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DYNAMICS OF NORMALIZED SYSTEMS ON SURFACES

Marco Sabatini

Abstract. We extend to normalized systems several properties of com-

muting systems proved in [11]. A rough classification of the dynamics
induced by normalized vector fields on two-dimensional compact connected

oriented manifolds is given.

1. Introduction

Let us consider a couple of differential systems defined on an open, connected
subset Ω of the plane:

z′ = V (z),(1.1)

z′ = W (z),(1.2)

where z ≡ (x, y) ∈ Ω, V ≡ (v1, v2), W ≡ (w1, w2), V,W ∈ C2(Ω, R2). We denote
by φV (t, z) (φW (s, z)) the local flow defined by (1.1) (resp. (1.2)). Let us set
V ∧W = v1w2−v2w1. Denoting by [V,W ] = ∂V W −∂W V the Lie brackets of V

and W , we say that W is a normalizer of V (W normalizes V ) if [V,W ]∧ V = 0
(see [13]). If V and W are transversal on Ω, then they normalize each other if
and only if [V,W ] = 0 on Ω. In this case they are said to be commutators, or to
commute with each other. If V and W commute, and if there exist S, T ∈ R such
that φV (t, φW (s, z)) and φW (s, φV (t, z)) are both defined for all (s, t) ∈ [0, S]×

2000 Mathematics Subject Classification. Primary 34C14; Secondary 37C10.

Key words and phrases. Normalizer, dynamics, Euler characteristic.
This work has been partially supported by the COFIN group “Equazioni differenziali

ordinarie e applicazioni”.

c©2004 Juliusz Schauder Center for Nonlinear Studies

147



148 M. Sabatini

[0, T ], then for all (s, t) ∈ [0, S]×[0, T ] one has φV (t, φW (s, z)) = φW (s, φV (t, z)).
The dynamical properties of couples of commuting systems were studied in [11].
Among other things, centers are isochronous, critical points have positive index,
limit cycles do not exist, attraction and central regions are unbounded.

Centers’ isochronicity does not require so strong a property as commuta-
tivity. In fact, in order to prove that a center of (1.1) is isochronous, it is
sufficient to prove that V normalizes a transversal W , as in [8] and [12]. This
is a substantial improvement over methods based on commutators, since finding
a normalizer is equivalent to find a solution to one PDE, [V,W ] ∧ V = 0, while
finding a commutator is equivalent to find a solution to two PDE’s, [V,W ] = 0.

Passing from commutators to normalizers means considering much wider
a class of systems. In fact, given a couple of commuting vector fields V ∗ and W ∗,
every vector field of the form α(z)V ∗ + β(z)W ∗, with α(z) arbitrary smooth
function and β(z) first integral of W ∗ is normalized by W ∗. For instance, taking

V (x, y) = (y,−x), W (x, y) = (x, y), α(x, y) = 1 + x, β(x, y) = 1,

one gets a quadratic vector field

x′ = x + y(1 + x), y′ = y − x(1 + x)

normalized by

x′ = x, y′ = y,

which is not a commutator.
This suggests to re-examine the results obtained in [11], trying to find which

ones still hold by only requesting a normalizing property. Roughly speaking,
orbital properties described in [11] hold also for normalized systems, while prop-
erties depending on the parametrization of the solutions of (1.1) do not hold. For
instance, complete normalized systems do not have the properties described in
Section 2 of [11] for complete commuting systems. On the other hand, the clas-
sification of surfaces admitting commuting systems extends with minor changes
to normalized ones. We also extend a characterization of centers appeared in [1].

As far as possible, we have tried to give proofs based on orbital properties, so
that several results, as the absence of limit cycles, are extendable to normalized
local flows, even if not defined by differentiable vector fields.

2. Results

For the reader’s convenience, we give a proof of the main property of nor-
malized vector fields used in this paper. Other proofs may be found in textbooks
concerned with Lie symmetries of differential equations (see, e.g. [10], p. 134).
Given a vector field V , we denote by γV (z) the V -orbit passing through z.
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Theorem 2.1. Let V,W ∈ C∞(Ω, R2), [V,W ] ∧ V ≡ 0 on Ω. Let z∗ ∈ Ω
be such that V (z∗) 6= (0, 0), W (z∗) 6= (0, 0). Then there exists a neighbourhood
of Ωz∗ of z∗ such that

φW (s, γV (z∗) ∩ Ωz∗) ⊂ γV (φW (s, z∗)) ∩ Ωz∗ .

Proof. Since V (z∗) 6= (0, 0), in a neighbourhood of z∗ we can consider the
function

µ(z) =
[V (z),W (z)] · V (z)

|V (z)|2
.

One has [V (z),W (z)] = µ(z)V (z). Let us look for a function α such that the
vector fields αV and W commute, that is [αV, W ] = 0. One has

0 = [αV, W ] = α∂V W−(∂W α)V −α∂W V = α[V,W ]−(∂W α)V = (αµ− ∂W α)V.

Let us restrict to a neighbourhood Ω1 of z∗ where, by the local rectification
theorem, the flows φV and φW are locally parallelizable. Then one can solve the
equation αµ−∂W α = 0 by integrating along the flow φW , since such an equation
is a linear equation with respect to α,

(2.1) α(φW (s, z)) = exp
(∫ s

0

µ(φW (σ, z))dσ

)
.

The vector field αV so defined commutes with W . Denoting by φαV (r, z)
the local flow defined by αV , let us take R,S ∈ R, R,S > 0, such that
φαV (r, φW (s, z∗)) and φW (s, φαV (r, z∗)) are both defined and contained in Ω1

for all (r, s) ∈ [−R,R] × [−S, S]. By Theorem 1.34 in [10], one has, for all
(r, s) ∈ [−R,R]× [−S, S],

φW (s, φαV (r, z∗)) = φαV (r, φW (s, z∗)).

Let us restrict to the new neighbourhood Ωz∗ of z∗ obtained by considering only
the points of the form φW (s, φαV (r, z∗)), for (r, s) ∈ [−R,R] × [−S, S]. From
(2.1) one has in particular that

φW (s, γαV (z∗) ∩ Ωz∗) ⊂ γαV (φW (s, z∗)) ∩ Ωz∗ ,

Since the orbits of φαV coincide with those ones of φV , we can conclude that

φW (s, γV (z∗) ∩ Ωz∗) ⊂ γV (φW (s, z∗)) ∩ Ωz∗ . �

The property of the above theorem is usually referred to by saying that φW

takes arcs of V -orbits into arcs of V -orbits.
Throughout this paper the following set of hypotheses will be referred to

as (NT). In what follows Ω denotes an open subset of R2. We refer to [3] for
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definitions related to dynamical systems, and to [9] for what is concerned with
plane differential systems.

(i) V,W ∈ C∞(Ω, R2); V (z) = 0 if and only if W (z) = 0; critical points
are isolated;

(ii) V (z) ∧W (z) 6= 0 at non-critical points;
(iii) [V,W ] ∧ V ≡ 0 on Ω.

Due to (iii), the vectors [V,W ] and V are proportional. If z is not a critical
point, we set

µ(z) =
[V (z),W (z)] · V (z)

|V (z)|2
,

where · denotes the scalar product, so that

[V (z),W (z)] = µ(z)V (z).

A remarkable class of normalized systems is given by hamiltonian systems of
the following type (see [7], Lemma 7),

x′ = −G′(y), y′ = F ′(x).

The vector field associated to the system

x′ =
F (x)
F ′(x)

, y′ =
G(y)
G′(y)

,

is a normalizer of the above hamiltonian system on every open set where F ′(x) 6=
0 and G′(y) 6= 0. In this case, one has

µ(x, y) =
(

F (x)
F ′(x)

)′

+
(

G(y)
G′(y)

)′

− 1.

For F (x) = 1 − cos(x), G(y) = y2

2 , we get a system equivalent to the classical
pendulum equation

x′ = −y, y′ = sin(x),

whose normalizer is

x′ =
1− cos(x)

sin(x)
, y′ =

y

2
,

defined on the region {(x, y) : −π < x < π}.
Most of the results we prove are consequences of next theorem.

Theorem 2.2. Let (NT) hold. Then

(a) (1.1) has no limit cycles,
(b) a critical point of (1.1) has no hyperbolic sectors.

Proof. (a) Assume, by absurd, V to have a limit cycle γ(t) = φV (t, z∗).
Let Γ be the bounded region having γ as boundary. Without loss of generality,
we may assume Γ to be positively invariant for (1.2). Then φW (s, z) exists for
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all z ∈ cl(Γ) = Γ ∪ γ and for all s ∈ [0,∞). By the normalizing property, for
every s > 0 the set φW (s, γ) is V -invariant. Since φW (s, · ) is a diffeomorphism,
φW (s, γ) is a cycle for every s ∈ [0,∞). As a conclusion, γ cannot be approached
by orbits starting inside Γ.

Since γ is compact and Ω open, there exists s < 0 such that for every z ∈ γ

the solution φW (s, z) exists for all s ∈ [0, s]. Working as in the previous step,
one proves that every orbit starting at a point of φW (s, z∗) lies on a cycle, so
that γ cannot be approached by other orbits from outside Γ.

(b) Let O be a critical point of (1.1). Let us restrict to a neighbourhood U

of O where there are no other critical points. Assume by absurd O to have a
hyperbolic sector, with adjacent separatrices γ1, γ2. Possibly passing to −V or
−W or both, we may assume that there exist z1 ∈ γ1, z2 ∈ γ2, s1 < 0, such that
every V -orbit starting at φW (s, z1), s ∈ [s1, 0] meets φW ( · , z2). In this case O

is the positive limit set of γ1 and the negative limit set of γ2. Let t∗ and −s2

the lowest positive numbers such that φV (t∗, (φW (s1, z1)) = φW (s2, z2).
By the continuous dependance on initial position, there exists ε > 0 such

that every solution φW (s, z) starting at a point φV (t, z1), t ∈ [0, ε) meets γ1. Let
us define t as follows

t = sup{t ∈ [0, t∗] : φW (s, φV (t, z1)) meets γ1}.

Let us set z = φV (t, z1). The W -orbit φW (s, z) does not meet γ1, since oth-
erwise by continuity every W -orbit in a neighbourhood of z should meet γ1,
contradicting he definition of t. Similarly, φW (s, z) does not meet γ2. Hence
φW (s, z) is contained in the compact region bounded by the arcs φW ([s1, 0], z1),
φV ([0,+∞), z1), φV ((−∞, 0], z2), φW ([s2, 0], z2), φV ([0, t∗], φW (s1, z1)), and by
the point O. Hence φW (s, z) exists for all s > 0. By construction, φV (t, z1) 6=
φW (s, z) for all t > 0, s > 0. But φW (−s1, · ) takes φW (s1, z1) into z1, hence
by the uniqueness of solutions all the arc φV ([0, t], φW (s1, z1)) is taken into γ1,
contradicting the absence of intersections of φW (s, z) and γ1. �

If O is a critical point of a differential system, we denote by j(O) its in-
dex ([9]). If O is a center, then NO is its central region, the largest connected
punctured neighbourhood of O covered with non-trivial cycles surrounding O.
A connected set covered with non-trivial cycles is usually called period annulus.
Not every period annulus is contained in a central region. If O is asymptotically
stable, we denote by AO its region of attraction ([3]).

Corollary 2.3. Let (NT) hold. Then

(a) If a V -orbit γ has non-empty limit set ω(γ), and ω(γ) is not a cycle,
then ω(γ) is a singleton.

(b) If O is a critical point of (1.1), then j(O) > 0.
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(c) Every period annulus of (1.1) is contained in a central region.
(d) If j(O) = 1, then O is a center or (negatively) asymptotically stable.
(e) If O is a center, then its central region NO is unbounded; if O is

an asymptotically stable, then its attraction region AO is unbounded.

Proof. (a) As in [11, Corollary 1.1].
(b) As in [11, Corollary 1.2].
(c) Assume, by absurd, a period annulus P not to be contained in any central

region.
Let ∂iP be the internal part of its boundary, that is the component of ∂P

encircled by one of the cycles of P . If P is not contained in a central region,
then ∂iP is not a critical point, so that there exists a non-critical point z0 ∈ ∂iP .
By point (a), the positive limit set of z0 is a singleton {z1}, contained in ∂iP .
But in this case the positive semi-orbit through z0 is a separatrix bounding
a hyperbolic sector of z1, with the cycles of P crossing such a sector, contradicting
Theorem 2.2.

Hence ω(φV (t, z0)) has to be a cycle, so that, by the absence of limit cycles,
∂iP is a cycle. Working as in the proof of Theorem 2.2, one shows that ∂iP has
a neighbourhood filled with cycles, contradicting the hypothesis that ∂iP is part
of the boundary of P .

(d) As in [11, Theorem 1.3].
(e) Both properties can be proved as in [11, Corollary 1.4i)]. In fact, the

absence of limit cycles and hyperbolic sector implies that both ∂NO and ∂AO

cannot be bounded. �

As in [11], we consider parametrized families of normalized systems.
We say that {V (θ) ∈ C2(Ω, R2), θ ∈ [0, 2π)} is a complete family of normal-

ized vector fields on Ω, if V (θ) is a complete family of rotated vector fields, as
in [5], and for all θ ∈ [0, 2π) there exists a vector field W (θ) ∈ C2(Ω, R2) that
normalizes V (θ) on Ω.

In the following we consider complete families of normalized vector fields in
which the normalizer W (θ) does not actually depend on the angle θ. The simplest
situation is that of a family generated by V and its normalizer W by considering
linear combinations,

(2.2) V (θ) = V cos(θ) + W sin(θ), θ ∈ [0, 2π).

Next theorem holds for an arbitrary complete family of normalized vector fields.

Theorem 2.4. Let (NT) hold and V (θ) be a complete family of normalized
vector fields on Ω. If O ∈ U is a critical point of index 1 of V (θ), for any
θ ∈ [0, 2π), then there exists θ∗ ∈ [0, π) such that

(a) O is a center for V (θ∗) and for V (θ∗ + π),
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(b) O is asymptotically stable (negatively asymptotically stable) for all θ ∈
(θ∗, θ∗ + π),

(c) O is negatively asymptotically stable (asymptotically stable) for all θ 6∈
[θ∗, θ∗ + π].

Proof. As in [11, Theorem 1.4]. Also this proof is a consequence of the
absence of limit cycles. �

Theorem 2.4 shows that the existence of a transversal normalizer does not
imply that a critical point of index 1 is a center. As an example, the system

x′ = x, y′ = y,

normalizes every system

x′ = y(x2 + y2) cos(θ) + x sin(θ),

y′ = −x(x2 + y2) cos(θ) + y sin(θ),

where the only systems having a center at O are those satisfying θ = 0, π. Even
a non-degeneracy condition on (1.1) is not sufficient to ensure that O be a center.
In fact, the system

x′ = −y, y′ = x

normalizes

x′ = −y + x(x2 + y2),

y′ = x + y(x2 + y2),

which has imaginary eigenvalues at O, but does not have a center at O.
In order to get a sufficient condition for (1.1) to have a center, one has to

impose some additional condition. Next corollary extends a similar result in [1],
where it was required that

W (x, y) =
(
x + o

(√
x2 + y2

)
, y + o

(√
x2 + y2

))
.

Corollary 2.5. Let (NT) hold and O be a critical point of (1.1). If (1.1)
has imaginary eigenvalues at O and (1.2) has non-imaginary eigenvalues at O,
then O is a center of (1.1).

Proof. By possibly performing a change of variables, we may assume that
the linearization of (1.1) at O is

x′ = y, y′ = −x.

Let
x′ = ax + by, y′ = cx + dy
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be the linearization of (1.2) after the change of variables. The new vector fields
will be called as well V and W . Their eigenvalues at O do not change. In
particular, a + d 6= 0. The lowest order term of [V,W ] ∧ V is

(b + c)x2 + 2(d− a)xy − (b + c)y2,

hence a necessary conditions for W to normalize V are a = d, c = −b. By
hypothesis, a 6= 0.

The family (3.1) satisfies the hypotheses of Theorem 2.4, so that there exists
θ∗ ∈ [0, π) such that V (θ∗) has a center at O. Assume, by absurd, that this
occurs for θ∗ 6= 0. The linearization of V (θ∗) = V cos(θ∗) + W sin(θ∗) at O is

x′ = ax sin θ∗ + y(cos θ∗ + b sin θ∗),

y′ = x(− cos θ∗ − b sin θ∗) + ay sin θ∗.

Such a system is non-degenerate, since the determinant is (a2 + b2) sin2 θ +
2b sin θ cos θ + cos2 θ = 0, which does not vanish because its discriminant is
−4a2 < 0. Since O is a center, the linearization of V (θ∗) has zero trace. If
the trace 2a sin θ∗ vanishes, then θ∗ 6= 0, π implies a = 0, contradicting the
hypothesis. �

We now examine some properties of the function A(z) = V (z) ∧ W (z). We
denote by dV (z) the divergence of V at z. In [6, Lemma 2(a)], the equality
∂V A = AdV was proved. This is usually expressed by saying that A is an
inverse integrating factor, because in this case the vector field V A−1 has zero
divergence. As a consequence, one has

A(φV (t, z)) = A(z) exp
[ ∫ t

0

dV (φV (τ, z)) dτ)
]
,

that extends to normalized systems the first formula in Theorem 1.5 in [11]. This
implies that, if [V,W ] ∧ V = 0, then φV (t, z) preserves the transversality of V

and W (see also Corollary 1.6 in [11]).
The following corollary extends Theorem 1.5 and Corollary 1.7 in [11]. See

also [2, Theorem 2.4]. In absence of limit cycles, in the plane the stability of an
isolated critical point which is not a center concides with its asymptotic stability.

Corollary 2.6. Let (NT) hold. Let O is a critical point of (1.1) and Ω1 be
a neighbourhood of O; then

(a) if dV < 0 in Ω1 \ {O}, then O is asymptotically stable,
(b) if dV ≡ 0 in Ω1, then O is a center,
(c) if dV > 0 in Ω1 \ {O}, then O is negatively asymptotically stable.
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Proof. The formula ∂V A = AdV was proved in [6, Lemma 2(a)]. Since
dV (O) = 0 one can use A as a Liapunov function, like in Corollary 1.7 in [11], in
order to prove (a) and (c). Point (b) can be proved using A as a first integral.�

We say that a vector field complete if φV is a flow, that is if all solutions
to (1.1) exists for all t ∈ R. The results of Section 2 in [11] about complete
commuting systems cannot be extended to normalized systems. Given a func-
tion α, every normalizer of V is also a normalizer of αV , so that completeness
is not relevant. In fact, for every normalized system (1.1) there exists a second,
complete system having the same orbits and the same normalizer,

z′ =
V (z)

1 + |V (z)|2
.

Hence it is neither true that a complete normalized system without critical points
is parallelizable, nor that a complete normalized system with a center (an asymp-
totically stable point) has a global center (region of attraction). Counterexamples
can be easily constructed starting from hamiltonian systems, for parallelizability
or centers, or perturbing a suitable hamiltonian center, for attractivity.

We conclude by extending to surfaces, i.e. two-dimensional compact con-
nected oriented manifolds, part of the results of Section 3 in [11]. In what
follows Σ denotes a surface and Ω an open subset of Σ. We recall that every
surface Σ is homeomorphic to a sphere with p handles. The Euler characteristic
χ(Σ) of a surface homeomorphic to a sphere with p handles is 2− 2p.

Theorem 2.7. Let Σ be a surface of negative characteristic. Then there
exist no couples of vector fields satysfying (NT) on Σ.

Proof. Assume by absurd that V and W satysfy (NT), with Ω = Σ. By
Poincaré–Hopf theorem, the Euler characteristic of Σ is the sum of the indeces of
the critical points of V . By Corollary 2.3, every critical point of V has positive
index, which is not compatible with χ(Σ) < 0. �

We cannot extend Theorem 3.2 of [11] about the torus, since we do not have
the parallelizability of complete normalized vector fields. We prove a weaker
result.

Theorem 2.8. Let Σ be a torus, and (NT) hold on Σ. Then V has no critical
points and no limit cycles. If a cycle exists, then every V -orbit is a cycle.

Proof. The Euler characteristic of the torus is 0, hence V has no critical
points. As for limit cycles, the proof of Theorem 2.2 applies.

Assume that a cycle γ exists. Since a torus is compact, every solution of
a smooth vector field exists for all t ∈ R. Since φW (s, · ) is a diffeomorphism,
every Zγ = {φW (s, γ)} is a V -cycle. Let us consider the set Z = {φW (s, z) :
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s ∈ R, z ∈ γ}. Z has non-empty interior by the transversality of V and W , it
is V -invariant because union of V -orbits, and W -invariant for the same reason.
Its boundary ∂Z is closed and both V - and W -invariant. Let z0 be an arbitrary
point of ∂Z. z0 is non-critical for both vector fields, hence it has a neighbourhood
of the form Z0 = {φV (t, (φW (s, z)) : s ∈ R, t ∈ R}, all contained in ∂Z by its
invariance. Hence ∂Z is a subset of Σ, both open and closed, with ∂Z 6= Σ. This
contradicts the connectedness of the torus, unless ∂Z = ∅ and Z = Σ. �

In the above theorem, we cannot use the absence of critical points in order to
prove the absence of limit cycles, as we could do in the plane, since there could
exist non-contractible cycles.

The last result is concerned with ordinary spheres. It is similar to Theo-
rem 3.3 in [11], but we cannot prove that in point (b) all the cycles have the
same period.

Theorem 2.9. Let Σ be a sphere, and (NT) hold on Σ. Then one of the
following holds.

(a) V has just one critical point and every orbit is homoclinic, both for V

and for W .
(b) V has two critical points O1 6= O2; every non-trivial orbit of V is a cycle;

every non-trivial orbit of W has O1 as positive limit set, O2 as negative
limit set, possibly exchanging O1 and O2.

(c) V has two critical points O1 6= O2; every non-trivial orbit of V has O1

as α-limit, O2 as ω-limit; the same holds for W , possibly exchanging
the words “α-limit” and “ω-limit”.

Proof. As in Theorem 3.3 of [11], considering that V and W have the same
index because of trasversality. �
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[3] N. P. Bhatia and G. P. Szegö, Stability Theory of Dynamical Systems, Springer–

Verlag, New York, 1970.
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