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UNIQUE GLOBAL SOLVABILITY OF THE FRIED–GURTIN
MODEL FOR PHASE TRANSITIONS IN SOLIDS

Zenon Kosowski — Irena Paw low

Abstract. The paper is concerned with the existence and uniqueness of

solutions to the Allen–Cahn equation coupled with elasticity. The system
represents a particular, simple version of the Fried–Gurtin model for solid-

solid transitions with phase characterized by an order parameter.

The system is studied with the help of the Leray–Schauder fixed point
theorem. The main tool applied in the existence proof is the solvability

theory of parabolic problems in anisotropic Sobolev spaces with mixed time-

space norms.

1. Introduction

In this paper we are concerned with the unique global solvability of a simple
version of the Fried–Gurtin model for isothermal phase transitions in solids. The
model results from a thermodynamical phase-field (diffused-interface) theory of
solid-solid phase transitions developed by Fried and Gurtin (see [7]), and Fried
and Grach (see [6]).
The problem which is considered here has the form of a coupled system

of three-dimensional (3D) elasticity and the parabolic equation, known as the
Allen–Cahn or Landau–Ginzburg equation, for a scalar order parameter. Under
some physically justified assumptions on the elastic energy and the data we have
proved the existence and uniqueness of a solution of the problem. The solution
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satisfies the elasticity system in a weak sense and the parabolic problem in the
classical one.

The existence proof is based on the Leray–Schauder fixed point theorem. The
main tool applied in the proof is the theory of maximal regularity for parabolic
problems with inhomogeneous part belonging to Lq(0, T ;Lp(Ω)), due to Weide-
maier (see [13]–[15]). This theory provides the solvability of parabolic problems
in the anisotropic Sobolev space W 2,1p,q (Ω

T ).

We begin with a brief outline of the Fried–Gurtin model and the place of our
study in the present theory of phase transition models. The Fried–Gurtin–Grach
theory is based on balance laws of linear momentum and microforce with un-
derlying free energy depending on deformation gradient, multicomponent order
parameter and its gradient. The constitutive dependence on the order param-
eter and its gradient is in contrast to other well-known phase-field theories of
solid-solid transitions due to Falk and Frémond (for references see e.g. the mono-
graph [2] and the review [10]). In these theories the order parameter is identified
with strain tensor, and the free energy is postulated to be a function of strain,
strain gradient, and in nonisothermal situation also on temperature.

In Fried–Gurtin’s theory the order parameter is not identified with the strain
tensor but represents a new quantity which can have different physical status.
In case of diffusive transitions it describes atomic arrangements within unit cells
of crystal lattice. For pure martensitic transitions, in which the crystal lattice
undergoes a machanical strain but there are no rearrangements of atoms within
cells, the order parameter might be viewed as an artifice that yields a regular-
ization of mechanical equations.

Such regularization turns out to the model the interfacial structure of phase
boundaries. In [6], [7] it has been shown that, granted appriopriate scaling,
the governing equations of the order-parameter based theory are asymptotic to
governing equations in sharp-interface theory.

From the mathematical point of view the important difference between the
theories is that in the case of Falk’s and Frémond’s theories stress tensor is
a nonlinear function of strain whereas in Fried–Gurtin’s theory this dependence
is linear, the nonlinear effects are contained in the order parameter equation.

It should be pointed out that this order parameter equation generalizes to
the case of deformable continua one of the central equations in materials sci-
ence, namely the Allen–Cahn equation, referred also to as the Landau–Ginzburg
equation, describing the ordering of atoms within unit cells on a crystal lattice.

There exists an extensive literature concerned with the mathematical analysis
of Falk’s and Frémond’s models in 1D and 3D cases (see references in [2], [10],
and [11]).
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According to authors’ knowledge the well-posedness of the Fried–Gurtin
model has so far not been examined. In a special 1D case the model and its
equilibrium solutions have been analyzed numerically in Sikora et al [12].

We present now the formulation of the Fried–Gurtin model in the special case
of small strain approximation with strain represented by the linearized strain
tensor ε = ε(u) and an unconstrained scalar order parameter ϕ distinguishing
between two phases, a and b, characterized by ϕ = 0 and ϕ = 1.

Let Ω ⊂ R3 be a bounded domain with smooth boundary S, occupied by
a body in a fixed reference configuration. Let n denotes the unit outward normal
to S.

Moreover, let T > 0 be an arbitrary fixed time, ΩT = Ω × (0, T ) and ST =
S × (0, T ) denote the space-time cylinder and its lateral boundary.
The mechanical evolution of the body is described by the displacement field

u: ΩT → R3 and the scalar order-parameter field ϕ: ΩT → R.
The free energy density f underlying the evolution of the body is assumed

to be given as a function of the strain tensor ε(u), order parameter ϕ, and its
spatial gradient ∇ϕ:

f = f(ε(u), ϕ,5ϕ).

The relevant Landau–Ginzburg separable form of f which is quadratic in ε(u)
and ∇ϕ, and a nonlinear double-well function in ϕ, is specifield below.
The model has the form of a nonlinear coupled system of partial diffential

equations representing linear momentum balance for the displacement (at con-
stant mass density) and the relaxation law for the order parameter, with some
prescribed initial and boundary conditions:

(1.1)

utt −∇ · f/ε(ε(u), ϕ,∇ϕ) = b in ΩT ,

u|t=0 = u0, ut|t=0 = u1 in Ω,
u = 0 on ST ,

(1.2)

βϕt + f/ϕ(ε(u), ϕ,∇ϕ)−∇ · f/∇ϕ(ε(u), ϕ,∇ϕ) = 0 in ΩT ,

ϕ|t=0 = ϕ0 in Ω,
ϕ = 0 on ST .

Here

ε(u) =
1
2
(∇u+ (∇u)T )

is the linearized strain tensor (upper index T denotes transposition), b: ΩT → R3

is an external body force, and β is a positive constant called dumping modulus
(in general, β can depend on ε, ϕ, ∇ϕ, ϕt). The functions u0, u1, ϕ0 represent
initial conditions for the displacement, the velocity and the order parameter.
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For the sake of simplicity we consider the homogeneous Dirichlet boundary
condition (1.1)3 for the displacement assuming that the body is fixed at the
boundary S. The results can be extended to other boundary conditions (see
Section 5).
The homogeneous Dirichlet boundary condition (1.2)3 for the order parame-

ter means that on the boundary S the material remains all the time in the phase
characterized by ϕ = 0.
We assume such condition in order to be able to apply directly the max-

imal regularity theory for parabolic equations due to Weidemaier ([14], [15]).
Alternatively, we could consider the homogeneous Neumann boundary condition

n · ∇ϕ = 0 on ST

which is the typical condition in phase field models. The maximal regularity
results due to Weidemaier in [14] can be also, however indirectly, applied in this
case (see Section 5).
The typical Landau–Ginzburg form of the free energy density is given by

(1.3) f(ε(u), ϕ,∇ϕ) =W (ε(u), ϕ) + Ψ(ϕ) + γ

2
|∇ϕ|2,

with the three terms representing respectively the elastic energy, the exchange
energy and the gradient energy with constant coefficient γ > 0.
The exchange energy Ψ(ϕ) is a double-well potential with equal minima at

ϕ = 0 and ϕ = 1, assumed in the standard form

(1.4) Ψ(ϕ) =
1
2
ϕ2(1− ϕ)2.

The sum of the last two terms in (1.3) represents the energy of diffused phase
interfaces. The relevant expressions for the elastic energy W (ε, ϕ) are given by
the following two examples (see [7], [6]).

Example 1.1.

(1.5) W (ε, ϕ) = (1− z(ϕ))Wa(ε) + z(ϕ)Wb(ε),

where

Wi(ε) = wi + (1/2)(ε− εi) ·Ai(ε− εi), i = a, b,

is the strain energy of phase i, εi is the natural strain, and wi > 0 is the energy
at the natural state; εi, wi are assumed constant. Furthermore, z( · ) is a smooth
scalar interpolation function satisfying:

(1.6) z(0) = 0, z(1) = 1, and 0 ≤ z(ϕ) ≤ 1 for all ϕ ∈ R.

The inequality constraint is imposed to assure the physical sense of (1.5).
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The tensor Ai = ((Ai)pqrs)p,q,r,s=1,2,3 is the fourth order elasticity tensor of
phase i, in isotropic elasticity given by

(1.7) Aiε(u) = λitr ε(u)I+ 2µiε(u), i = a, b,

where I = (δpq)p,q=1,2,3 and λi, µi are Lamé constants of phase i, within elasticity
range, i.e. satisfying conditions µi > 0, 3λi + 2µi > 0.

For the sake of mathematical analysis in the present paper we shall confine
ourselves to the case of homogeneous elasticity, i.e. we assume that the elasticity
tensors are equal in both phases:

(1.8) Aa = Ab = A.

The second example is characteristic for diffusive phase transitions in elastic
solids (see [7], [5]).

Example 1.2.

(1.9) W (ε, ϕ) = w(ϕ) +
1
2
(ε− ε(ϕ)) ·A(ϕ)(ε− ε(ϕ)),

where

ε(ϕ) = z(ϕ)ε,

is the natural stress-free strain depending on the order parameter, ε is the con-
stant misfit tensor, and z( · ) is a smooth scalar interpolation function such that

(1.10)
z(0) = 0,

z(1) = 1,

but in this example not necessarily constrained by the inequality (1.6)3.

For diffusive processes Vegard’s law is commonly postulated, i.e. that the
stress-free strain is isotropic and varies linearly with the order parameter (see [5,
Section 4.2])

ε(ϕ) = e(ϕ− ϕ)I

with constants e and ϕ. Furthermore, w(ϕ) is the energy of the natural state
and A(ϕ) is the elasticity tensor, in general depending on the order parameter.
As in Example 1.1, for mathematical analysis, we assume that

(1.11) A(ϕ) = A

is a constant tensor.
For further purpose we note here that in case of homogeneous elasticity (i.e.

under assumptions (1.8), (1.11)) the expressions for the elastic energy and its
derivatives with respect to ε and ϕ are given by:
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in Example 1.1:

(1.12)

W (ε, ϕ) =
1
2
ε ·Aε− ε · [(1− z(ϕ))Aεa + z(ϕ)Aεb]

+ (1− z(ϕ))wa + z(ϕ)wb +
1
2
(1− z(ϕ))εa ·Aεa

+
1
2
z(ϕ)εb ·Aεb,

W/ε(ε, ϕ) =Aε− [(1− z(ϕ))Aεa + z(ϕ)Aεb],

W/ϕ(ε, ϕ) = z
′(ϕ)
[
− ε ·A(εb − εa) +

1
2
εb ·Aεb

− 1
2
εa ·Aεa + wb − wa

]
,

in Example 1.2:

(1.13)

W (ε, ϕ) =
1
2
ε ·Aε− z(ϕ)ε ·Aε+ w(ϕ) + 1

2
z(ϕ)2ε ·Aε,

W/ε(ε, ϕ) = Aε− z(ϕ)Aε,
W/ϕ(ε, ϕ) = w

′(ϕ) + z′(ϕ)[−ε ·Aε+ z(ϕ)ε ·Aε].

We point out that in case of homogeneous elasticity the functions W/ε(ε, ϕ) and
W/ϕ(ε, ϕ) are linear in respect to ε what essentially simplifies the analysis.

The problem (1.1), (1.2) corresponding to free energy (1.3), with Ψ(ϕ) given
by (1.4), and W (ε, ϕ) as in Examples 1.1, 1.2 (homogeneous elasticity) takes the
form:

(1.14)

utt −∇ · (Aε(u)) = z′(ϕ)B∇ϕ+ b in ΩT ,
u|t=0 = u0, ut|t=0 = u1 in Ω,

u = 0 on ST ,

(1.15)

βϕt − γ 4 ϕ = − [Ψ′(ϕ) +W/ϕ(ε(u), ϕ)]
= − [Ψ′(ϕ) + w′(ϕ) + z′(ϕ)(B · ε(u) + h(ϕ))] in ΩT ,

ϕ|t=0 =ϕ0 in Ω,

ϕ =0 on ST ,

where in Example 1.1:

B = −A(εb − εa) constant tensor,(1.16)

h(ϕ) =
1
2
εb ·Aεb −

1
2
εa ·Aεa + wb − wa = const,

w(ϕ) = wa +
1
2
εa ·Aεa = const,
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and in Example 1.2:

B = −Aε constant tensor,
h(ϕ) = −z(ϕ)ε ·B,

w(ϕ) given function.

We study the above problem under the following assumptions:

(A1) Ω ⊂ R3, is a bounded domain with the boundary of class C2+α for some
α > 0. Such regularity is needed in the application of the results on
maximal regularity for parabolic equations (see Lemma 2.2).

(A2) The elasticity tensor A = (Aijkl)i,j,k,l=1,2,3 is a constant, symmetric,
positive definite linear mapping from the set S2 of symmetric second
order tensors in R3 onto itself, i.e. A satisfies the following conditions:

(1.17)
Aijkl = Ajikl = Aklij ,

c|ε|2 ≤ ε ·Aε ≤ c|ε|2 for all ε ∈ S2,
with some constants c > c > 0.

We do not require that A is isotropic.
We note that the isotropic tensor A given by (1.7) satisfies condition (1.17).

(A3) The free energy density f(ε, ϕ,∇ϕ):S2 × R × R3 → R has the form
(1.3), with Ψ:R → R given by (1.4), and W (ε, ϕ):S2 × R → R given
in Examples 1.1 or 1.2.

We assume that the functions z(ϕ), h(ϕ) and w(ϕ) in these examples satisfy
the following conditions:
in Example 1.1:

• z( · ) ∈ C1(R) with z′( · ) Lipschitz continuous, satisfies constraints (1.6),
and

(1.18) |z′(ϕ)| ≤ c for all ϕ ∈ R.

• Tensors εi ∈ S2, and scalars wi ∈ R, i = a, b, are constant, hence by
definition, B ∈ S2 is constant, and functions h(ϕ), w(ϕ) are constant.

in Example 1.2:

• z( · ) ∈ C1(R) with z′( · ) Lipschitz continuous, is subject to the growth
conditions

(1.19) |z(ϕ)| ≤ c(|ϕ|+ 1) and |z′(ϕ)| ≤ c for all ϕ ∈ R.

• Tensor ε ∈ S2 is constant, hence B ∈ S2 is constant and function
h(ϕ) = −z(ϕ)ε ·B.
• The function w( · ) ∈ C1(R) with w′( · ) Lipschitz continuous, satisfies

w(ϕ) ≥ −c and |w′(ϕ)| ≤ c(|ϕ|3 + 1) for all ϕ ∈ R.
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We point on some consequences of the above assumptions. By virtue of the
coercivity condition in (1.17) the following lower bounds for the elastic energy
hold true:
in Example 1.1

W (ε, ϕ) ≥ min
i∈{a,b}

{
wi +

1
2
c |ε− εi|2

}
,

and in Example 1.2

W (ε, ϕ) ≥ w(ϕ) + 1
2
c |ε− z(ϕ)ε|2.

Hence, in view of the growth conditions on z( · ), taking into account that

Ψ(ϕ) ≥ 1
8
ϕ4 − 1

2
,

we can see that the homogeneous part W (ε, ϕ) + Ψ(ϕ) of f(ε, ϕ,∇ϕ) satisfies
the lower bound

W (ε, ϕ) + Ψ(ϕ) ≥ c(|ε|2 + |ϕ|4)− c for all (ε, ϕ) ∈ S2 × R.

Consequently,

(1.20) f(ε, ϕ,∇ϕ) ≥ c(|ε|2+ |ϕ|4+ |∇ϕ|2)−c for all (ε, ϕ,∇ϕ) ∈ S2×R×R3.

This is the main structure assumption that we use in derivation of energy esti-
mates (see Section 2).
We note also that (A3) assures the following growth conditions (in Examples

1.1 and 1.2):

(1.21)
|W/ϕ(ε, ϕ)|+ |Ψ′(ϕ)| ≤ c(|ε|+ |ϕ|3 + 1),

|W/ε(ε, ϕ)| ≤ c(|ε|+ |ϕ|+ 1)

for all (ε, ϕ) ∈ S2 × R, which are applied in improving energy estimates.
Concerning the data of the problem (1.14), (1.15) we assume:

(A4) The external body force b ∈ L1(0, T ;L2(Ω)), and the initial conditions
are such that:

u0 ∈ H10(Ω), u1 ∈ L2(Ω), and ϕ0 ∈ B2(1−1/q)2,q (Ω) ∩H10 (Ω), 4 < q <∞,

satisfies compatibility condition

ϕ0 = 0 on S.

Above B2(1−1/q)2,q (Ω) denotes the Besov space with the following norm equiv-
alent to the usual norm in terms of second order differences (see [13]):

‖ft‖(T )Bsp,q(Ω) = ‖f‖Lp(Ω) + |f |
(T )
bsp,q(Ω)

for s ∈ (0, 2),
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where

|f |(T )bsp,q(Ω) =
3∑
j=1

(∫ T 1/2
0

h−1−qs‖42j,hf‖
q
Lp(Ω2h)

dh

)1/q
,

4j,hf(x) = f(x+ hej)− f(x), x ∈ R3, j = 1, 2, 3,

4kj,h =4j,h4k−1j,h ,
Ωδ = {x ∈ Ω | dist (x, S) > δ} for δ > 0.

The upper index (T ) indicates the dependence of the correspodning norms and
seminorms on time horizon T .
The Besov space specified in (A4) results from the solvability theory of pa-

rabolic problems in the anisotropic Sobolev space W 2,1p,q (Ω
T ) (see [13]–[15]). The

initial trace of a function fromW 2,1p,q(Ω
T ) belongs to the Besov space B2(1−1/q)p,q (Ω).

We state now the main results of the paper.

Theorem 1.3 (The global existence). Let us consider problem (1.14), (1.15).
Let the assumptions (A1)–(A4) be satisfied. Then for any T > 0 there exists
a pair (u, ϕ) such that:

u ∈ L∞(0, T ;V0) ∩W 1∞(0, T ;L2(Ω)) ∩W 22 (0, T ; (V0)′), V0 = H10(Ω),
u( · , 0) = u0, ut( · , 0) = u1,

ϕ ∈W 2,12,q (ΩT ) = Lq(0, T ;W 22 (Ω)) ∩W 1q (0, T ;L2(Ω)),
4 + δ < q <∞ for some δ > 0,

which solves (1.14), (1.15) in the following sense:

(a) the elasticity system (1.14) is satisfied in the weak sense

(1.22)
∫ T
0
〈utt,η〉(V0)′,V0 dt+

∫
ΩT
Aε(u) · ε(η) dx dt

=
∫
ΩT
(z′(ϕ)B∇ϕ+ b) · η dx dt

for any η ∈ L2(0, T ;V0), where 〈 · , · 〉(V0)′,V0 denotes the duality pairing
between V0 and V′0,

(b) the parabolic equation (1.15)1 is satisfied a.e. in ΩT and initial and
boundary conditions (1.15)2,3 hold in the sense of appriopriate traces.
Moreover, (u, ϕ) satisfy a priori estimates

(1.23) ‖u‖L∞(0,T ;V0) + ‖ut‖L∞(0,T ;L2(Ω)) + ‖utt‖L2(0,T ;(V0)′)
+ ‖ϕ‖W 2,12,q (ΩT ) ≤ c(T )

with constant c(T ) depending only on the data u0, u1, ϕ0, b, parameters
p = 2, q, and time horizon T .
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We note that by virtue of the imbedding W 2,12,q (Ω
T ) ⊂ L∞(ΩT ) for q > 4, the

function ϕ in the solution (u, ϕ) satisfies

(1.24) ‖ϕ‖L∞(ΩT ) ≤ c‖ϕ‖W 2,12,q (ΩT ) ≤ c(T ).

Theorem 1.4 (Uniqueness). Let the assumptions (A1)–(A4) be satisfied.
Then the solution (u, ϕ) mentioned in Theorem 1.3 is unique.

We comment now on the idea of the existence proof. It is based on the
Leray–Schauder fixed point theorem. The main part of the prof consitute a priori
estimates for a solution of the problem. They comprise energy estimates derived
on the basis of the physical form (1.1), (1.2) of the problem and the structure
assumption (1.20) on the underlying free energy.

The key estimate for the order parameter ϕ is obtained with the help of the
results on maximal regularity for the second order linear parabolic equations
with inhomogeneous part belonging to the mixed space Lq(0, T ;Lp(Ω)), which
are due to Weidemaier (see [14], [15]).

We explain the reason we apply such theory. From energy estimates we
know that the right-hand side of the equation for the order parameter belongs
to L∞(0, T ;L2(Ω)) (see estimate (2.8)). Hence, by virtue of the above men-
tioned maximal regularity results we can conclude that the order parameter ϕ
belongs to the anisotropic Sobolev space W 2,12,q (Ω

T ) for some 2 ≤ q < ∞ (see
estimate (2.11)).

Thanks to such a regularity result we have a wide range of possibilities in
the choice of the time-integration parameter q so that desired properties of the
solution are ensured.

Firstly, we choose 4 + δ < q <∞ for some δ > 0, in order to guarantee that
ϕ is L∞(ΩT )-function, i.e.

(1.25) W 2,12,q (Ω
T ) ⊂ L∞(ΩT ).

Secondly, we take the Besov space (see Section 2)

B = B2−δ
′,1−δ′/2

2,q;θ (ΩT )

with the parameters

4 + δ < q <∞, 0 < δ, 1 ≤ θ ≤ ∞, and 0 < δ′ =
δ

2(4 + δ)
<
1
2
,

as the working space in the Leray–Schauder fixed point theorem.

The choice of this Besov space is motivated by the following two require-
ments arising in the proof: B is the smallest space such that W 2,12,q (ΩT ) is com-
pactly imbedded into B, and at the same time B preserves the property (1.25)
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of W 2,12,q (Ω
T ). More precisely, we require that the imbedding

(1.26) W 2,12,q (Ω
T ) ⊂ B s compact,

and

(1.27) B ⊂L∞(ΩT ).

The imbeddings (1.26) and (1.27) are of key importance to assure the properties
of the solution map in the Leray–Schauder fixed point theorem.
Finally, we underline that our results are restricted to the case of homoge-

neous elasticity, i.e. equal elasticity tensors of the phases. In nonhomogeneous
elasticity there are additional nonlinearities in the system (1.1), (1.2) that can
be handled by regularizing the elasticity equation (1.1). Such problem will be
considered by the authors in a separate paper.
The paper is organized as follows: In Section 2 we derive a priori estimates

for solutions of the problem (1.14), (1.15) which include the energy estimates
and the maximal regularity estimates for ϕ.
In Section 3 we present the proof of the existence result in Theorem 1.3.

It consists in constructing a solution map and checking the assumptions of the
Leray–Schauder fixed point theorem. The estimates derived in Section 2 provide
a priori bounds for a fixed point of the solution map.
In Section 4 we present the proof of the uniqueness of solution. It is based

on direct comparison of two solutions by means of deriving appropriate energy
estimates and applying Gronwall’s inequality.
In Section 5 we show how the existence result can be extended to other

boundary conditions.
We use following notations:

f/i =
∂f

∂xi
i = 1, 2, 3, ft =

df

dt
, ε(u) = (ε(u)ij)i,j=1,2,3,

W/ε(ε, ϕ) =
(
∂W (ε, ϕ)
∂εij

)
i,j=1,2,3

, W/ϕ(ε, ϕ) =
∂W (ε, ϕ)

∂ϕ
,

z′(ϕ) =
dz

dϕ
,

where space and time derivatives are material. For simplicity, whenever there is
no danger of confusion, we omit the arguments (ε, ϕ). Also the specification of
tensor indices is omitted.
Vector and tensor valued mappings are denoted by bold letters.
The summation convention over repeated indices is used, and the following

notation:
For vectors a = (ai), ã = (ãi), and tensors B = (Bij), B̃ = (B̃ij), A =

(Aijkl), we write a·ã = aiãi, B·B̃ = BijB̃ij ,AB = (AijklBkl), BA = (BijAijkl).
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∇ and ∇· denote the gradient and the divergence operators with respect to
the material point x ∈ R3.
For the divergence of the tensor fields ε(x) = (εij(x)) we use the convention

of the contraction over the last index, i.e.

∇ · ε(x) = (εij/j(x)).

We use the Sobolev spaces notation of the monograph [9]. For simplicity we
write

Hm(Ω) =Wm2 (Ω) for m ∈ N,
L2(Ω) = (L2(Ω))3, V = H1(Ω) = (H1(Ω))3, V0 = H10(Ω) = (H

1
0 (Ω))

3.

Furthermore, Lp,q(ΩT ) = Lq(0, T ;Lp(Ω)) with the norm

‖f‖Lp,q(ΩT ) =
(∫ T
0

(∫
Ω
|f |p dx

)q/p
dt

)1/q
.

Throughout the paper c and c(T ) denote generic constants different in various
instances, depending on the data of the problem and domain Ω. T he argument
T indicates time horizon dependence which is always such that constant c(T )
stays bounded for T ↘ 0.

2. A priori estimates

In this section we derive a priori estimates for solutions of the problem (1.14),
(1.15). These estimates will be used in the proof of Theorem 1.3 to show a fixed
point property of the solution map in the Leray–Schauder theorem.
We start with establishing energy estimates. To this purpose it is convenient

to consider problem (1.14), (1.15) in its original form (1.1), (1.2).
Throughout we assume that (A1)–(A4) are satisfied.

Lemma 2.1. Assume f(ε, ϕ,∇ϕ) satisfies structure condition (1.20), and the
data are such that

W (ε0, ϕ0),Ψ(ϕ0) ∈ L1(Ω), ∇ϕ0 ∈ L2(Ω), u1 ∈ L2(Ω), b ∈ L1(0, T ;L2(Ω).

Then for a solution (u, ϕ) of problem (1.1), (1.2) the following estimate holds:

(2.1) ‖ut‖L∞(0,T ;L2(Ω)) + ‖ε(u)‖L∞(0,T ;L2(Ω))
+ ‖ϕ‖L∞(0,T ;L4(Ω)) + ‖∇ϕ‖L∞(0,T ;L2(Ω)) + ‖ϕt‖L2(ΩT ) ≤ c0

with constant c0 depending only on the data.

Proof. Multiplying equation (1.1)1 by ut, integrating over Ω and by parts,
in view of boundary condition (1.1)3, we get

(2.2)
1
2
d

dt

∫
Ω
|ut|2 dx+

∫
Ω
f/ε(ε, ϕ,∇ϕ) · εt dx =

∫
Ω
b · ut dx.
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Further, multiplying (1.2)1 by ϕt, integrating over Ω and by parts, in view of
(1.2)3, we deduce that

(2.3) β

∫
Ω
ϕ2t dx+

∫
Ω
f/ϕ(ε, ϕ,∇ϕ)ϕt dx+

∫
Ω
f/∇ϕ(ε, ϕ,∇ϕ) · ∇ϕt dx = 0.

Adding (2.2) and (2.3) we arrive at the energy identity

(2.4)
1
2
d

dt

∫
Ω
|ut|2 dx+

d

dt

∫
Ω
f(ε, ϕ,∇ϕ) dx+ β

∫
Ω
ϕ2t dx =

∫
Ω
b · ut dx.

Integrating (2.4) with respect to t, estimating the source term by∫ t
0

∫
Ω
b · ut′ dx dt′ ≤ ‖ut′‖L∞(0,t;L2(Ω))‖b‖L1(0,t;L2(Ω))

≤ 1
4
‖ut′‖2L∞(0,t;L2(Ω)) + ‖b‖

2
L1(0,t;L2(Ω)),

and using structure condition (1.20), we conclude the assertion. �

By standard duality argument we can get estimate for the second time de-
rivative utt. In fact, from (1.1)1 it follows that∫

ΩT
utt · η dx dt = −

∫
ΩT

W/ε(ε(u), ϕ) · ε(η) dx dt+
∫
ΩT
b · η dx dt

for any η ∈ L2(0, T ;V0). Hence, using growth condition (1.21)2 and estimate
(2.1), we get∣∣∣∣ ∫
ΩT
utt · η dx dt

∣∣∣∣ ≤ ‖W/ε(ε(u), ϕ)‖L2(ΩT )‖∇η‖L2(ΩT ) + ‖ b‖L2(ΩT )‖η‖L2(ΩT )

≤ c(‖ε(u)‖L2(ΩT ) + ‖ϕ‖L2(ΩT ) + ‖b‖L2(ΩT ) + 1)‖η‖L2(0,T ;V0)
≤ c‖η‖L2(0,T ;V0).

This shows that

(2.5) ‖utt‖L2(0,T ;(V0)′) ≤ c.

Our goal now is to improve energy estimates (2.1). Firstly, we shall note that
from (2.1) it follows that

‖ϕ‖L∞(0,T ;H1(Ω)) ≤ c0,

so that, by Sobolev’s imbedding,

(2.6) ‖ϕ‖L∞(0,T ;L6(Ω)) ≤ c0.

Let us consider parabolic problem (1.15). For simplicity, let us denote

(2.7) H ≡ −[Ψ′(ϕ) + w′(ϕ) + z′(ϕ)(B · ε(u) + h(ϕ))].

In view of growth conditions (1.21)1, estimates (2.1) and (2.6) imply that

(2.8) ‖H‖L∞(0,T ;L2(Ω)) ≤ c0.
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To conclude from (2.8) the regularity of the solution to the problem (1.15) we ap-
ply the results on maximal regularity for second order linear parabolic equations
with the inhomogeneous part belonging to the space Lq(0, T ;Lp(Ω)), obtained
recently by Weidemaier [15].

A direct application of [15, Theorem 3.1] yields:

Lemma 2.2. Consider problem (1.15). Assume that Ω is a bounded domain
in R3 of class C2+α for some α > 0 and that

(2.9) 3/2 < p = 2 ≤ q <∞, H ∈ Lq(0, T ;L2(Ω)), ϕ0 ∈ B2(1−1/q)2,q (Ω)

and ϕ0 satisfies compatibility condition ϕ0 = 0 on S. Then the problem (1.15)
has a unique solution ϕ ∈ W 2,12,q (ΩT ) and there is a constant c∗(p, q, T ) (which
stays bounded for T ↘ 0), such that

(2.10) ‖ϕ‖W 2,12,q (ΩT ) ≤ c
∗(‖H‖Lq(0,T ;L2(Ω)) + ‖ϕ0‖B2(1−1/q)2,q (Ω)).

By virtue of Lemma 2.2 and estimate (2.8) we conclude that

(2.11) ‖ϕ‖W 2,12,q (ΩT ) ≤ c(T ), 2 ≤ q <∞,

where c denotes a constant depending only on the data, p = 2, q and T .

To prove the existence of solutions we shall restrict ourselves to the range

4 < 4 + δ < q <∞ for some δ > 0.

In this range, by virtue of Sobolev’s imbedding,

(2.12) W 2,12,q (Ω
T ) ⊂ L∞(ΩT ) for 4 < 4 + δ < q <∞.

We introduce now the Besov space B2−δ
′,1−δ′/2

2,q;θ (ΩT ) which will be used later as
the working space in the Leray-Schauder fixed point theorem. We recall that the
norm of this space is defined by (see [1, Definition 18.1])

‖ϕ‖
B
2−δ′,1−δ′/2
2,q;θ (ΩT )

= ‖ϕ‖Lq(0,T ;L2(Ω))

+
3∑
i=1

{∫ h0
0

[‖ 4xi (h,ΩT )∂xiϕ‖Lq(0,T ;L2(Ω))
h1−δ′

]θ
dh

h

}1/θ
+
{∫ h0
0

[‖ 4t (h,ΩT )ϕ‖Lq(0,T ;L2(Ω))
h1−δ′/2

]θ
dh

h

}1/θ
,
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where the parameter 0 < h0 <∞, and

4xi(h,ΩT )ϕ(x, t) =

{
4xi(h)ϕ(x, t) if [(x, t), (x+ hei, t)] ⊂ ΩT ,
0 if [(x, t), (x+ hei, t)] 6⊂ ΩT ,

4t(h,ΩT )ϕ(x, t) =

{
4t(h)ϕ(x, t) if [(x, t), (x, t+ h)] ⊂ ΩT ,
0 if [(x, t), (x, t+ h)] 6⊂ ΩT ,

4xi(h)ϕ(x, t) = ϕ(x+ hei, t)− ϕ(x, t),
4t(h)ϕ(x, t) = ϕ(x, t+ h)− ϕ(x, t).

For further purposes we recall here that, by virtue of [1, Theorem 18.13], the
imbedding

(2.13) W 2,12,q (Ω
T ) ⊂ B2−δ

′,1−δ′/2
2,q;θ (ΩT ) for any δ′ > 0 and 1 ≤ θ ≤ ∞

is compact. At the same time, by virtue of [1, Theorem 18.10],

(2.14) B
2−δ′,1−δ′/2
2,q;θ (ΩT ) ⊂ L∞(ΩT ) for

3
2
+
2
q
< 2− δ′.

The later inequality implies that

q >
4

1− 2δ′
,

so, setting
4

1− 2δ′
= 4 + δ,

we get the condition on δ′

δ′ =
δ

2(4 + δ)
<
1
2
.

The above condition will be used in the definition of the working space B =
B
2−δ′,1−δ′/2
2,q;θ (ΩT ).

3. Proof of Theorem 1.3 (global existence)

3.1. Preparation of the Leray–Schauder fixed point theorem. The
proof of Theorem 1.3 is based on the classical Leray–Schauder fixed point theo-
rem which we recall here in one of its equivalent formulations for reader’s con-
venience (see e.g. [3]).

Theorem 3.1. Let B be a Banach space. Assume that T : [0, 1]×B → B is
a map with the following properties:

(a) For any fixed τ ∈ [0, 1] the map T (τ, · ):B → B is completely continu-
ous.

(b) For every bounded subset C of B, the family of maps T ( · , χ): [0, 1]→ B,
χ ∈ C, is uniformly equicontinuous.
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(c) There is a bounded subset C of B such that any fixed point in B of
T (τ, · ), 0 ≤ τ ≤ 1, is contained in C.

(d) T (0, · ) has precisely one fixed point in B.

Then T (1, · ) has at least one fixed point in B.

For our purposes, let B be the Besov space of functions ϕ on ΩT , given by

B ≡ B2−δ
′,1−δ′/2

2,q;θ (ΩT ),

with the parameters

4 + δ < q <∞, 0 < δ, 1 ≤ θ ≤ ∞, and 0 < δ′ =
δ

2(4 + δ)
<
1
2
.

We denote by ‖ · ‖B the norm induced by the space B2−δ
′,1−δ′/2

2,q;θ (ΩT ).
For τ ∈ [0, 1] we define T (τ, · ) as the map that carries ϕ ∈ B into ϕ ∈ B by

the following procedure:
First we construct u(x, t) by solving the system

(3.1)

utt −∇ ·Aε(u) = τ [z′(ϕ)B∇ϕ+ b] ≡ G in ΩT ,

u|t=0 = τu0, ut|t=0 = τu1 in Ω,
u = 0 on ST ,

and then compute ϕ(x, t) through the problem
(3.2)

βϕt − γ 4 ϕ = −τ [Ψ′(ϕ) + w′(ϕ) + z′(ϕ)(B · ε(u) + h(ϕ))] ≡ H in ΩT ,

ϕ|t=0 = τϕ0 in Ω,

ϕ = 0 on ST .

Clearly, (u, ϕ) defined as a fixed point of T (1, · ) is a solution to problem
(1.14), (1.15).
Our goal is to show that the map T (τ, ) satisfies assumptions of Theorem 3.1.

We consider the first step of the construction.

3.2. The elasticity system. We show that the map

(3.3) T1(τ, · ):B 3 ϕ 7→ u ∈ V ≡ L∞(0, T ;V0)

that gives a solution u of (3.1) for a given ϕ is well-defined, i.e. the solution
exists and is unique, and that T1(τ, · ) is continuous. Firstly, we note that (see
[1, Theorem 18.4])

∇ϕ ∈ B1−δ
′,(1−δ′)/2

2,q;θ (ΩT ).

By virtue of [1, Theorem. 18.10], we have the imbedding

(3.4) B
1−δ′,(1−δ′)/2
2,q;θ (ΩT ) ⊂ L2(ΩT ) for

3
2
+
2
q
− 5
2
≤ 1− δ′,
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which clearly holds true for q > 4. Hence, on account of growth condition on
z′( · ) in (A3), we can see that

(3.5) ‖G‖L1(0,T ;L2(Ω)) ≤ c(‖∇ϕ‖L1(0,T ;L2(Ω)) + ‖b‖L1(0,T ;L2(Ω)))
≤ c(T )(‖∇ϕ‖

B
1−δ′,(1−δ′)/2
2,q;θ (ΩT )

+ ‖b‖L1(0,T ;L2(Ω)))

≤ c(T )(‖ϕ‖B + ‖b‖L1(0,T ;L2(Ω))).

By virtue of the known results (see [4, Chapter III, Theorem 4.1]) it follows
that if G ∈ L1(0, T ;L2(Ω)), u0 ∈ H10(Ω) and u1 ∈ L2(Ω) then there exists
a unique u such that

u ∈ L∞(0, T ;V0) ∩W 1∞(0, T ;L2(Ω)) ∩W 22 (0, T ; (V0)′),
u(0) = u0, ut(0) = u1,

and satisfying (3.1) in the following weak sense

(3.7)
∫ T
0
〈utt,η〉(V0)′,V0dt+

∫
ΩT
Aε(u) · ε(η) dx dt =

∫
ΩT
G · η dx dt

for any η ∈ L2(0, T ;V0). The basic a priori estimate for system (3.1) follows by
testing (3.1)1 by ut, integrating over Ω and by parts to get

(3.8)
1
2
d

dt

∫
Ω

(
|ut|2 + |Aε(u)|2

)
dx =

∫
Ω
G · ut dx.

Hence, with the help of the Cauchy-Schwartz inequality, it follows that

1
2
d

dt

{[∫
Ω

(
|ut|2 + |Aε(u)|2

)
dx

]1/2}2
≤
(∫
Ω
|G|2 dx

)1/2(∫
Ω
(|ut|2 + |Aε(u)|2) dx

)1/2
,

thus

(3.9)
d

dt

[ ∫
Ω

(
|ut|2 + | Aε(u)|2

)
dx

]1/2
≤
(∫
Ω
|G|2 dx

)1/2
.

Integrating (3.9) with respect to t yields

‖ut‖L∞(0,T ;L2(Ω)) + ‖Aε(u)‖L∞(0,T ;L2(Ω))
≤ ‖G‖L1(0,T ; L2(Ω)) + ‖Aε(u0)‖L2(Ω) + ‖u1‖L2(Ω).

Hence, using coercivity and bounedness (1.17) of A, by virtue of Korn’s inequal-
ity (see e.g. [4, Chapter II, Theorem 3.3]) we get

(3.10) ‖ut‖L∞(0,T ;L2(Ω)) + ‖u‖L∞(0,T ;V0)
≤ c(‖G‖L1(0,T ;L2(Ω)) + ‖u0‖H1(Ω) + ‖u1‖L2(Ω))
≤ c(T )(‖ϕ‖B + ‖b‖L1(0,T ;L2(Ω)) + ‖u0‖H1(Ω) + ‖u1‖L2(Ω)) ≡ c1.
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In the next step we examine the continuity of T1(τ, · ). Let u1 and u2 be the
solutions of (3.1) coresponding to ϕ1 ∈ B and ϕ2 ∈ B, respectively. Subtracting
the corresponding equations and denoting

v = u1 − u2, ψ = ϕ1 − ϕ2,

it follows that

(3.11)

vtt −∇ ·Aε(v) = τ [(z′(ϕ1))− z′(ϕ2))B∇ϕ1 + z′(ϕ2)B∇ψ]

≡ G in ΩT ,

v|t=0 = 0, vt|t=0 = 0 in Ω,

v = 0 on ST .

We prove the following

Lemma 3.2. Under assumptions (A1)–(A4) the map T1(τ, · ) defined by (3.3)
is continuous.

Proof. We proceed similarly as in derivation of (3.10). Multiplying (3.11)1
by vt, integrating over Ω and by parts, and using the Cauchy-Schwartz inequality,
it follows that

d

dt

[ ∫
Ω

(
|vt|2 + | Aε(v)|2

)
dx

]1/2
≤
(∫
Ω
|G|2 dx

)1/2
.

Integrating the above inequality with respect to t , using the boundedness as-
sumption on z′( · ), we get

(3.12)
[ ∫
Ω

(
|vt|2 + |Aε(v)|2

)
dx

]1/2
≤ c
∫ t
0

(∫
Ω
|ψ|2|∇ϕ1|2 dx

)1/2
dt′

+ c
∫ t
0

(∫
Ω
|∇ψ|2 dx

)1/2
dt′ ≡ R1 +R2

for a.a. t ∈ [0, T ]. By Hölder’s inequality,

R1 ≤ cT 1/2
(∫
ΩT
|ψ|2|∇ϕ1|2 dx dt

)1/2
≤ cT 1/2‖ψ‖L2λ1 (ΩT )‖∇ϕ1‖L2λ2 (ΩT ),

where 1/λ1 + 1/λ2 = 1.
Now, we use the imbeddings (see [1, Theorem 18.10])

B
2−δ′,1−δ′/2
2,q;θ (ΩT ) ⊂ L2λ1(ΩT ) and B

1−δ′,(1−δ′)/2
2,q;θ (ΩT ) ⊂ L2λ2(ΩT ),

which hold true under the following conditions:

3
2
+
2
q
− 5
2λ1
≤ 2− δ′ and 3

2
+
2
q
− 5
2λ2
≤ 1− δ′.

The above conditions imply that

q ≥ 8
5− 4δ′

=
8(4 + δ)
20 + 3δ
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which is obviously satisfied since

q > 4 + δ >
8(4 + δ)
20 + 3δ

.

Therefore,

(3.13) R1 ≤ c(T )‖ψ‖B‖ϕ1‖B ≤ c(T )‖ψ‖B.

Similarly, by virtue of the imbedding (3.4),

(3.14) R2 ≤ cT 1/2‖∇ψ‖L2(ΩT ) ≤ c(T )‖ψ‖B.

Combining estimates (3.12)–(3.14) and using Korn’s inequality, we conclude that

(3.15) ‖vt‖L∞(0,T ;L2(Ω)) + ‖v‖L∞(0,T ;V0) ≤ c(T )‖ψ‖B.

This shows the assertion. �

3.3. The parabolic problem. Here we study the second step of the con-
struction of the solution map, i.e. the map

(3.16) T2(τ, · , · ):B × V 3 (ϕ,u) 7→ ϕ ∈ B

that gives a solution ϕ of (3.2) for a given ϕ and u = T1(τ, ϕ). In view of growth
conditions (1.21)1,

(3.17) ‖H‖L∞(0,T ;L2(Ω)) ≤ c(T )(‖ϕ‖B + ‖ε(u)‖L∞(0,T ;L2(Ω))).

Hence, applying the regularity result [15, Theorem 3.1], we conclude that the
parabolic problem (3.2) has a unique solution ϕ ∈W 2,12,q (ΩT ) for p = 2 ≤ q <∞,
and there is a constant c(T ) such that

(3.18) ‖ϕ‖W 2,12,q (ΩT ) ≤ c
∗(‖H‖Lq(0,T ;L2(Ω)) + ‖ϕ0‖B2(1−1/q)2,q (Ω))

≤ c(T )(‖ϕ‖B + ‖ε(u)‖L∞(0,T ;L2(Ω)) + ‖ϕ0‖B2(1−1/q)2,q (Ω)).

In view of the compactness of the imbedding of the space W 2,12,q (Ω
T ) into B (see

(2.13)) estimate (3.18) for 4 + δ < q < ∞, shows that the map T2(τ, · , · ) is
well-defined and compact.

We proceed to show that T2(τ, · , · ) is continuous. Let ϕ1 and ϕ2 be the
solutions of (3.2) corresponding respectively to (ϕ1,u1) ∈ B × V and (ϕ2,u2) ∈
B × V, where u1 = T1(τ, ϕ1) and u2 = T1(τ, ϕ2). Subtracting the corresponding
equations, and denoting

ψ = ϕ1 − ϕ2, ψ = ϕ1 − ϕ2, v = u1 − u2,
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we get the following problem

(3.19)

βψt − γ 4 ψ = − τ [(Ψ′(ϕ1)−Ψ′(ϕ2)) + (w′(ϕ1)− w′(ϕ2))]
− τ [(z′(ϕ1)− z′(ϕ2))(B · ε(u1) + h(ϕ1))]
− τ [z′(ϕ2)(B · ε(v) + h(ϕ1)− h(ϕ2))]

≡H1 +H2 +H3 = H in ΩT ,

ψ|t=0 = 0 in Ω,

ψ = 0 on ST .

Lemma 3.3. Under assumptions (A1)–(A4) the map T2(τ, · , · ) defined by
(3.16) is continuous.

Proof. By conditions on Ψ( · ), z( · ), h( · ) and w( · ) specified in (A3) it
follows that

|H1| ≤ c(ϕ21 + ϕ22 + 1)|ψ|,

|H2| ≤ c(|ε(u1)|+ |ϕ1|+ 1)|ψ|,

|H3| ≤ c(|ε(v)|+ |ψ|).

Hence, in view of the imbedding (2.14),

‖H1‖L∞(0,T ;L2(Ω)) ≤ c(T )(‖ϕ1‖
2
B + ‖ϕ2‖2B + 1)‖ψ‖B,

‖H2‖L∞(0,T ;L2(Ω)) ≤ c(T )(‖ε(u1)‖L∞(0,T ;L2(Ω)) + ‖ϕ1‖B + 1)‖ψ‖B,

‖H3‖L∞(0,T ;L2(Ω)) ≤ c(T )(‖ε(v)‖L∞(0,T ;L2(Ω)) + ‖ψ‖B).

Consequently, using a priori estimate (3.10), we get

(3.20) ‖H‖L∞(0,T ;L2(Ω)) ≤ c(T )(‖ψ‖B + ‖ε(v)‖L∞(0,T ;L2(Ω))).

Applying the regularity result [15, Theorem 3.1] to problem (3.19), it follows
that there exists a constant c(T ) such that

(3.21) ‖ψ‖W 2,12,q (ΩT ) ≤ c
∗‖H‖Lq(0,T ;L2(Ω)) ≤ c(T )(‖ψ‖B + ‖ε(v)‖L∞(0,T ;L2(Ω)))

for p = 2 ≤ q <∞. This shows the assertion. �

3.4. Properties of the solution map. In the view of the properties of
T1(τ, · ) and T2(τ, · , · ) we can conclude that for any τ ∈ [0, 1] the composed
map

(3.22) T (τ, ·) = T2(τ, · , T1(τ, · )):B 3 ϕ 7→ ϕ ∈ B

is well-defined, continuous and compact, i.e., completely continuous. In particu-
lar, by virtue of (3.10) and (3.18) the following a priori estimate is satisfied

(3.23) ‖ϕ‖W 2,12,q (ΩT ) ≤ c(T )(‖ϕ‖B + ‖ϕ0‖B2(1−1/q)2,q (Ω) + c1) ≡ c2.
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This shows property (a) of the Leray–Schauder theorem.

The property (b) follows by direct comparison of two solutions (u, ϕ) and
(ũ, ϕ̃) to problem (3.1), (3.2) corresponding respectively to parameters τ and τ̃ .
The differences

v = u− ũ, ψ = ϕ− ϕ̃

satisfy

(3.24)

vtt −∇ ·Aε(v) = (τ − τ̃)[z′(ϕ)B∇ϕ+ b] in ΩT ,

v|t=0 = (τ − τ̃)u0, vt|t=0 = (τ − τ̃)u1 in Ω,
v = 0 on ST ,

(3.25)

βψt − γ 4 ψ = − (τ − τ̃)[Ψ′(ϕ) + w′(ϕ) + z′(ϕ)(B · ε(u) + h(ϕ))]
− τ̃ z′(ϕ)B · ε(v) ≡ H̃ in ΩT ,

ψ|t=0 =(τ − τ̃)ϕ0 in Ω,

ψ =0 on ST .

Analogously to (3.10) and (3.23) we get the following estimates on v and ψ:

(3.26) ‖vt‖L∞(0,T ;L2(Ω)) + ‖v‖L∞(0,T ;V0) ≤ c1|τ − τ̃ |,

(3.27) ‖ψ‖W 2,12,q (ΩT ) ≤ c
∗(‖H̃‖Lq(0,T ;L2(Ω)) + ‖(τ − τ̃)ϕ0‖B2(1−1/q)2,q (Ω))

≤ (c1 + c2)|τ − τ̃ |,

where in the last inequality we have used (3.26). This means that for ϕ in
a bounded subset of B the map T ( · , ϕ): [0, 1] → B is equicontinuous and the
property (b) is satisfied.

The property (c) for τ = 1 results from a priori estimate (2.11). It is easy to
see that the same holds also true for 0 < τ < 1.

For τ = 0 problem (3.1), (3.2) has the unique solution u = 0, ϕ = 0, so that
property (d) is satisfied.

Summarizing, we have shown that the solution map (3.22) satisfies assump-
tions (a)–(d) of the Leray–Schauder fixed point theorem. Thus

T (1, · ) = T2(1, · , · ) ◦ T1(1, · )

has at least one fixed point ϕ ∈ B. At the same time the pair (u, ϕ), with
u = T1(1, ϕ), is a solution of problem (1.14), (1.15).
Recalling a priori bounds (2.1), (2.5) and (2.11) the proof of Theorem 1.3 is

completed. �
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4. Proof of Theorem 1.4 (uniqueness)

Let (u, ϕ) and (ũ, ϕ̃) be two solutions of (1.14), (1.15) corresponding to the
same data. Subtracting the corresponding equations and denoting:

v = u− ũ, ψ = ϕ− ϕ̃,

we see that v, ψ satisfy the following problems

(4.1)

vtt −∇ · (Aε(v)) = (z′(ϕ)− z′(ϕ̃))B∇ϕ+ z′(ϕ̃)B∇ψ ≡ G in ΩT ,

v|t=0 =0, vt|t=0 = 0 in Ω,

v =0 on ST ,

(4.2)

βψt − γ 4 ψ = − (Ψ′(ϕ)−Ψ′(ϕ̃))− (w′(ϕ)− w′(ϕ̃))
− [(z′(ϕ)− z′(ϕ̃))(B · ε(u) + h(ϕ))]
− [z′(ϕ̃)(B · ε(v) + h(ϕ)− h(ϕ̃))] ≡ H in ΩT ,

ψ|t=0 =0 in Ω,

ψ =0 on ST .

The idea of the proof is to derive energy estimates for the system (4.1), (4.2)
which will allow to conclude the uniqueness by means of Gronwall’s inequality.

In the first step, proceeding similarly as in Lemma 3.2, we obtain estimates
on v in terms of ψ. Multiplying (4.1)1 by vt, integrating over Ω and by parts,
and using the Cauchy-Schwartz inequality, we deduce that

d

dt

[ ∫
Ω
(|vt|2 + |Aε(v)|2) dx

]1/2
≤
(∫
Ω
|G|2 dx

)1/2
.

Hence, upon inegrating with respect to time,[ ∫
Ω
(|vt|2 + | Aε(v)|2) dx

]1/2
≤
∫ t
0

(∫
Ω
|G(t′)|2 dx

)1/2
dt′(4.3)

=
∫ t
0
‖G(t′)‖L2(Ω)dt

′ ≡ R(t)

for all t ∈ [0, T ]. By means of Hölder’s inequality, recalling the boundedeness
assumption on z′( · ), we have

R(t) ≤ c
∫ t
0
(‖ψ∇ϕ‖L2(Ω) + ‖∇ψ‖L2(Ω)) dt

′

≤ c
∫ t
0
(‖ψ‖L4(Ω)‖∇ϕ‖L4(Ω) + ‖∇ψ‖L2(Ω)) dt

′

≤ c(‖ψ‖L2(0,t;L4(Ω))‖∇ϕ‖L2(0,t;L4(Ω)) + ‖∇ψ‖L1(0,t;L2(Ω))).
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In view of the imbedding W 1,1/22,q (Ω
T ) ⊂ L2(0, T ;L4(Ω)), which holds true pro-

vided
3
2
+
2
q
− 3
4
− 2
2
≤ 1, that is q ≥ 8

5
,

we can see that

‖∇ϕ‖L2(0,t;L4(Ω)) ≤ c‖∇ϕ‖W1,1/2
2,q (Ω

T ) ≤ c‖ϕ‖W 2,12,q (ΩT ) ≤ c(T ),

where in the last inequality we have used a priori estimate (1.23). Hence

R(t) ≤ c(T )(‖ψ‖L2(0,t;L4(Ω)) + ‖∇ψ‖L1(0,t;L2(Ω))).

Consequently, by Korn’s inequality, (4.3) yields

(4.4) ‖vt‖L∞(0,t;L2(Ω)) + ‖v‖L∞(0,t;V0)
≤ c(T )(‖ψ‖L2(0,t;L4(Ω)) + ‖∇ψ‖L1(0,t;L2(Ω)))

for t ∈ [0, T ].
In the second step we estimate the solution ψ of (4.2). We multiply (4.2)1

by ψ, integrate over Ω and by parts to get:

β

2
d

dt

∫
Ω
|ψ|2 dx+ γ

∫
Ω
|∇ψ|2dx =

∫
Ω
Hψ dx,

whence

(4.5)
β

2

∫
Ω
|ψ|2 dx+ γ

∫
Ωt
|∇ψ|2 dx dt′ =

∫
Ωt
Hψ dxdt′ for all t ∈ [0, T ].

We estimate the right-hand side of (4.5)∫
Ωt
Hψ dxdt′ ≤

∫
Ωt
(|Ψ′(ϕ)−Ψ′(ϕ̃)|+ |w′(ϕ)− w′(ϕ̃)|)|ψ| dx dt′

+
∫
Ωt
|z′(ϕ)− z′(ϕ̃)| |B · ε(u) + h(ϕ)| |ψ| dx dt′

+
∫
Ωt
|z′(ϕ̃)| |B · ε(v) + h(ϕ)− h(ϕ̃)| |ψ| dx dt′ ≡ I + II + III.

Due to L∞(ΩT )-norm estimate (1.24) on ϕ,

I ≤ c(T )
∫
Ωt
|ψ|2 dx dt′.

Further, in view of assumptions on z( · ) and h( · ),

II ≤ c
∫
Ωt
|ε(u)| |ψ|2dxdt′ + c

∫
Ωt
|ψ|2 dx dt′ ≡ II1 + II2.

For the term II1, using the Cauchy–Schwartz inequality and the interpolation
inequality

(4.6) ‖ψ‖L4(Ω) ≤ c‖ψ‖
1/4
L2(Ω)
‖∇ψ‖3/4L2(Ω) + c‖ψ‖L2(Ω),
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we have

II1 ≤ c
∫ t
0
‖ε(u)‖L2(Ω)‖ψ‖

2
L4(Ω) dt

′

≤ c
∫ t
0
‖ε(u)‖L2(Ω)‖ψ‖

1/2
L2(Ω)
‖∇ψ‖3/2L2(Ω) dt

′ + c
∫ t
0
‖ε(u)‖L2(Ω)‖ψ‖

2
L2(Ω) dt

′

≡ II11 + II12.

By virtue of a priori estimate (1.23),

(4.7) ‖ε(u)‖L∞(0,t;L2(Ω)) ≤ c(T ),

hence

II12 ≤ c(T )
∫
Ωt
|ψ|2 dx dt′.

Turning to II11, with the help of Young’s inequality we obtain

II11 ≤ c
∫ t
0

[
δλ1

λ1
‖∇ψ‖3λ1/2L2(Ω)

+
1

λ2δλ2
(‖ε(u)‖L2(Ω)‖ψ‖

1/2
L2(Ω)
)λ2
]
dt′

≤
∫ t
0
[δ‖∇ψ‖2L2(Ω) + cδ‖ε(u)‖

4
L2(Ω)‖ψ‖

2
L2(Ω)] dt

′,

where λ1 = 4/3, λ2 = 4, δ > 0. Hence, using (4.7) again, it follows that

II11 ≤ δ
∫
Ωt
|∇ψ|2 dx dt′ + c(T )

∫
Ωt
|ψ|2 dx dt′.

Next, in view of the assumptions on z( · ) and h( · ),

III ≤ c
∫
Ωt
|ε(v)| |ψ| dxdt′ + c

∫
Ωt
|ψ|2 dx dt′ ≡ III1 + III2.

By virtue of estimate (4.4),

III1 ≤ c‖ε(v)‖L2(0,t;L2(Ω))‖ψ‖L2(0,t;L2(Ω))
≤ c(T )(‖ψ‖L2(0,t;L4(Ω)) + ‖∇ψ‖L1(0,t;L2(Ω)))‖ψ‖L2(0,t;L2(Ω))
≤ c(T )‖ψ‖2L2(0,t;L4(Ω)) + c(T )‖∇ψ‖L2(0,t;L2(Ω))‖ψ‖L2(0,t;L2(Ω))
≡ III11 + III12.

Applying interpolation inequality (4.6) and next Young’s inequality we infer that

III11 ≤ c(T )
∫ t
0
‖ψ‖1/2L2(Ω)‖∇ψ‖

3/2
L2(Ω)

dt′ + c(T )
∫ t
0
‖ψ‖2L2(Ω) dt

′

≤ c(T )
∫ t
0

(
δλ1

λ1
‖∇ψ‖3λ1/2L2(Ω)

+
1

λ2δλ2
‖ψ‖λ2/2L2(Ω)

)
dt′ + c(T )

∫ t
0
‖ψ‖2L2(Ω) dt

′

≤ δ
∫
Ωt
|∇ψ|2 dx dt′ + c(δ, T )

∫
Ωt
|ψ|2 dx dt′,

where λ1 = 4/3, λ2 = 4, δ > 0.
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Finally, by Young’s inequality,

III12 ≤ δ
∫
Ωt
|∇ψ|2dxdt′ + c(δ, T )

∫
Ωt
|ψ|2 dx dt′.

Combining the estimates on the terms I, II and III in (4.5) we see that

β

2

∫
Ω
|ψ|2 dx+ γ

∫
Ωt
|∇ψ|2 dx dt′ ≤ δ

∫
Ωt
|∇ψ|2 dx dt′ + c(δ, T )

∫
Ωt
|ψ|2 dx dt′,

whence, choosing δ = γ/2,

(4.8)
β

2
‖ψ‖2L2(Ω) +

γ

2

∫ t
0
‖∇ψ‖2L2(Ω) dt

′ ≤ c(T )
∫ t
0
‖ψ‖2L2(Ω) dt

′

for all t ∈ [0, T ]. Consequently, due to Gronwall’s inequality, it follows from (4.8)
that ψ = 0 a.e. in ΩT . At the same time, by virtue of (4.4), v = 0 a.e. in ΩT .
Hence the uniqueness of (u, ϕ) is proved. �

5. The existence of solution for other boundary conditions

As mentioned in the introduction the problem (1.1), (1.2) can be considered
with other boundary conditions. We show here that the existence result of
Theorem 1.3 can be extended to the following boundary conditions:

For the elasticity system we assume

(5.1)
u = 0 on STD = SD × (0, T ),

W/ε(ε, ϕ)n = 0 on S
T
N = SN × (0, T ).

Here we have the boundary decomposition S = SD ∪ SN , SD ∩ SN = ∅ where
SD and SN are open subsets of S, and meas SD > 0, i.e. SD and SN are disjoint
parts of the boundary S on which zero displacement and zero traction boundary
conditions are prescribed.

The corresponding expressions for the stress tensor W/ε(ε, ϕ) are given by
(1.12)2 or (1.13)2.

The condition meas SD > 0 is assumed in order to guarantee Korn’s inequal-
ity.

For the order parameter we assume the homogeneous Neumann boundary
condition (no flux condition)

(5.2) n · ∇ϕ = 0 on ST = S × (0, T ),

which is the typical condition in phase field models.

We have the following
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Theorem 5.1. Let us consider problem (1.14), (1.15) with boundary con-
ditions (5.1) and (5.2) in place of (1.14)3 and (1.15)3. Let the assumptions
(A1)–(A4) be satisfied, and meas SD > 0. Then for any T > 0 there exists
a pair (u, ϕ) which satisfies the assertion of Theorem 1.3 with

(5.3) V0 = {u ∈ H1(Ω) : u = 0 on SD}.

Proof. We proceed the same way as in Theorem 1.3. In connection with
different boundary conditions there are three main points that have to be exam-
ined:

• The energy estimates.
• The applicability of the maximal regularity results for parabolic problem
with homogeneous Neumann boundary condition.
• The solvability of the elasticity system with mixed boundary condition
(5.1).

We consider these points one after another.

The procedure of getting energy estimates is the same as presented in Sec-
tion 2. We multiply equation (1.1)1 by ut, integrate over Ω and by parts. Further,
we multiply (1.2)1 by ϕt, integrate over Ω and by parts. Adding the results we
arrive at

Lemma 5.2. For the system of equations (1.1)1 and (1.2)1 the following en-
ergy identity is satisfied

(5.4)
1
2
d

dt

∫
Ω
|ut|2dx+

d

dt

∫
Ω
f(ε, ϕ,∇ϕ) dx+ β

∫
Ω
ϕ2t dx

+
∫
S

[−(f/ε(ε, ϕ,∇ϕ)n) · ut − (n · f/∇ϕ(ε, ϕ,∇ϕ))ϕt] dS

=
∫
Ω
b · ut dx for t ∈ (0, T ).

From the above energy identity we can conclude immediately the following
extension of Lemma 2.1.

Lemma 5.3. Let us consider problem (1.1), (1.2) with boundary conditions
on S consistent with the requirement

(5.5) (f/ε(ε, ϕ,∇ϕ)n) · ut = 0, (n · f/∇ϕ(ε, ϕ,∇ϕ))ϕt = 0 on ST .

Assume f(ε, ϕ,∇ϕ) satisfies structure condition (1.20), and the data are such
that

f(ε0, ϕ0,∇ϕ0) ∈ L1(Ω), u1 ∈ L1(Ω), b ∈ L1(0, T ;L2Ω)).
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Then for a solution (u, ϕ) the following energy estimates hold

(5.6) ‖ut‖L∞(0,T :L2(Ω)) + ‖ε(u)‖L∞(0,T :L2(Ω)) + ‖ϕ‖L∞(0,T :L4(Ω))
+ ‖∇ϕ‖L∞(0,T :L2(Ω)) + ‖ϕt‖L2(ΩT ) ≤ c0

with constant c0 depending only on the data.

We note that for f(ε, ϕ,∇ϕ) given by (1.3) the boundary conditions (5.1),
(5.2) are consistent with (5.5).
In view of estimate (5.6) the conclusions (2.6)–(2.8) in Section 2 remain

unchanged.
The second, most important question concerns the applicability of the max-

imal regularity results. First we note that the results due to Weidemaier [14],
[15] originally apply to parabolic problems with inhomogeneous boundary con-
ditions, Dirichlet or conormal boundary conditions. These results require some
range restrictions on the parameters p and q in the space Lq(0, t;Lp(Ω)) to which
the right-hand side of the parabolic equation belongs.
In particular, in case of inhomogeneous Dirichlet boundary condition the

relation is (see [15, Theorem 3.1])

(5.7) 3/2 < p ≤ q <∞

and in case of conormal boundary condition (including Neumann condition) the
relation is (see [15, Theorem 3.2])

(5.8) 3 < p ≤ q <∞.

Such range restrictions assure that the corresponding trace operators are well-
defined and onto.
We note that condition (5.8) does not allow to apply directly the maximal

regularity result [15, Theorem 3.2], to problem (1.15) with homogeneous Neu-
mann condition (5.2) because for the right-hand side H we know only that (see
(2.7), (2.8))

H ∈ L∞(0, T ;L2(Ω)).
At this point we underline that the above restrictions (5.7) and (5.8) can be
relased in case of homogeneous boundary conditions. In particular, for prob-
lem (1.15)1,2 with homogeneous Neumann condition (5.2) the following compact
version of known results can be formulated

Lemma 5.4 (P. Weidemaier, personal letters). Let us consider problem

(5.9)

ϕt −4ϕ = H in ΩT ,

ϕ|t=0 = ϕ0 in Ω,
n · ∇ϕ = 0 on ST .
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Assme that Ω is a bounded domain in R3 of class C2+α for some α > 0 and that

1 < p, q <∞ and
1
p
+
2
q
6= 1,

H ∈ Lq(0, T ;Lp(Ω)), ϕ0 ∈ B2(1−1/q)p,q (Ω),

and ϕ0 satisfies compatibility condition

n · ∇ϕ0 = 0 for
1
p
+
2
q
< 1.

Then problem (5.9) has a unique solution ϕ ∈W 2,1p,q (ΩT ), and there exists a con-
stant c∗(p, q, T ) such that

(5.10) ‖ϕ‖W 2,1p,q (ΩT ) ≤ c
∗(‖H‖Lq(0,T ;Lp(Ω)) + ‖ϕ0‖B2(1−1/q)p,q (Ω)).

By virtue of Lemma 5.3 and estimate (2.8) it follows that

(5.11) ‖ϕ‖W 2,12,q (ΩT ) ≤ c(T ) for q 6= 4.

In particular, (5.11) holds true in the range under consideration

4 + δ < q <∞ for some δ > 0.

Consequently the key imbeddings (2.12)–(2.14) remain unaltered.

The last point concerns the solvability of the elasticity system (3.1)1,2 with
boundary conditions (5.1). Similarly as in Section 3.2 the existence of solution
follows from general results [4, Chapter III, Theorem 4.1]. The statements (3.6),
(3.7) hold with the space V0 defined by (5.3).

Consequently, the identity (3.8) and the resulting estimation remain unal-
tered.

Finally, we point out that in (3.10) we make use of the following version of
Korn’s inequality (see [4, Chap. II, Thm 3.3])∫

Ω
(Aε(u)) · ε(u) dx ≥ α0‖u‖2H1(Ω)

for all u ∈ V0 = {u ∈ H1(Ω) : u = 0 on SD}

with some constant α0 > 0. With the above remark the proof is completed. �
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