of Y \ Rb, i.e. ng is the same nonnegative
integer for each g belonging to the same component of Y \Rb.

(f) If Rb = ∅, then the given problem has a unique solution u ∈ X for each
g ∈ Y and this solution continuously depends on g as a mapping from
Y onto X.

(g) If Rb 6= ∅, then the boundary ∂F (X \ Db) is a subset of F (Db) = Rb

(∂F (X \Db) ⊂ F (Db)).
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Proof. Assertion (a) follows directly from Theorem 5.1(c).
(b) Take the sequence {gn}n∈N ⊂ R(F ) ⊂ Y converging to g ∈ Y as n →∞.

Since F is proper, the set F−1({g1, g2, . . . } ∪ {g}) ⊂ X is compact. Thus there
exists a subsequence {unk

}k∈N ⊂ F−1({g1, g2, . . . } ∪ {g}) converging to u ∈ X

and F (unk
) = gnk

→ g in Y as n → ∞. Since the mapping F is proper
(Lemma 4.7(b)) by Proposition 2.16(a) it is closed, whence F (u) = g, i.e. g ∈
R(F ). The set R(F ) is closed. R(F ) = F (X) is connected as a continuous image
of the connected set X.

(c) According to Lemma 4.3(b) Db = Σ and Rb = F (Db) = F (Σ). Since
X \ Σ is an open set then Db is closed in X and its continuous image Rb is
a closed set in Y .

The difference, X \ Db = X \ Σ represents the set of all points at which
the mapping F is locally invertible. Then for each u0 ∈ X \ Db there is a
neighbourhood U1(F (u0)) ⊂ F (X \ Db). It means that the set F (X \ Db) is
open.

(d) The set Y \Rb = Y \ F (Db) 6= ∅ is open in Y . Then each its component
is nonempty and open, too.

(e) This directly follows from Proposition 2.14.
(f) By Rb = ∅ we have Db = ∅ and the mapping F is locally invertible in X.

Proposition 2.17(b) asserts that F is a proper mapping. Then the global inverse
mapping theorem (Proposition 2.15) implies that F is homeomorphism from X

onto Y .
(g) From Lemma 4.3(b) Db = Σ and by (c) of Theorem 5.2 Db and F (Db)

are closed. Then ∂F (X \Db) = ∂F (Db) ⊂ F (Db).
This finishes the proof of the theorem. �

The following two theorems concern the surjectivity corresponding to prob-
lem (1.1)–(1.3).

Theorem 5.3. Under the assumptions (Sα), α ∈ (0, 1), (A.1), (N.1), (F.1)
each of the following conditions is sufficient to the solvability of problem (1.1)–
(1.3) for each g ∈ Y :

(a) For each g ∈ Rb there is a solution u ∈ X \Db of (1.1)–(1.3).
(b) The set Y \ Rb is connected and there is g ∈ R(F ) \ Rb (for R(F ) see

Theorem 5.2(b)).

Proof. First of all we can see that conditions (a) and (b) are mutually
equivalent to the conditions:

(a’) F (Db) ⊂ F (X \Db),
(b’) Y \Rb is a connected set and F (X \Db) \Rb 6= ∅,

respectively.
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From the proof of Theorem 5.2(c) we have Db = Σ.
(a) From (a’) we have F (X) = F (Db)∪F (X \Db) = F (X \Db). So R(F ) =

F (X) is closed and connected in Y (Theorem 5.2(b)) as well as open set in Y

(see Theorem 5.2(c)). Thus R(F ) = Y which implies the surjectivity of F .
(b) By (e) of Theorem 5.2, cardF−1({g}) is a constant k ≥ 0 for every g

from the same component of Y \Rb.
If k = 0 for all g ∈ Y \ Rb, then F (X) = Rb. Hence F (X \ Db) ⊂ Rb.

However, it is a contradiction with (b’). �

Theorem 5.4. Let (Sα), α ∈ (0, 1), (A.1), (N.1), (F.1) hold together with
hypothesis

(S.1) All solutions u ∈ X of the initial-boundary value problem for the equa-
tion

Hu + µ(Au−Hu + Nu) = 0, µ ∈ (0, 1)

with data (1.2), (1.3) fulfil inequality (4.5) from Lemma 4.7. H is the
linear homeomorphism from hypothesis (A.1).

Then:

(a) problem (1.1)–(1.3) has at least one solution for each g ∈ Y ,
(b) the number ng of solutions (1.1)–(1.3) is finite, constant and different

from zero on each component of the set Y \ Rb (for all g belonging to
the same component of Y \Rb).

Proof. (a) It is sufficient to prove the surjectivity of F :X → Y . By
Lemma 4.4 (see proof of (b)) we can write

F = A + N = H + (T + N).

The mapping
H−1F = I + H−1(T + N):X → X

is a completely continuous and condensing field (see [32, p. 496]).
Let S ⊂ X be a bounded set. Then H(S) is a bounded set in Y . From

the coercivity of F (see Lemma 4.7(a)) the set F−1[H(S)] = (H−1F )−1(S) is
bounded at X. Hence H−1F is coercive.

Now we show that condition (c) from Proposition 2.20 is satisfied for the con-
densing and coercive field P = H−1F . Take the strictly solvable field G(u) = u.
The equation P (u) = kG(u) is equivalent to

(H−1F )(u) = ku.

Hence we get, for u ∈ X and k < 0,

Hu + (1− k)−1[Au−Hu + Nu] = 0,
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where (1− k)−1 ∈ (0, 1). With respect to condition (S.1)

‖u‖a,Q ≤ Ka

for a = max{|γ|, r}, where |γ| = 0, 1, . . . , 2b − 1 and 0 ≤ r ≤ 2b − 1 are fixed.
Using the same method as in Lemma 4.7(a) we obtain for all solutions of

(H−1F )u = ku

the estimation ‖u‖X ≤ K8, K8 > 0. By Proposition 2.20 we have the strict
surjectivity of H−1F and so F . This proves (a).

(b) From the surjectivity of F on X it follows that ng 6= 0. The other
assertions of (b) follow from Theorem 5.2(e). �

6. The solution set of C1 nonlinearities

With respect to the C1-differentiability of the operator N from (4.2) we prove
here several stronger results than in Section 5 for the solutions of (1.1)–(1.3).

Theorem 6.1. Suppose that (Sα), α ∈ (0, 1), (A.1), (N.1) and (N.2) be sa-
tisfied and Rb means the bifurcation range of (1.1)–(1.3). Then the set Y \Rb is
open and dence in Y and thus the bifurcation range Rb of initial-boundary value
problem (1.1)–(1.3) is nowhere dense in Y .

Proof. The openess of Y \Rb follows from the statement (c) of Theorem 5.2.
From Lemmas 4.8 and 4.9 the operator A:X → Y is a linear continuous

Fredholm mapping of the zero index and the Nemitskĭı operator N :X → Y is
compact and N ∈ C1(X, Y ).

For every u ∈ X the linear operator N ′(u):X → Y from (4.7) is completely
continuous on X. By the Nikol’skĭı decomposition theorem (see Proposition 2.2)
the operator F ′(u) = A + N ′(u):X → Y is a linear Fredholm mapping of the
zero index for each u ∈ X. By Lemma 4.8(b) we know that F ∈ C1(X, Y ) and
by Lemma 4.9 the F is a nonlinear Fredholm operator of the zero index.

According to the Banach open mapping theorem (see [31, p. 77]) the mutual
equivalence is true: F ′(u) is a linear homeomorphism if and only if it is a bijective
mapping. Since F ′(u) for every u ∈ X is a linear Fredholm mapping of the zero
index so F ′(u) is bijective if and only if it is injective (in this case the the
injectivity implies surjectivity, see Proposition 8.14 (1) from [32, p. 366]). Then
by Definition 2.6 we see that u ∈ X is a singular point of the Fredholm operator F

if and only if u is a critical point of F .
From Proposition 2.11 we obtain that set Σ (of all points u ∈ X for which F

is not locally invertible) is contained in the subset of all critical points of F .
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Then, evidently Σ is a subset of the set S of all singular points of F , i.e. Σ ⊂
S. Hence we get for the set of regular values RF of the operator F the relations

RF = Y \ F (S) ⊂ Y \ F (Σ) ⊂ Y \Rb ⊂ Y,

where Rb ⊂ F (Σ) is a bifurcation range of F .
Since F :X → Y is a nonconstant closed mapping with dim X = ∞, by

Proposition 2.12 we obtain that F is a proper mapping. By Proposition 2.9 (the
Quinn version) the set RF is residual, open and dense in Y . Hence Y \ Rb is
dense in Y , too. With respect to Lemma 4.3(b) we can conclude the proof. �

In the following results we shall deal with the linear problem in h ∈ X

(6.1) Ah(t, x) +
∑

0≤|β|≤2b−1
card{|β|}=κ

∂f

∂vβ
[t, x,Dγ

xu(t, x)]Dβ
xh(t, x) = g(t, x)

for (t, x) ∈ Q and some fixed u ∈ X with the conditions (1.2), (1.3). The
left-hand side of equation (6.1) represents the Fréchet derivative F ′(u)h of the
operator F = A + N :X → Y .

Theorem 6.2. Let the hypotheses (S)α, α ∈ (0, 1), (A.1), (N.1), (N.2) and
(F.1) be satisfied. Then

(a) For any compact set of Y (of the right-hand sides g ∈ Y of equation
(1.1)) the set of all corresponding solutions of (1.1)–(1.3) is compact
(possibly empty).

(b) The number solutions of (1.1)–(1.3) is constant and finite (it may be
zero) on each connected component of the open set Y \ F (S), i.e. for
any g belonging to the same connected component of Y \ F (S). Here S

means the set of all critical points of the operator F = A + N :X → Y .
(c) Let u0 ∈ X be a regular solution of (1.1)–(1.3) with the right-hand side

g0 ∈ Y . Then there exists a neighbourhood U(g0) ⊂ Y of g0 such that
for any g ∈ U(g0) initial-boundary value problem (1.1)–(1.3) has one
and only one solution u ∈ X. This solution continuously depends on
g. Associated linear problem (6.1), (1.2), (1.3) for u = u0 has a unique
solution h ∈ X for any g from a neighbourhood U(g0) of g0 = F (u0).
This solution continuously depends on g.

(d) Denote by G the set of all right-hand side g ∈ Y of equation (1.1) for
which all corresponding solutions u ∈ X of problem (1.1)–(1.3) are its
critical points. Then G is closed nowhere dense in Y .

(e) If the singular points set of (1.1)–(1.3) is empty, then this problem has
unique solution u ∈ X for each g ∈ Y . It continuously depends on the
right-hand side g.



Topological Structure of Solution Sets to Parabolic Problems 345

Proof. (a) Since the operator F is proper (see Lemma 4.7) we have the
assertion (a).

(b) In the proof of Theorem 6.1 we have showed that set of all singular points
of F is equal to the set of all critical points of F . Then the Ambrosetti theorem
(see Proposition 2.14) implies the statement (b).

(c) Since u0 ∈ X \ S, where S is a set of all singular (in our case all critical)
points (see Definition 2.6(b) and (c)), then by Proposition 2.11 the mapping F is
a local C1-diffeomorphism at u0. This proves the first part of (c) for (1.1)–(1.3).

Since F is a C1-diffeomorphism, it follows that F ′ ∈ C(X, Y ), (F−1)′ ∈
C(X, Y ), where F ′(u)h is the left-hand side of (6.1) nd (F−1)′(Fu) = (F ′(u))−1

for every u ∈ X. Hence linear problem (6.1), (1.2), (1.3) for u = u0 has a unique
solution h ∈ X for any g ∈ U(g0) with g0 = F (u0). This solution continuously
depends on a right-hand side g. The proof of (c) is completed.

(d) In our case the equality G = F (S) holds. By the Smale–Quinn theorem
(Proposition 2.9) we obtain the expected results.

(e) By Proposition 2.11, the operator F :X → Y is a local C1-diffeomorphism
at any point u ∈ X. Hence, the last assertion follows. �

By the point (c) of Theorem 6.2 we obtain the following.

Corollary 6.3. Let the hypotheses of Theorem 6.2 hold and moreover:

(H.1) The linear homogeneous problem (6.1), (1.2), (1.3) (for g = 0) has only
the zero solution h = 0 ∈ X for any u ∈ X.

Then initial-boundary value problem (1.1)–(1.3) has a unique solution u ∈ X for
any g ∈ Y . Moreover, linear problem (6.1), (1.2), (1.3) has a unique solution
h ∈ X for any u ∈ X and the right-hand side g ∈ Y of (6.1). This solution
continuously depends on g.

Corollary 6.4. Let the assumptions of Theorem 6.2 be satisfied. Then we
have:

(a) If the set S of all singular (in our case all critical) points of F is
nonempty, then ∂F (X \ S) ⊂ F (S).

(b) If F (S) ⊂ F (X \ S), then problem (1.1)–(1.3) has the solution u ∈ X

for any g ∈ Y , i.e. R(F ) = Y (F is a surjection of X onto Y ).
(c) If Y \F (S) is connected and X \S 6= ∅, then R(F ) = Y (the solvability

of (1.1)–(1.3) for any g ∈ Y ).

Proof. (a) By Theorem 6.2(d) the set F (S) is closed in Y and by Propo-
sition 2.9 F (X \ S) is open in Y . Also the set F (X) is closed by Lemma 4.7.
Hence we obtain the equations

(6.2) F (S) ∪ F (X \ S) = F (X) = F (X) = F (S) ∪ F (X \ S).
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The inclusion in (a) follows directly from (6.2).
(b) From the first equation of (6.2) we have F (X) = F (X \ S) and so R(F )

is an open as well as a closed subset of the connected space Y . Thus R(F ) = Y .
(c) Since Y \ F (S) is connected, by the Ambrosetti theorem (see Proposi-

tion 2.14) we obtain the cardF−1({g}) = const =: k ≥ 0 for each g ∈ Y \ F (S).
If it was k = 0, then there would be F (X) = F (S) and F (X \ S) ⊂ F (S)

and this is a contradiction with X \ S 6= ∅. Then k > 0. �

Theorem 6.5. Suppose that hypotheses (Sα), α ∈ (0, 1), (A.1), (N.1), (N.2)
and (F.1) hold together with the condition

(H.2) Each point u ∈ X is either a regular point or an isolated critical point
of problem (1.1)–(1.3)

Then for every g ∈ Y there exists exactly one solution u ∈ X of (1.1)–(1.3). It
continuously depends on g.

Proof. The associated operator F :X → Y is a proper C1-Fredholm map-
ping of the zero index. By Proposition 2.11 the F is a local C1-diffeomorphism
at a regular point of F . In the isolated singular point, by Proposition 2.12, F

is locally invertible. Since F is proper, the global inverse mapping theorem (see
Proposition 2.15) implies the statement of this problem. �

In the conclusion of this paper, let us notice that the previous results can be
proved without parabolic (P), complementary (C) and compatibility (Q) con-
ditions of initial-boundary value problem (1.1)–(1.3). Thus all previous generic
properties keep for the general evolution problems of type (1.1)–(1.3). Such
models describe different natural science phenomena (a reaction-diffusion and
environment models, a diffusive waves in fluid dynamics — the Burges equation,
the wave propagation in a large number of biological and chemical systems —
the Fisher equation, a nerve pulse propagation in nerve fibers and wall motion
in liquid crystals).

The results of the present paper can be generalized also to the quasilinear
parabolic and general evolution systems of type (1.1)–(1.3). It enables to apply
the Fredholm theory to hyperbolic equations modeling different nonlinear vibra-
tion problems, to a nonlinear dispersion (the nonlinear Klein–Gordan equation),
a propagation of magnetic flux and the stability of fluid notions (the nonlinear
Sine–Gordan equation) and so on.
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