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NON-COLLISION PERIODIC SOLUTIONS
OF PRESCRIBED ENERGY PROBLEM

FOR A CLASS OF SINGULAR HAMILTONIAN SYSTEMS

Shinji Adachi

Abstract. We study the existence of non-collision periodic solutions with

prescribed energy for the following singular Hamiltonian systems:

8<
:

q̈ +∇V (q) = 0,

1

2
|q̇|2 + V (q) = H.

In particular for the potential V (q) ∼ −1/dist (q, D)α, where the singular

set D is a non-empty compact subset of RN , we prove the existence of a

non-collision periodic solution for all H > 0 and α ∈ (0, 2).

1. Introduction

In this paper we discuss the existence of non-collision periodic solutions for
the following singular Hamiltonian systems with prescribed energy:

(HS)

{
q̈ +∇V (q),= 0,
1
2
|q̇(t)|2 + V (q(t)) = H for all t ∈ R,
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where q = (q1, . . . , qN ) ∈ RN , N ≥ 2, ˙ = d/dt, H ∈ R, V (q): RN \ D → R is
a given potential and D ⊂ RN is a set of singularities of V (q). More precisely,
we assume that D ⊂ RN is a non-empty compact subset of RN and

(V1) V (q) ∈ C1(RN \D, R),
(V2) V (q) < 0 for all q ∈ RN \D, V (q), ∇V (q) → 0 as |q| → ∞,
(V3) −V (q) →∞ as dist (q, D) → 0, where

dist (x,D) = inf
y∈D

|x− y|.

Recently there exist many papers which deal with singular Hamiltonian sys-
tems in view of both prescribed energy problem and prescribed period problem.
As to prescribed period problem, we refer to [1]–[3], [6], [9], [11]–[14], [17], [19].
See also a book by Ambrosetti–Coti Zelati [4] and references therein.

A typical example of potential satisfying (V1)–(V3) is

(1.1) V (q) = − 1
dist (q, D)α

and the order α of the singularity plays an important role. Here we define strong
force condition as follows:

(SF) There exists a neighbourhood Ω of D in RN and U ∈ C1(Ω\D, R) such
that

U(q) →∞ as dist (q, D) → 0,

−V (q) ≥ |∇U(q)|2 for all q ∈ Ω \D.

Condition (SF) is firstly introduced in Gordon [12] for D = {0}. We remark
that (1.1) satisfies (SF) if and only if α ≥ 2. In fact, if α ≥ 2, then we can see
that (SF) is satisfied with U(q) = − log |dist (q, D)|.

In this paper we consider the existence of non-collision periodic solutions of
(HS) under weak force case (α ∈ (0, 2)) and the general singular set D. Here we
assume

(S) The boundary S = ∂D of D is a compact C3-manifold of RN .

Without loss of generality, we assume that 0 ∈ D. We also consider the
potentials which generalize (1.1). More precisely, we set

(1.2) W (q) = V (q) +
1

dist (q, S)α

and assume

(W1) W (q) ∈ C2(RN \D, R),
(W2) dist (q, S)αW (q), dist (q, S)α+1∇W (q), dist (q, S)α+2∇2W (q) → 0 as

dist (q, S) → 0.
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We remark that for the potential V (q) of the form (1.2) satisfying (W1)–
(W2), we can easily verify V (q) satisfies (V1) and (V3).

It is well-known that the order α of the singularity has a close relation to
the energy H ∈ R in the existence of periodic solutions of prescribed energy
problem. Our main result is the following

Theorem 1.1. Assume N ≥ 2, (S), (V2), (W1)–(W2) and α ∈ (0, 2). Then
(HS) have at least one non-collision periodic solution for all H > 0.

Theorem 1.1 claims that even if V (q) = −1/dist (q, D)α and α ∈ (0, 2),
we can obtain a non-collision periodic solution of (HS) for all H > 0. This
case presents a great contrast to the case D = {0} and V (q) = −1/|q|α. By
simple calculation, we can see that for D = {0} and V (q) = −1/|q|α, (HS) have
a periodic solution if and only if

H > 0 for α > 2,(1.3)

H = 0 for α = 2,(1.4)

H < 0 for α ∈ (0, 2).(1.5)

Thus Theorem 1.1 is distinct from (1.5) with respect to the energy H. Indeed
we also obtain the following non-existence result for α ∈ (0, 2) and H < 0.

Theorem 1.2. Assume N ≥ 2, D = Bρ(0) = {x ∈ RN : |x| ≤ ρ}, α ∈ (0, 2)
and

V (q) = − 1
dist (q, S)α

= − 1
(|q| − ρ)α

.

Then there exists a negative constant H−(ρ) ∈ (−∞, 0) such that (HS) have no
non-constant periodic solutions for all H < H−(ρ). Moreover, we have

H−(ρ) → −∞ as ρ → 0.

Many authors generalized all cases (1.3)–(1.5) and showed the existence of
periodic solutions for general potentials V (q) ∼ −1/|q|α. See [15], [16] for the
case (1.3), [22] for (1.4) and [8], [10], [18], [20], [21] for (1.5). See also [5] in
which both (1.3) and (1.5) are studied. However, most works deal with the
potentials which have only one point singular set, say, D = {0} and it is natural
that H > 0 under strong force condition (α > 2) and H < 0 under weak force
condition (α ∈ (0, 2)).

In the following sections, we give proofs of Theorems 1.1 and 1.2. We use
variational methods to show Theorem 1.1. In Section 2, we introduce the modi-
fied potential

Vε(q) = W (q)− 1
dist (q, S)α

− εϕ(q)
dist (q, S)4
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for ε ∈ (0, 1], where ϕ(q) is a function whose support is contained in a small
neighborhood of S and ϕ(q) = 1 near S. Then we set the following modified
functional

Iε(q) =
1
2

∫ 1

0

|q̇|2 dt

∫ 1

0

H − Vε(q) dt.

Main purpose of Section 2 is to show the modified functional satisfies the Palais–
Smale compactness condition and obtain the global existence of a deformation
flow. In Section 3, we find a critical point uε(t) through minimax methods
for N ≥ 3 and minimizing method for N = 2 due to Bahri–Rabinowitz [6].
We also obtain uniform bounds for critical values Iε(uε). In particular, we can
obtain a positive lower bound for Iε(uε) by studying the orbits round singular
set D precisely. A positive lower bound plays an important role in the proof of
Theorem 1.1. In Section 4, we take a limit as ε → 0 and show the existence of at
least one non-collision periodic solution of (HS) for all H > 0. In the limit process
we use re-scaling argument with respect to scale-change q( · ) → δ−1q(δ(α+2)/2 · ).
See [1] and [19]. Lastly in Section 5, we prove Theorem 1.2.

2. Preliminaries

In this section we define modified functional Iε(u) and show some properties
for Iε(u).

1.1. Functional setting. Firstly we recall some basic properties of distance
function dist (x, S). Then we introduce the modified functional Iε(u).

For z ∈ S, we denote by n(z) the unit outward normal vector of the surface
S at z. We consider a map Φ:S × [0,∞) → RN defined by

Φ(z, s) = z + sn(z).

By the implicit function theorem, we have

Lemma 2.1. Assume (S). Then there exists a constant h0 > 0 such that

Φ|S×[0,h0):S × [0, h0) → Nh0(S)

is a diffeomorphism, where

Nh0(S) = {x ∈ RN \D : dist (x, S) < h0}.

Moreover, writing (z(x), s(x)) = Φ−1(x), we have for x ∈ Nh0(S)

dist (x, S) = s(x), ∇dist (x, S) = n(z(x)).

Let ϕ ∈ C∞([0,∞), R) satisfy ϕ′(r) ≤ 0 for all r ∈ [0,∞) and

ϕ(r) =

{
1 for r ∈ [0, h0/3],

0 for r ∈ [2h0/3,∞).
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For a potential V (q) satisfying (V1)–(V3), we define a modified potential Vε(q)
by

Vε(q) = V (q)− ε
ϕ(dist (q, S))
dist (q, S)4

for ε ∈ (0, 1] and q ∈ RN \D.

Then we can easily see that Vε(q) satisfies (SF) for all ε ∈ (0, 1].
Next we use the following notation:

E = {u ∈ H1(0, 1; RN ) : u(0) = u(1)},

‖u‖2E =
∫ 1

0

|u̇(t)|2 dt + |[u]|2, where [u] =
∫ 1

0

u(t) dt,

〈u, v〉 =
∫ 1

0

u̇v̇ dt + [u][v],

Λ = {u ∈ E : u(t) 6∈ D for all t ∈ [0, 1]},
∂Λ = {u ∈ E : u(t) ∈ S for some t ∈ [0, 1]}.

We also use the notation

‖u‖p =
( ∫ 1

0

|u|p dt

)1/p

for p ∈ [1,∞). We define the following modified functional on Λ:

Iε(u) =
1
2

∫ 1

0

|u̇|2 dt

∫ 1

0

H − Vε(u) dt(2.1)

=
1
2
‖u̇‖22

∫ 1

0

H − V (u) +
εϕ(dist (u, S))

dist (u, S)4
dt.

We remark that Λ is open in E and Iε(u) ∈ C2(Λ, R). If u ∈ Λ is a critical point
of Iε(u) with Iε(u) > 0, then we have ‖u̇‖22 > 0, that is, u 6≡ const. Moreover,
setting

T =
(

(1/2)
∫ 1

0
|u̇|2 dt∫ 1

0
H − Vε(u) dt

)1/2

> 0,(2.2)

q(t) = u

(
t

T

)
,(2.3)

we see that q(t) is a non-collision T -periodic solution of{
q̈ +∇Vε(q) = 0,

1
2
|q̇(t)|2 + Vε(q(t)) = H for all t ∈ R.

Thus in what follows, we study the existence of critical points of Iε(u) with
positive functional levels and then pass to the limit as ε → 0.

2.2. Palais–Smale condition for the modified functional. Firstly we
remark that since Vε(u) satisfies (SF), the following lemma holds.
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Lemma 2.2. Let (uj) ⊂ Λ be the sequence satisfying uj ⇀ u0 ∈ ∂Λ weakly
in E. Then ∫ 1

0

−Vε(uj) dt →∞ as j →∞.

More precisely, we have

G(uj) :=
∫ 1

0

ϕ(dist (uj , S))
dist (uj , S)4

dt →∞ as j →∞.

We set N = {u ∈ Λ : u(t) ∈ Nh0(S) for all t ∈ [0, 1]} and for u ∈ N , we
define

(2.4) X(u) = n(z(u(1))) ∈ RN ,

where we use the notation u(t) = z(u(t)) + dist (u(t), S)n(z(u(t))) for u ∈ N as
in Lemma 2.1. Since X(u) is a constant vector in RN , we identify X(u) with
the element of E. It is clear that ‖X(u)‖E = 1 for all u ∈ N . We also define for
u ∈ Λ,

d(u) = inf
ξ∈S

‖u− ξ‖E .

We remark that if d(u) small enough, then u ∈ N . That is, there exists a
constant h∗ > 0 such that if d(u) ≤ h∗, then u ∈ N . It is easily seen that
d: Λ → R is a locally Lipschitz continuous function.

Lemma 2.3. Suppose (uj) ⊂ Λ satisfies

(2.5) Iε(uj) ≤ M for some M > 0.

Then

(2.6) uj ⇀ u0 for some u0 ∈ ∂Λ as j →∞

if and only if

(2.7) d(uj) → 0.

Proof. The sufficiency is obvious. We prove only the necessity. We assume
(uj) ⊂ Λ satisfies (2.5) and (2.6). Then it follows from (2.6) and Lemma 2.2
that ∫ 1

0

H − Vε(uj) dt →∞ as j →∞.

Together with (2.5), we have ‖u̇j‖22 → 0 as j → ∞. Using (2.6) again, we can
see that u̇0 ≡ 0, that is, u0 ≡ ξ for some ξ ∈ S and ‖uj − ξ‖E → 0 as j → ∞.
Thus (2.7) holds. �

In what follows, we always assume H > 0 and identify E and E∗ by the
Reisz representation theorem. We prove the following
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Lemma 2.4. For ε ∈ (0, 1] and M > m > 0, there exists a constant h1 =
h1(m,M) ∈ (0,min{h0/3, h∗}) such that if u ∈ Λ satisfies

Iε(u) ∈ [m,M ],(2.8)

d(u) ≤ h1,(2.9)

then we have

〈I ′ε(u), X(u)〉 ≤ −m,(2.10)

〈G′(u), X(u)〉 ≤ 0.(2.11)

Proof. We can find a constant h1 ∈ (0,min{h0/3, h∗}) such that (2.9)
implies

〈I ′ε(u), X(u)〉 =
1
2
‖u̇‖22

∫ 1

0

−∇V (u)X(u)− 4ε∇dist (u, S)X(u)
dist (u, S)5

dt

and
1
2
≤ ∇dist (u, S)X(u) ≤ 1 for all t ∈ [0, 1].

Thus we have for u ∈ Λ satisfying (2.9),

(2.12) 〈I ′ε(u), X(u)〉 ≤ 1
2
‖u̇‖22

∫ 1

0

−∇V (u)X(u)− 2ε

dist (u, S)5
dt.

Moreover, choosing h1 > 0 smaller if necessary, by (W1)–(W2), we obtain the
following pointwise estimates:

−∇V (x)X(ξ)− 2ε

dist (x, S)5
≤ − ε

dist (x, S)5
,

H − V (x) +
ε

dist (x, S)4
≤ ε

dist (x, S)5
(2.14)

for all x ∈ RN with d(x) = dist (x, S) ≤ h1 and ξ ∈ S. By (2.12) and (2.13), we
have

(2.15) 〈I ′ε(u), X(u)〉 ≤ −1
2
‖u̇‖22

∫ 1

0

ε

dist (u, S)5
dt

for all u ∈ Λ satisfying (2.9). On the other hand, by (2.8) and (2.14), we have

m ≤ Iε(u) =
1
2
‖u̇‖22

∫ 1

0

H − V (u) +
ε

dist (u, S)4
dt(2.16)

≤ 1
2
‖u̇‖22

∫ 1

0

ε

dist (u, S)5
dt

for all u ∈ Λ satisfying (2.8) and (2.9). Thus we obtain (2.10) from (2.15) and
(2.16). For u ∈ Λ satisfying (2.9), we can easily obtain

〈G′(u), X(u)〉 = −
∫ 1

0

4∇dist (u, S)X(u)
dist (u, S)5

dt ≤ −
∫ 1

0

2
dist (u, S)5

dt ≤ 0.
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This completes the proof of Lemma 2.4. �

Remark 2.5. Lemma 2.4, espcially (2.11) plays an important role in show-
ing the global existence of a deformation flow. More precisely, near the singular
set D, we define a deformation flow as a solution of d/dsη = X(η). Since X(u)
is an unit outward normal vector of S, our deformation flow can not approach
to D. See Lemma 2.8 for details. We also use Lemma 2.4 to show that Iε(u)
satisfies the Palais–Smale condition. See below.

Now we prove the following Palais–Smale condition for Iε(u).

Proposition 2.6. Suppose that (uj) ⊂ Λ satisfies the following conditions:

Iε(uj) ∈ [m,M ] for some M > m > 0,(2.17)

‖I ′ε(uj)‖E∗ → 0 as j →∞.(2.18)

Then there exist a subsequence (ujk
) ⊂ Λ and some u0 ∈ Λ such that

ujk
→ u0 strongly in E.

Proof. We devide the proof of Proposition 2.6 into several steps.
Step 1. Boundedness of (uj).
Since Vε(u) < 0, we have

Iε(u) =
1
2
‖u̇‖22

∫ 1

0

H − Vε(u) dt ≥ H

2
‖u̇‖22.

Thus it follows from (2.17) that

(2.19) ‖u̇j‖22 ≤
2M

H
=: C1.

Next we show that there exists a constant C2 > 0 such that

(2.20) |[uj ]| ≤ C2.

Arguing indirectly, we assume that |[uj ]| → ∞ as j →∞. Since

|[uj ]| ≤ |uj − [uj ]|+ |uj | for all t ∈ [0, 1]

and (2.19), we obtain

inf
t
|uj(t)| ≥ |[uj ]| −max

t
|uj − [uj ]| ≥ |[uj ]| − ‖u̇j‖2 ≥ |[uj ]| − C

1/2
1 →∞.

Hence

(2.21) |uj(t)| → ∞ as j →∞.

Moreover, by (2.19) again, we have

‖uj − [uj ]‖E ≤ ‖u̇j‖2 ≤ C
1/2
1 .
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Thus we have from (2.18) that

o(1) = I ′ε(uj)(uj − [uj ])

= ‖u̇j‖22
∫ 1

0

H − Vε(uj) dt +
1
2
‖u̇j‖22

∫ 1

0

−∇Vε(uj)(uj − [uj ]) dt

= 2Iε(uj)−
1
2
‖u̇j‖22

∫ 1

0

∇Vε(uj)(uj − [uj ]) dt.

By (2.21) and (V2), we obtain ∇Vε(uj) → 0 as j → ∞. Consequently we have
Iε(uj) → 0 and this contradicts (2.17). From (2.19) and (2.20), we see that (uj)
is bounded in E. As a consequence of Step 1, we can extract a subsequence —
still denoted by (uj) — such that

(2.22) uj ⇀ u0 ∈ E weakly in E and strongly in L∞.

Step 2. u0 ∈ Λ.
Arguing indirectly, we assume that u0 ∈ ∂Λ. From (2.17), (2.22) and

Lemma 2.3, we have d(uj) → 0 as j →∞. Hence there exists a j0 ∈ N such that
d(uj) ≤ h1 for all j ≥ j0, where h1 > 0 is a constant given in Lemma 2.4. By
Lemma 2.4, we obtain

(2.23) 〈I ′ε(uj), X(uj)〉 ≤ −m

for all j ≥ j0. Since ‖X(uj)‖E = 1 for j ≥ j0, (2.23) means ‖I ′ε(uj)‖E∗ ≥ m for
all j ≥ j0 and this contradicts (2.18). Thus we have u0 ∈ Λ.

Step 3. uj → u0 strongly in E.
Since Iε(uj) ≥ m, we have

lim
j→∞

1
2
‖u̇j‖22

∫ 1

0

H − Vε(u0) dt = lim
j→∞

1
2
‖u̇j‖22

∫ 1

0

H − Vε(uj) dt

= lim
j→∞

Iε(uj) ≥ m > 0.

Combined with ‖u̇j‖22 ≤ C1, we obtain

(2.24)
∫ 1

0

H − Vε(u0) dt > 0.

It follows from (2.18) that I ′ε(uj)u0 → 0, that is,∫ 1

0

u̇j u̇0 dt

∫ 1

0

H − Vε(uj) dt +
1
2
‖u̇j‖22

∫ 1

0

−∇Vε(uj)u0 dt → 0.

Passing to the limit, we have

(2.25) 0 = ‖u̇0‖22
∫ 1

0

H − Vε(u0) dt +
1
2

lim
j→∞

‖u̇j‖22
∫ 1

0

−∇Vε(u0)u0 dt.
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Similarly it follows from I ′ε(uj)uj → 0 that

(2.26) 0 = lim
j→∞

‖u̇j‖22
∫ 1

0

H − Vε(u0) dt +
1
2

lim
j→∞

‖u̇j‖22
∫ 1

0

−∇Vε(u0)u0 dt.

By (2.24)–(2.26), we have limj→∞ ‖u̇j‖22 = ‖u̇0‖22. Thus we obtain uj → u0

strongly in E as j →∞. �

2.3. A deformation flow. Next we construct a deformation flow and prove
the following proposition, which is so called Deformation Lemma.

Proposition 2.7. For ε ∈ (0, 1], we assume that b > 0 is not a critical
value of Iε(u). Then for any δ > 0, there exists a constant δ ∈ (0, δ) and
η(s, u) ∈ C([0, 1]× Λ,Λ) such that:

(a) η(0, u) = u for all u ∈ Λ.
(b) η(s, u) = u for all s ∈ [0, 1] if Iε(u) 6∈ [b− δ, b + δ].
(c) ‖η(s, u)− u‖E ≤ 1 for all s ∈ [0, 1] and u ∈ Λ.
(d) Iε(η(s, u)) ≤ Iε(u) for all s ∈ [0, 1] and u ∈ Λ.
(e) If Iε(u) ≤ b + δ, then Iε(η(1, u)) ≤ b− δ.

In the proof of Deformation Lemma, usually we can obtain a deformation
flow η(s, u) as a unique global solution of the negative gradient flow for Iε(u).
However, in our case, it is not obvious that a deformation flow exists globally.
That is, we need to show that η(s, u) never enter the set ∂Λ. To prevent η(s, u)
from entering ∂Λ, we construct η(s, u) in a different way from usual one. Near
the singular set, we define η(s, u) by using the unit outward normal vector of S

instead of the negative gradient flow for Iε(u). Our construction is originated
in Tanaka [21]. In [21], the construction of a deformation flow was studied in
the case where the singular set D consists of finitely many points, say, D =
{y1, . . . , yd}.

Suppose b ∈ (m,M) is not a critical value of Iε(u). Let δ > 0 be a given
number in Proposition 2.7. Since Iε(u) satisfies the Palais–Smale condition in
the interval [m,M ], we see that there exist constants δ1 ∈ (0, δ/3) and a0 > 0
such that

(2.27) ‖I ′ε(u)‖E∗ ≥ a0 > 0 for all u ∈ Λ with Iε(u) ∈ [b− 2δ1, b + 2δ1].

We may assume without loss of generality that [b − 2δ1, b + 2δ1] ⊂ [m,M ]. We
introduce the following “cut-off” functions. χ(r), ω(r) ∈ C∞(R, [0, 1]) satisfy
the following respectively:

χ(r) =

{
1 for r ∈ (−∞, h1/2],

0 for r ∈ [h1,∞),

ω(r) =

{
1 for r ∈ [b− δ1, b + δ1],

0 for r 6∈ [b− 2δ1, b + 2δ1].
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Then we set

Y (u) = ω(Iε(u))
{

χ(d(u))X(u)− (1− χ(d(u)))
I ′ε(u)

‖I ′ε(u)‖E∗

}
,

where X(u) is defined by (2.4). We remark that Y : Λ → E is a locally Lipschitz
continuous function and

(2.28) ‖Y (u)‖E ≤ 1 for all u ∈ Λ.

We consider the following ordinary differential equation:

d

ds
η = Y (η),(2.29)

η(0, u) = u.(2.30)

From Lemma 2.4, we have the following

Lemma 2.8. For any initial data u ∈ Λ, (2.29)–(2.30) have a unique solution
η(s, u) and

η(s, u) ∈ C([0,∞)× Λ,Λ).

Proof. By the definition of Y (u), we can easily see that there exists a
unique local solution η(s, u) of (2.29)–(2.30) for all u ∈ Λ. We argue indirectly
and assume that η(s) = η(s, u0) does not exist globally for some initial data
u0 ∈ Λ and we denote its maximal existence time by [0, T ). By (2.29) and
(2.28), we see ∥∥∥∥ d

ds
η(s)

∥∥∥∥
E

≤ 1 for all s ∈ [0, T ).

Thus we have

‖η(s)− η(t)‖E ≤ |s− t| for all s, t ∈ [0, T ).

Let (sj) be the sequence satisfying sj ↗ T . Since η(sj) is a Cauchy sequence,
there exists η0 ∈ E such that

(2.31) η → η0 strongly in E as s ↗ T.

Moreover, since T is the maximal existence time of η(s), we see

(2.32) η0 ∈ ∂Λ, that is, η0(s0) ∈ S for some s0 ∈ [0, 1].

From (2.31), (2.32) and Lemma 2.2, we obtain

(2.33) G(η(s)) →∞ as s ↗ T.
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On the other hand, from Lemma 2.4 and (2.27), we see

(2.34)
d

ds
Iε(η(s)) =

〈
I ′ε(η(s)),

d

ds
η(s)

〉
= 〈I ′ε(η(s)), Y (η)〉

= ω(Iε(η)){χ(d(η))〈I ′ε(η), X(η)〉 − (1− χ(d(η)))‖I ′ε(η)‖E∗}
≤ −ω(Iε(η))(χ(d(η))m + (1− χ(d(η)))a0) ≤ 0,

that is, we have

Iε(η(s)) ≤ Iε(η(0)) = Iε(u0).

Hence it follows from (2.31), (2.32) and Lemma 2.3 that d(η(s)) → 0 as s ↗ T .
Thus there exists a T0 ∈ (0, T ) such that d(η(s)) ≤ h1 for all s ∈ [T0, T ). By the
definition of Y (u), (2.29) and Lemma 2.4, we see

d

ds
G(η(s)) =

〈
G′(η(s)),

d

ds
η(s)

〉
= 〈G′(η(s)), Y (η(s))〉 ≤ 〈G′(η(s)), X(η(s))〉 ≤ 0

for all s ∈ [T0, T ). This is not compatible with (2.33). Therefore the unique
solution η(s, u) of (2.29)–(2.30) satisfies η(s, u) ∈ C([0,∞)×Λ,Λ) for any initial
data u ∈ Λ. �

Proof of Proposition 2.7. (a) follows from (2.30). By the definition of
ω(r), we have

Y (u) = 0 if Iε(u) 6∈ [b− δ, b + δ].

Thus we obtain (b). Integrating (2.29) from 0 to 1 and using (2.28), we obtain
(c). By (2.34), we see that η(s, u) satisfies (d). Finally, if Iε(u) ∈ [b− δ1, b + δ1],
then by (2.34) again, we have

d

ds
Iε(η(s, u)) ≤ −min{m,a0} =: −a1.

Thus setting δ = min{δ1, a1/2}, we obtain (e). �

3. Minimax methods for the modified functional

This section is devoted to showing the existence of a critical point of Iε(u).
We use minimax methods for N ≥ 3 and minimizing method for N = 2.

3.1. Definition of minimax values of Iε(u). In this subsection we set
minimax values of the modified functional defined in (2.1). When N ≥ 3, we
set minimax values bε as follows. Identifying [0, 1]/{0, 1} ' S1, we can associate
each γ ∈ C(SN−2,Λ) with a mapping γ̃:SN−2 × S1 → SN−1 by

γ̃(x, t) =
γ(x)(t)
|γ(x)(t)|

for x ∈ SN−2, t ∈ S1 ' [0, 1]/{0, 1}.
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Since 0 ∈ D and γ(x)(t) 6= 0 for all x ∈ SN−2 and t ∈ [0, 1], γ̃(x, t) is well-defined.
We denote the Brouwer degree of γ̃ by degγ̃ and define

Γ̃ = {γ ∈ C(SN−2,Λ) : degγ̃ 6= 0}.

We can see Γ̃ 6= ∅ as in [6]. Then we set

bε = inf
γ∈eΓ

max
x∈SN−2

Iε(γ(x)), b0 = inf
γ∈eΓ

max
x∈SN−2

I(γ(x)),

where we define

I(u) =
1
2
‖u̇‖22

∫ 1

0

H − V (u) dt.

When N = 2, we adopt the minimizing method. We associate each u ∈ Λ a
winding number windu of u(t) concerning 0 ∈ D. Then we define

Γ̃ = {u ∈ Λ : windu = 1}

and set
bε = inf

γ∈eΓ
Iε(u), b0 = inf

γ∈eΓ
I(u).

Since 0 ≤ I(u) ≤ Iε(u) ≤ I1(u) for all u ∈ Λ and ε ∈ (0, 1], we have for N ≥ 2,

(3.1) 0 ≤ b0 ≤ bε ≤ b1 for ε ∈ (0, 1].

3.2. Uniform bounds for bε and their consequences. Next we obtain
uniform bounds for bε. In particular a positive lower bound for bε plays an
important role.

Proposition 3.1. There exist constants M , m > 0 independent of ε ∈ (0, 1]
such that 0 < m ≤ bε ≤ M .

Existence of an uniform upper bound for bε follows from (3.1). To prove bε

is bounded below away from 0, by (3.1), it suffices to show that b0 > 0. We
remark that we can not obtain b0 > 0 if D = {0}. See Remark 3.4 below. We
prove Proposition 3.1 for N = 2 and N ≥ 3, respectively. Firstly we give a proof
of Proposition 3.1 for N = 2.

Proof of Proposition 3.1 for N = 2. We choose a ρ0 > 0 small enough
so that Bρ0(0) ⊂ intD and fix it. Then for all u ∈ Λ, we see that ‖u̇‖1 ≥ 2ρ0π.
Thus we have

I(u) =
1
2
‖u̇‖22

∫ 1

0

H − V (u) dt ≥ H

2
‖u̇‖22 ≥

H

2
‖u̇‖21 = 2Hρ2

0π
2 > 0

for all u ∈ Γ̃. By the definition of b0, we obtain b0 ≥ 2Hρ2
0π

2 > 0. Therefore we
have a desired lower bound. �

When N ≥ 3, to show b0 > 0, we need several lemmas. We set for N ≥ 3,

(3.2) A = {u ∈ Λ : |[u]| ≤ ‖u̇‖2}.
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Then we have the following

Lemma 3.2. Assume N ≥ 3. Then

(3.3) γ(SN−2) ∩A 6= ∅ for all γ ∈ Γ̃.

Proof. We use the following notation:

Λ0 = {u ∈ E : u(t) 6= 0 for all t ∈ [0, 1]},
Γ̃0 = {γ ∈ C(SN−2,Λ0) : degγ̃ 6= 0}.

We remark that Λ ⊂ Λ0 and Γ̃ ⊂ Γ̃0. Thus it suffices to show (3.3) for all
γ ∈ Γ̃0. We prove indirectly and assume that γ(SN−2) ∩ A = ∅ for all γ ∈ Γ̃0.
Since γ(x) 6∈ A for all x ∈ SN−2, we have ‖γ̇(x)‖2 < |[γ(x)]|. Thus we obtain

max
t∈[0,1]

|γ(x)(t)− [γ(x)]| ≤ ‖γ̇(x)‖2 < |[γ(x)]|.

That is, we see that

(3.4) γ(x) ⊂ B|[γ(x)]|([γ(x)]).

Next we set
γs(x) = s[γ(x)] + (1− s)γ(x)(t).

By (3.4), we see that γs(x) ∈ C([0, 1] × SN−2,Λ0). Moreover, since γ0(x) =
γ(x) ∈ Γ̃0, it follows from the homotopy invariance of Brouwer degree that
γ1(x) ∈ Γ̃0. Thus γ1(x):SN−2 × S1 → SN−1 is an onto mapping. On the other
hand, γ1(x) = [γ(x)] is independent of t. Consequently γ1:SN−2 → SN−1 is
onto. This is a contradiction. �

Lemma 3.3. There exists a constant m > 0 such that

inf
u∈A

I(u) ≥ m > 0.

Proof. We choose a ρ0 > 0 small enough so that Bρ0(0) ⊂ int D and fix
it. If [u] ∈ Bρ0/2(0), then we have dist ([u], S) ≥ ρ0/2. Taking into account of
u ∈ Λ, that is, u goes around of D, we see that ‖u̇‖1 ≥ ρ0/2. Thus we have

‖u̇‖2 ≥
ρ0

2
for all u ∈ Λ with [u] ∈ Bρ0/2(0).

On the other hand, if [u] 6∈ Bρ0/2(0), then we have

‖u̇‖2 ≥ |[u]| ≥ ρ0

2
for all u ∈ A with [u] 6∈ Bρ0/2(0).

Hence we obtain
‖u̇‖2 ≥

ρ0

2
> 0 for all u ∈ A.

Therefore
I(u) ≥ H

2
‖u̇‖22 ≥

H

8
ρ2
0 > 0 for all u ∈ A
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and this completes the proof of Lemma 3.3. �

Proof of Proposition 3.1 for N ≥ 3. From Lemmas 3.2 and 3.3, we
have

max
x∈SN−2

I(γ(x)) ≥ inf
u∈A

I(u) ≥ m > 0 for all γ ∈ Γ̃.

Thus
b0 = inf

γ∈eΓ
max

x∈SN−2
I(γ(x)) ≥ m > 0.

By (3.1), we have a desired lower bound. �

Remark 3.4. b0 > 0 is a key of our proof. In general, we can not obtain
b0 > 0 if D = {0}. For example, if D = {0} and V (u) = −1/|u|α, then we have
b0 = 0. Indeed for N ≥ 3 and γ(x) ∈ Γ̃0, we see that `γ(x) ∈ Γ̃0 for all ` > 0.
Moreover, we have

I(`γ(x)) =
1
2
‖`γ̇(x)‖22

∫ 1

0

H +
1

|`γ(x)|α
dt

=
H

2
`2‖γ̇(x)‖22 +

1
2
`2−α‖γ̇(x)‖22

∫ 1

0

1
|γ(x)|α

dt.

Thus we obtain
max

x∈SN−2
I(`γ(x)) → 0 as ` → 0.

Therefore b0 = 0. When N = 2, we also obtain b0 = 0 in the same way as N ≥ 3.

From Propositions 2.6, 2.7 and 3.1, we see that each bε > 0 is a critical value
of Iε(u) and we obtain the following

Proposition 3.5. For ε ∈ (0, 1], there is a critical point uε(t) ∈ Λ of Iε(u)
such that

Iε(uε) = bε, I ′ε(uε) = 0.

Moreover, there exist constants m, M , C > 0 independent of ε ∈ (0, 1] such that,
for ε ∈ (0, 1],

m ≤ Iε(uε) ≤ M, ‖uε‖E ≤ C,

1
2
|u̇ε(t)|2 + T 2

ε Vε(uε(t)) = T 2
ε H for all t ∈ R,

where

Tε =
(

‖u̇ε‖22/2∫ 1

0
H − Vε(uε) dt

)1/2

.

Proof. One can easily obtain ‖uε‖E ≤ C by repeating Step 1 of Proposi-
tion 2.6 with uj replaced by uε. �

As to the period Tε, we have the following
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Lemma 3.6. There exist constants T1, T2 > 0 independent of ε ∈ (0, 1] such
that

0 < T1 ≤ Tε ≤ T2 for all ε ∈ (0, 1].

Proof. Since Iε(uε) ∈ [m,M ] and Vε(u) < 0, we have

M ≥ Iε(uε) =
1
2
‖u̇ε‖22

∫ 1

0

H − Vε(uε) dt ≥ H

2
‖u̇ε‖22.

Thus we have

Tε =
(

‖u̇ε‖22/2∫ 1

0
H − Vε(uε) dt

)1/2

≤ M1/2

H
=: T2.

Arguing indirectly, we assume, for some εj → 0, Tεj
→ 0 as j → ∞. Then we

have

(3.5) ‖u̇εj‖22 → 0 as j →∞

or

(3.6)
∫ 1

0

H − Vεj
(uεj

) dt →∞ as j →∞.

Since Iε(uε) ∈ [m,M ], both (3.5) and (3.6) hold. Thus we can easily see that,
for some ξ ∈ S,

(3.7) ‖uεj − ξ‖E → 0 as j →∞.

It follows from (3.7) that there exists a j0 ∈ N such that d(uεj ) ≤ h1 for all
j ≥ j0. Thus we have

1
2
≤ ∇dist (uεj

, S)X(uεj
) ≤ 1 for all j ≥ j0.

Hence we have for j ≥ j0

0 = I ′εj
(uεj )X(uεj ) =

1
2
‖u̇εj‖22

∫ 1

0

−∇W (uεj )X(uεj )(3.8)

−
α∇dist (uεj

, S)X(uεj
)

dist (uεj
, S)α+1

−
4εj∇dist (uεj

, S)X(uεj
)

dist (uεj
, S)5

dt

≤ 1
2
‖u̇εj

‖22
∫ 1

0

−∇W (uεj
)X(uεj

)

− α

2dist (uεj
, S)α+1

− 2εj

dist (uεj
, S)5

dt

≤ 1
2
‖u̇εj

‖22
∫ 1

0

−∇W (uεj
)X(uεj

)− α

2dist (uεj
, S)α+1

dt.

Moreover, choosing h1 smaller if necessary, we see

(3.9) −∇W (x)X(ξ)− α

2dist (x, S)α+1
≤ − α

4dist (x, S)α+1
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for all x ∈ RN with dist (x, S) ≤ h1 and ξ ∈ S. By (3.8) and (3.9), we have for
j ≥ j0

0 = I ′εj
(uεj

)X(uεj
) ≤ 1

2
‖u̇εj

‖22
∫ 1

0

− α

4dist (uεj
, S)α+1

dt < 0.

This is a contradiction. �

By Proposition 3.5 and Lemma 3.6, we can choose a sequence εj → 0 such
that for some u0 ∈ E and T ∈ [T1, T2]

uεj
⇀ u0 weakly in E,(3.10)

Tεj
→ T as j →∞.(3.11)

There is a possibility that the limit function u0 ∈ ∂Λ, that is, u0 may enter the
singular set D. q0(t) = u0(t/T ) is called a generalized solution in [6]. If we can
show

(3.12) u0 6∈ D for all t ∈ [0, 1],

then the proof of Theorem 1.1 is established. In the following section, we show
(3.12).

4. Limit process of the sequence of critical points
and proof of Theorem 1.1

In this section we study the regularity of u0 and give a proof of Theorem 1.1.
The argument in this section is similar to [1], but we give a proof for reader’s
convenience. Let uεj

∈ Λ be a critical point of Iεj
(u) obtained in Proposition 3.5,

which satisfies (3.10) and (3.11). We show (3.12) indirectly and we assume that
u0(t∞) ∈ D for some t∞ ∈ [0, 1].

Since uεj
(t) → u0(t) in L∞(0, 1), we can find a sequence (tj) ⊂ [0, 1] such

that

(4.1) δj = dist (uεj
(tj), S) ≡ min

t∈[0,1]
dist (uεj

(t), S) → 0.

After extracting a subsequence, we can assume

tj → t∞ and uεj
(tj) → u0(t∞) ∈ S.

For notational convenience, we assume 0 ∈ S and u0(t∞) = 0, that is, uεj (tj) →
0. We also choose an orthonormal basis {e1, . . . , eN} of RN such that n(0) = e1.

Setting zj = z(uεj
(tj)), we introduce a re-scaling function xj(s) by

xj(s) =
1
δj

(uεj
(δ(α+2)/2

j s + tj))− zj) for s ∈ R,

where δj > 0 is defined by (4.1). We obtain the following properties as to the
behavior of xj .
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Lemma 4.1. xj(s), zj and δj > 0 satisfy

δj → 0, zj → 0 as n →∞,(4.2)

|xj(s)| takes its minimum at s = 0,(4.3)

|xj(0)| = 1, xj(0) ⊥ ẋj(0),(4.4)

xj(0) → e1 as n →∞,

ẍj(s) + δα+1
j T 2

εj
∇Vεj

(δ(α+2)/2
j s + tj , δjxj + zj) = 0 in R,(4.5)

1
2
|ẋj(s)|2 + δα

j T 2
εj

Vεj (δ
(α+2)/2
j s + tj , δjxj + zj) = δα

j T 2
εj

H in R.(4.6)

Moreover, if δjxj(s) + zj ∈ Nh0/2(S), then we have

δα
j T 2

εj
Vεj

(δ(α+2)/2
j s + tj , δjxj + zj) = −

δα
j T 2

εj

dist (δjxj + zj , S)α

+ δα
j T 2

εj
W (δ(α+2)/2

j s + tj , δjxj + zj)−
εjδ

α
j T 2

εj

dist (δjxj + zj , S)4

= −
T 2

εj

dist (xj , δ
−1
j (S − zj))α

+ δα
j T 2

εj
W (δ(α+2)/2

j s + tj , δjxj + zj)

− εj

δ4−α
j

T 2
εj

dist (xj , δ
−1
j (S − zj))4

and we can rewrite (4.5)–(4.6) as

(4.7) ẍj(s) +
αT 2

εj
n(z(δjxj + zj))

dist (xj , δ
−1
j (S − zj))α+1

− δα+1
j T 2

εj
∇W (δ(α+2)/2

j s + tj , δjxj + zj)

+
4εj

δ4−α
j

T 2
εj

n(z(δjxj + zj))
dist (xj , δ−1(S − zj))5

= 0 in R,

(4.8)
1
2
|ẋj(s)|2 −

T 2
εj

dist (xj , δ
−1
j (S − zj))α

+ δα
j T 2

εj
∇W (δ(α+2)/2

j s + tj , δjxj + zj)

− εj

δ4−α
j

T 2
εj

dist (xj , δ
−1
j (S − zj))4

= T 2
εj

Hδα
j .

As to the behavior of εj/δ4−α
j , we have

Lemma 4.4.

lim sup
j→∞

εj

δ4−α
j

≤ 2− α

2
.
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Proof. By (4.3), we have

0 ≤ 1
2

d2

ds2

∣∣∣∣
s=0

|xj(s)|2 = (ẍj(0), xj(0)) + |ẋj(0)|2.

Since xj(0) → e1, n(δjxj(0) + zj) → e1 and dist (xj(0), δ−1
j (S − zj)) = 1, it

follows from (3.11), (4.2), (4.7), (4.8) and (W2) that

0 ≤ 2− α− lim sup
j→∞

2εj

δ4−α
j

. �

Extracting a subsequence, still denoted by j, we may assume there exists a
constant d ∈ [0, (2− α)/2] such that

(4.9)
εj

δ4−α
j

→ d as n →∞.

Using (3.11), (4.4), (4.8) and (4.9) again, we may assume, without loss of gener-
ality, that

ẋj(0) → (2(1 + d))1/2Te2 as n →∞.

Since
dist (δjx, δ−1

j (S − zj)) → |(x, e1)|, n(δjx + zj) → e1,

the continuous dependence of solutions on initial data and equation implies the
following

Lemma 4.3. For any ` > 0, xj(s) converges in C2([−`, `], R) to a function
x(s), which satisfies

ẍ +
αT 2e1

|(x, e1)|α+1
+

4dT 2e1

|(x, e1)|5
= 0 in R,

x(0) = e1, ẋ(0) = (2(1 + d))1/2Te2.

Moreover, |(x(s), e1)| takes its local minimum at s = 0.

End of the Proof of Theorem 1.1. Writing x(s) = (x1(s), . . . , xN (s)),
we have

ẍ1 +
αT 2

xα
1

+
4dT 2

x5
1

= 0, x1(0) = 1, ẋ1(0) = 0,(4.10)

ẍ2 = 0, x2(0) = 0, ẋ2(0) = (2(1 + d))1/2T,

ẍi = 0, xi(0) = 0, ẋi(0) = 0 for i = 3, . . . , N.

It follows from (4.10) that

ẍ1(0) = −αT 2 − 4dT 2 < 0.

But this contradicts the fact that |x1(s)| = |(x(s), e1)| takes its local minimum
at s = 0. Thus we see that u0(t∞) 6∈ D and this completes the proof of Theo-
rem 1.1. �
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5. Proof of Theorem 1.2

In this section we give a proof of Theorem 1.2. We assume D = {x ∈ RN :
|x| ≤ ρ}, α ∈ (0, 2) and

V (q) = − 1
dist (q, S)α

= − 1
(|q| − ρ)α

and consider the following Hamiltonian system with prescribed energy:

q̈ +
αq

(|q| − ρ)α+1|q|
= 0,(5.1)

1
2
|q̇|2 − 1

(|q| − ρ)α
= H.(5.2 )

The corresponding functional to (5.1)–(5.2) is

(5.3) I(u) =
1
2
‖u̇‖22

∫ 1

0

H +
1

(|u| − ρ)α
dt.

We claim that there exists a constant H− = H−(ρ) ∈ (−∞, 0) such that if (5.1)–
(5.2) have a non-constant periodic solution, then H ≥ H−(ρ). Indeed if u ∈ Λ
is a non-constant critical point of (5.3), then we have

(5.4) 0 = I ′(u)u = ‖u̇‖22
∫ 1

0

H − V (u)− 1
2
∇V (u)u dt.

Since u is a non-constant critical point of I(u), we obtain ‖u̇‖22 > 0. Thus we
have from (5.4)

(5.5) H =
∫ 1

0

V (u) +
1
2
∇V (u)u dt

for any non-constant critical point u ∈ Λ. We study the behavior of V (u) +
(1/2)∇V (u)u precisely. Setting |u| = R for u ∈ Λ, we define f : (ρ,∞) → R by

f(R) := V (u) +
1
2
∇V (u)u = − 1

(R− ρ)α
+

α

2
1

(R− ρ)α+1
R(5.6)

=
1

(R− ρ)α+1
(ρ− 2− α

2
R).

Since α ∈ (0, 2), direct calculation yields

f ′(R) =
α

(R− ρ)α+2

(
2− α

2
R− 3

2
ρ

)
,

that is,

(5.7) f ′
(

3
2− α

ρ

)
= 0.

By (5.6) and (5.7), we define H−(ρ) ∈ (−∞, 0) by

(5.8) H−(ρ) := inf
R>ρ

f(R) = f

(
3

2− α
ρ

)
= −1

2

(
2− α

1 + α

)α+1 1
ρα

.
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It follows from (5.5)–(5.8) that if there exists a non-constant periodic solution
of (5.1)–(5.2), then H ≥ H−(ρ). Therefore (5.1)–(5.2) have no non-constant
periodic solutions for all H < H−(ρ). Moreover it follows from (5.8) that we can
easily see

H−(ρ) → −∞ as ρ → 0. �
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