Topological Methods in Nonlinear Analysis Journal of the Juliusz Schauder Center Volume 24, 2004, 297–307

A SET-VALUED APPROACH TO HEMIVARIATIONAL INEQUALITIES

Alexandru Kristály — Csaba Varga

ABSTRACT. Let X be a Banach space, X^* its dual and let $T: X \to L^p(\Omega, \mathbb{R}^k)$ be a linear, continuous operator, where $p, k \geq 1$, Ω being a bounded open set in \mathbb{R}^N . Let K be a subset of X, $\mathcal{A}: K \to X^*$, $G: K \times X \to \mathbb{R}$ and $F: \Omega \times \mathbb{R}^k \times \mathbb{R}^k \to \mathbb{R}$ set-valued maps with nonempty values. Using mainly set-valued analysis, under suitable conditions on the involved maps, we shall guarantee solutions to the following inclusion problem:

Find $u \in K$ such that, for every $v \in K$

$$\sigma(\mathcal{A}(u), v - u) + G(u, v - u) + \int_{\Omega} F(x, Tu(x), Tv(x) - Tu(x)) dx \subseteq \mathbb{R}_+.$$

In particular, well-known variational and hemivariational inequalities can be derived.

1. Introduction

Let K be a nonempty subset of $H_0^1(\Omega)$, where Ω is a bounded open subset of \mathbb{R}^N with C^1 boundary, $N \ge 1$. Many papers treat inclusion problems of the form:

Find $u \in K$ such that

(1.1)
$$-\Delta u \in G(x, u(x)) \quad \text{in } \Omega,$$

©2004 Juliusz Schauder Center for Nonlinear Studies

297

²⁰⁰⁰ Mathematics Subject Classification. 49J53, 49J40.

 $Key\ words\ and\ phrases.$ Measurable set-valued maps, variational-hemivariational inequalities.

where $G: \Omega \times \mathbb{R} \to \mathbb{R}$ is a set-valued map with nonempty values, satisfying some growth and continuity conditions, see for instance [6] and [11]. In these papers critical point arguments were used.

Here, we suppose that G has the form

(1.2)
$$G(x,u(x)) = H(x,u(x)) - b(x)u(x), \quad x \in \Omega, \ u \in K.$$

where $b \in L^{\infty}(\Omega)$, and $H: \Omega \times \mathbb{R} \rightsquigarrow \mathbb{R}$ satisfies for all $x \in \Omega$ the following inclusion:

$$(1.3) \quad H(x,u(x)) \cdot v(x) = \{h \cdot v(x) : h \in H(x,u(x))\} \subseteq [-g(x,u(x),v(x)),\infty),$$

where $g(\cdot, u(\cdot), v(\cdot)) \in L^1(\Omega)$ for every $u \in K, v \in H^1_0(\Omega)$.

Multiplying (1.1) by (v - u), integrating over Ω and applying the Gauss–Green formula, from (1.2) and (1.3) we obtain:

(1.4)
$$\int_{\Omega} \nabla u \cdot \nabla (v-u) \, dx + \int_{\Omega} b(x)u(x)(v(x) - u(x)) \, dx + \int_{\Omega} [g(x, u(x), v(x) - u(x)), \infty) \, dx \subseteq \mathbb{R}_{+}$$

for all $v \in K$, where the last term from the left hand side is the integral of a set-valued map in the sense of Aumann (see [2]).

If H has the form

$$H(x, u(x)) = -\partial j(x, u(x)), \quad x \in \Omega,$$

where $j: \Omega \times \mathbb{R} \to \mathbb{R}$ is a Carathéodory function such that $j(x, \cdot)$ is locally Lipschitz continuous and ∂ denotes the generalized gradient, then (1.3) is verified if we take $g(x, y, z) = j_y^0(x, y; z), j_y^0$ being the (partial) generalized directional derivative, supposing that j satisfies a growth condition (see Section 4). In this situation, (1.4) reduces to the following classical *hemivariational inequality*, see for instance Motreanu and Panagiotopoulos [8], Naniewicz and Panagiotopoulos (see [9]):

(HV \geq) Find $u \in K$ such that, for all $v \in K$

$$\begin{split} \int_{\Omega} \nabla u \cdot \nabla (v-u) \, dx + \int_{\Omega} b(x) u(x) (v(x) - u(x)) \, dx \\ &+ \int_{\Omega} j_y^0(x, u(x); v(x) - u(x)) \, dx \geq 0. \end{split}$$

So, it seems natural to study the following general problem.

Let X be a Banach space, X^* its dual, and let $T: X \to L^p(\Omega, \mathbb{R}^k)$ be a linear continuous operator, where $1 \le p < \infty, k \ge 1, \Omega$ being a bounded open set in \mathbb{R}^N .

Let K be a subset of X, let $\mathcal{A}: K \rightsquigarrow X^*, G: K \times X \rightsquigarrow \mathbb{R}$ and $F: \Omega \times \mathbb{R}^k \times \mathbb{R}^k \rightsquigarrow \mathbb{R}$ be set-valued maps with nonempty values, such that

- (H₁) $x \in \Omega \rightsquigarrow F(x, Tu(x), Tv(x) Tu(x))$ is a measurable set-valued map for all $u, v \in K$.
- (H₂) There exist $h_1 \in L^{p/(p-1)}(\Omega, \mathbb{R}_+)$ and $h_2 \in L^{\infty}(\Omega, \mathbb{R}_+)$ such that

dist
$$(0, F(x, y, z)) \le (h_1(x) + h_2(x)|y|^{p-1})|z|$$
 for a.e. $x \in \Omega$,

for every $y, z \in \mathbb{R}^k$.

The aim of this paper is to study the following hemivariational inclusion problem:

(HVC) Find $u \in K$ such that, for all $v \in K$

$$\sigma(\mathcal{A}(u), v - u) + G(u, v - u) + \int_{\Omega} F(x, Tu(x), Tv(x) - Tu(x)) dx \subseteq \mathbb{R}_+$$

We denoted by $\sigma(\mathcal{A}(u), \cdot)$ the support function of $\mathcal{A}(u)$, that is

$$\sigma(\mathcal{A}(u),h) = \sup_{x^* \in \mathcal{A}(u)} \langle x^*,h \rangle \quad \text{for all } h \in X$$

The euclidean norm in \mathbb{R}^k and the duality pairing between the Banach space and its dual is denoted by $|\cdot|$, respectively $\langle \cdot, \cdot \rangle$.

2. Preliminaries

We need some definitions and notions in order to state existence results concerning the problem (HV \subseteq).

Let $J: \Omega \rightsquigarrow \mathbb{R}$ be a measurable set-valued map with nonempty closed values, see [1, p. 307]. Define the set

$$\mathcal{J} = \{ j \in L^1(\Omega, \mathbb{R}) : j(x) \in J(x) \text{ a.e. in } \Omega \}.$$

DEFINITION 2.1 (see [2]). The integral of J on Ω is the set of integrals of integrable selections of J, i.e.

$$\int_{\Omega} J(x) \, dx = \bigg\{ \int_{\Omega} j(x) \, dx : j \in \mathcal{J} \bigg\}.$$

From the above definition we clearly have

LEMMA 2.2. Let $J_1, J_2: \Omega \rightsquigarrow \mathbb{R}$ be two measurable set-valued maps with closed values. Then the following assertions hold:

- (a) If $J_1(x) \subseteq J_2(x)$ a.e. $x \in \Omega$, then $\int_{\Omega} J_1(x) dx \subseteq \int_{\Omega} J_2(x) dx$.
- (b) $\int_{\Omega} J_1(x) dx + \int_{\Omega} J_2(x) dx \subseteq \int_{\Omega} \overline{J_1(x) + J_2(x)} dx.$ (c) $\lambda \int_{\Omega} J_1(x) dx \subseteq \int_{\Omega} \lambda J_1(x) dx$ for all $\lambda \in \mathbb{R}$.

DEFINITION 2.3. Let X be a Banach space, and let K be a nonempty subset of X. A set-valued map $\mathcal{A}: K \rightsquigarrow X^*$ with bounded values is said to be *upper demicontinuous at* $u_0 \in K$ (u.d.c. at $u_0 \in K$) if, for any $h \in X$, the real-valued function

$$u \in K \mapsto \sigma(\mathcal{A}(u), h) = \sup_{x^* \in \mathcal{A}(u)} \langle x^*, h \rangle$$

is upper semicontinuous at u_0 . \mathcal{A} is upper demicontinuous on K (u.d.c. on K) if it is udc at every $u \in K$.

REMARK 2.4. If $\mathcal{A}(u) = \{A(u)\}$ for all $u \in K$, that is, if \mathcal{A} is a singlevalued map, then \mathcal{A} is u.d.c. at $u_0 \in K$ if and only if the map $A: K \to X^*$ is w^* -demicontinuous at $u_0 \in K$, i.e. for each sequence $\{u_n\}$ in K converging to u_0 (in the strong topology), the image sequence $\{A(u_n)\}$ converges to $A(u_0)$ in the weak*-topology of X^* .

It is easy to verify that, for all $u \in K$, the function $h \in X \mapsto \sigma(\mathcal{A}(u), h)$ is lower semicontinuous, subadditive and positive homogeneous. Moreover, due to Banach–Steinhaus theorem, we can state the following useful result.

PROPOSITION 2.5. Let K be a nonempty subset of a Banach space X, and let $\mathcal{A}: K \rightsquigarrow X^*$ be an upper demicontinuous set-valued map with bounded values. Then the function $u \in K \mapsto \sigma(\mathcal{A}(u), v - u)$ is upper semicontinuous for all $v \in K$.

DEFINITION 2.6. Let W, Y be two metric spaces. A set-valued map (with nonempty values) $J: W \rightsquigarrow Y$ is called *lower semicontinuous at* $w \in W$ (l.s.c. at w) if and only if for any $y \in J(w)$ and for any sequence $\{w_n\}$, converging to w, there exists a sequence $\{y_n\}, y_n \in J(w_n)$ converging to y. J is said to be lower semicontinuous (l.s.c.) if it is lsc at every point $w \in W$.

DEFINITION 2.7. Let $\{K_n\}$ be a sequence of subsets of a metric space Y. The set

$$\underset{n \to \infty}{\text{Liminf}} K_n = \{ y \in Y : \underset{n \to \infty}{\text{lim}} \operatorname{dist}(y, K_n) = 0 \}$$

is the (Kuratowski) lower limit of the sequence K_n .

REMARK 2.8. Liminf $_{n\to\infty}$ is the set of limits of sequences $y_n \in K_n$ (see [1, p. 18]).

PROPOSITION 2.9 (see [1, p. 42]). Let X be a normed space. A set-valued map $F: X \rightsquigarrow \mathbb{R}$ is lower semicontinuous at $u \in X$ if and only if

$$F(u) \subseteq \underset{n \to \infty}{\text{Liminf}} F(u_n)$$

for any sequence $\{u_n\}$ in X converging to u.

LEMMA 2.10. Let Y be a real normed space, and let $\{K_n\}, \{L_n\}$ be two sequences of subsets of Y. Then the following assertions hold:

- (a) $\operatorname{Liminf}_{n\to\infty} K_n + \operatorname{Liminf}_{n\to\infty} L_n \subseteq \operatorname{Liminf}_{n\to\infty} (K_n + L_n).$
- (b) If $K_n \subseteq L_n$ for all $n \in \mathbb{N}$, then $\operatorname{Liminf}_{n \to \infty} K_n \subseteq \operatorname{Liminf}_{n \to \infty} L_n$.

DEFINITION 2.11. Let W, Y be real normed spaces, $K \subset W$ be a convex subset. The set-valued map $J: K \rightsquigarrow Y$ with nonempty values is *convex* if and only if

 $\forall w_1, w_2 \in K, \ \forall \ \lambda \in [0, 1] : \lambda J(w_1) + (1 - \lambda)J(w_2) \subseteq J(\lambda w_1 + (1 - \lambda)w_2).$

REMARK 2.12. $J: K \rightsquigarrow Y$ is convex if and only if for all $w_i \in K$, for all $\lambda_i \geq 0$ such that $\sum_{i=1}^n \lambda_i = 1, n \in \mathbb{N}$, we have

$$\sum_{i=1}^{n} \lambda_i J(w_i) \subseteq J\left(\sum_{i=1}^{n} \lambda_i w_i\right).$$

Finally, we recall the well-known result of Ky Fan.

LEMMA 2.13 (see [5]). Let X be a Hausdorff topological vector space, K a subset of X and for each $x \in K$, let S(x) be a closed subset of X, such that

- (a) there exists $x_0 \in K$ such that the set $S(x_0)$ is compact,
- (b) S is a KKM-map, i.e. for each $x_1, \ldots, x_n \in K$, $co\{x_1, \ldots, x_n\} \subseteq \bigcup_{i=1}^n S(x_i)$, where co stands for the convex hull operator.

Then $\bigcap_{x \in K} S(x) \neq \emptyset$.

3. Main results

We need some additional hypotheses to obtain a solution for $(HV\subseteq)$.

- (H₃) $w \in X \rightsquigarrow G(u, w)$ and $z \in \mathbb{R}^k \rightsquigarrow F(x, y, z)$ are convex for all $u \in K$, $x \in \Omega, y \in \mathbb{R}^k$.
- (H₄) $G(u,0) \subseteq \mathbb{R}_+$ and $F(x,y,0) \subseteq \mathbb{R}_+$ for all $u \in K, x \in \Omega, y \in \mathbb{R}^k$.
- (H₅) $(u, w) \in K \times X \rightsquigarrow G(u, w)$ is lower semicontinuous.

(H₆) $(y,z) \in \mathbb{R}^k \times \mathbb{R}^k \rightsquigarrow F(x,y,z)$ is lower semicontinuous for all $x \in \Omega$.

REMARK 3.1. If $F: \Omega \times \mathbb{R}^k \times \mathbb{R}^k \to \mathbb{R}$ is a closed-valued Carathéodory map (i.e. for any $(y, z) \in \mathbb{R}^k \times \mathbb{R}^k$, $x \in \Omega \to F(x, y, z)$ is measurable and for any $x \in \Omega$, $(y, z) \in \mathbb{R}^k \times \mathbb{R}^k \to F(x, y, z)$ is continuous), then the hypotheses (H₆) and (H₁) hold automatically (see [1, p. 314]).

Now, we establish the main result of this paper.

THEOREM 3.2. Let K be a nonempty compact convex subset of a Banach space X. Let $F: \Omega \times \mathbb{R}^k \times \mathbb{R}^k \rightsquigarrow \mathbb{R}$ and $G: K \times X \rightsquigarrow \mathbb{R}$ be two set-valued maps satisfying $(H_1)-(H_6)$, of which F is closed-valued. If $\mathcal{A}: K \rightsquigarrow X^*$ is upper demicontinuous on K with bounded values, then $(HV\subseteq)$ has at least a solution.

PROOF. For any $v \in K$ we set

$$S_{v} = \left\{ u \in K : \sigma(\mathcal{A}(u), v - u) + G(u, v - u) \right.$$
$$\left. + \int_{\Omega} F(x, Tu(x), Tv(x) - Tu(x)) \, dx \subseteq \mathbb{R}_{+} \right\}.$$

First, we prove that S_v is closed set for all $v \in K$. Fix a $v \in K$. Of course, $S_v \neq \emptyset$, since $v \in S_v$, due to (H₄). Now, let $\{u_n\}$ be a sequence in S_v which converges to $u \in X$. We prove that $u \in S_v$. Since $T: X \to L^p(\Omega, \mathbb{R}^k)$ is continuous, it follows that

$$Tu_n \to Tu$$
 in $L^p(\Omega, \mathbb{R}^k)$ as $n \to \infty$

Clearly, there exists a subsequence $\{u_m\}$ of $\{u_n\}$, see Proposition 2.5, such that

(3.1)
$$\limsup_{n \to \infty} \sigma(\mathcal{A}(u_n), v - u_n) = \lim_{m \to \infty} \sigma(\mathcal{A}(u_m), v - u_m).$$

Moreover, by [12, Lemma A.1, p.133] there exists a subsequence $\{Tu_l\}$ of $\{Tu_m\}$ and $g \in L^p(\Omega, \mathbb{R}_+)$ such that

(3.2)
$$|Tu_l(x)| \le g(x), \quad Tu_l(x) \to Tu(x) \quad \text{for a.e. } x \in \Omega.$$

In the relation

$$\sigma(\mathcal{A}(u_l), v - u_l) + G(u_l, v - u_l) + \int_{\Omega} F(x, Tu_l(x), Tv(x) - Tu_l(x)) \, dx \subseteq \mathbb{R}_+,$$

letting the lower limit and using Lemma 2.10 (with $Y = \mathbb{R}$) we obtain

(3.3)
$$\underset{l \to \infty}{\operatorname{Liminf}} \sigma(\mathcal{A}(u_l), v - u_l) + \underset{l \to \infty}{\operatorname{Liminf}} G(u_l, v - u_l)$$
$$+ \underset{l \to \infty}{\operatorname{Liminf}} \int_{\Omega} F(x, Tu_l(x), Tv(x) - Tu_l(x)) \, dx \subseteq \underset{l \to \infty}{\operatorname{Liminf}} \mathbb{R}_+ = \mathbb{R}_+.$$

Using Remark 2.8, relation (3.1) and Proposition 2.5, we obtain

(3.4)
$$\underset{l \to \infty}{\operatorname{Liminf}} \sigma(\mathcal{A}(u_l), v - u_l) = \underset{l \to \infty}{\lim} \sigma(\mathcal{A}(u_l), v - u_l)$$
$$= \underset{n \to \infty}{\lim} \sigma(\mathcal{A}(u_n), v - u_n) \le \sigma(\mathcal{A}(u), v - u).$$

From (H_5) and Proposition 2.9 we obtain

(3.5)
$$G(u, v - u) \subseteq \underset{l \to \infty}{\text{Liminf}} G(u_l, v - u_l).$$

Let $F_l = F(\cdot, Tu_l(\cdot), Tv(\cdot) - Tu_l(\cdot))$. From (H₁), F_l is measurable, for any l.

The function $x \in \Omega \mapsto \sup_l \operatorname{dist}(0, F_l(x))$ is integrable. Indeed, from (H₂) and relation (3.2) we have

dist
$$(0, F_l(x)) \leq (h_1(x) + h_2(x)|Tu_l(x)|^{p-1})|Tv(x) - Tu_l(x)|$$

 $\leq (h_1(x) + h_2(x) \cdot [g(x)]^{p-1})(|Tv(x)| + g(x))$ a.e. $x \in \Omega$

Let $h(x) = (h_1(x) + h_2(x) \cdot [g(x)]^{p-1})(|Tv(x)| + g(x))$. From Hölder's inequality and from the conditions for h_1 and h_2 it follows that $h \in L^1(\Omega, \mathbb{R})$. Therefore, the function $x \in \Omega \mapsto \sup_l \operatorname{dist}(0, F_l(x))$ is integrable. Applying the Lebesque dominated convergence theorem for set-valued maps (see [1, p. 331]), one has

(3.6)
$$\int_{\Omega} \underset{l \to \infty}{\text{Liminf }} F(x, Tu_{l}(x), Tv(x) - Tu_{l}(x)) dx$$
$$\subseteq \underset{l \to \infty}{\text{Liminf }} \int_{\Omega} F(x, Tu_{l}(x), Tv(x) - Tu_{l}(x)) dx$$

Of course, the first integrand is measurable (see [1, p. 312]). Using the hypothesis (H_6) (therefore Proposition 2.9) and (3.2), one has

$$F(x, Tu(x), Tv(x) - Tu(x)) \subseteq \underset{l \to \infty}{\text{Liminf}} F(x, Tu_l(x), Tv(x) - Tu_l(x))$$

a.e. $x \in \Omega$. From Lemma 2.2(a) and (3.6), we obtain

(3.7)
$$\int_{\Omega} F(x, Tu(x), Tv(x) - Tu(x)) dx$$
$$\subseteq \underset{l \to \infty}{\operatorname{Liminf}} \int_{\Omega} F(x, Tu_{l}(x), Tv(x) - Tu_{l}(x)) dx.$$

Therefore, from (3.4), (3.5), (3.7) and (3.3) we obtain

$$\sigma(\mathcal{A}(u), v - u) + G(u, v - u) + \int_{\Omega} F(x, Tu(x), Tv(x) - Tu(x)) \, dx \subseteq \mathbb{R}_+,$$

i.e. $u \in S_v$.

Finally, we prove that $S: K \rightsquigarrow K$ is a KKM-map. To this end, let $\{v_1, \ldots, v_n\}$ be an arbitrary finite subset of K. We prove that $\operatorname{co}\{v_1, \ldots, v_n\} \subseteq \bigcup_{i=1}^n S_{v_i}$. Supposing the contrary, there exist $\lambda_i \geq 0$ $(i \in \{1, \ldots, n\})$ such that $\sum_{i=1}^n \lambda_i = 1$ and $\overline{v} = \sum_{i=1}^n \lambda_i v_i \notin S_{v_i}$ for all $i \in \{1, \ldots, n\}$. The above relations mean that for all $i \in \{1, \ldots, n\}$

$$\left[\sigma(\mathcal{A}(\overline{v}), v_i - \overline{v}) + G(\overline{v}, v_i - \overline{v}) + \int_{\Omega} F(x, T\overline{v}(x), Tv_i(x) - T\overline{v}(x)) \, dx\right] \cap \mathbb{R}_{-}^* \neq \emptyset.$$

(Here, $\mathbb{R}^*_{-} =]-\infty, 0[.)$ Let $I = \{i \in \{1, \ldots, n\} : \lambda_i > 0\}$. From the above we obtain

$$\emptyset \neq \left\{ \sum_{i \in I} \lambda_i \left[\sigma(\mathcal{A}(\overline{v}), v_i - \overline{v}) + G(\overline{v}, v_i - \overline{v}) + \int_{\Omega} F(x, T\overline{v}(x), Tv_i(x) - T\overline{v}(x)) \, dx \right] \right\} \cap \mathbb{R}_{-}^*$$

Using the sublinearity of the function $h \in X \mapsto \sigma(\mathcal{A}(\overline{v}), h)$, (H₃), Lemma 2.2, the linearity of T and (H₄), we obtain

$$\begin{split} \emptyset \neq & \left\{ \sigma \left(\mathcal{A}(\overline{v}), \sum_{i \in I} \lambda_i v_i - \sum_{i \in I} \lambda_i \overline{v} \right) + \sum_{i \in I} \lambda_i G(\overline{v}, v_i - \overline{v}) \right. \\ & \left. + \sum_{i \in I} \lambda_i \int_{\Omega} F(x, T \overline{v}(x), T v_i(x) - T \overline{v}(x)) \, dx \right\} \cap \mathbb{R}_{-}^* \\ & \subseteq & \left\{ \sigma(\mathcal{A}(\overline{v}), 0) + G\left(\overline{v}, \sum_{i \in I} \lambda_i v_i - \sum_{i \in I} \lambda_i \overline{v}\right) \right. \\ & \left. + \int_{\Omega} \overline{\sum_{i \in I} \lambda_i F(x, T \overline{v}(x), T v_i(x) - T \overline{v}(x))} \, dx \right\} \cap \mathbb{R}_{-}^* \\ & \subseteq & \left\{ G(\overline{v}, 0) + \int_{\Omega} F\left(x, T \overline{v}(x), \sum_{i \in I} \lambda_i T v_i(x) - \sum_{i \in I} \lambda_i T \overline{v}(x)\right) \, dx \right\} \cap \mathbb{R}_{-}^* \\ & = & \left\{ G(\overline{v}, 0) + \int_{\Omega} F(x, T \overline{v}(x), 0) \, dx \right\} \cap \mathbb{R}_{-}^* \subseteq \left\{ \mathbb{R}_{+} + \int_{\Omega} \mathbb{R}_{+} \, dx \right\} \cap \mathbb{R}_{-}^* = \emptyset \right\} \end{split}$$

contradiction. This means that S is a KKM-map. Since K is compact, applying Lemma 2.13, we obtain $\bigcap_{v \in K} S_v \neq \emptyset$, i.e. (HV \subseteq) has at least a solution. \Box

When K is not compact, we can state the following result, using a coercivity assumption.

THEOREM 3.3. Let K be a nonempty closed, convex subset of a Banach space X. Let A, G and F be as in Theorem 3.2. In addition, suppose that there exists a compact subset K_0 of K and an element $w_0 \in K_0$ such that

(3.8)
$$\left\{ \sigma(\mathcal{A}(u), w_0 - u) + \int_{\Omega} F(x, Tu(x), Tw_0(x) - Tu(x)) \, dx + G(u, w_0 - u) \right\} \cap \mathbb{R}_{-}^* \neq \emptyset$$

for all $u \in K \setminus K_0$. Then (HV \subseteq) has at least a solution.

PROOF. We define the map S as in Theorem 3.2. Clearly, S is a KKM-map and S_v is closed for all $v \in K$, as seen above. Moreover, $S_{w_0} \subseteq K_0$. Indeed, supposing the contrary, there exists an element $u \in S_{w_0} \subseteq K$ such that $u \notin K_0$. But this contradicts (3.8). Since K_0 is compact, the set S_{w_0} is also compact. Applying again Lemma 2.13, we obtain a solution for (HV \subseteq).

4. Consequences

First, we obtain a result of Browder concerning variational inequalities (see [3, Theorem 6]).

COROLLARY 4.1. Let K be a nonempty compact convex subset of a Banach space X, and let $\mathcal{A}: K \rightsquigarrow X^*$ be an upper demicontinuous set-valued map with bounded values. Then there exists $\overline{u} \in K$ such that

$$\sigma(\mathcal{A}(\overline{u}), v - \overline{u}) \ge 0 \text{ for all } v \in K.$$

PROOF. Choose $F \equiv 0$ and $G \equiv 0$ in Theorem 3.2.

In particular, Corollary 4.1 reduces to a classical result of Hartman and Stampacchia [7] if \mathcal{A} is a single-valued continuous operator and X is of finite dimension.

Now, we give a solution for the hemivariational inequality treated by Panagiotopoulos, Fundo and Rădulescu (see [10]). Before to do this, we recall two elementary facts.

LEMMA 4.2. Let K be a nonempty subset of a normed space X, and let $j: K \to \mathbb{R}$ be a function. Define $J: K \to \mathbb{R}$ by $J(u) = [j(u), \infty)$ for all $u \in K$. If j is upper semicontinuous on K, then J is lower semicontinuous on K.

LEMMA 4.3. If $h: \Omega \to \mathbb{R}$ is a measurable function, then $H: \Omega \rightsquigarrow \mathbb{R}$ defined by $H(x) = [h(x), \infty)$ for all $x \in \Omega$, is also measurable (as set-valued map).

Let Ω , X, K and T be as in the Introduction, let $A: K \to X^*$ be an operator, and we suppose that $j: \Omega \times \mathbb{R}^k \to \mathbb{R}$ is a Carathéodory function which is locally Lipschitz continuous with respect to the second variable and which satisfies the following assumption:

(j) there exist h_1 and h_2 as in (H₂) such that

$$|w| \le h_1(x) + h_2(x)|y|^{p-1}$$

for a.e. $x \in \Omega$, every $y \in \mathbb{R}^k$ and $w \in \partial j(x, y)$.

Here $\partial j(x, y)$ is the Clarke generalized gradient of j, i.e.

$$\partial j(x,y) = \{ w \in \mathbb{R}^k : \langle w, z \rangle \le j_u^0(x,y;z) \text{ for all } z \in \mathbb{R}^k \},\$$

where $j_y^0(x, y; z)$ is the (partial) generalized directional derivative of the locally Lipschitz continuous function $j(x, \cdot)$ at the point $y \in \mathbb{R}^k$ with respect to the direction $z \in \mathbb{R}^k$, where $x \in \Omega$, that is

$$j_y^0(x,y;z) = \limsup_{\substack{y' \to y \\ t \to 0^+}} \frac{j(x,y'+tz) - j(x,y')}{t}$$

We consider the following hemivariational inequality problem:

(P) Find $\overline{u} \in K$ such that

$$\langle A\overline{u}, v - \overline{u} \rangle + \int_{\Omega} j_y^0(x, T\overline{u}(x); Tv(x) - T\overline{u}(x)) \, dx \ge 0 \quad \text{for all } v \in K.$$

COROLLARY 4.4 (see [10]). Let K be a nonempty compact convex subset of a Banach space X, and let $j: \Omega \times \mathbb{R}^k \to \mathbb{R}$ satisfying the condition (j). If the operator $A: K \to X^*$ is w^* -demicontinuous, then (P) has at least a solution.

PROOF. We choose $\mathcal{A}(u) = \{A(u)\}$ for all $u \in K$, $G \equiv 0$ and $F: \Omega \times \mathbb{R}^k \times \mathbb{R}^k \rightsquigarrow \mathbb{R}$ as $F(x, y, z) = [j_y^0(x, y; z), \infty)$ for all $(x, y, z) \in \Omega \times \mathbb{R}^k \times \mathbb{R}^k$. Due to Remark 2.4, the operator \mathcal{A} is upper demicontinuous (with bounded values). We will verify the hypotheses from Theorem 3.2 for F.

 (H_1) Using the linearity of T and the measurability of

$$x \in \Omega \mapsto j_u^0(x, Tu(x); Tv(x) - Tu(x))$$

for all $u, v \in K$ (see [8, p. 15]), from Lemma 4.3 we obtain that $x \in \Omega \rightsquigarrow F(x, Tu(x), Tv(x) - Tu(x))$ is measurable.

(H₂) Since $j_y^0(x, y; z) = \max\{\langle w, z \rangle : w \in \partial j(x, y)\} = \langle w_0, z \rangle$, for some $w_0 \in \partial j(x, y)$ (using (j)) we have

$$|j_y^0(x,y;z)| \le |w_0| \cdot |z| \le (h_1(x) + h_2(x)|y|^{p-1})|z|$$

Since dist $(0, F(x, y, z)) \leq |j_y^0(x, y; z)|$, we obtain the desired relation.

(H₃) Since $z \in \mathbb{R}^k \mapsto j_y^0(x, y; z)$ is convex (see [4, p. 25]) we obtain that $z \in \mathbb{R}^k \rightsquigarrow F(x, y, z)$ is convex for all $x \in \Omega$ and all $y \in \mathbb{R}^k$.

(H₄) Since $j_y^0(x, y; 0) = 0$, we have $F(x, y, 0) = \mathbb{R}_+$ for all $x \in \Omega$ and all $y \in \mathbb{R}^k$.

(H₆) Since $(y, z) \in \mathbb{R}^k \times \mathbb{R}^k \mapsto j_y^0(x, y; z)$ is upper semicontinuous (see [4, p. 25]), and using Lemma 4.2 we obtain that $(y, z) \in \mathbb{R}^k \times \mathbb{R}^k \rightsquigarrow F(x, y, z)$ is lower semicontinuous for all $x \in \Omega$.

Therefore, from Theorem 3.2 we have a solution $\overline{u} \in K$ such that

$$\langle A\overline{u}, v - \overline{u} \rangle + \int_{\Omega} F(x, T\overline{u}(x), Tv(x) - T\overline{u}(x)) dx \subseteq \mathbb{R}_+ \text{ for all } v \in K.$$

In particular, for the "lower" selection of $F(\cdot, T\overline{u}(\cdot), Tv(\cdot) - T\overline{u}(\cdot))$, i.e. for $j_y^0(\cdot, T\overline{u}(\cdot); Tv(\cdot) - T\overline{u}(\cdot))$, which is integrable due to (j), we have

$$\langle A\overline{u}, v - \overline{u} \rangle + \int_{\Omega} j_y^0(x, T\overline{u}(x); Tv(x) - T\overline{u}(x)) \, dx \ge 0 \quad \text{for all } v \in K,$$

i.e. \overline{u} is a solution for (P).

References

- J. P. AUBIN AND H. FRANKOWSKA, Set-Valued Analysis, Birkhäuser, Boston, Basel, Berlin, 1990.
- [2] R. J. AUMANN, Integral of set-valued maps, J. Math. Anal. Appl. 12 (1965), 1–12.
- [3] F. E. BROWDER, The fixed point theory of multi-valued mappings in topological vector spaces, Math. Ann. **177** (1968), 283–301.

- [4] F. CLARKE, Optimization and Nonsmooth Analysis, John Wiley & Sons, New York, 1983.
- [5] K. FAN, A generalization of Tychonoff's fixed point theorem, Math. Ann. 142 (1961), 305–310.
- [6] M. FRIGON, On a critical point theory for multivalued functionals and applications to partial differential inclusions, Nonlinear Anal. 31 (1998), 735–753.
- [7] G. J. HARTMAN AND G. STAMPACCHIA, On some nonlinear elliptic differential equations, Acta Math. 115 (1966), 271–310.
- [8] D. MOTREANU AND P. D. PANAGIOTOPOULOS, Minimax Theorems and Qualitative Properties of the solutions of Hemivariational Inequalities, Kluwer Academic Publishers, Dordrecht, Boston, London, 1999.
- [9] Z. NANIEWICZ AND P. D. PANAGIOTOPOULOS, Mathematical Theory of Hemivariational Inequalities and Applications, Marcel Dekker, New York, 1995.
- [10] P. D. PANAGIOTOPOULOS, M. FUNDO AND V. RĂDULESCU, Existence theorems of Hartman-Stampacchia type for hemivariational inequalities and applications, J. Global Optim. 15 (1999), 41–54.
- [11] N. K. RIBARSKA, TS. Y. TSACHEV AND M. I. KRASTANOV, A note on "On a critical point theory for multivalued functionals and applications to partial differential inclusions", Nonlinear Anal. 43 (2001), 153–158.
- [12] M. WILLEM, Minimax Theorems, vol. 1996, Birkhäuser, Boston.

Manuscript received March 12, 2002

ALEXANDRU KRISTÁLY AND CSABA VARGA Faculty of Mathematics and Informatics University of "Babeş–Bolyai" 3400 Cluj-Napoca, ROMANIA

 $E\text{-}mail\ address:\ alexandrukristaly@yahoo.com,\ csvarga@cs.ubbcluj.ro$

 TMNA : Volume 24 – 2004 – Nº 2