# DIMENSION AND INFINITESIMAL GROUPS OF CANTOR MINIMAL SYSTEMS 

Jan Kwiatkowski - Marcin Wata


#### Abstract

The dimension and infinitesimal groups of a Cantor dynamical system $(X, T)$ are inductive limits of sequences of homomorphisms defined by a proper Bratteli diagram of $(X, T)$. A method of selecting sequences of homomorphisms determining the dimension and the infinitesimal groups of ( $X, T$ ) based on non-proper Bratteli diagrams is described. The dimension and infinitesimal groups of Rudin-Shapiro, Morse and Chacon flows are computed.


## 1. Introduction

By a Cantor minimal system (C.m.s.) we mean a pair ( $X, T$ ), where $X$ is a Cantor set and $T$ is a homeomorphism of $X$. Let $B_{T}=\left\{f-f \circ T^{-1}, f \in\right.$ $C(X, \mathbb{Z})\}$ be the coboundary subgroup of the group $C(X, \mathbb{Z})$ of continuous functions $f: X \rightarrow \mathbb{Z}$ with integer values. The dimension group $K^{0}(X, T)$ of a Cantor minimal system $(X, T)$ is the quotient group $C(X, \mathbb{Z}) / B_{T}$. Let $M(X, T)$ be the set of all $T$-invariant Borel probability measures on $X$. Let

$$
N(X, T)=\left\{f \in C(X, \mathbb{Z}): \int_{X} f d \mu=0 \text { for every } \mu \in M(X, T)\right\}
$$

Of course, $B_{T} \subset N(X, T)$. The infinitesimal group $\operatorname{Inf}(X, T)$ of $(X, T)$ is the quotient group $N(X, T) / B_{T}$. The dimension group $K^{0}(X, T)$ is an ordered group with positive cone $K^{0}(X, T)^{+}$and a distinguished order unit [1],

[^0]where $K^{0}(X, T)^{+}=C\left(X, \mathbb{Z}^{+}\right) / B_{T}$ and $[1]$ is the coset of the constant function equal to one. The dimension groups $K^{0}(X, T)$ and the infinitesimal groups $\operatorname{Inf}(X, T)$ play important roles in the orbital theory of Cantor minimal systems. It was proved in [5] that $K^{0}(X, T)$ as an ordered group characterizes the strong orbit equivalence class of $(X, T)$. At the same time the ordered group $\widehat{K}^{0}(X, T) \simeq C(X, \mathbb{Z}) / N(X, \mathbb{Z})$ characterizes the orbit equivalence class of $(X, T)$. The dimension group $K^{0}(X, T)$ and the infinitesimal group $\operatorname{Inf}(X, T)$ are inductive limits arising from a sequence of Kakutani-Rokhlin partitions. A Kakutani-Rokhlin partition is a partition $\xi$ of $X$ into clopen sets of the form
$$
\xi=\left\{T^{k}\left(D_{0, v}\right), 0 \leq k \leq h(v)-1, v \in V\right\}
$$
where $V$ is a finite set. In other words, $X$ is partitioned into $|V|(|V|$ is the cardinality of a set $V$ ) disjoint clopen $T$-towers $\xi_{v}, v \in V, \xi_{v}=\left\{T^{k}\left(D_{0, v}\right), 0 \leq\right.$ $k \leq h(v)-1\}$.

The set $B(\xi)=\bigcup_{v \in V} D_{0, v}$ is called the base of $\xi$. Let $C(\xi) \subset C(X, \mathbb{Z})$ be the set of functions which are constant on each set $T^{k}\left(D_{0, v}\right), 0 \leq k \leq h(v)-1$, $v \in V$. Of course $C(\xi)$ is a subgroup of $C(X, \mathbb{Z})$. Let $B_{T}(\xi)$ denote the subgroup of $C(\xi)$ consisting of all coboundary functions $f-f \circ T^{-1}, f \in C(\xi)$.

Let $(X, T)$ be a Cantor minimal system and let $\xi^{(n)}, n \in \mathbb{N}$ be a sequence of Kakutani-Rokhlin partitions, $\xi^{(n)}=\left\{T^{k}\left(D_{0, v}^{(n)}\right), 0 \leq k \leq h(n, v)-1, v \in V_{n}\right\}$ satisfying the following conditions:

$$
\begin{equation*}
\xi^{(n+1)} \succ \xi^{(n)} \text {, i.e. } \xi^{(n+1)} \text { refines } \xi^{n} \text { and } B\left(\xi^{(n+1)}\right) \subset B\left(\xi^{(n)}\right), \tag{1.1}
\end{equation*}
$$

the partitions $\xi^{(n)}$ span the clopen topology of $X$.
We have the inclusions: $C\left(\xi^{(n)}\right) \subset C\left(\xi^{(n+1)}\right)$ and $B_{T}\left(\xi^{(n)}\right) \subset B_{T}\left(\xi^{(n+1)}\right)$. These inclusions determine the natural homomorphisms

$$
F_{n}: C\left(\xi^{(n)}\right) / B_{T}\left(\xi^{(n)}\right) \rightarrow C\left(\xi^{(n+1)}\right) / B_{T}\left(\xi^{(n+1)}\right)
$$

The dimension group of $(X, T)$ is the inductive limit of the homomorphisms $F_{n}$ i.e.
(1.3) $\quad K^{0}(X, T)=C(X, \mathbb{Z}) / B_{T}$

$$
=\underset{\longrightarrow}{\lim }\left\{F_{n}: C\left(\xi^{(n)}\right) / B_{T}\left(\xi^{(n)}\right) \rightarrow C\left(\xi^{(n+1)}\right) / B_{T}\left(\xi^{(n+1)}\right)\right\} .
$$

If a sequence $\xi^{(n)}$ satisfies an additional condition

$$
\begin{equation*}
\bigcap_{n=1}^{\infty}\left(\bigcup_{v \in V_{n}} D_{0, v}\right) \quad \text { is a single point of } X \tag{1.4}
\end{equation*}
$$

then

$$
\begin{equation*}
K^{0}(X, T)=\underset{\longrightarrow}{\lim }\left\{F_{n}: \mathbb{Z}^{V_{n}} \rightarrow \mathbb{Z}^{V_{n+1}}\right\} \tag{1.5}
\end{equation*}
$$

In this case, the $T$-towers determine a proper Bratteli diagram of $(X, T)$. However, there exist many examples of Cantor minimal systems with natural sequences of Kakutani-Rokhlin partitions not satisfying (1.4) and generating the topologies. In those cases the homomorphisms $F_{n}$ are defined also by the $T$ towers $\xi^{(n)}$, however (1.5) is not valid. To get (1.5), we must replace the group $\mathbb{Z}^{V_{n}}$ by quotient groups $\mathbb{Z}^{V_{n}} / Z_{c}^{(n)}$. In this paper we propose a method of describing groups $\mathbb{Z}^{V_{n}} / Z_{c}^{(n)}$ and changing a sequence of the homomorphisms $\left\{F_{n}\right\}$ to get (1.5).

The group $C\left(\xi^{(n)}\right) / B_{T}\left(\xi^{(n)}\right)$ can be identified with the group $\mathbb{Z}^{V_{n}} / Z_{c}^{(n)}$. To define a subgroup $Z_{c}^{(n)} \subset \mathbb{Z}^{V_{n}}$, let us consider a subgroup $H_{n} \subset C\left(\xi^{(n)}\right)$ consisting of those functions $f \in C\left(\xi^{(n)}\right)$ which have the null sum over each tower $\xi_{v}^{(n)}$, $v \in V_{n}$. Given $f \in C\left(\xi^{(n)}\right)$ we can associate a vector $\bar{x}_{f}=\left\langle x_{v}\right\rangle \in \mathbb{Z}^{V_{n}}$ as follows:

$$
\begin{equation*}
\bar{x}_{f}=\left\langle x_{v}\right\rangle, \quad v \in V_{n}, \quad \text { where } x_{v}=\sum_{k=0}^{h-1} f\left(T^{k}\left(D_{0, v}\right)\right), h=h(n, v) \tag{1.6}
\end{equation*}
$$

The map $f \rightarrow \bar{x}_{f}$ is a homomorphism from $C\left(\xi^{(n)}\right)$ onto $\mathbb{Z}^{V_{n}}$ and its kernel is the group $H_{n}$. Therefore,

$$
\begin{equation*}
C\left(\xi^{(n)}\right) / H_{n} \simeq \mathbb{Z}^{V_{n}} \tag{1.7}
\end{equation*}
$$

It is easy to check that every function $f \in H_{n}$ is a coboundary. Then we have $H_{n} \subset B_{T}\left(\xi^{(n)}\right) \subset C\left(\xi^{(n)}\right)$, which implies

$$
\begin{equation*}
C\left(\xi^{(n)}\right) / B_{T}\left(\xi^{(n)}\right) \simeq C\left(\xi^{(n)}\right) / H_{n}: B_{T}\left(\xi^{(n)}\right) / H_{n} \tag{1.8}
\end{equation*}
$$

By (1.7) we can identify $C\left(\xi^{(n)}\right) / H_{n}$ with $\mathbb{Z}^{V_{n}}$ and $B_{T}\left(\xi^{(n)}\right) / H_{n}$ with a subgroup $Z_{c}^{(n)}$ of $\mathbb{Z}^{V_{n}}$. Hence, (1.8) and (1.3) can be written in the form

$$
\begin{equation*}
C\left(\xi^{(n)}\right) / B_{T}\left(\xi^{(n)}\right)=\mathbb{Z}^{V_{n}} / Z_{c}^{(n)} \tag{1.9}
\end{equation*}
$$

and

$$
\begin{equation*}
K^{0}(X, T)=\underset{\longrightarrow}{\lim }\left\{G_{n}: \mathbb{Z}^{V_{n}} / Z_{c}^{(n)} \rightarrow \mathbb{Z}^{V_{n+1}} / Z_{c}^{(n+1)}\right\} \tag{1.10}
\end{equation*}
$$

where $G_{n}$ are homomorphisms determined by $F_{n}$.
In a similar way we can represent the infinitesimal $\operatorname{group} \operatorname{Inf}(X, T)$ as an inductive limit. For every $\mu \in M(X, T)$, let us denote by $\mu_{v}$ the measure of the tower $\xi_{v}$ i.e. $\mu_{v}=\mu\left(\bigcup_{i=1}^{h-1} T^{i} D_{0, v}\right), h=h(n, v)$ and let $\mathcal{N}_{n}=\left\{\left\langle x_{v}\right\rangle \in \mathbb{Z}^{V_{n}}\right.$ : $\sum_{v \in V_{n}} x_{v} \mu_{v}=0$ for every $\left.\mu \in M(X, T)\right\}$. Then

$$
\begin{equation*}
\operatorname{Inf}(X, T)=\underset{\longrightarrow}{\lim \left\{G_{n}: \mathcal{N}_{n} / Z_{c}^{(n)} \rightarrow \mathcal{N}_{n+1} / Z_{c}^{(n+1)}\right\} . . . . ~} \tag{1.11}
\end{equation*}
$$

The authors would like to thank Piotr Dowbor for many helpful discussions concerning the algebraic part of the paper. We also thank Eli Glasner for paying our attention to papers [3] and [4].

## 2. Graphs $\left(\alpha_{n}, \widetilde{V}_{n}\right)$ determined by the Kakuthani-Rokhlin partitions

To describe the subgroup $Z_{c}^{(n)}$ of $\mathbb{Z}^{V_{n}}$, we define a partition $\alpha_{n}$ of the set $V_{n}$ (the set of $T$-towers $\xi_{v}^{(n)}$ ).

We say that $v \stackrel{*}{\sim} v^{\prime}$ if there exists $x_{1} \in D_{0, v}, x_{2} \in D_{0, v^{\prime}}$ such that $T^{h(n, v)}\left(x_{1}\right)$ and $T^{h\left(n, v^{\prime}\right)}\left(x_{2}\right)$ belong to the same $D_{0, v^{\prime \prime}}^{(n)}$ for some $v^{\prime \prime} \in V_{n}$. We say that $v, v^{\prime}$ are $\alpha_{n}$-equivalent $\left(v \stackrel{\alpha_{n}}{\sim} v^{\prime}\right)$ if there exists a finite sequence $v, v_{1}, \ldots, v_{s}, v^{\prime}$ such that $v \stackrel{*}{\sim} v_{1}, v_{1} \stackrel{*}{\sim} v_{2}, \ldots, v_{s-1} \stackrel{*}{\sim} v_{s}$ and $v_{s} \stackrel{*}{\sim} v^{\prime}$. Notice that $\alpha_{n}$ is an equivalence relation so it partitions the set $V_{n}$ into disjoint subsets. Let us denote this partition by $\alpha_{n}$ as well. Now we define an oriented graph $\Gamma_{n}$ whose vertices are the elements $J \in \alpha_{n}$ and the arrows are elements of $V_{n}$. Every $v \in V_{n}$ determines an arrow $\widetilde{v}$ going from a unique $I$ to a unique $J$ in such a way that $v \in I$ and $T^{h(n, v)}\left(D_{0, v}^{(n)}\right) \in \bigcup_{v^{\prime} \in J} D_{0, v^{\prime}}^{(n)}$. We will write $\widetilde{v}=(I, J)$. By $\widetilde{V}_{n}$ we denote the set of all arrows $\widetilde{v}, v \in V_{n}$.

In this manner, we have defined an oriented graph $\left(\alpha_{n}, \widetilde{V}_{n}\right)$. It is easy to remark that the minimality of $T$ implies that $\left(\alpha_{n}, \widetilde{V}_{n}\right)$ is a connected graph. Every element $\bar{x}=\left\langle x_{v}\right\rangle_{v \in V_{n}} \in \mathbb{Z}^{V_{n}}$ is an integer valued function defined on $\widetilde{V}_{n}$. By a cycle $\Gamma$ of $\left(\alpha_{n}, \widetilde{V}_{n}\right)$ we mean a closed path $\Gamma=\left\{\widetilde{v}_{1}, \ldots, \widetilde{v}_{s}, \widetilde{v}_{1}\right\}$ of $\left(\alpha_{n}, \widetilde{V}_{n}\right)$ without loops. The following characterization of the subgroup $Z_{c}^{(n)} \subset \mathbb{Z}^{V_{n}}$ follows from [1] (see Theorems 2.6 and 4.8).

Theorem 2.1. An element $\bar{x}=\left\langle x_{v}\right\rangle_{v \in V_{n}} \in \mathbb{Z}^{V_{n}}$ belongs to $Z_{c}^{(n)}$ if and only if

$$
\begin{equation*}
\sum_{v \in \Gamma} x_{v}=0 \quad \text { for every cycle } \Gamma \text { of }\left(\alpha_{n}, \widetilde{V}_{n}\right) \tag{2.1}
\end{equation*}
$$

To give a better description of the subgroup $Z_{c}^{(n)}$ of $\mathbb{Z}^{V_{n}}, n \in \mathbb{N}$ consider linear space $\mathbb{Q}^{V_{n}}, Q_{c}^{(n)}$ and $Q_{c c}^{(n)}$ over the field $\mathbb{Q}(\mathbb{Q}$ is the set of all rational numbers), where

$$
\begin{align*}
& Q_{c}^{(n)}=\left\{\bar{x}=\left\langle x_{v}\right\rangle_{v \in V_{n}} \in \mathbb{Q}^{V_{n}}\right. \text { such that }  \tag{2.2}\\
& \left.\qquad \sum_{v \in \Gamma} x_{v}=0 \text { for every cycle } \Gamma \text { of }\left(\alpha_{n}, \widetilde{V_{n}}\right)\right\},
\end{align*}
$$

and

$$
\begin{equation*}
Q_{c c}^{(n)}=\left(Q_{c}^{(n)}\right)^{\perp} \tag{2.3}
\end{equation*}
$$

Of course $\mathbb{Z}^{V_{n}} \subset \mathbb{Q}^{V_{n}}, Z_{c}^{(n)} \subset Q_{c}^{(n)}$.
We will define vectors $\bar{x}_{J} \in \mathbb{Z}^{V_{n}}$ for each $J \in \alpha_{n}$. To do this, let us denote by $J^{+}$the set of all arrows arriving to $J$ and by $J^{-}$the set of all arrows leaving $J$.

Let us define $\bar{x}_{J}=\left\langle x_{v}\right\rangle$ as follows:

$$
x_{v}= \begin{cases}1 & \text { for } \tilde{v} \in J^{+},  \tag{2.4}\\ -1 & \text { for } \widetilde{v} \in J^{-}, \\ 0 & \text { for the remaining } v .\end{cases}
$$

Theorem 2.2.
(a) The vectors $\overline{x_{J}}, J \in \alpha_{n}$ generate the space $Q_{c}^{(n)}$.
(b) $Q_{c c}^{(n)}=\left\{\bar{x}=\left\langle x_{v}\right\rangle_{v \in V_{n}} \in \mathbb{Q}^{V_{n}}\right.$ such that $\sum_{v \in J^{+}} x_{v}=\sum_{v \in J^{-}} x_{v}$ for every $\left.J \in \alpha_{n}\right\}$.
(c) $\operatorname{dim} Q_{c}^{(n)}=\left|\alpha_{n}\right|-1, \operatorname{dim} Q_{c c}^{(n)}=\left|V_{n}\right|-\left|\alpha_{n}\right|+1$.

Proof. It is evident that $\bar{x}_{J} \in Q_{c}^{(n)}$. In fact every cycle $\Gamma$ either does not pass by $J$ (then all coordinates $x_{v}, v \in \Gamma$ of $\bar{x}_{J}$ are zero) or $\Gamma$ pass through $J$ and then $x_{v}=1, x_{v^{\prime}}=-1$ for some $v, v^{\prime} \in V_{n}$ and $x_{v}=0$ for the remaining $v$. Thus $\bar{x}_{J}$ satisfies the condition (2.1) i.e. $\bar{x}_{J} \in Q_{c}^{(n)}$.

Let $L$ be a subspace of $Q_{c}^{(n)}$ generated by the vectors $\bar{x}_{J}$. We have proved that $L \subset Q_{c}^{(n)}$. This implies

$$
L^{\perp} \supset\left(Q_{c}^{(n)}\right)^{\perp}=Q_{c c}^{(n)}
$$

We will prove the equality

$$
\begin{equation*}
L^{\perp}=Q_{c c}^{(n)} . \tag{2.5}
\end{equation*}
$$

Let us take $\bar{x}=\left\langle x_{v}\right\rangle \in L^{\perp}$. Then $\bar{x} \perp \bar{x}_{J}$ for every $J \in \alpha_{n}$. The last condition is equivalent to the following equalities

$$
\begin{equation*}
\sum_{v \in J^{+}} x_{v}=\sum_{v \in J^{-}} x_{v} \quad \text { for every } J \in \alpha_{n} \tag{2.6}
\end{equation*}
$$

Define vectors $\bar{w}_{\Gamma}=\left\langle w_{v}\right\rangle, v \in V_{n}$ where $\Gamma$ is a cycle of $\left(\alpha_{n}, \widetilde{V_{n}}\right)$ by

$$
w_{v}= \begin{cases}1 & \text { for } v \in \Gamma \\ 0 & \text { for } v \notin \Gamma\end{cases}
$$

It follows from (2.2) that the space $Q_{c c}^{(n)}$ is generated by the vectors $\bar{w}_{\Gamma}$.
It is easy to see that $\bar{w}_{\Gamma}$ satisfies condition (2.6) for every $J \in \alpha_{n}$. To prove (2.5), it is enough to show that every vector $\bar{x}$ satisfying (2.6) is a linear combination of the vectors $\bar{w}_{\Gamma}$.

First, let us assume that $x_{v} \geq 0$ for every $v \in V_{n}$ and $\bar{x} \neq 0$. Choose $v$ with $x_{v}>0$. It is not hard to see that there exists a cycle $\Gamma$ containing $v$. It follows from (2.6) that $x_{v^{\prime}}>0$ for every $v^{\prime} \in \Gamma$. Let us put $\varepsilon=\min _{v^{\prime} \in \Gamma} x_{v^{\prime}}$ and let $\bar{y}=\bar{x}-\varepsilon \cdot \bar{w}_{\Gamma}$. Then, $\bar{y}$ satisfies (2.6); moreover, $y_{v} \geq 0$. If $y_{v}>0$ for some $v$
then we repeat the above procedure. It is not hard to see that this procedure is finite which implies that the vector $\bar{x}$ is of the form

$$
\begin{equation*}
\bar{x}=\sum a_{\Gamma} \bar{w}_{\Gamma}, \quad \Gamma \text { runs over all cycles of }\left(\alpha_{n}, \widetilde{V_{n}}\right) \tag{2.7}
\end{equation*}
$$

Now, let us assume that there exists $v$ such that $x_{v}<0$. Choose $v$ in such a way that $x_{v}=\min _{x_{v^{\prime}}<0} x_{v^{\prime}}$. Let us again choose a cycle $\Gamma$ containing $v$. The vector $\bar{y}=\bar{x}-x_{v} \cdot \bar{w}_{\Gamma}$ satisfies the condition (2.6) and $\min _{v^{\prime} \in V_{n}} y_{v^{\prime}}>$ $\min _{v^{\prime} \in V_{n}} x_{v^{\prime}}$.

Repeating the above reasoning we find a vector $\bar{y}=\left\langle y_{v}\right\rangle$ with non-negative coordinates $y_{v}$ such that $\bar{y}=\bar{x}-\sum_{\Gamma} b_{\Gamma} \cdot \bar{w}_{\Gamma}$. Using (2.7) for the vector $\bar{y}$ we see that every $\bar{x} \in \mathbb{Q}^{V_{n}}$ satisfying (2.6) is of the form (2.7). In this manner the equality (2.5) is proved which implies (a) and (b).

Now we are in a position to prove (c). Consider the matrix $A=(a(J, v))$, $J \in \alpha_{n}, v \in \widetilde{V_{n}}$ of the system of equations (2.6). Then $a(J, v)$ are equal to $1,-1$, or 0 . Moreover, each column of $A$ corresponding to $\widetilde{v}=(I, J)$ either consists of all zeros if $I=J$ or contains a unique 1 , a unique -1 and the remaining entries are equal to zero if $I \neq J$. Using the same arguments as in the transportation problem it is easy to check that $\operatorname{rank}(A)=\left|\alpha_{n}\right|-1$. This implies (c), so the theorem is proved.

## 3. The groups $\mathbb{Z}^{V_{n}} / Z_{c}^{(n)}$ and the dimension group $K^{0}(X, T)$

In this part we describe the sequence of groups $\mathbb{Z}^{V_{n}}$ and of homomorphisms $G_{n}$ from (1.10). The group $\mathbb{Z}^{V_{n}} / Z_{c}^{(n)}$ is isomorphic to the image of $\mathbb{Z}^{V_{n}}$ in $Q_{c c}^{(n)}$ by the natural projection $\Pi_{n}$ of $\mathbb{Q}^{V_{n}}$ onto $Q_{c c}^{(n)}$. To find this image, we need a basis of the space $Q_{c c}^{(n)}$. To do this we use spanning trees of the non-oriented graph $\left(\alpha_{n}, \widetilde{\widetilde{V}}_{n}\right)$. (We treat every arrow $\widetilde{v} \in V_{n}$ as a non-oriented edge $\widetilde{\widetilde{v}}$.) By a path in $\left(\alpha_{n}, \widetilde{\widetilde{V}}_{n}\right)$ we mean a sequence of edges $P=\left(\widetilde{\widetilde{v}}_{1}, \ldots, \widetilde{v}_{s}\right)$ such that $\widetilde{\widetilde{v}}_{i}$ and $\widetilde{\widetilde{v}}_{i+1}$ have a common vertex, $i=0, \ldots, s-1$. A path $P$ is closed if $\widetilde{\widetilde{v}}_{1}=\widetilde{\widetilde{v}}_{s}$. Using the similar arguments as in the transportation problem, it is easy to prove the following characterization for a subset $E \subset V_{n}$ of the columns of $A$ to be linearly independent.

Theorem 3.1. A subset $E=E_{n} \subset V_{n}$ of the columns of $A$ is linearly independent if and only if $E$ does not contain any closed path of $\left(\alpha_{n}, \widetilde{\widetilde{V}}_{n}\right)$.

A spanning tree is a sub-graph $\left(\alpha_{n}, E\right)$ of $\left(\alpha_{n}, \tilde{\widetilde{V}}_{n}\right)$ such that $|E|=\left|\alpha_{n}\right|-1$, $E$ does not contain any closed path and for every $v \notin E$ there exists a unique path $P_{v}$ without loops and such that $\widetilde{\widetilde{v}} \in P_{v}$ and the remaining edges of $P_{v}$ belong to $E$. The paths $P_{v}, \widetilde{\widetilde{v}} \in \widetilde{\widetilde{V}}_{n} \backslash E$ allow to define vectors $\bar{u}_{v}=\left\langle u_{v^{\prime}}\right\rangle \in \mathbb{Q}^{V_{n}}$. For this reason, we partition $P_{v}$ into subsets $P_{v}^{+}$and $P_{v}^{-}$. Every edge $\widetilde{\widetilde{v}} \in P_{v}$ is simultaneously an arrow of the graph $\left(\alpha_{n}, \widetilde{V}_{n}\right)$. We define $P_{v}^{+}$as the set of all
$\widetilde{v^{\prime}} \in P_{v}$ such that $\widetilde{v^{\prime}}$ has the same orientation as $\widetilde{v}$ and $P_{v}^{-}$are those which has the inverse orientation than $\widetilde{v}$. Now define $\bar{x}(v)=\left\langle x_{v^{\prime}}\right\rangle, v^{\prime} \in V_{n}$ as follows

$$
x_{v^{\prime}}= \begin{cases}1 & \text { for } \widetilde{v^{\prime}} \in P_{v}^{+}  \tag{3.1}\\ -1 & \text { for } \widetilde{\widetilde{v^{\prime}} \in P_{v}^{-}} \\ 0 & \text { for the remaining } v^{\prime} \in V_{n} \backslash E\end{cases}
$$

ThEOREM 3.2. If $\left(\alpha_{n}, E\right)$ is a spanning tree of $\left(\alpha_{n}, \widetilde{V_{n}}\right)$, then the vectors $\bar{x}(v), v \in V_{n} \backslash E$ form a basis of the space $Q_{c c}^{(n)}$.

Proof. The subspace $Q_{c c}^{(n)}$ is determined by the system of linear equations (2.6). It follows from the Theorems 2.2 and 3.1 that the columns of the matrix $A$ corresponding to $\widetilde{\widetilde{v}} \in E$ form a minor having the order equal to $\left|\alpha_{n}\right|-1$. For every $v \notin E$ there exists a unique solution $\bar{y}$ of (2.6) such that $y_{v}=1$ and $y_{v^{\prime}}=0$ if $v^{\prime} \neq v$ and $v^{\prime} \notin E$. The family of such solutions forms a basis of $Q_{c c}^{(n)}$ if $v$ runs all over $V_{n} \backslash E$. It follows from (3.1) that $\bar{y}=\bar{x}(v)$, for $v \in V_{n} \backslash E$.

Let $\bar{x} \bullet \bar{y}=\sum_{v \in V_{n}} x_{v} \cdot y_{v}$ be the inner product of vectors $\bar{x}, \bar{y} \in \mathbb{Q}^{V_{n}}$. The basis $\{\bar{x}(v)\}, v \in V_{n} \backslash E$ allows us to define a homomorphism $I_{n}: \mathbb{Q}^{V_{n}} \rightarrow \mathbb{Q}^{V_{n} \backslash E}$, $E:=E_{n}$.

For $\bar{x}=\left\langle x_{v^{\prime}}\right\rangle \in \mathbb{Q}^{V_{n}}$ define $I_{n}(\bar{x}) \in \mathbb{Q}^{V_{n} \backslash E}$ as follows

$$
\begin{equation*}
I_{n}(\bar{x})=\left\langle\bar{x} \bullet \bar{x}_{v}\right\rangle, \quad v \in V_{n} \backslash E . \tag{3.2}
\end{equation*}
$$

Theorem 3.3.
(a) $\operatorname{ker}\left(I_{n}\right)=\mathbb{Q}_{c}^{(n)}$,
(b) $\operatorname{Im}\left(I_{n}\right)=\mathbb{Q}^{V_{n} \backslash E}$,
(c) $Q_{c c}^{(n)} \simeq \mathbb{Q}^{V_{n}} / Q_{c}^{(n)} \stackrel{\widehat{I}_{n}}{\sim} \mathbb{Q}^{V_{n} \backslash E}$ where $\widehat{I}_{n}$ is the induced isomorphism.

Proof. (a) We have $\operatorname{ker}\left(I_{n}\right)=\left\{\bar{x} \in \mathbb{Q}^{V_{n}}: \bar{x} \bullet \bar{x}_{v}=0\right\}$ for every $\left.v \in V_{n} \backslash E\right\}=$ $Q_{c}^{(n)}$, because the vectors $\overline{x_{v}}$, form a basis of $\left(Q_{c}^{(n)}\right)^{\perp}$ (see Theorem 3.2).
(b) Let $e_{v^{\prime}}, v^{\prime} \in V_{n}$ be the standard basis of $\mathbb{Q}^{V_{n}}$ (i.e. $e_{v^{\prime}}$ is the vector with the coordinate 1 on the position $v^{\prime}$ and 0 for the remaining positions) and let $\widehat{e}_{v}$, $v \in V_{n} \backslash E$ be the standard basis of $\mathbb{Q}^{V_{n} \backslash E}$. It follows from (3.2) that $I_{n}\left(e_{v}\right)=\widehat{e}_{v}$ whenever $v \in V_{n} \backslash E$. This implies (b).

The property (c) is a consequence of (a) and (b).

## Corollary 3.4.

(a') $\operatorname{ker}\left(I_{n} \mid \mathbb{Z}^{V_{n}}\right)=\mathbb{Z}_{c}^{(n)}$,
(b') $\operatorname{Im}\left(\mathbb{Z}^{V_{n}}\right)=\mathbb{Z}^{V_{n} \backslash E}$,
(c') $\mathbb{Z}^{V_{n}} / Z_{c}^{(n)} \simeq \mathbb{Z}^{V_{n} \backslash E}$.

Proof. If $\bar{x} \in \mathbb{Z}^{V_{n}}$, then $I_{n}(\bar{x}) \in \mathbb{Z}^{V_{n} \backslash E} \subset \mathbb{Q}^{V_{n} \backslash E}$ because the vectors $\bar{x}_{v}$, $v \in V_{n} \backslash E$, have integer coordinates. Further $\operatorname{ker}\left(I_{n} \mid \mathbb{Z}^{V_{n}}\right)=\operatorname{ker}\left(I_{n}\right) \cap \mathbb{Z}^{V_{n}}=$ $Q_{c}^{(n)} \cap \mathbb{Z}^{V_{n}}=Z_{c}^{(n)}$ Thus ( $\mathrm{a}^{\prime}$ ) and (b') are valid. The property (c') is an evident consequence of ( $\mathrm{a}^{\prime}$ ) and ( $\mathrm{b}^{\prime}$ ).

The above considerations lead to a tower algorithm (TA) of computing the dimension and the infinitesimal groups of C.m.s. $(X, T)$. To formulate it, we reconstruct the sequence (1.10).

Using the isomorphisms $\widehat{I}_{n}, n=1,2, \ldots$ we can replace $\mathbb{Z}^{V_{n}} / Z_{c}^{(n)}$ in (1.10) by $\mathbb{Z}^{V_{n} \backslash E}$ and then

$$
K^{0}(X, T)=\lim \left\{\widehat{G}_{n}: \mathbb{Z}^{V_{n} \backslash E_{n}} \rightarrow \mathbb{Z}^{V_{n+1} \backslash E_{n+1}}\right\}
$$

where $\widehat{G}_{n}$ are homomorphisms determined by $G_{n}\left(\right.$ or $\left.F_{n}\right)$.
Now, we describe the homomorphisms $G_{n}$. First, we recall the definitions of the $F_{n}$ 's. We have homomorphisms $F_{n}: \mathbb{Z}^{V_{n}} \rightarrow \mathbb{Z}^{V_{n+1}}$ determined by natural homomorphisms $C\left(\xi^{(n)}\right) / H_{n} \rightarrow C\left(\xi^{(n+1)}\right) / H_{n+1}$. Let us remind that the elements $v \in V_{n}$ correspond to the $T$-towers $\xi_{v}^{(n)}=\left\{D_{0, v}^{(n)}, \ldots, T^{h-1}\left(D_{0, v}^{(n)}\right)\right\}$ $h=h(n, v)$. Every $T$-towers $\xi_{w}^{(n+1)}, w \in V_{n+1}$ consists of some sub $T$-towers $\eta_{v}^{(n)}$ of $\xi_{v}^{(n)}$. Thus, we can write $\xi_{w}^{(n+1)}=\bigcup_{v \in S_{w}} \eta_{v}^{(n)}$, where $S_{w}=\left(v_{1}, \ldots, v_{t}\right)$ is a unique sequence of $v$. Define a matrix $\left\{b_{w, v}\right\}=B, w \in V_{n+1}, v \in V_{n}$, where $b_{w v}=\#\left\{1 \leq i \leq t: v=v_{i}\right\}$. Using the map $f \rightarrow \bar{x}_{f}$ defined by (1.6) it is easy to conclude that $F_{n}(\bar{x})=B \cdot \bar{x}$.

We have the following commuting diagrams

where $\Pi_{n}, \Pi_{n+1}$ are the natural homomorphisms and $\widehat{G}_{n}=\widehat{I}_{n+1} \circ G_{n} \circ\left(\widehat{I}_{n}\right)^{-1}$, $n=1,2, \ldots$ Now we describe $\widehat{G}_{n}$. To do this we find spanning trees $\left(\alpha_{n}, E_{n}\right)$ of $\left(\alpha_{n}, \widetilde{\widetilde{V}}_{n}\right)$ and $\left(\alpha_{n+1}, E_{n+1}\right)$ of $\left(\alpha_{n+1}, \widetilde{\widetilde{V}}_{n+1}\right)$. Now for every $n$ we define a matrix $\widehat{B}=\widehat{B}_{n}$ as follows:
(3.4) Take $v \in V_{n} \backslash E_{n}$. The $v$-th column of the matrix $B_{n}$ is a vector

$$
\bar{b}(v)=\left\langle b_{w, v}\right\rangle \in \mathbb{Z}^{V_{n+1}}, \quad w \in V_{n+1} .
$$

We compute vectors $I_{n+1}(\bar{b}(v))=\left\langle\widehat{b}_{w, v}\right\rangle, w \in V_{n+1} \backslash E_{n+1}, v \in V_{n} \backslash E_{n}$, using (3.2) and then $\widehat{B}=\left\{\widehat{b}_{w, v}\right\}, w \in V_{n+1} \backslash E_{n+1}, v \in V_{n} \backslash E_{n}$.

THEOREM 3.5. For every $\bar{z}=\left\langle z_{v}\right\rangle \in \mathbb{Z}^{V_{n} \backslash E_{n}}, v \in V_{n} \backslash E_{n}$, it holds

$$
\begin{equation*}
\widehat{G}_{n}(\bar{z})=\widehat{B} \cdot \bar{z} . \tag{3.5}
\end{equation*}
$$

Proof. It is enough to check (3.5) for $\bar{z}=\widehat{e}_{v}, v \in V_{n} \backslash E_{n}$. From the equalities $I_{n}\left(e_{v}\right)=\widehat{e}_{v}$ and $F_{n}\left(e_{v}\right)=\bar{b}(v), v \in V_{n} \backslash E_{n}$ and from the commute of (3.3) it follows that

$$
\widehat{G}_{n}\left(\widehat{e}_{v}\right)=\left(I_{n+1} \circ F_{n}\right)\left(e_{v}\right)=I_{n+1}(\bar{b}(v))=\left\langle\widehat{b}_{w v}\right\rangle
$$

$w \in V_{n+1} \backslash E_{n+1}$. This gives (3.5) for every $\bar{z} \in \mathbb{Z}^{V_{n} \backslash E_{n}}$.
Using the above theorem, (3.3) and (1.10) we get
Corollary 3.6.

$$
\begin{equation*}
K^{0}(X, T)=\underset{\longrightarrow}{\lim }\left\{\widehat{G}_{n}: \mathbb{Z}^{V_{n} \backslash E_{n}} \rightarrow \mathbb{Z}^{V_{n+1} \backslash E_{n+1}}\right\} . \tag{3.6}
\end{equation*}
$$

To describe the cone $K^{0}(X, T)^{+}=C\left(X, \mathbb{Z}^{+}\right) / B_{T}$, we must regard all vectors $I_{n}\left(e_{v}\right) \in \mathbb{Z}^{V_{n} \backslash E_{n}}$ when $v$ runs over all $V_{n}$. Let us denote $Z_{+}^{(n)}=\left\{\sum_{v \in V_{n}} a_{v}\right.$. $I_{n}\left(e_{v}\right)$ with $\left.a_{v} \in \mathbb{Z}^{+}\right\}$. Then, we have $\widehat{G}_{n}\left(Z_{+}^{(n)}\right) \subset Z_{+}^{(n+1)}$. There are natural homomorphisms $\widehat{\widehat{G}}_{n}: \mathbb{Z}^{V_{n} \backslash E_{n}} \rightarrow K^{0}(X, T)$. Then, we can identify the cone $K^{0}(X, T)^{+}$with the set $\bigcup_{n=1}^{\infty} \widehat{\widehat{G}}_{n}\left(Z_{+}^{(n)}\right)$. In a similar way we can replace the sequence (1.10) by a sequence of $\widehat{G}_{n}$ on the subspace $\operatorname{Inf}(n)=\widehat{I}_{n}\left(\mathcal{N}_{n} / Z_{c}^{(n)}\right) \subset$ $\mathbb{Z}^{V_{n} \backslash E_{n}}$. Thus $\operatorname{Inf}(X, T)=\underset{\longrightarrow}{\lim }\left\{\widehat{G}_{n}: \operatorname{Inf}(n) \rightarrow \operatorname{Inf}(n+1)\right\}$.

Before formulating an algorithm (TA) we illustrate previous consideration using the Chacon flow.
3.1. Chacon flow. We remind briefly the definition of Chacon flow. For this, we start with the sequence $\left\{B_{n}\right\}$ of blocks over two symbols $(0, s)$ :

$$
B_{0}=0, \quad B_{n+1}=B_{n} B_{n} s B_{n}, \quad n>0 .
$$

Then

$$
\left|B_{n}\right|=\frac{1}{2}\left(3^{n+1}-1\right)=r_{n} .
$$

Let $\omega$ be a one-sided sequence defined by the blocks $B_{n}$ as follows: $\omega\left[0, r_{n}-1\right]=$ $B_{n}, n>0$. We take the subset $Y \subset\{0, s\}^{\mathbb{Z}}$ which is the closure of $T$-orbit of $\omega$ with respect to the left shift. The Cantor minimal system $(Y, T)$ is called the Chacon flow. For $n>0$, we denote

$$
\begin{aligned}
D_{00}^{(n)} & =\left\{x \in Y: x\left[-r_{n}, 2 r_{n}-1\right]=B_{n} B_{n} B_{n}\right\}, \\
D_{s 0}^{(n)} & =\left\{x \in Y: x\left[-r_{n}-1,2 r_{n}-1\right]=B_{n} s B_{n} B_{n}\right\}, \\
D_{0 s}^{(n)} & =\left\{x \in Y: x\left[-r_{n}, 2 r_{n}\right]=B_{n} B_{n} s B_{n}\right\}, \\
D_{s s}^{(n)} & =\left\{x \in Y: x\left[-r_{n}-1,2 r_{n}\right]=B_{n} s B_{n} s B_{n}\right\} .
\end{aligned}
$$

Let $D_{n}=\bigcup_{p, q=0, s} D_{p q}^{(n)}$. Let us take Kakutani-Rokhlin partition $\xi^{(n)}$ built by the base $D_{n}$ and the return time function. Then $\xi^{(n)}$ has four towers $\xi_{p q}^{(n)}$, $p, q=0, s$ corresponding to the sets $D_{p q}^{(n)}$. We have $h(00, n)=h(s 0, n)=r_{n}$ and $h(0 s, n)=h(s s, n)=r_{n}+1$ (see Figure 3.1).


Figure 3.1

It is known that $(Y, T)$ is strictly ergodic and the values of the unique $T$ invariant measure $\mu$ on the sets $D_{p q}^{(n)}, n>0$ are $\mu\left(D_{00}^{(n)}\right)=\mu\left(D_{s s}^{(n)}\right)=1 / 3^{n+2}$, $\mu\left(D_{0 s}^{(n)}\right)=\mu\left(D_{s 0}^{(n)}\right)=2 / 3^{n+2}$. Taking $\left(\xi^{(n)}\right)$ as above, one can point out partitions $\alpha_{n}$ introduced in Section 2 (they do not depend on $n$ ). We get $V_{n}=\{00, s 0,0 s, s s\}$ and $J_{1}=\{00,0 s\} J_{2}=\{s 0, s s\}$. Then $\alpha_{n}=\left\{J_{1}, J_{2}\right\}$. The graph $\left(\alpha_{n}, \widetilde{V}_{n}\right)$ determined by the $T$-towers $D_{p q}^{(n)}$ is presented in Figure 3.2.


Figure 3.2
Let us notice that there are three cycles of $\left(\alpha_{n} \widetilde{V}_{n}\right)$ namely: $\Gamma_{1}=\{00\}$, $\Gamma_{2}=\{s s\}$ and $\Gamma_{3}=\{0 s, s 0\}$. As a spanning tree of the graph $\left(\alpha_{n}, \widetilde{V}_{n}\right)$ we can take $\left(\alpha_{n},\{0 s\}\right)$ (see Figure 3.2), i.e. $E_{n}=\{0 s\}$. Any vector $\bar{x} \in \mathbb{Z}^{V_{n}}$ we will write as $\bar{x}=\left\langle x_{00}, x_{s 0}, x_{0 s}, x_{s s}\right\rangle$.

Now for each path $P_{v}, v \in V_{n} \backslash E_{n}=\{00, s 0, s s\}$ we define vectors $\bar{x}(v)$ as in the Section 3. We have:

$$
\bar{x}(00)=\langle 1,0,0,0\rangle, \quad \bar{x}(s 0)=\langle 0,1,1,0\rangle, \quad \bar{x}(s s)=\langle 0,0,0,1\rangle .
$$

Then the homomorphisms $I_{n}: \mathbb{Q}^{4} \rightarrow \mathbb{Q}^{3}$ have the form

$$
I_{n}(\bar{x})=\left\langle x_{00}, x_{s 0}+x_{0 s}, x_{s s}\right\rangle=\left\langle y_{00}, y_{s 0}, y_{s s}\right\rangle \in \mathbb{Q}^{3}
$$

for $\bar{x}=\left\langle x_{00}, x_{s 0}, x_{0 s}, x_{s s}\right\rangle \in \mathbb{Q}^{4}$.
To find matrices $B_{n}$, we must express the $T$-towers $\xi_{p q}^{(n+1)}$ by some sub- $T$ towers $\eta^{(n)}$ of $\xi^{(n)}$. We have:

$$
\begin{array}{ll}
\xi_{00}^{(n+1)}=\eta_{00}^{(n)} \cup \eta_{0 s}^{(n)} \cup \eta_{s 0}^{(n)}, & \xi_{s 0}^{(n+1)}=\eta_{s 0}^{(n)} \cup \eta_{0 s}^{(n)} \cup \eta_{s 0}^{(n)}, \\
\xi_{0 s}^{(n+1)}=\eta_{00}^{(n)} \cup \eta_{0 s}^{(n)} \cup \eta_{s s}^{(n)}, & \xi_{s s}^{(n+1)}=\eta_{s 0}^{(n)} \cup \eta_{0 s}^{(n)} \cup \eta_{s s}^{(n)} .
\end{array}
$$

This leads to the following matrices $B_{n}$

$$
B_{n}=\begin{gathered}
00 \\
{ }_{0} 0 \\
{ }_{s s}
\end{gathered}\left[\begin{array}{cccc}
00 & s 0 & 0 s & s s \\
1 & 1 & 1 & 0 \\
0 & 2 & 1 & 0 \\
1 & 0 & 1 & 1 \\
0 & 1 & 1 & 1
\end{array}\right] .
$$

For each column $\bar{b}(v)$ of the matrix $B_{n}, v \in V_{n} \backslash E_{n}=\{00, s 0, s s\}$ we calculate $\widehat{I}_{(n+1)}(\bar{b}(v))$. We have:

$$
\bar{b}(00)=\langle 1,0,1,0\rangle, \quad \bar{b}(s 0)=\langle 1,2,0,1\rangle, \quad \bar{b}(s s)=\langle 0,0,1,1\rangle
$$

and

$$
\widehat{I}_{n+1}(\bar{b}(00))=\langle 1,1,0\rangle, \quad \widehat{I}_{n+1}(\bar{b}(s 0))=\langle 1,2,1\rangle, \quad \widehat{I}_{n+1}(\bar{b}(s s))=\langle 0,1,1\rangle
$$

Thus,

$$
\left.\widehat{B}_{n}=\widehat{B}=\begin{array}{c} 
\\
{ }^{00} 0 \\
s s
\end{array} \begin{array}{ccc}
00 & s 0 & 0 s \\
1 & 1 & 0 \\
1 & 2 & 1 \\
0 & 1 & 1
\end{array}\right]
$$

defines the map $\widehat{G}_{n}: \mathbb{Z}^{3} \rightarrow \mathbb{Z}^{3}$ (see (3.4)). Then Corollary 3.6 results in $K^{0}(X, T)$ $=\underset{\longrightarrow}{\lim }\left\{\widehat{G}_{n}: \mathbb{Z}^{3} \rightarrow \mathbb{Z}^{3}\right\}$. We have $\operatorname{det} \widehat{B}=0$ so $\operatorname{dim} \widehat{G}_{n}\left(\mathbb{Q}^{3}\right)<3$. To indicate $\underset{\longrightarrow}{\lim }\left\{\widehat{G}_{n}: \mathbb{Z}^{3} \rightarrow \mathbb{Z}^{3}\right\}$ we must find $\widehat{G}_{n}\left(\mathbb{Z}^{3}\right)$ and describe the action $\widehat{G}_{n}$ on it. It is easy to remark that $\widehat{G}_{n}\left(\mathbb{Z}^{3}\right) \subset \pi \subset \mathbb{Q}^{3}$, where $\pi=\left\{\bar{y}=\left\langle y_{00}, y_{s 0}, y_{s s}\right\rangle \in \mathbb{Q}^{3}\right.$ : $\left.y_{00}+y_{s s}=y_{s 0}\right\}$. Moreover, $\widehat{G}_{n}: \pi \rightarrow \pi$ is one-to-one. Then,

$$
\underset{\longrightarrow}{\lim }\left\{\widehat{G}_{n}: \mathbb{Z}^{3} \rightarrow \mathbb{Z}^{3}\right\}=\underset{\longrightarrow}{\lim }\left\{\widehat{G}_{n}: \pi \cap \mathbb{Z}^{3} \rightarrow \pi \cap \mathbb{Z}^{3}\right\} .
$$

It is convenient to replace the subgroup $\pi \cap \mathbb{Z}^{3}$ by $\mathbb{Z}^{2}=\left\{\bar{z}=\left\langle z_{00}, z_{s s}\right\rangle, z_{00}, z_{s s} \in\right.$ $\mathbb{Z}\}$ by putting $z_{00}=y_{00}, z_{s s}=y_{s s},\left\langle y_{00}, y_{00}+y_{s s}, y_{s s}\right\rangle \in \pi$. Let $H=H_{n}: \mathbb{Z}^{2} \rightarrow \mathbb{Z}^{2}$ be the isomorphisms determined by $\widehat{G}_{n}$ on $\pi$. Then, $H_{n}$ is defined by the matrix $C_{n}=C=\left[\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right]$. We have the inclusions

$$
\ldots \supset H^{-n}\left(\mathbb{Z}^{2}\right) \supset H^{-n+1}\left(\mathbb{Z}^{2}\right) \supset \ldots \supset H^{-1}\left(\mathbb{Z}^{2}\right) \supset \mathbb{Z}^{2}
$$

Thus we have

$$
K^{0}(X, T)=\underset{\longrightarrow}{\lim }\left\{H_{n}: \mathbb{Z}^{2} \rightarrow \mathbb{Z}^{2}\right\}=\bigcup_{n=0}^{\infty} H^{-n}\left(\mathbb{Z}^{2}\right) \subset \mathbb{Q}^{2}
$$

Now we describe the group $\operatorname{Inf}(X, T)$. Consider the subgroups $\mathcal{N}_{n} \subset \mathbb{Z}^{4}$,

$$
\begin{aligned}
\mathcal{N}_{n} & =\left\{\bar{x}, \frac{1}{3^{n+2}}\left(x_{00}+x_{s s}\right)+\frac{2}{3^{n+2}}\left(x_{s 0}+x_{0 s}\right)=0\right\} \\
& =\left\{\bar{x}, x_{00}+x_{s s}+2\left(x_{s 0}+x_{0 s}\right)=0\right\}
\end{aligned}
$$

We have $I_{n}\left(\mathcal{N}_{n}\right)=\left\{\left\langle y_{00}, y_{s 0}, y_{s s}\right\rangle \subset \mathbb{Z}^{3}: y_{00}+2 y_{s 0}+y_{s s}=0\right\} \in \mathbb{Z}^{3}$ and next $\widehat{G}_{n}\left(I_{n}\left(\mathcal{N}_{n}\right)\right)=\left\{\left\langle y_{00}, y_{s 0}, y_{s s}\right\rangle \in \pi \cap \mathbb{Z}^{3}: y_{00}+y_{s s}=0\right\}$. Passing to the coordinates $z_{00}, z_{s s}$ we can identify $\widehat{G}_{n}\left(I_{n}\left(\mathcal{N}_{n}\right)\right)$ with the subgroup $Z_{0}=\{\bar{z}=$ $\left.\left\langle z_{00}, z_{s s}\right\rangle \in \mathbb{Z}^{2}, z_{00}+z_{s s}=0\right\}$. Further $H_{n} \mid Z_{0}=$ id. So we can identify $\operatorname{Inf}(X, T)$ with $Z_{0} \subset \bigcup_{n=0}^{\infty} H^{-n}\left(\mathbb{Z}^{2}\right)$.

To describe the cone $K^{0}(X, T)^{+}$, let us remark that

$$
\begin{array}{ll}
I_{n}\left(e_{00}\right)=\widehat{e}_{00} \in \mathbb{Z}^{3}, & I_{n}\left(e_{s 0}\right)=\widehat{e}_{s 0} \in \mathbb{Z}^{3}, \\
I_{n}\left(e_{0 s}\right)=\widehat{e}_{s 0} \in \mathbb{Z}^{3}, & I_{n}\left(e_{s s}\right)=\widehat{e}_{s s} \in \mathbb{Z}^{3} .
\end{array}
$$

Then $Z_{+}^{(n)}=\mathbb{Z}_{+}^{3}, \widehat{G}_{n}\left(\mathbb{Z}_{+}^{3}\right)=\mathbb{Z}_{+}^{2}=\left\{\left\langle z_{00}, z_{s s}\right\rangle \in \mathbb{Z}^{2}: z_{00}, z_{s s} \geq 0\right\}$. Thus,

$$
K^{0}(X, T)^{+}=\bigcup_{n=0}^{\infty} H^{-n}\left(\mathbb{Z}_{+}^{2}\right)=\left\{\left\langle z_{00}, z_{s s}\right\rangle \in K^{0}(X, T): z_{00}+z_{s s} \geq 0\right\}
$$

Now we are in a position to formulate the algorithm (TA). We distinguish Stages I and II of it. The Stage I contains all calculations to get the sequence (3.6). The Stage II is a simplification of the sequence (3.6) if, for infinitely many $n, \operatorname{dim}\left(\operatorname{Im}\left(\widehat{G_{n}}\right)\right)<\left|V_{n} \backslash E_{n}\right|$.

### 3.2. Algorithm (TA).

## Stage I.

Step 1. For a given sequence of towers $\left\{\xi_{n}\right\}$ find homomorphisms

$$
\mathbb{Z}^{V_{1}} \xrightarrow{F_{1}} \mathbb{Z}^{V_{2}} \xrightarrow{F_{2}} \mathbb{Z}^{V_{3}} \longrightarrow \cdots
$$

Step 2. For every $T$-invariant measure $\mu$ calculate the measures $\mu_{v}$ of every $T$-tower $\xi_{v}^{(n)}$. Then define subspaces

$$
\begin{equation*}
\mathcal{N}_{n}=\left\{\left\langle x_{v}\right\rangle \in \mathbb{Z}^{V_{n}}: \sum_{v \in V_{n}} x_{v} \mu_{v}=0 \text { for every } \mu \in M(X, T)\right\} \tag{3.7}
\end{equation*}
$$

Step 3. Find the partitions $\alpha_{n}$ of the towers $\left\{\xi_{n}\right\}$. For $\left(\alpha_{n}, \widetilde{\widetilde{V}}_{n}\right)$ choose spanning trees $\left(\alpha_{n}, E_{n}\right)$ and calculate homomorphisms $I_{n}$ using (3.2). Let us calculate sequence of homomorphisms $\widehat{G}_{n}$ (and matrices $\widehat{B}_{n}$ ) by (3.4) and (3.5). Then,

$$
K^{0}(X, T)=\underset{\longrightarrow}{\lim }\left\{\widehat{G}_{n}: \mathbb{Z}^{V_{n} \backslash E_{n}} \rightarrow \mathbb{Z}^{V_{n+1} \backslash E_{n+1}}\right\}
$$

If $\operatorname{det}\left(\widehat{B}_{n}\right) \neq 0$ for sufficiently large $n$ then we can identify $(\simeq) K^{0}(X, T)$ with the subgroup $\bigcup_{n=1}^{\infty} \widehat{G}_{1}^{-1} \circ \ldots \circ \widehat{G}_{n}^{-1}\left(\mathbb{Z}^{V_{n+1} \backslash E_{n+1}}\right)$ of the additive group $\mathbb{Q}^{\max \left|V_{n} \backslash E_{n}\right|}$.

Step 4. To find the cone $K^{0}(X, T)^{+}$consider subsets

$$
Z_{+}^{(n)}=\left\{\sum_{v \in V_{n}} a_{v} \cdot I_{n}\left(e_{v}\right) \text { with } a_{v} \in \mathbb{Z}^{+}\right\} \subset \mathbb{Z}^{V_{n} \backslash E_{n}}, \quad n \geq 1
$$

Because $I_{n}\left(e_{v}\right)=\widehat{e}_{v}$, for $v \in V_{n} \backslash E_{n}$ then

$$
Z_{+}^{(n)}=\left\{Z_{+}^{V_{n} \backslash E_{n}}+\sum_{v \in E_{n}} a_{v} \cdot I_{n}\left(e_{v}\right), a_{v} \geq 0\right\}
$$

Then

$$
\begin{equation*}
K^{0}(X, T)^{+} \simeq \bigcup_{n=1}^{\infty} \widehat{G}_{1}^{-1} \circ \ldots \circ \widehat{G}_{n}^{-1}\left(Z_{+}^{(n+1)}\right) \tag{3.8}
\end{equation*}
$$

Step 5. Set $\operatorname{Inf}(n) \simeq I_{n}\left(\mathcal{N}_{n}\right)$. Then

$$
\begin{equation*}
\operatorname{Inf}(X, T)=\underset{\longrightarrow}{\lim \left\{\widehat{G}_{n}: \operatorname{Inf}(n) \rightarrow \operatorname{Inf}(n+1)\right\} . . . ~} \tag{3.9}
\end{equation*}
$$

## Stage II. Inspecting the sequence (3.6) and simplifying.

Step 6. If $\operatorname{det}\left(\widehat{B}_{n}\right)=0$ for infinitely many $n$, then we can reconstruct the sequence (3.6) to the other one. We replace (3.6) by the sequence

$$
\cdots \longrightarrow \operatorname{Im}\left(\widehat{G}_{n-1}\right) \xrightarrow{\widehat{G}_{n}} \operatorname{Im}\left(\widehat{G}_{n}\right) \longrightarrow \cdots
$$

which has a form (3.6), too. Namely, find a basis $V_{n}^{\prime}$ of $\operatorname{Im}\left(\widehat{G}_{n-1}\right)$ and let $J_{n}: \mathbb{Z}^{V_{n}^{\prime}} \rightarrow \operatorname{Im}\left(\widehat{G}_{n-1}\right)$ be the natural isomorphism. We obtain the following commuting diagram:
 $\operatorname{Inf}(X, T)=\underset{\longrightarrow}{\lim }\left\{\operatorname{Inf}^{\prime}(n) \xrightarrow{G_{n}^{\prime}} \operatorname{Inf}^{\prime}(n+1)\right\}$, where $\operatorname{Inf}^{\prime}(n)=J_{n}^{-1}(\operatorname{Inf}(n))$.

Step 6a. To find $K^{0}(X, T)^{+}$we choose $Z_{+}^{(n)^{\prime}}=J_{n}^{-1}\left(Z_{+}^{(n)}\right)$ and

$$
K^{0}(X, T)^{+} \simeq \bigcup_{n=1}^{\infty} G_{1}^{\prime-1} \circ \ldots \circ G_{n}^{\prime-1}\left(Z_{+}^{(n)^{\prime}}\right)
$$

Step 7. If $\operatorname{dim}\left(\operatorname{Im}\left(G_{n-1}^{\prime}\right)\right)<\left|V_{n}^{\prime}\right|$ for infinitely many $n$, then we repeat Step 6.
Step 8. If $\operatorname{dim}\left(\operatorname{Im}\left(G_{n-1}^{\prime}\right)\right)=\left|V_{n}^{\prime}\right|$ for sufficiently large $n$, then we compute $K^{0}(X, T), K^{0}(X, T)^{+}$, and $\operatorname{Inf}(X, T)$ by (3.6), (3.8) and (3.9) with $V_{n} \backslash E_{n}:=V_{n}^{\prime}$, $\widehat{G}_{n}:=G_{n}^{\prime}, Z_{+}^{(n)}:=Z_{+}^{(n)^{\prime}}, \operatorname{Inf}(n):=\operatorname{Inf}^{\prime}(n)$.

REMARK 3.7. In the sequel, we present examples of the topological flows. We compute their dimension groups applying the algorithm (TA). After applying the Stage I, we get a sequence of the following form

$$
\begin{equation*}
\mathbb{Z}^{k} \xrightarrow{\widehat{G}} \mathbb{Z}^{k} \xrightarrow{\widehat{G}} \mathbb{Z}^{k} \xrightarrow{\widehat{G}} \cdots \tag{3.10}
\end{equation*}
$$

where $\widehat{G}_{n}=\widehat{G}$ for $n=1,2, \ldots$ If $\operatorname{det}(\widehat{G})=0$ then we apply the Stage II. In this case we choose the positive integer $l>1$, such that $\operatorname{rank}\left(\widehat{G}^{l}\right)=\operatorname{rank}\left(\widehat{G}^{l+1}\right)$. Then we choose a group isomorphism $J^{\prime}: \widehat{G}^{l}\left(\mathbb{Z}^{k}\right) \rightarrow \mathbb{Z}^{s}$, where $s=\operatorname{rank}\left(\widehat{G}^{l}\right)$ and we replace the sequence from the Step 6 by the sequence

$$
\mathbb{Z}^{s} \xrightarrow{\widehat{G}^{\prime \prime}} \mathbb{Z}^{s} \xrightarrow{\widehat{G}^{\prime \prime}} \mathbb{Z}^{s} \xrightarrow{\widehat{G}^{\prime \prime}} \cdots
$$

where $G_{\widehat{G^{\prime \prime}}}^{\prime \prime}=J^{\prime} \circ \widehat{G} \circ\left(J^{\prime}\right)^{-1}$ and $\operatorname{det}\left(G^{\prime \prime}\right) \neq 0$. Finally, we have $K^{0}(X, T)=$ $\xrightarrow{\lim }\left\{\mathbb{Z}^{s} \xrightarrow{\widehat{G^{\prime \prime}}} \mathbb{Z}^{s}\right\} \subset \mathbb{Q}^{s}$.
3.3. Relation between our results and results of papers [4] and [3]. In this section we would like to indicate some relations between some results of our paper and the main result of [4] and also to compare our algorithm (TA) and the algorithm described in [3] for computing the dimension groups for substitutions.

Let $\xi^{(n)}=\left\{T^{k}\left(D_{0, v}^{(n)}\right), 0 \leq k \leq h(n, v)-1, v \in V_{n}\right\}$ be a sequence of Kakutani-Rokhlin partitions of a Cantor minimal system $(X, T)$ satisfying the conditions (1.1) and (1.2). The sequence $\left\{\xi^{(n)}\right\}$ determines a Bratteli diagram $I=\left(V_{n}, E_{n}\right)$ (for the definition see [3] and [4]). The diagram $I$ is proper if additionally (1.4) holds. Assuming that (1.4) is not satisfied and the set $N^{\prime}=$ $\bigcap_{n=1}^{\infty}\left(\bigcup_{v \in V_{n}} D_{0, v}^{(n)}\right)$ is finite, a natural question regarding relations between our considerations and Theorem 9 of [4] arises. The theorem 9 states the following isomorphism

$$
\begin{equation*}
\frac{K_{0}(I)}{Q} \oplus Z^{\nu} \equiv K^{0}(\Pi, S) \tag{3.11}
\end{equation*}
$$

where $K_{0}(I)$ is the dimension group of the diagram $I, Q$ is a subgroup of $K_{0}(I)$, $\nu$ is a non-negative integer, and $(\Pi, S)$ is the path-sequence dynamical system (for the needed definitions see [4]) and $K^{0}(\Pi, S)$ is its dimension group.

It is not difficult to see that in our case we can identify the path-sequence dynamical system $(\Pi, S)$ with $(X, T)$. At the same time

$$
K_{0}(I)=\underset{\longrightarrow}{\lim }\left\{\mathbb{Z}^{V_{n}} \xrightarrow{F_{n}} \mathbb{Z}^{V_{n+1}}\right\}
$$

where $F_{n}$ are homomorphisms from Step 1 of the algorithm (TA). In [4] the following formula for $\nu$ is given

$$
\nu=e-v+c
$$

where $e$ is the number of $\sim$ equivalent pairs of maximal paths and minimal paths, $v$ is the number of maximal or minimal paths and $c$ is the number of components in the graph whose vertices are maximal or minimal paths connected by the $\sim$ relation. It is not difficult to remark that in our case $\nu=0$.

In fact, we identify the set $N$ of minimal paths of $(\Pi, S)$ with the set $\bigcap_{n=1}^{\infty}\left(\bigcup_{v \in V_{n}} D_{0, v}^{(n)}\right)=N^{\prime}$. While the set $M$ of maximal paths is identified with the set

$$
\bigcap_{n=1}^{\infty}\left(\bigcup_{v \in V_{n}} T^{h(n, v)-1}\left(D_{0, v}^{(n)}\right)\right)=M^{\prime}=T^{-1}\left(N^{\prime}\right)
$$

Moreover, a pair $(x, y), x \in M^{\prime}, y \in N^{\prime}$, is " $\sim$ " if and only if $y=T(x)$. Then $e=\# N^{\prime}, v=2 \cdot\left(\# N^{\prime}\right)$ and $c=\# N^{\prime}$. Thus, we have $\nu=0$. Then (3.11) has the following form

$$
\begin{equation*}
\underset{\longrightarrow}{\lim }\left\{Z^{V_{n}} \xrightarrow{F_{n}} Z^{V_{n+1}}\right\} / Q=K^{0}(X, T) . \tag{3.12}
\end{equation*}
$$

Let us remark that (1.10) can be written in the form

$$
\begin{align*}
& C(X, T) / B_{T}  \tag{3.13}\\
& \quad=\underset{\longrightarrow}{\lim }\left\{Z^{V_{n}} \xrightarrow{F_{n}} Z^{V_{n+1}}\right\} / \xrightarrow{\lim \left\{Z_{c}^{(n)} \xrightarrow{F_{n}} Z_{c}^{(n+1)}\right\}=K^{0}(X, T) .} .
\end{align*}
$$

The formulas (3.12) and (3.13) lead us to ask what the relations between subgroups $Q$ and $B_{T}=\lim \left\{Z_{c}^{(n)} \xrightarrow{F_{n}} Z_{c}^{(n+1)}\right\}$ are. To answer this question we must adapt the description of $Q$ from [4] to the case considered here. First we distinguish subsets $\widetilde{B}_{n} \subset \mathbb{Z}^{V_{n}}, n \geq 1$. Take any element $x \in X$ and consider its $T$-trajectory $O_{T}(x)=\left\{T^{n}(x), n \in \mathbb{Z}\right\}$. The trajectory $x$ passes through the $T$-towers $\xi_{n, v}=\left\{T^{k}\left(D_{0, v}^{(n)}\right), 0 \leq k \leq h(n, v)-1\right\}, v \in V_{n}$. Let us mark the places in $0_{T}(x)$ whenever it passes through the top $T^{h(n, v)-1}\left(D_{0, v}^{(n)}\right)$ and denote by $Z_{n, v}$ the set of such places. Now, take any finite fragment $x[i, i+k]=u$ of $x$ and define the vector $\bar{x}_{u}=\left\langle x_{v}\right\rangle \in \mathbb{Z}^{V_{n}}$ as follows: $x_{v}=\# Z_{n, v} \cap u$.

Let $\widetilde{B}_{n}$ be the set of all vectors $\bar{x}_{u}$ when $u$ is any finite fragment of $x$. Next we define

$$
Q_{n}=\left\{\bar{y} \in \mathbb{Z}^{V_{n}}:\left|\bar{y} \bullet \bar{x}_{u}\right|<\infty, \text { the supremum is taken over all } \bar{x}_{u} \in \widetilde{B}_{n}\right\}
$$

Using the minimality of $(X, T)$, it is easy to check that $Q_{n}$ does not depend on $x$. Then $Q_{n}$ is a subgroup of $\mathbb{Z}^{V_{n}}$ and $F_{n}\left(Q_{n}\right) \subset Q_{n+1}$. The group $Q$ is defined as

$$
Q=\underset{\longrightarrow}{\lim }\left\{Q_{n} \xrightarrow{F_{n}} Q_{n+1}\right\} .
$$

Now we will show that $Z_{c}^{(n)} \subset Q_{n}$ for every $n \geq 1$, whenever $\sup _{n} \# V_{n}<\infty$. Take $x \in X$ and assume that its zero position is marked. Then the positive part $O_{T}^{+}(x)$ of the trajectory $O_{T}(x)$ determines an infinite path of the graph $\left(\alpha_{n}, \widetilde{V}_{n}\right)$. Let $u$ be a finite fragment of $x$. First, let us assume that $u$ determines a closed cycle $\Gamma$ of $\left(\alpha_{n}, \widetilde{V}_{n}\right)$ without loops. Then $\bar{x}_{u}=\bar{w}_{\Gamma}$ (see proof of Theorem 2.2). For $\bar{y} \in Z_{c}^{(n)}$ we have $\bar{y} \bullet \bar{x}_{u}=0$. If $u$ determines a finite numbers of closed cycles $\Gamma_{s}$ then $\bar{x}_{u}=\sum_{s} \bar{w}_{\Gamma_{s}}$ and again we have $\bar{y} \bullet \bar{x}_{u}=0$. In general, $\bar{x}_{u}$ has a form

$$
\bar{x}_{u}=\sum_{s} \bar{w}_{\Gamma_{s}}+\bar{x}^{\prime}
$$

where the coordinates $x_{v}^{\prime}$ of $\bar{x}^{\prime}$ are bounded by the number $\sup _{n} \# V_{n}$. Then, for every $\bar{y} \in Z_{c}^{(n)}$ we have

$$
\left|\bar{y} \bullet \bar{x}_{u}\right| \leq \sup _{n} \# V_{n} \cdot \sum_{v \in V_{n}}\left|y_{v}\right| .
$$

In this manner we get $Z_{c}^{(n)} \subset Q_{n}$. As a consequence we have $B_{T} \subset Q$. We are unable to answer whether $Z_{c}^{(n)}=Q_{n}$ for every $n$ and also whether $B_{T}=Q$.

Now we want to compare the algorithm (TA) with the algorithm from [3]. For the necessary definitions and notions we refer the reader to [3] including the definitions of substitution minimal systems.

Let $\sigma: A \rightarrow A^{+}$, be a primitive, aperiodic substitution on a finite alphabet $A$ and let $\left(X_{\sigma}, T\right)$ be the corresponding minimal Cantor system. The substitution $\sigma$ determines the matrix $M_{\sigma}=\left(m_{a b}\right), a, b \in A$, where

$$
m_{a b}=\text { the number of occurrences of } a \text { in } \sigma(b) .
$$

We can define sets $D_{0, a}^{(n)}$,

$$
D_{0, a}^{(n)}=\left\{x \in X_{\sigma}: x\left[0, \lambda_{n}-1\right]=\sigma^{n}(a)\right\}, \quad a \in A \text { and } \lambda_{n}=\left|\sigma^{n}(a)\right| .
$$

The sets $D_{0, a}^{(n)}$ define disjoint $T$-towers $\xi_{a}^{(n)^{\prime}}=\left\{T^{k}\left(D_{0, a}^{(n)}\right), 0 \leq k \leq \lambda_{n}-1\right\}$. A substitution $\sigma$ is proper if there exists a pair $r, l \in A$ such that for every $a \in A$, $r$ is the last letter $\sigma(a)$ and $l$ is the first letter of $\sigma(a)$. If $\sigma$ is proper, then the towers $\xi_{a}^{(n)^{\prime}}, a \in A$ satisfy the conditions (1.1), (1.2) and (1.4). In this case

$$
K^{0}\left(X_{\sigma}, T\right)=\underset{\longrightarrow}{\lim }\left\{\mathbb{Z}^{A} \xrightarrow{M_{\sigma}} \mathbb{Z}^{A}\right\}
$$

The algorithm presented in [3] consists in an associating a primitive, aperiodic and proper substitution $\tau$ to a given primitive, aperiodic substitution $\sigma$ in such a way that $\left(X_{\tau}, T\right)$ is topologically isomorphic to $\left(X_{\sigma}, T\right)$. Then $K^{0}\left(X_{\sigma}, T\right) \equiv$
$K^{0}\left(X_{\tau}, T\right)$. We can also apply the algorithm (TA) for substitutions. Then $V_{n}$ is the set of all triples $a b c$ appearing in $X_{\sigma}$ and the sets $D_{a b c}^{(n)}$ are defined in the following way

$$
D_{a b c}^{(n)}=\left\{x \in X_{\sigma}: x\left[-\left|\sigma^{n}(a)\right|,\left|\sigma^{n}(b)\right|+\left|\sigma^{n}(b)\right|-1\right]=\sigma^{n}(a) \sigma^{n}(b) \sigma^{n}(c)\right\}
$$

We have $F_{n}=F=\left(f_{a^{\prime} b^{\prime} c^{\prime}, a b c}\right)$, where

$$
\begin{array}{r}
f_{a^{\prime} b^{\prime} c^{\prime}, a b c}=\text { the number of occurrences of the triple } a b c \\
\text { in the sequence } u_{1}^{\prime} \sigma\left(b^{\prime}\right) u_{2}^{\prime},
\end{array}
$$

where $u_{1}^{\prime}$ is the last letter of $\sigma\left(a^{\prime}\right)$ and $u_{2}^{\prime}$ is the first letter of $\sigma\left(c^{\prime}\right)$. In general, the algorithms presented in [3] and (TA) are independent. We illustrate both algorithms using the example from [3].
3.3.1. Example of a substitution. Let $\sigma$ be the substitution defined on the alphabet $A=\{a, b\}$ by $\sigma(a)=a b a, \sigma(b)=b a a b$. A substitution $\tau$ associated with $\sigma$ is the following: $\tau(1)=112, \tau(2)=1212$. Then

$$
M_{\tau}=\left(\begin{array}{ll}
2 & 1 \\
2 & 2
\end{array}\right) \quad \text { and } \quad K^{0}\left(X_{\sigma}, T\right)=K^{0}\left(X_{\tau}, T\right)=\underline{\longrightarrow}\left\{\mathbb{Z}^{2} \xrightarrow{M_{\tau}} \mathbb{Z}^{2}\right\}
$$

Now we apply the algorithm (TA). We have $V_{n}=\{a b a, b a b, b a a, a b b\}$. The graphs $\left(\alpha_{n}, \widetilde{V}_{n}\right)$ have the following form


Figure 3.3
where $J_{1}=\{a a b\}, J_{2}=\{b a a, b a b\}, J_{3}=\{a b a\}$. Next, we have

$$
F_{n}=F=\begin{gathered}
a a b \\
a b a \\
b a a \\
b a b
\end{gathered}\left[\begin{array}{cccc}
1 & a b a & b a a & b a b \\
1 & 2 & 0 & 1 \\
0 & 1 & 1 & 1 \\
0 & 1 & 0 & 2
\end{array}\right]
$$

As a spanning tree we take $\left(\alpha_{n}, b a a, a b a\right)$. Applying Step 3 of (TA) we get

$$
\widehat{F}_{n}=\widehat{F}=\begin{gathered}
b a b \\
a a b
\end{gathered}\left[\begin{array}{cc}
b a b & a a b \\
2 & 1 \\
2 & 2
\end{array}\right]
$$

Thus $\widehat{F}=M_{\tau}$.

## 4. Examples

4.1. Teoplitz and Teoplitz-Morse flows. Let us remind briefly the definition of Teoplitz flow. Let $S$ be a finite alphabet with at least two symbols. Consider the sequence of positive integers $\lambda_{n} \geq 2$ and let $p_{n}=\lambda_{1} \cdot \ldots \cdot \lambda_{n}$, $n \geq 1$. Let us take a sequence of blocks $A^{(n)}$ over $S \cup\{-\}$ ("-" is the empty symbol or the hole) such that $\left|A^{(n)}\right|=p_{n}$ and the block $A^{(n+1)}$ is obtained by a concatenation of $\lambda_{n}$ copies of $A^{(n)}$, where some "holes" are filled by symbols of $S$. Let us denote

$$
\begin{aligned}
k_{n} & =\max \left\{k: A^{(n)}[i] \in S, \text { for all } 0 \leq i \leq k\right\}, \\
l_{n} & =\max \left\{l: A^{(n)}\left[p_{n}-i\right] \in S, \text { for all } 1 \leq i \leq l\right\}
\end{aligned}
$$

We make an additional assumption that $k_{n}, l_{n} \rightarrow \infty$.
Now we define a bisequence $\omega \in S^{\mathbb{Z}}$ as follows: $\omega\left[k p_{n},(k+1) p_{n}-1\right]=A^{(n)}$ for each $n \geq 1$.

Let $X=\overline{O(\omega)}$ and let $T$ be the left shift. The dynamical system $(X, T)$ is called a Teoplitz flow if it is not-periodic.

Now we are in a position to define $n$-symbols. By a $n$-symbol we mean each block $B$ of the form $B=\omega\left[k p_{n},(k+1) p_{n}-1\right]$ for some $k \in \mathbb{Z}$, so each $n$-symbol coincides with the block $A^{(n)}$ at every position $i$ such that $A^{(n)}[i] \in S$ and the remaining positions $i$ (the empty positions in $A^{(n)}$ ) are filled in some way by the alphabet $S$. The set $V_{n}$ of all $n$-symbols $B_{v}^{(n)}$ is finite. Now we define bases of Kakuthani-Rokhlin partitions $\xi_{n}$ in the following way:

$$
D_{0, v}^{(n)}=\left\{x \in X: x\left[0, p_{n}-1\right]=B_{v}^{(n)}, v \in V_{n}\right\}
$$

The partition $\xi_{n}$ consist of $\left|V_{n}\right| T$-towers

$$
\xi_{v}^{(n)}=\left\{T^{i}\left(D_{0, v}^{(n)}\right), i=0, \ldots, p_{n}-1\right\}, \quad v \in V_{n}
$$

Let us note that

$$
\operatorname{diam}\left(\bigcup_{v \in V_{n}} D_{0, v}^{(n)}\right) \leq \max \left(\frac{1}{k_{n}}, \frac{1}{l_{n}}\right) \rightarrow 0
$$

hence (1.4) is satisfied, so we have

$$
\left.K^{0}(X, T)=\underset{\longrightarrow}{\lim \left\{\mathbb{Z}^{V_{n}}\right.} \xrightarrow{F_{n}} \mathbb{Z}^{V_{n+1}}\right\} .
$$

The homomorphism $F_{n}$ is given by the matrix $B=\left[b_{v w}\right], w \in V_{n}, v \in V_{n+1}$, where $b_{v w}$ is the number of the appearance of $n$-symbols $B_{w}^{(n)}$ in the $(n+1)$ symbol $B_{v}^{(n+1)}$.

Take $S=\mathbb{Z}_{2}, \lambda_{n}=5$ and let $A^{(1)}=01-10$. For $n \geq 2$ we define blocks $A^{(n)}$ with $\left|A^{(n)}\right|=5^{n}$ in such a way that $A^{(n)}$ has the only hole in its middle. Let $A_{i}^{(n)},(i=0$ or 1$)$ be the block $A^{(n)}$ filled by $i$ in the middle. We define the block $A^{(n+1)}=A_{0}^{(n)} A_{1}^{(n)} A^{(n)} A_{1}^{(n)} A_{0}^{(n)}$. In this case, we have only two $n$-symbols: $A_{0}^{(n)}$ and $A_{1}^{(n)}$, and $V_{n}=\left\{A_{0}^{(n)}, A_{1}^{(n)}\right\}$. Moreover, $A_{0}^{(n+1)}=A_{0}^{(n)} A_{1}^{(n)} A_{0}^{(n)} A_{1}^{(n)} A_{0}^{(n)}$, $A_{1}^{(n+1)}=A_{0}^{(n)} A_{1}^{(n)} A_{1}^{(n)} A_{1}^{(n)} A_{0}^{(n)}$. Thus, the homomorphisms $F_{n}(=F)$ are given by the matrix

$$
\left.\begin{array}{l}
A_{0}^{(n+1)} \\
A_{1}^{(n+1)}
\end{array} \begin{array}{cc}
A_{0}^{(n)} & A_{1}^{(n)} \\
3 & 2 \\
2 & 3
\end{array}\right] .
$$

The unique $T$-invariant measure $\mu$ is given by $\mu\left(A_{0}^{(n)}\right)=1 /\left(2 \cdot 5^{n}\right)=\mu\left(A_{1}^{(n)}\right)$, $p_{n}=5^{n}, n=1,2, \ldots$ Because $\operatorname{det}(F)=5$, then

$$
\begin{aligned}
K^{0}(X, T) & =\bigcup_{n=0}^{\infty} F^{-n}\left(\mathbb{Z}^{2}\right), \\
\operatorname{Inf}(X, T) & =\left\{\langle x, y\rangle \in \mathbb{Z}^{2}, x+y=0\right\}, \\
K^{0}(X, T)^{+} & =\bigcup_{n=0}^{\infty} F^{-n}\left(\mathbb{Z}_{+}^{2}\right)=\left\{\langle x, y\rangle \in K^{0}(X, T), x+y \geq 0\right\}
\end{aligned}
$$

(see algorithm (TA), Stage I).
There are Teoplitz flows defined by a sequence of blocks $A^{(n)}$ not satisfying the condition $\min \left(k_{n}, l_{n}\right) \rightarrow \infty$. An example of such flows are Teoplitz-Morse flows. Consider sequence of blocks $a_{n}$ such that $a_{n}[i] \in S, i=0, \ldots, \lambda_{n-2}$ and $a_{n}\left[\lambda_{n}-1\right]=$ "-" and each element $s \in S$ appears in every $a_{n}$. Define inductively a sequence of blocks $\left(A^{(n)}\right)_{n \geq 0}$ as follows:

$$
\begin{aligned}
A^{(0)} & =a_{0}, \\
A^{(n+1)} & \left.=A^{(n)} \xlongequal[{a_{n+1}[0}]\right]{a^{(n)}} A^{\left(a_{n+1}[1]\right.} \ldots A^{(n)} \underline{a_{n+1}[\lambda-2]} A_{n}-,
\end{aligned}
$$

$n \geq 0, \lambda=\lambda_{n+1}$. Thus, $A^{(n+1)}$ is obtained as the concatenation of $\lambda_{n+1}$ copies of $A^{(n)}$ with holes filled by the successive elements of $a_{n+1}$ except of the latest hole.

Define a bisequence $\omega$ over $S \cup\{-\}$ as $\omega\left[k p_{n},(k+1) p_{n}-1\right]=A^{(n)}$ for every $k \in \mathbb{Z}$ and $n \geq 0$. The sequence $\omega$ has all positions filled by symbols from $S$ except for the position " $-1 ", \omega[-1]="-"$. We will write $\omega=a_{0} * a_{1} * \ldots$

Now let $X \subset S^{\mathbb{Z}}$ be the closure of $T$-orbit of $\omega$. We get a topological flow $(X, T)$ which is called a Teoplitz-Morse flow. We define the sequence of Kakuthani-Rokhlin partitions $\left\{\xi_{n}\right\}$. As the bases of the towers we take sets

$$
D_{0, g h}^{(n)}=\left\{x \in X: x\left[-p_{n}, p_{n}-1\right]=A^{(n)} \underline{g} A^{(n)} \underline{h}\right\} .
$$

Let $V_{n} \subset S \times S$ be the set of all pairs $g h \in S \times S$ that appear in the sequence $\omega_{n+1}=a_{n+1} * a_{n+2} * \ldots$ Then $V_{n}$ is the set of the towers of the partition $\xi_{n}$. It is easy to see that $\operatorname{diam}\left(\bigcup_{(g h) \in V_{n}} D_{0, g h}^{(n)}\right)=1 / 2$, so (1.4) is not satisfied. Thus we apply the algorithm (TA).

In this case, homomorphisms $F_{n}$ are given by matrix

$$
B_{n}=\left[b_{g h u v}\right]_{g h \in V_{n+1}, u v \in V_{n}}
$$

where $b_{g h u v}$ equals the number of the appearance of $u v$ in the block $g a_{n+1} h$.
Consider the following example: $S=\{0,1\}, a_{2 k}=1-, a_{2 k+1}=0-$, for $k \geq 0$. Then,

$$
\begin{aligned}
\omega_{2 k} & =a_{0} * a_{1} * \ldots=101110101011101110 \ldots, \\
\omega_{2 k+1} & =a_{1} * a_{2} * \ldots=010001 \ldots
\end{aligned}
$$

We find that $V_{2 k}=\{01,10,00\}$ and $V_{2 k+1}=\{01,10,11\}$. Thus, homomorphisms $F_{n}$ are given by the matrices:

|  | $V_{2 k}$ | 00 | 01 | 10 |
| :---: | :---: | :---: | :---: | :---: | | $V_{2 k}$ |
| :--- |
| $V_{2 k+1}$ |
| 01 |
| 10 |
| 11 |\(\quad\left[\begin{array}{lll}1 \& 1 \& 0 <br>

1 \& 0 \& 1 <br>

0 \& 1 \& 1\end{array}\right] \quad\)| $V_{2 k+1}$ |
| :--- |
| 00 |
| 01 |
| 10 |\(\quad\left[\begin{array}{lll}1 \& 10 \& 11 <br>

1 \& 0 \& 1 <br>
0 \& 1 \& 1\end{array}\right]\).

Define $J_{g}=\left\{g h: g h \in V_{n}\right\}, g \in\{0,1\}$, then the partitions $\alpha_{n}=\left\{J_{0}, J_{1}\right\}$. The graphs $\left(\alpha_{n}, V_{n}\right)$ are presented in Figure 4.1.

We choose spanning trees $\left(\alpha_{n}, E_{n}\right), E_{n}=\{01\}$ in both cases (Figure 4.1) and calculate the homomorphisms $I_{n}$. We have

$$
\begin{gathered}
I_{2 k}\left\langle x_{00}, x_{01}, x_{10}\right\rangle=\langle\underbrace{x_{00}}_{y_{00}}, \underbrace{x_{01}+x_{10}}_{y_{10}}\rangle, \\
I_{2 k+1}\left\langle x_{01}, x_{10}, x_{11}\right\rangle=\langle\underbrace{x_{01}+x_{10}}_{y_{10}}, \underbrace{x_{11}}_{y_{11}}\rangle .
\end{gathered}
$$

Now we calculate the homomorphisms $\widehat{G}=\widehat{G}_{n}$. They are given by the matrices:

$$
\left.\begin{array}{c}
00 \\
10 \\
11
\end{array}\left[\begin{array}{cc}
2 & 1 \\
0 & 1
\end{array}\right] \quad \begin{array}{cc}
10 & 11 \\
00
\end{array} \begin{array}{cc}
1 & 0 \\
10 \\
1 & 2
\end{array}\right] .
$$

It is convenient to consider the sequence

$$
\mathbb{Z}^{2} \xrightarrow{\widehat{G}_{n}^{2}} \mathbb{Z}^{2} \xrightarrow{\widehat{G}_{n}^{2}} \mathbb{Z}^{2} \xrightarrow{\widehat{G}_{n}^{2}} \cdots
$$



Figure 4.1
instead of the sequence (3.6). The homomorphisms $\widehat{G}_{n}^{2}$ are given by the matrix $F=\left[\begin{array}{ll}3 & 2 \\ 1 & 2\end{array}\right]$. Thus, we have

$$
K^{0}(X, T)=\bigcup_{n=0}^{\infty} F^{-n}\left(\mathbb{Z}^{2}\right)
$$

The unique invariant measure is given by $\mu\left(D_{0, g h}^{(n)}\right)=1 /\left(3 \cdot 2^{n}\right)$ for $(g h) \in V_{n}$, $n=1,2, \ldots$ Thus,

$$
\begin{aligned}
\mathcal{N}_{2 k} & =\left\{\left\langle x_{00}, x_{01}, x_{10}\right\rangle \in \mathbb{Z}^{3}: x_{00}+x_{01}+x_{10}=0\right\}, \\
\mathcal{N}_{2 k+1} & =\left\{\left\langle x_{01}, x_{10}, x_{11}\right\rangle \in \mathbb{Z}^{3}: x_{01}+x_{10}+x_{11}=0\right\} .
\end{aligned}
$$

Then

$$
\begin{aligned}
I_{2 k}\left(\mathcal{N}_{2 k}\right) & =\left\{\left\langle y_{00}, y_{10}\right\rangle \in Z^{2}: y_{00}+y_{10}=0\right\}, \\
I_{2 k+1}\left(\mathcal{N}_{2 k+1}\right) & =\left\{\left\langle y_{10}, y_{11}\right\rangle \in \mathbb{Z}^{2}: y_{10}+y_{11}=0\right\}
\end{aligned}
$$

and

$$
\operatorname{Inf}(X, T)=\left\{\langle x, y\rangle \in \mathbb{Z}^{2}: x+y=0\right\} \subset K^{0}(X, T) .
$$

We have also

$$
K^{0}(X, T)^{+}=\bigcup_{n=0}^{\infty} F^{-n}\left(\mathbb{Z}_{+}^{2}\right)=\left\{\langle x, y\rangle \in K^{0}(X, T): x+y \geq 0\right\} .
$$

4.2. Morse flow. Let $G$ be a nontrivial finite abelian group. Let $B, C$ be blocks over $G,\left(|B|=\lambda_{B},|C|=\lambda_{C}\right), g \in G$. Then, $B+g$ denotes the block $\left(B[0]+g, B[1]+g, \ldots, B\left[\lambda_{B}-1\right]+g\right)$ and $B \times C$ is the block defined as the concatenation $(B+C[0])(B+C[1]) \ldots\left(B+C\left[\lambda_{C}\right]\right)$.

Now take the sequence of blocks $a_{n}$ over $G$, such that $a_{n}$ contains every symbol from $G$ and $a[0]=0$ for $n=0,1, \ldots$ and set $\omega=a_{0} \times a_{1} \times \ldots$ The one-sided sequence $\omega$ is called a generalized Morse sequence if it is not periodic.

Let $X=\overline{O(\omega)}$ and $T$ be the shift. The dynamical system $(X, T)$ is called a Morse flow. We define also sequences $\omega_{n}=a_{n} \times a_{n+1} \times \ldots$ and blocks $B^{(n)}=$ $a_{0} \times \ldots \times a_{n},\left|B^{(n)}\right|=p_{n},\left(\omega=B^{(n)} \times \omega_{n}\right)$.

Now we define the bases of Kakuthani-Rokhlin partitions $\xi_{n}$ in the following way:
$D_{0, v g h}^{(n)}=\left\{x \in X: x\left[-p_{n}, 2 p_{n}-1\right]=\left(B^{(n)}+v\right)\left(B^{(n)}+g\right)\left(B^{(n)}+h\right)\right\}, \quad v, g, h \in G$.
Then $V_{n}$ is the set of all triples $v g h$ that appear in the sequence $\omega_{n+1}$. The partition $\xi_{n}$ consists of $\left|V_{n}\right| T$-towers $\xi_{v g h}^{(n)}=\left\{T^{i}\left(D_{0, v g h}^{(n)}\right): i=0, \ldots, p_{n}-1\right\}$, $v g h \in V_{n}$.

The homomorphism $F_{n}$ is given by the matrix $B=\left[b_{u w}\right], v^{\prime} g^{\prime} h^{\prime}=w \in V_{n}$, $v g h=u \in V_{n+1}$, where $b_{u w}$ is the number of appearance of the triple $v^{\prime} g^{\prime} h^{\prime}$ in the block

$$
(a[\lambda-1]+v)(a+g) h=(a[\lambda-1]+v), g,(a[1]+g), \ldots,(a[\lambda-1]+g), h,
$$

where $a=a_{n+1}, \lambda=\lambda_{n+1}$.
The partition $\alpha_{n}$ consists of sets $J_{g h}$, where $g h$ is a pair of elements of $G$ such, that a triple $(g h v) \in V_{n}$ for some $v \in G$ and $J_{g h}=\left\{g h v \in V_{n}\right\}$.

Let $G=\mathbb{Z}_{2}, a_{n}=a=01$. Then

$$
\omega_{n}=\omega=01101001100101101001011001101001 \ldots
$$

and $V_{n}=\{001,010,011,100,101,110\}$.
To find the homomorphisms $F_{n}$, we must know triples $v^{\prime} g^{\prime} h^{\prime}=w \in V_{n}$ appearing in the block $(v+1)(a+g) h=(v+1) g(g+1) h, v, g, h \in \mathbb{Z}_{2}$. We have $\xi_{v g h}^{(n+1)}=\eta_{(v+1) g(g+1)}^{(n)} \cup \eta_{g(g+1) h}^{(n)}$. The homomorphism $F_{n}=F$ is given by the matrix:

| 001 |
| :--- |
| 010 |
| 011 |
| 100 |
| 101 |
| 110 |\(\left[\begin{array}{cccccc}001 \& 010 \& 011 \& 100 \& 101 \& 110 <br>

0 \& 0 \& 1 \& 0 \& 1 \& 0 <br>
0 \& 0 \& 0 \& 1 \& 0 \& 1 <br>
0 \& 0 \& 0 \& 0 \& 1 \& 1 <br>
1 \& 1 \& 0 \& 0 \& 0 \& 0 <br>
1 \& 0 \& 1 \& 0 \& 0 \& 0 <br>
0 \& 1 \& 0 \& 1 \& 0 \& 0\end{array}\right]\).


Figure 4.2
The Morse system is uniquely ergodic, the only measure $\mu$ is given by $\mu\left(D_{0, v g h}^{(n)}\right)=$ $1 /\left(3 \cdot 2^{n}\right), n=1,2, \ldots, v g h \in V_{n}$. The partition $\alpha_{n}$ has the following form $\alpha_{n}=\left\{J_{00}, J_{01}, J_{10}, J_{11}\right\}$. The graph $\left(\alpha_{n}, \widetilde{V_{n}}\right)$ is presented in Figure 4.2.

We select a spanning tree $\left(\alpha_{n}, E_{n}\right)$ with $E_{n}=\{100,101,110\}$ (see Figure 4.2). The homomorphisms $I_{n}=I$ are defined as follows:

$$
\begin{aligned}
& I_{n}\left\langle x_{001}, x_{010}, x_{011}, x_{100}, x_{101}, x_{110}\right\rangle \\
& \quad=\left\langle x_{001}+x_{100}-x_{101}, x_{010}+x_{101}, x_{011}+x_{110}+x_{101}\right\rangle=\left\langle y_{001}, y_{010}, y_{011}\right\rangle
\end{aligned}
$$

Hence the sequence of homomorphisms $\widehat{G}_{n}=\widehat{G}$ is defined by the matrix:

$$
\begin{aligned}
& 001 \\
& 010 \\
& 011
\end{aligned}\left[\begin{array}{ccc}
001 & 010 & 011 \\
0 & 1 & 0 \\
1 & 0 & 1 \\
1 & 1 & 1
\end{array}\right]
$$

Because $\operatorname{det}(\widehat{G})=0$ we apply the Stage II of the algorithm (TA). We have

$$
\widehat{G}\left(\mathbb{Z}^{3}\right)=\left\{\left\langle y_{001}, y_{010}, y_{011}\right\rangle \in \mathbb{Z}^{3}: y_{011}=y_{001}+y_{010}\right\} \stackrel{J_{n}}{\sim} \mathbb{Z}^{2}=\left\{\left\langle y_{001}, y_{010}\right\rangle\right\}
$$

The homomorphism $G^{\prime}{ }_{n}=G^{\prime}$ is given by the matrix:

$$
G^{\prime}=\begin{gathered}
001 \\
010
\end{gathered}\left[\begin{array}{cc}
001 & 010 \\
0 & 1 \\
2 & 1
\end{array}\right] .
$$

Because $\operatorname{det}\left(G_{n}^{\prime}\right)=-2$ thus $K^{0}(X, T) \simeq \bigcup_{n=0}^{\infty}\left(G^{\prime-n}\right)\left(\mathbb{Z}^{2}\right)$.
Next we have

$$
\mathcal{N}_{n}=\left\{\bar{x} \in \mathbb{Z}^{6}: x_{001}+x_{010}+x_{011}+x_{100}+x_{101}+x_{110}=0\right\}
$$

and

$$
\operatorname{Inf}(n)=I_{n}\left(\mathcal{N}_{n}\right)=\left\{\left\langle y_{001}, y_{010}, y_{011}\right\rangle \in \mathbb{Z}^{3}: y_{001}+y_{010}+y_{011}=0\right\}
$$

Moreover,

$$
J_{n}^{-1}(\operatorname{Inf}(n))=\left\{\bar{y} \in \mathbb{Z}^{2}: y_{001}+y_{010}=0\right\} .
$$

Finally

$$
\operatorname{Inf}(X, T) \simeq\left\{\left\langle y_{001}, y_{010}\right\rangle \in \mathbb{Z}^{2}: y_{001}+y_{010}=0\right\} \simeq \mathbb{Z}
$$

To describe the cone $K^{0}(X, T)^{+}$we find

$$
\begin{array}{ll}
I_{n}\left(e_{100}\right)=\widehat{e}_{001}, & I_{n}\left(e_{101}\right)=\langle-1,1,1\rangle \\
I_{n}\left(e_{110}\right)=\widehat{e}_{011}, & I_{n}\left(e_{v g h}\right)=\widehat{e}_{v g h}
\end{array}
$$

$(v g h) \in V_{n} \backslash E_{n}$. Then $Z_{+}^{(n)}=\left\{\mathbb{Z}_{+}^{3}+a\langle-1,1,1\rangle, a \in \mathbb{Z}_{+}\right\}$for every $n \geq 1$. Next we have

$$
\begin{aligned}
Z_{+}^{(n)^{\prime}} & =J_{n}^{-1}\left(Z_{+}^{(n)}\right) \\
& =\left\{J_{n}^{-1}\left(\mathbb{Z}_{+}^{3}\right)+a J_{n}^{-1}(\langle-1,1,1\rangle), a \in \mathbb{Z}_{+}\right\}=\left\{\mathbb{Z}_{+}^{2}+a\langle-1,1\rangle, a \in \mathbb{Z}_{+}\right\}
\end{aligned}
$$

Then

$$
K^{0}(X, T)^{+} \simeq \bigcup_{n=0}^{\infty} G^{\prime-n}\left(Z_{+}^{(n)^{\prime}}\right)=\left\{\langle x, y\rangle \in K^{0}(X, T): x+y \geq 0\right\}
$$

4.3. Rudin-Shapiro flow. The Rudin-Shapiro flow $(X, T)$ is a symbolic topological flow, where $X=\overline{O(\omega)} \subset\{0,1\}^{\mathbb{Z}}, T$ is the shift and $\omega$ is the RudinShapiro sequence. To define the sequence $\omega$, we consider the binary expansion $n=\sum_{i=0}^{k_{n}} 2^{i} \cdot \varepsilon_{i}, \varepsilon_{i}=0,1, \varepsilon_{k_{n}}=1$ of every positive integer $n$. Then, we compute a sequence $\{a[n]\}_{n=0}^{\infty}$, where $a[n]=$ the number of the appearance of the pair 11 in the block $\varepsilon_{0} \ldots \varepsilon_{k_{n}}$ for $n \geq 1$ and $a[0]=0$. The sequence $\omega[n]$ is defined as

$$
\omega[n]= \begin{cases}1 & \text { if } a_{n} \text { is odd } \\ 0 & \text { if } a_{n} \text { is even }\end{cases}
$$

Then $\omega=0001001000011101 \ldots$ The sequence $\omega$ is determined also by a sequence of blocks $A_{0}^{(n)}, A_{1}^{(n)}$ over $\{0,1\}=\mathbb{Z}_{2}, n=0,1, \ldots$, such that $A_{0}^{(0)}=A_{1}^{(0)}=0$ and $A_{0}^{(n+1)}=A_{0}^{(n)} A_{1}^{(n)}, A_{1}^{(n+1)}=A_{0}^{(n)}\left(A_{1}^{(n)}\right)^{1}$, where $B^{0}=B=B+0$ and $B^{1}=B+1$ in $\mathbb{Z}_{2}\left(B^{1}\right.$ is called also the mirror of the block $\left.B\right)$. Then,

$$
\left|A_{0}^{(n)}\right|=\left|A_{1}^{(n)}\right|=2^{n} \quad \text { and } \quad \omega\left[0,2^{n+1}-1\right]=A_{0}^{(n)} A_{1}^{(n)}
$$

for every $n \geq 0$. The blocks $A_{0}^{(n)}, A_{1}^{(n)}$ define partitions $\xi^{(n)}, n \geq 0$, on $T$-towers $\xi_{\text {ghuv }}^{(n)}=\left\{T^{i}\left(D_{\text {ghuv }}^{(n)}\right), i=0, \ldots, 2^{n+1}-1, g, h, u, v \in \mathbb{Z}_{2}\right\}$, where

$$
D_{\text {ghuv }}^{(n)}=\left\{x \in X: x\left[-2^{n}, 3 \cdot 2^{n}-1\right]=\left(A_{1}^{(n)}\right)^{g}\left(A_{0}^{(n)}\right)^{h}\left(A_{1}^{(n)}\right)^{u}\left(A_{0}^{(n)}\right)^{v}\right\}
$$

Then $V_{n}=\mathbb{Z}_{2}^{4}$ and $\mathbb{Z}^{V_{n}}=\mathbb{Z}^{16}$.
To find a matrix $F_{n}: \mathbb{Z}^{16} \rightarrow \mathbb{Z}^{16}$ we remark that

$$
\xi_{g h u v}^{(n+1)}=\eta_{g+1, h h u}^{(n)} \cup \eta_{h u, u+1, v}^{(n)} \quad \text { for every } g h u v \in \mathbb{Z}^{4}
$$

We have $F_{n}=F$, where $F$ has the following form:

|  | 0000 | 0001 | 0010 | 0011 | 0100 | 0101 | 0110 | 0111 | 1000 | 1001 | 1010 | 1011 | 1100 | 1101 | 1110 | 1111 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0000 | [ 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0001 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0010 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0011 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0100 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 |
| 0101 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 |
| 0110 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 |
| 0111 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 |
| 1000 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1001 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1010 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1011 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1100 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
| 1101 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
| 1110 | 0 | 0 | 0 | 0 |  | 0 |  |  |  |  | 0 | 0 | 1 | 0 | 0 | 0 |
| 1111 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |

The partition $\alpha_{n}$ of $V_{n}$ has a form $\alpha_{n}=\left\{J_{g h}, g, h \in \mathbb{Z}_{2}\right\}$, where $J_{g h}=$ $\left\{g h u v \in V_{n}\right\}$. The graph $\left(\alpha_{n}, \widetilde{V}_{n}\right)$ is presented in Figure 4.3.


Figure 4.3
To simplify notations, we will write sometimes 0 instead of 0000,1 instead of $0001, \ldots, 15$ instead of 1111 . In particular $x_{0000}:=x_{0}, y_{0000}:=y_{0}, \ldots$, $x_{1111}:=x_{15}, y_{1111}:=y_{15}$.

As a spanning tree we take $E_{n}=E=\{1,7,14\}$ (see Figure 4.3). Then by (3.2) we have $I\left\langle x_{0}, \ldots, x_{15}\right\rangle=\left\langle y_{0}, \ldots, y_{15}\right\rangle, I_{n}=I$, where

$$
\begin{aligned}
& y_{0}=x_{0}, \\
& y_{9}=x_{9}+x_{7}+x_{14}, \\
& y_{2}=x_{2}-x_{1}-x_{7}-x_{14}, \\
& y_{10}=x_{10}, \\
& y_{3}=x_{3}-x_{1}-x_{7} \text {, } \\
& y_{11}=x_{11}+x_{14} \text {, } \\
& y_{4}=x_{4}+x_{1} \text {, } \\
& y_{12}=x_{12}+x_{1}+x_{7}, \\
& y_{5}=x_{5}, \quad y_{13}=x_{13}+x_{7}, \\
& y_{6}=x_{6}-x_{7}-x_{14}, \\
& y_{15}=x_{15} \text {. } \\
& y_{8}=x_{8}+x_{1}+x_{7}+x_{14},
\end{aligned}
$$

Next, we compute the homomorphisms $\widehat{G}_{n}$ by (3.4) and (3.5). We have $\widehat{G}_{n}=\widehat{G}$ for every $n \geq 1$ and $\widehat{G}: \mathbb{Z}^{13} \rightarrow \mathbb{Z}^{13}$ is given by the following matrix $\widehat{G}$ (denoted by the same symbol).


Here $\operatorname{rank}(\widehat{G}))=9$, so we apply Stage II of the algorithm (TA). Moreover,
(4.1) $\operatorname{Im}(\widehat{G})=\left\{\bar{y} \in \mathbb{Z}^{13}: y_{9}=-y_{0}+y_{8}, y_{11}=-y_{2}+y_{3}+y_{10}\right.$,

$$
\left.y_{13}=-y_{4}+y_{5}+y_{12}, y_{15}=-y_{6}\right\} .
$$

Thus $\operatorname{Im}(\widehat{G}) \simeq \mathbb{Z}^{9}=\left\{\left\langle y_{0}, y_{2}, y_{3}, y_{4}, y_{5}, y_{6}, y_{8}, y_{10}, y_{12}\right\rangle\right\}$ (we omit the coordinates $\left.y_{9}, y_{11}, y_{13}, y_{15}\right)$, i.e. $V_{n}^{\prime}=\{0,2,3,4,5,6,8,10,12\}$ and $J_{n}: \mathbb{Z}^{9} \rightarrow \operatorname{Im}(\widehat{G})$ (see Step 6 of the algorithm (TA)) is given by $J_{n}\left(e_{i}\right)=e_{i}, i \in V_{n}^{\prime}$.

The homomorphism $\widehat{G}: \operatorname{Im}(\widehat{G}) \rightarrow \operatorname{Im}(\widehat{G})$ defines a homomorphism $G^{\prime}: \mathbb{Z}^{9} \rightarrow \mathbb{Z}^{9}$. The matrix $G^{\prime}$ is obtained from the matrix $G$ by eliminating $y_{9}, y_{11}, y_{13}, y_{15}$
using (4.1). Then, we get the following matrix $G^{\prime}$

$$
\begin{array}{r} 
\\
0 \\
2 \\
3 \\
4 \\
4 \\
5 \\
6 \\
8 \\
8 \\
10 \\
12
\end{array}\left[\begin{array}{rrrrrrrrr}
0 & 2 & 3 & 4 & 5 & 6 & 8 & 10 & 12 \\
0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
-1 & 0 & -1 & 2 & -1 & 1 & 0 & 0 & -2 \\
-1 & 0 & -1 & 1 & 0 & 1 & 0 & 0 & -1 \\
0 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 0 \\
0 & -1 & 1 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & -1 & 0 & 0 & 0 & -1 \\
1 & 1 & 1 & -1 & 1 & -1 & 1 & 0 & 2 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & -1 & 1 & 0 & 1 & 1 & 1
\end{array}\right] .
$$

We have $\operatorname{rank}\left(G^{\prime}\right)=5$ and

$$
\begin{aligned}
& \operatorname{Im}\left(G^{\prime}\right)=\left\{\bar{y} \in \mathbb{Z}^{9}: y_{5}=-y_{0}+y_{4}, y_{6}=y_{2}-y_{3}\right. \\
&\left.y_{10}=-y_{0}+y_{2}+y_{8}, y_{12}=-y_{2}+y_{3}+y_{4}\right\}
\end{aligned}
$$

Repeating the same procedure as above we get $G^{\prime \prime}: \mathbb{Z}^{5} \rightarrow \mathbb{Z}^{5}$ given by the matrix

$$
\begin{aligned}
& 0 \\
& 0 \\
& 2 \\
& 4 \\
& 8 \\
& 8
\end{aligned}\left[\begin{array}{rrrrr}
0 & 2 & 3 & 4 & 8 \\
0 & 1 & 0 & 0 & 1 \\
0 & 3 & -4 & -1 & 0 \\
-1 & 2 & -3 & 0 & 0 \\
-1 & 1 & 1 & 0 & 2 \\
0 & -2 & 4 & 2 & 1
\end{array}\right] .
$$

We have $\operatorname{rank}\left(G^{\prime \prime}\right)=4$ and $\operatorname{Im}\left(G^{\prime \prime}\right)=\left\{\bar{y} \in \mathbb{Z}^{5}: y_{8}=3 y_{0}-2 y_{2}+y_{3}-y_{4}\right\}$. Then, $\operatorname{Im}\left(G^{\prime \prime}\right) \simeq \mathbb{Z}^{4}$.

Consequently, we replace the homomorphism $G^{\prime \prime}: \operatorname{Im}\left(G^{\prime \prime}\right) \rightarrow \operatorname{Im}\left(G^{\prime \prime}\right)$ with the homomorphism $G^{\prime \prime \prime}: \mathbb{Z}^{4} \rightarrow \mathbb{Z}^{4}$. It is given by the matrix

$$
\begin{aligned}
& 0 \\
& 2 \\
& 3 \\
& 4
\end{aligned}\left[\begin{array}{rrrr}
0 & 2 & 3 & 4 \\
3 & -1 & 1 & -1 \\
0 & 3 & -4 & -1 \\
-1 & 2 & -3 & 0 \\
5 & -3 & 3 & -2
\end{array}\right] .
$$

We have $\operatorname{det}\left(G^{\prime \prime \prime}\right)=4$ and then $K^{0}(X, T) \simeq \bigcup_{n=0}^{\infty} G^{\prime \prime \prime}-n\left(\mathbb{Z}^{4}\right)$.
The unique $T$-invariant measure of $(X, T) \mu$ is given by $\mu\left(D_{v}^{(n)}\right)=1 / 2^{n+3}$ for every $n \geq 1$ and $v \in V_{n}$. Then $\mathcal{N}_{n}=\left\{\left\langle x_{v}\right\rangle \in \mathbb{Z}^{16}: \sum_{v \in V_{n}} x_{v}=0\right\}$.

It is not hard to remark that

$$
\operatorname{Inf}(n)=I_{n}\left(\mathcal{N}_{n}\right)=\left\{\left\langle y_{v}\right\rangle_{v \in V_{n} \backslash E_{n}} \in \mathbb{Z}^{13}: \sum_{v \in V_{n} \backslash E_{n}} y_{v}=0\right\} .
$$

To find $\operatorname{Inf}^{\prime}(n)$, we remark that $G(\operatorname{Inf}(n) \subset \operatorname{Inf}(n)$. Then, we have $G(\operatorname{Inf}(n))=$ $G\left(\mathbb{Z}^{13}\right) \cap \operatorname{Inf}(n)$. Therefore,

$$
\begin{aligned}
\operatorname{Inf}(n)^{\prime}= & \left(J_{n}^{-1} \circ G\right)(\operatorname{Inf}(n))=J_{n}^{-1}\left(G\left(\mathbb{Z}^{13}\right)\right) \cap J_{n}^{-1}(\operatorname{Inf}(n)) \\
= & \left\{\bar{y} \in \mathbb{Z}^{9}: \bar{y}\right. \text { satisfies the equation obtained from } \\
& \left.\sum_{v \in V_{n} \backslash E_{n}} y_{v}=0 \text { by using equations from (4.1) }\right\} \\
= & \left\{\bar{y} \in \mathbb{Z}^{9}: y_{3}+y_{5}+y_{8}+y_{10}+y_{12}=0\right\} .
\end{aligned}
$$

By the same arguments, we get

$$
\operatorname{Inf}^{\prime \prime}(n)=\left\{\bar{y} \in \mathbb{Z}^{5}: J(\bar{y}) \in \operatorname{Inf}^{\prime}(n)\right\}=\left\{\bar{y} \in \mathbb{Z}^{5}:-y_{0}+y_{3}+y_{4}+y_{8}=0\right\}
$$

Finally, $\operatorname{Inf}^{\prime \prime \prime}(n)=\left\{\bar{y} \in \mathbb{Z}^{4}: y_{0}-y_{2}+y_{3}=0\right\}$. We have $G^{\prime \prime \prime}\left(\operatorname{Inf}(n)^{\prime \prime \prime}\right) \subset \operatorname{Inf}(n)^{\prime \prime \prime}$.
Thus,

$$
\begin{aligned}
\operatorname{Inf}(X, T) & =\underset{\longrightarrow}{\lim }\left\{G: \operatorname{Inf}^{\prime \prime \prime}(n) \rightarrow \operatorname{Inf}^{\prime \prime \prime}(n+1)\right\} \\
& =\left\{\left\langle y_{0}, y_{2}, y_{3}, y_{4}\right\rangle \in K^{0}(X, T): y_{0}-y_{2}+y_{3}=0\right\} \subset K^{0}(X, T)
\end{aligned}
$$

To describe the cone $K^{0}(X, T)^{+}$we find that $I_{n}\left(e_{v}\right)=\widehat{e}_{v}, v \in V_{n} \backslash E_{n}$, and

$$
\begin{aligned}
& I_{n}\left(e_{0001}\right)=\langle 0,-1,-1,1,0,0,1,0,0,0,1,0,0\rangle, \\
& I_{n}\left(e_{0111}\right)=\langle 0,-1,-1,0,0,-1,1,1,0,0,1,1,0\rangle, \\
& I_{n}\left(e_{1110}\right)=\langle 0,-1,0,0,0,-1,1,1,0,1,0,0,0\rangle,
\end{aligned}
$$

in $\mathbb{Z}^{13}$. Thus,

$$
Z_{+}^{(n)}=\left\{\mathbb{Z}_{+}^{13}+a_{1} I_{n}\left(e_{0001}\right)+a_{2} I_{n}\left(e_{0111}\right)+a_{3} I_{n}\left(e_{1110}\right), a_{1}, a_{2}, a_{3} \in \mathbb{Z}_{+}\right\}=Z_{+}^{\prime}
$$

Let $Z_{+}^{(n)^{\prime \prime}}=Z_{+}^{\prime \prime}=\left(G^{\prime \prime} \circ G^{\prime} \circ G\right)\left(Z_{+}^{\prime}\right)$. Then

$$
K^{0}(X, T)^{+}=\bigcup_{n=0}^{\infty}\left(G^{\prime \prime \prime}\right)^{-n}\left(Z_{+}^{\prime \prime}\right)
$$

Of course

$$
K^{0}(X, T)^{+} \subset\left\{\left\langle y_{0}, y_{2}, y_{3}, y_{4}\right\rangle \in \bigcup_{n=0}^{\infty} G^{\prime \prime \prime-n}\left(\mathbb{Z}^{4}\right): y_{0}+y_{3} \geq y_{2}\right\}
$$

We show that

$$
\begin{equation*}
\bigcup_{n=0}^{\infty}\left(G^{\prime \prime \prime}\right)^{-n}\left(Z_{+}^{\prime \prime}\right)=\left\{\left\langle y_{0}, y_{2}, y_{3}, y_{4}\right\rangle \in K^{0}(X, T): y_{0}+y_{3} \geq y_{2}\right\} \tag{4.2}
\end{equation*}
$$

For $\bar{x} \in \mathbb{Z}^{4}$ let $L_{\bar{x}}^{+}$be a positive line defined by $\bar{x}$ i.e. $L_{\bar{x}}^{+}=\left\{\lambda \bar{x}, \lambda \in \mathbb{Z}_{+}\right\}$. Let us denote $\bar{w}_{i}=\left(G^{\prime \prime} \circ G^{\prime} \circ G \circ I_{n}\right)\left(\widehat{e}_{i}\right) \in \mathbb{Z}^{4}, \widehat{e}_{i} \in \mathbb{Z}^{16}, i=0, \ldots, 15$. Of course,
$L_{\bar{w}_{i}}^{+}$are elements of the cone $K^{0}(X, T)^{+}$. We need the vectors $\bar{w}_{0}, \bar{w}_{2}, \bar{w}_{5}$ and $\bar{w}_{6}$. By direct computations we find:

$$
\bar{w}_{0}=\langle 1,-1,-1,1\rangle, \quad \bar{w}_{2}=\langle 1,0,0,1\rangle, \quad \bar{w}_{5}=\langle 0,0,1,0\rangle, \quad \bar{w}_{6}=\langle 0,-2,-1,1\rangle .
$$

The matrix $G^{\prime \prime \prime}$ has four eigenvalues $\lambda_{1}=-1, \lambda_{2}=2, \lambda_{3}=\sqrt{2}, \lambda_{4}=-\sqrt{2}$, with the eigenvectors:

$$
\begin{aligned}
\bar{x}_{(-1)} & =\langle 0,1,1,0\rangle, & \bar{x}_{(2)} & =\langle 1,-2,-1,2\rangle, \\
\bar{x}_{(\sqrt{2})} & =\langle\sqrt{2}+1, \sqrt{2}+2,1, \sqrt{2}\rangle, & \bar{x}_{(-\sqrt{2})} & =\langle 1-\sqrt{2}, 2-\sqrt{2}, 1,-\sqrt{2}\rangle .
\end{aligned}
$$

The vectors $\bar{x}_{(-1)}, \bar{x}_{(\sqrt{2})}$ and $\bar{x}_{(-\sqrt{2})}$ form a basis of the subspace

$$
\Pi=\left\{\left\langle z_{0}, z_{2}, z_{3}, z_{4}\right\rangle: z_{0}+z_{3}=z_{2}\right\} \subset \mathbb{R}^{4} .
$$

Let $\Pi_{\text {int }}=\Pi \cap \mathbb{Z}^{4}$. For any $\bar{y}=\left\langle y_{0}, y_{2}, y_{3}, y_{4}\right\rangle \in \mathbb{Z}^{4}$, we have $\bar{y}=a \cdot \bar{x}_{(2)}+\bar{u}$, $\bar{u} \in \Pi$, where $a=\left(y_{0}+y_{3}-y_{2}\right) / 2$. In particular, we have $\bar{w}_{i}=\bar{x}_{(2)} / 2+\bar{u}_{i}$, $i=0,2,5,6$, where

$$
\begin{array}{ll}
\bar{u}_{0}=\left\langle\frac{1}{2}, 0,-\frac{1}{2}, 0\right\rangle, & \bar{u}_{2}=\left\langle\frac{1}{2}, 1, \frac{1}{2}, 0\right\rangle, \\
\bar{u}_{5}=\left\langle-\frac{1}{2}, 1, \frac{3}{2},-1\right\rangle, & \bar{u}_{6}=\left\langle-\frac{1}{2},-1,-\frac{1}{2}, 0\right\rangle .
\end{array}
$$

The subspace $\Pi$ is $G^{\prime \prime \prime}$-invariant and the map $G^{\prime \prime \prime}$ (in the coordinates $z_{0}, z_{3}$, $z_{4}$ of $\Pi$; we omit $z_{2}=z_{0}+z_{3}$ ) is given by the matrix:

$$
F=\begin{gathered}
0 \\
0 \\
3
\end{gathered}\left[\begin{array}{rrr}
0 & 3 & 4 \\
2 & 0 & -1 \\
1 & -1 & 0 \\
2 & 0 & -2
\end{array}\right]
$$

We find that

$$
F^{-1}=\left[\begin{array}{rrr}
1 & 0 & -\frac{1}{2} \\
1 & -1 & -\frac{1}{2} \\
1 & 0 & -1
\end{array}\right]
$$

By the induction we check that

$$
F^{-2 l}=\left[\begin{array}{ccc}
\frac{1}{2^{l}} & 0 & 0 \\
\frac{1}{2^{l}}-1 & 1 & 1-\frac{1}{2^{l}} \\
0 & 0 & \frac{1}{2^{l}}
\end{array}\right], \quad F^{-(2 l+1)}=\left[\begin{array}{ccc}
\frac{1}{2^{l}} & 0 & -\frac{1}{2^{l+1}} \\
1 & -1 & -\frac{1}{2^{l+1}}-1 \\
\frac{1}{2^{l}} & 0 & -\frac{1}{2^{l}}
\end{array}\right]
$$

for $l=0,1,2, \ldots$ We find:

$$
\begin{aligned}
F^{-2 l}\left(\bar{u}_{2}\right) & =\left\langle\frac{1}{2^{l+1}}, \frac{1}{2^{l+1}}, 0\right\rangle, & F^{-(2 l+1)}\left(\bar{u}_{2}\right) & =\left\langle\frac{1}{2^{l+1}}, 0, \frac{1}{2^{l+1}}\right\rangle, \\
F^{-(2 l+1)}\left(\bar{u}_{0}\right) & =\left\langle\frac{1}{2^{l+1}}, 1, \frac{1}{2^{l+1}}\right\rangle, & F^{-2 l}\left(\bar{u}_{6}\right) & =\left\langle-\frac{1}{2^{l+1}},-\frac{1}{2^{l+1}}, 0\right\rangle, \\
F^{-(2 l+1)}\left(\bar{u}_{6}\right) & =\left\langle-\frac{1}{2^{l+1}}, 0, \frac{-1}{2^{l+1}}\right\rangle, & F^{-(2 l+1)}\left(\bar{u}_{5}\right) & =\left\langle 0,-1,-\frac{1}{2^{l+1}} \frac{1}{2^{l+1}}\right\rangle,
\end{aligned}
$$

Then, we have

$$
\begin{aligned}
\left(G^{\prime \prime \prime}\right)^{-2 l}\left(\bar{w}_{2}\right) & =\frac{1}{2^{2 l+1}} \bar{x}_{2}+\left\langle\frac{1}{2^{l+1}}, \frac{1}{2^{l}}, \frac{1}{2^{l+1}}, 0\right\rangle, \\
\left(G^{\prime \prime \prime}\right)^{-2 l}\left(\bar{w}_{6}\right) & =\frac{1}{2^{2 l+1}} \bar{x}_{2}+\left\langle-\frac{1}{2^{l+1}},-\frac{1}{2^{l}},-\frac{1}{2^{l}}, 0\right\rangle, \\
\left(G^{\prime \prime \prime}\right)^{-(2 l+1)}\left(\bar{w}_{2}\right) & =\frac{1}{2^{2 l+2}} \bar{x}_{2}+\left\langle\frac{1}{2^{l+1}}, \frac{1}{2^{l+1}}, 0, \frac{1}{2^{l+1}}\right\rangle, \\
\left(G^{\prime \prime \prime}\right)^{-(2 l+1)}\left(\bar{w}_{6}\right) & =\frac{1}{2^{2 l+2}} \bar{x}_{2}+\left\langle-\frac{1}{2^{l+1}},-\frac{1}{2^{l+1}}, 0,-\frac{1}{2^{l+1}}\right\rangle, \\
\left(G^{\prime \prime \prime}\right)^{-(2 l+1)}\left(\bar{w}_{0}\right) & =\frac{1}{2^{2 l+2}} \bar{x}_{2}+\left\langle\frac{1}{2^{l+1}}, 1+\frac{1}{2^{l+1}}, 1, \frac{1}{2^{l+1}}\right\rangle, \\
\left(G^{\prime \prime \prime}\right)^{-(2 l+1)}\left(\bar{w}_{5}\right) & =\frac{1}{2^{2 l+2}} \bar{x}_{2}+\left\langle 0,-1-\frac{1}{2^{l+1}},-1-\frac{1}{2^{l+1}}, \frac{1}{2^{l+1}}\right\rangle .
\end{aligned}
$$

Further, we have

$$
\begin{aligned}
2^{l+1}\left(G^{\prime \prime \prime}\right)^{-2 l}\left(\bar{w}_{2}\right) & =\frac{1}{2^{l}} \bar{x}_{(2)}+\langle 1,2,1,0\rangle=\left(\bar{A}_{l}\right), \\
2^{l+1}\left(G^{\prime \prime \prime}\right)^{-2 l}\left(\bar{w}_{6}\right) & =\frac{1}{2^{l}} \bar{x}_{(2)}+\langle-1,-2,-1,0\rangle=\left(\bar{B}_{l}\right), \\
2^{l+1}\left(G^{\prime \prime \prime}\right)^{-(2 l+1)}\left(\bar{w}_{2}\right) & =\frac{1}{2^{l}} \bar{x}_{(2)}+\langle 1,1,0,1\rangle=\left(\bar{C}_{l}\right), \\
2^{l+1}\left(G^{\prime \prime \prime}\right)^{-(2 l+1)}\left(\bar{w}_{6}\right) & =\frac{1}{2^{l}} \bar{x}_{(2)}+\langle-1,-1,0,-1\rangle=\left(\bar{D}_{l}\right) .
\end{aligned}
$$

Of course $\bar{A}_{l}, \bar{B}_{l}, \bar{C}_{l}, \bar{D}_{l} \in \bigcup_{n=0}^{\infty}\left(G^{\prime \prime \prime}\right)^{-n}\left(Z_{+}^{\prime \prime}\right)$. Then,

$$
\begin{aligned}
\lim _{l} \bar{A}_{l} & =\langle 1,2,1,0\rangle, & \lim _{l} \bar{B}_{l} & =\langle-1,-2,-1,0\rangle, \\
\lim _{l} \bar{C}_{l} & =\langle 1,1,0,1\rangle, & \lim _{l} \bar{D}_{l} & =\langle-1,-1,0,-1\rangle
\end{aligned}
$$

are some elements of the cone $K^{0}(X, T)^{+}$. At the same time $\langle 0,1,1,0\rangle=$ $\lim _{l}\left(G^{\prime \prime \prime}\right)^{-(2 l+1)}\left(\bar{w}_{0}\right)$ and $\langle 0,-1,-1,0\rangle=\lim _{l}\left(G^{\prime \prime \prime}\right)^{-(2 l+1)}\left(\bar{w}_{5}\right)$ are also elements of $K^{0}(X, T)^{+}$. It follows from above that for any vector $\bar{y} \in \Pi_{\text {int }}$ the positive line $L_{\bar{y}}^{+}$is an element of $K^{0}(X, T)^{+}$. Then for any $\bar{y} \in \bigcup_{n=0}^{\infty}\left(G^{\prime \prime \prime}\right)^{-n}\left(\Pi_{\mathrm{int}}\right)=\{\bar{y} \in$ $\left.K^{0}(X, T), y_{0}+y_{3}-y_{2}=0\right\}$ the positive line $L_{\bar{y}}$ is an element of $K^{0}(X, T)^{+}$. This implies (4.2).
4.4. Skew product extensions. Let $(X, T)$ be a Cantor minimal system, $G$ a finite abelian group and $c: X \rightarrow G$ a continuous cocycle. Consider a minimal group extension $\left(X \times G, T_{c}\right)$, where $T_{c}(x, g)=(T(x), g+c(x))$. Assume that $\left\{\xi_{n}^{\prime}\right\}$, $\xi_{n}^{\prime}=\left\{T^{i}\left(D_{0, v}^{(n)}\right), i=0, \ldots, h(n, v)-1, v \in V_{n}\right\}$ is a sequence of KakuthaniRokhlin partitions of $(X, T)$ generating the topology. The clopen sets $T^{i}\left(D_{0, v}^{(n)}\right) \times$ $g, g \in G$, form partitions $\xi_{n}$ of $(X \times G)$ generating the topology of $X \times G$. Because $c$ is continuous we can choose $n_{o}$ such that $c=$ const on every $T^{i}\left(D_{0, v}^{(n)}\right)$, $i=0, \ldots, h(n, v)-1, v \in V_{n}$. Without loss of generality we assume that this property holds for every $n=1,2, \ldots$ Then the partitions $\xi_{n}, n \geq 1$, are Kakuthani-Rokhlin partitions of ( $X \times G, T_{c}$ ) consisting of $T_{c}$-towers

$$
\xi_{n}(v, g)=\left\{T_{c}^{i}\left(D_{0, v}^{(n)} \times g\right), i=0, \ldots, h(n, v)-1\right\}, \quad v \in V_{n}, g \in G
$$

Let $\left(\alpha_{n}, \widetilde{V}_{n}\right)$ be the oriented graphs determined by $\xi_{n}$ (see Section 2). In addition, we assume that

$$
\begin{equation*}
\max _{J \in \alpha_{n}}\left(\operatorname{diam} \bigcup_{v \in J} D_{0, v}^{(n)}\right) \rightarrow 0 \tag{4.3}
\end{equation*}
$$

This implies that

$$
\begin{equation*}
\max _{J \in \alpha_{n}}\left(\operatorname{diam} \bigcup_{v \in J} T^{-1}\left(D_{0, v}^{(n)}\right)\right) \rightarrow 0 \tag{4.4}
\end{equation*}
$$

The conditions (4.3) and (4.4) imply that the sets $T_{c}^{-1}\left(\bigcup_{v \in J} D_{0, v}^{(n)} \times g\right)$ are $\xi_{n}$-sets for every $J \in \alpha_{n}$ and $g \in G$. Thus, the sets

$$
\xi_{n}(J, g)=\bigcup_{v \in J} \xi_{n}(v, g), \quad J \in \alpha_{n}
$$

form a partition of the set $V_{n} \times G$ and it is the smallest partition having this property. Thus, the sets $\xi_{n}(J, g), J \in \alpha_{n}, g \in G$ form a partition of $V_{n} \times G$ defined in the Section 2. Denote it by $\alpha_{n} \times G$. We have an oriented graph $\left(\alpha_{n} \times G, \widetilde{V_{n} \times G}\right)$. For $v \in V_{n}$ let

$$
d(v)=\sum_{i=0}^{h(v)-1} c\left(T^{i} x\right), \quad h(v)=h(n, v)
$$

where $x \in D_{v, 0}^{(n)}$. The arrows of $\left(\alpha_{n} \times G, V_{n} \times G\right)$ are characterized by the following property:
(4.5) Let $(J, g) \in \alpha_{n} \times G$ and $\left(J^{\prime}, h\right) \in \alpha_{n} \times G$. Then, there exists an arrow $v \times g$ joining the vertices $(J, g)$ and $\left(J^{\prime}, h\right)$ if and only if $v=\left(J, J^{\prime}\right)$ and $h=$ $g+d(v)$.

We will construct a spanning tree $\left(\alpha_{n} \times G, E_{n}^{\prime}\right)$ of the non-oriented graph $\left(\alpha_{n} \times G, \widetilde{V_{n} \times G}\right)$ using a modification of the Kruskal algorithm (see [2]). To do
this, take a spanning tree $\left(\alpha_{n}, E\right), E=E_{n}$ of $\left(\alpha_{n}, \widetilde{\widetilde{V}}_{n}\right)$ Let $P_{v}, v \in V_{n} \backslash E$, be the cycle of $\left(\alpha_{n}, \widetilde{\widetilde{V}}_{n}\right)$ defined in Section 3. Set

$$
\begin{equation*}
d\left(P_{v}\right)=\sum_{v^{\prime} \in P_{v}^{+}} d\left(v^{\prime}\right)-\sum_{v^{\prime} \in P_{v}^{-}} d\left(v^{\prime}\right) \tag{4.6}
\end{equation*}
$$

Let $P_{J J^{\prime}}, J, J^{\prime} \in \alpha_{n}$, be the unique path joining the vertices $J$ and $J^{\prime}$ inside $E$. Let

$$
\begin{equation*}
d\left(P_{J J^{\prime}}\right)=\sum_{v^{\prime} \in P_{J J^{\prime}}^{+}} d\left(v^{\prime}\right)-\sum_{v^{\prime} \in P_{J J^{\prime}}^{-}} d\left(v^{\prime}\right) \tag{4.7}
\end{equation*}
$$

where $P_{J J^{\prime}}^{+}$is the set of all $v^{\prime} \in P_{J J^{\prime}}$ having the same orientation as the direction from $J$ to $J^{\prime}$ and $P_{J J^{\prime}}^{-}=P_{J J^{\prime}} \backslash P_{J J^{\prime}}^{+}$. In the sequel we need two facts:
(F1) The minimality of $\left(X \times G, T_{c}\right)$ implies that the elements $d\left(P_{v}\right), v \in V_{n} \backslash E$ generate the group $G$ for every $n \geq 1$ (this fact is easy to prove).
(F2) A connected acyclic subgraph $(\alpha, E)$ of a connected not oriented graph $(\alpha, V)$ is a spanning tree if and only if $|E|=|\alpha|-1$ (see [2]).
4.4.1. Construction of a spanning tree of the graph $\left(\alpha_{n} \times G, \widetilde{V_{n} \times G}\right)$. Using (F1) we choose $v_{1}, \ldots, v_{s} \in V_{n} \backslash E$ such that

$$
\begin{aligned}
G=H_{1}=G\left(a_{1}, \ldots, a_{s}\right) & \supsetneq H_{2}
\end{aligned}=G\left(a_{2}, \ldots, a_{s}\right) \supsetneq \ldots, ~\left(H_{s}=G\left(a_{s}\right) \supsetneq H_{s+1}=\{0\}, ~ \$\right.
$$

where $a_{i}=d\left(P_{v_{i}}\right)$.
Let $r_{i}=\operatorname{rank} a_{i}$ in $H_{i} / H_{i+1}, i=1, \ldots, s$. Of course $r_{i}>1$. Then, every $h \in G$ has the unique decomposition $h=\tau_{1} \cdot a_{1}+\ldots+\tau_{s} \cdot a_{s}, 0 \leq \tau_{i} \leq r_{i}-1$. Inductively, we construct a family of connected, acyclic subgraphs $S_{g}^{(m)}(J)=$ $\left(\alpha_{g}^{(m)}(J), E_{g}^{(m)}(J)\right), g \in H_{m}, J \in \alpha_{n}, m=1, \ldots, s$, satisfying

$$
\left\{\begin{array}{l}
\text { (a) } \alpha_{g}^{(m)}(J) \cap \alpha_{h}^{(m)}(J)=\emptyset, g \neq h, g, h \in H_{m}, \\
\text { (b) } \bigcup_{g \in H_{m}} \alpha_{g}^{(m)}=\alpha_{n} \times G, \text { for every } J \in \alpha_{n}, \\
\text { (c) } \xi_{n}(J, h) \in \alpha_{g}^{(m)}(J) \Leftrightarrow h=\tau_{1} \cdot a_{1}+\ldots+\tau_{m-1} \cdot a_{m-1}+g,  \tag{4.8}\\
\\
h \in G, g \in H_{m}, \\
\text { (d) } \alpha_{g}^{(m)}(J)=\alpha_{g+d_{m}}^{(m)}\left(J^{\prime}\right), E_{g}^{(m)}(J)=E_{g+d_{m}}^{(m)}\left(J^{\prime}\right), g \in H_{m},
\end{array}\right.
$$

where $d_{m} \in H_{m}$ is chosen from the conditions $d_{1}=d\left(P_{J J^{\prime}}\right)$ and $d\left(P_{J J^{\prime}}\right)=$ $\tau_{1} \cdot a_{1}+\ldots+\tau_{m-1} \cdot a_{m-1}+d_{m}, m>1$.

Step 1. For $J \in \alpha_{n}$ and $g \in G$ set $\alpha_{g}^{(1)}(J)=\left\{\left(J^{\prime}, g+d\left(P_{J J^{\prime}}\right)\right), J^{\prime} \in \alpha_{n}\right\} \subset$ $\alpha_{n} \times G$, and $E_{g}^{(1)}(J)=\left\{\xi_{n}\left(v, g+d\left(P_{J J^{\prime}}\right)+d(v)\right):\left(J^{\prime}, J^{\prime \prime}\right)=v \in E\right\}$.

It is easy to see that $\alpha_{g}^{(1)}$ and $E_{g}^{(1)}$ satisfy (4.8). We define a family $S_{g}^{(1)}(J)$ of subgraphs of ( $\left.\alpha_{n} \times G, V_{n} \times G\right)$ as follows:

$$
S_{g}^{(1)}(J)=\left(\alpha_{g}^{(1)}(J), E_{g}^{(1)}(J)\right)
$$

The graphs $S_{g}^{(1)}(J)$ are connected and acyclic.
Step $m+1$. Assume that we have constructed a family $S_{g}^{(m)}(J), m<s+1$, $g \in H_{m}$, of subgraphs satisfying (4.8). For $g \in H_{m+1}$ and $J \in \alpha_{n}$ define

$$
\begin{aligned}
\alpha_{g}^{(m+1)}(J) & =\bigcup_{k=0}^{r_{m}-1} \alpha_{g+k \cdot a_{m}}^{(m)}(J), \\
E_{g}^{(m+1)}(J) & =\bigcup_{k=0}^{r_{m}-1} E_{g+k \cdot a_{m}}^{(m)}(J) \cup \bigcup_{k=0}^{r_{m}-2} \xi_{n}\left(v_{m}, g+k \cdot a_{m}\right), \\
S_{g}^{(m+1)}(J) & =\left(\alpha_{g}^{(m+1)}(J), E_{g}^{(m+1)}(J)\right) .
\end{aligned}
$$

Now we check that $\alpha^{(m+1)}$ and $E^{(m+1)}$ satisfy (4.8). Let $v_{m}=\left(J, J^{\prime}\right), J, J^{\prime} \in \alpha_{n}$. It follows from (4.5) that the arrow $\xi_{n}\left(v_{m}, g+k \cdot a_{m}\right), g \in H_{m+1}, 0 \leq k \leq r_{m}-2$, joins the vertices $\xi_{n}\left(J, g+k \cdot a_{m}\right)$ and $\xi_{n}\left(J^{\prime}, g+k \cdot a_{m}+d\left(v_{m}\right)\right)$. Of course $\xi_{n}\left(J, g+k \cdot a_{m}\right) \in \alpha_{g+k \cdot a_{m}}(J)$. We will check that $\xi_{n}\left(J^{\prime}, g+k \cdot a_{m}+d\left(v_{m}\right)\right) \in$ $\alpha_{g+(k+1) \cdot a_{m}}(J)$. We use the equality $d\left(v_{m}\right)-d\left(P_{J J^{\prime}}\right)=d\left(P_{v_{m}}\right)$. We have

$$
\begin{aligned}
& \xi_{n}\left(J^{\prime}, g+k \cdot a_{m}+d\left(v_{m}\right)\right)=\xi_{n}\left(J^{\prime}, g+(k+1) a_{m}+d\left(P_{J J^{\prime}}\right)\right) \\
& \stackrel{(4.8)(c)}{\in} \alpha_{g+(k+1) a_{m}+d_{m}}^{(m)}\left(J^{\prime}\right) \stackrel{(4.8)(d)}{=} \alpha_{g+(k+1) a_{m}}^{(m)}(J) .
\end{aligned}
$$

This means that the arrow $\xi_{n}\left(J, g+k \cdot a_{m}\right)$ joins the subgraphs $S_{g+k \cdot a_{m}}^{(m)}(J)$ and $S_{g+(k+1) a_{m}}^{(m)}(J), k=0, \ldots, r_{m}-2$.

Each $S_{g}^{(m+1)}(J), g \in H_{m+1}$ is an acyclic, connected subgraph of $\left(\alpha_{n} \times\right.$ $G, \overparen{\left.V_{n} \times G\right)}$. For any $J^{\prime \prime} \in \alpha_{n}$ we define $S_{g}^{(m+1)}\left(J^{\prime \prime}\right)$ by (4.8)(d). It is not hard to see that the family $\left\{S_{g}^{(m+1)}\left(J^{\prime \prime}\right)\right\}, g \in H_{m+1}$ satisfies the conditions (4.8) for every $J^{\prime \prime} \in \alpha_{n}$.
4.4.2. A spanning tree of $\left(\alpha_{n} \times G, \widetilde{\left.\widetilde{V_{n} \times G}\right)}\right.$. We finish the construction of the families $\left\{S_{g}^{(m)}(J)\right\}, g \in H_{m}, J \in \alpha_{n}$, when $m=s+1$. Then we have an acyclic, connected subgraph $S_{0}^{(s+1)}(J)$ of $\left(\alpha_{n} \times G, \widetilde{\widetilde{V_{n} \times G}}\right)$.

To prove that $S_{0}^{(s+1)}(J)$ is a spanning tree, we use (F2). Of course, $\left|E_{g}^{(1)}(J)\right|$ $=\left|\alpha_{n}\right|-1$. Assume that

$$
\left|E_{g+k \cdot a_{m}}^{(m)}(J)\right|=\left|\alpha_{g+k \cdot a_{m}}^{(m)}(J)\right|-1=\left|\alpha_{g}^{(m)}(J)\right|-1,
$$

for $g \in H_{m+1}, k=0, \ldots, r_{m}-1$. We have

$$
\left|E_{g}^{(m+1)}(J)\right|=\left|E_{g+k a_{m}}^{(m)}(J)\right| \cdot r_{m}+r_{m}-1=r_{m}\left|\alpha_{g}^{(m)}(J)\right|-1=\left|\alpha_{g}^{(m+1)}(J)\right|-1 .
$$

In this way it holds $\left|E_{g}^{(m)}(J)\right|=\left|\alpha_{g}^{(m)}(J)\right|-1$ for every $m=1, \ldots, s+1$ and $g \in H_{m}$. In particular

$$
\left|E_{g}^{(s+1)}(J)\right|=\left|\alpha_{g}^{(s+1)}(J)\right|-1=\left|\alpha_{n} \times G\right|-1 .
$$

Therefore, because of $(\mathrm{F} 2), S_{0}^{(s+1)}(J)=\left(\alpha_{n} \times G, E_{n}^{\prime}\right)$ is a spanning tree of $\left(\alpha_{n} \times G, V_{n} \times G\right)$.
4.5. A group extension of the Chacon flow. Consider a Chacon sequence $\omega$ over two symbols 0,1 (we replace the symbol " s " by " 1 ") treated as the elements of the group $\mathbb{Z}_{3}=\{0,1,2\}$. Define a cocycle $c: X=\overline{O(\omega)} \rightarrow \mathbb{Z}_{3}$ as follows: $c(x):=x[0], x \in X$. We have $V_{n}=\{00,01,10,11\}$ (see Subsection 3.1). Then,

$$
d(00)=d(10)=\sum_{i=0}^{r_{n}-1} B_{n}[i]=1, \quad d(01)=d(11)=1+\sum_{i=0}^{r_{n}-1} B_{n}[i]=2
$$

for every $n \geq 1$. To find the homomorphism $F_{n}^{\prime}$ from $\mathbb{Z}^{V_{n} \times \mathbb{Z}_{3}} \rightarrow \mathbb{Z}^{V_{n} \times \mathbb{Z}_{3}}$, let us note that

$$
\begin{aligned}
& \xi^{(n+1)}(00, g)=\eta^{(n)}(00, g) \cup \eta^{(n)}(01, g+1) \cup \eta^{(n)}(10, g), \\
& \xi^{(n+1)}(10, g)=\eta^{(n)}(10, g) \cup \eta^{(n)}(01, g+1) \cup \eta^{(n)}(10, g), \\
& \xi^{(n+1)}(01, g)=\eta^{(n)} c(00, g) \cup \eta^{(n)}(01, g+1) \cup \eta^{(n)}(11, g), \\
& \xi^{(n+1)}(11, g)=\eta^{(n)}(10, g) \cup \eta^{(n)}(01, g+1) \cup \eta^{(n)}(11, g),
\end{aligned}
$$

for $g \in \mathbb{Z}_{3}$. So $F_{n}^{\prime}$ is given by the matrix

| 0 |
| :--- |
| $0 \times 0$ |
| $00 \times 1$ |
| $00 \times 2$ |
| $01 \times 0$ |
| $01 \times 1$ |
| $01 \times 2$ |
| $10 \times 0$ |
| $10 \times 1$ |
| $10 \times 2$ |
| $11 \times 0$ |
| $11 \times 1$ |
| $11 \times 2$ |\(\left[\begin{array}{cccccccccccc}00 \times 0 \& 00 \times 1 \& 00 \times 2 \& 01 \times 0 \& 01 \times 1 \& 01 \times 2 \& 10 \times 0 \& 10 \times 1 \& 10 \times 2 \& 11 \times 0 \& 11 \times 1 \& 11 \times 2 <br>

1 \& 0 \& 0 \& 0 \& 1 \& 0 \& 1 \& 0 \& 0 \& 0 \& 0 \& 0 <br>
0 \& 1 \& 0 \& 0 \& 0 \& 1 \& 0 \& 1 \& 0 \& 0 \& 0 \& 0 <br>
0 \& 0 \& 1 \& 1 \& 0 \& 0 \& 0 \& 0 \& 1 \& 0 \& 0 \& 0 <br>
0 \& 0 \& 0 \& 0 \& 1 \& 0 \& 0 \& 0 \& 0 \& 1 \& 0 \& 0 <br>
0 \& 1 \& 0 \& 0 \& 0 \& 1 \& 0 \& 0 \& 0 \& 0 \& 1 \& 0 <br>
0 \& 0 \& 1 \& 1 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 1 <br>
0 \& 0 \& 0 \& 1 \& 0 \& 2 \& 0 \& 0 \& 0 \& 0 \& 0 <br>
0 \& 0 \& 0 \& 0 \& 0 \& 1 \& 0 \& 2 \& 0 \& 0 \& 0 \& 0 <br>
0 \& 0 \& 0 \& 0 \& 1 \& 0 \& 1 \& 0 \& 0 \& 1 \& 0 \& 0 <br>
0 \& 0 \& 0 \& 0 \& 1 \& 0 \& 1 \& 0 \& 0 \& 1 \& 0 <br>
0 \& 0 \& 1 \& 0 \& 0 \& 0 \& 0 \& 1 \& 0 \& 0 \& 1\end{array}\right]\).

According to (4.5) the graph $\left(\alpha_{n} \times \mathbb{Z}_{3}, \widetilde{V_{n} \times \mathbb{Z}_{3}}\right)$ (see Figure 4.4) has the following arrows

$$
\begin{array}{lll}
(01) \times g=\left(\left(J_{1}, g\right) \rightarrow\left(J_{2}, g+2\right)\right), & & (10) \times g=\left(\left(J_{2}, g\right) \rightarrow\left(J_{1}, g+1\right)\right), \\
(00) \times g=\left(\left(J_{1}, g\right) \rightarrow\left(J_{1}, g+1\right)\right), & & (11) \times g=\left(\left(J_{2}, g\right) \rightarrow\left(J_{2}, g+2\right)\right),
\end{array}
$$

$g \in \mathbb{Z}_{3}, J_{1}=\{00,01\}, J_{2}=\{10,11\}$.
To calculate $I_{n}$, we find a spanning tree using (4.4.1) and (4.4.2). We select the same spanning tree $\left(\alpha_{n}, E\right) E=E_{n}=\{01\}$ as in Subsection 3.1. According to (4.6) we have $a_{00}=d\left(P_{00}\right)=1, a_{11}=d\left(P_{11}\right)=2, a_{10}=d\left(P_{10}\right)=0$.

Next, we have

$$
P_{J_{1} J_{1}}=P_{J_{2} J_{2}}=P_{J_{1} J_{2}}^{-}=P_{J_{2} J_{1}}^{+}=\{\emptyset\} \quad \text { and } \quad P_{J_{1} J_{2}}^{+}=P_{J_{2} J_{1}}^{-}=\{01\} .
$$

Thus, (4.7) gives $d\left(P_{J_{1} J_{1}}\right)=d\left(P_{J_{2} J_{2}}\right)=0, d\left(P_{J_{1} J_{2}}\right)=2, d\left(P_{J_{2} J_{1}}\right)=1$.
Now, we apply the procedures 4.4.1 and 4.4.2. Because $a_{00}=1$ generates $\mathbb{Z}_{3}$, we have $s=1, v_{1}=(00), \mathbb{Z}_{3}=H_{1} \supsetneq H_{0}=\{0\}, r_{1}=3, \alpha_{g}^{(1)}\left(J_{1}\right)=$ $\left\{\left(J_{1}, g\right),\left(J_{2}, g+2\right)\right\}, E_{g}^{(1)}\left(J_{1}\right)=01 \times g=\left\{\left(\left(J_{1}, g\right) \rightarrow\left(J_{2}, g+2\right)\right)\right\}$. The graphs $S_{g}^{(1)}\left(J_{1}\right)=\left(\alpha_{g}^{(1)}\left(J_{1}\right), E_{g}^{(1)}\left(J_{1}\right)\right)$ are marked in Figure 4.4 with thick lines.


Figure 4.4

Next, we have

$$
\begin{aligned}
\alpha_{g}^{(2)}\left(J_{1}\right) & =\alpha_{g}^{(1)}\left(J_{1}\right) \cup \alpha_{g+1}^{(1)}\left(J_{1}\right) \cup \alpha_{g+2}^{(1)}\left(J_{1}\right)=\alpha \times V, \quad V=V_{n}, \\
E_{n}^{\prime} & =E^{\prime}=E_{g}^{(2)}\left(J_{1}\right) \\
& =E_{g}^{(1)}\left(J_{1}\right) \cup E_{g+1}^{(1)}\left(J_{1}\right) \cup E_{g+2}^{(1)}\left(J_{1}\right) \cup\{(00 \times 0)\} \cup\{(00 \times 1)\}
\end{aligned}
$$

for every $g \in \mathbb{Z}_{3}, E_{n}^{\prime}=E^{\prime}=\left\{01 \times \mathbb{Z}_{3}, 00 \times 0,00 \times 1\right\}$. The tree $\left(\alpha \times G, E^{\prime}\right)$ is presented on Figure 4.5.


Figure 4.5
Next, we have $I_{n}=I\left\langle x_{00 \times 0}, \ldots, x_{11 \times 2}\right\rangle=\left\langle y_{00 \times 2}, \ldots, y_{11 \times 2}\right\rangle$, where

$$
\begin{aligned}
& y_{00 \times 2}=x_{00 \times 2}+x_{00 \times 0}+x_{00 \times 1} \\
& y_{10 \times 0}=x_{10 \times 0}+x_{01 \times 1} \\
& y_{10 \times 1}=x_{10 \times 1}+x_{01 \times 2} \\
& y_{10 \times 2}=x_{10 \times 2}+x_{01 \times 0} \\
& y_{11 \times 0}=x_{11 \times 0}+x_{00 \times 0}-x_{01 \times 0}+x_{01 \times 1}, \\
& y_{11 \times 1}=x_{11 \times 1}+x_{00 \times 1}-x_{01 \times 1}+x_{01 \times 2} \\
& y_{11 \times 2}=x_{11 \times 2}-x_{00 \times 0}-x_{00 \times 1}+x_{01 \times 0}-x_{01 \times 2}
\end{aligned}
$$

Thus, the homomorphisms $\widehat{G}_{n}$ are given by the matrices $B=B_{n}$

| $00 \times 2$ |
| :--- |
| $10 \times 0$ |
| $10 \times 1$ |
| $10 \times 2$ |
| $11 \times 0$ |
| $11 \times 1$ |
| $11 \times 2$ |\(\left[\begin{array}{ccccccc}00 \times 2 \& 10 \times 0 \& 10 \times 1 \& 10 \times 2 \& 11 \times 0 \& 11 \times 1 \& 11 \times 2 <br>

1 \& 1 \& 1 \& 1 \& 0 \& 0 \& 0 <br>
0 \& 2 \& 0 \& 0 \& 0 \& 1 \& 0 <br>
1 \& 0 \& 2 \& 0 \& 0 \& 0 \& 1 <br>
0 \& 0 \& 0 \& 2 \& 1 \& 0 \& 0 <br>
0 \& 2 \& 0 \& 0 \& 0 \& 1 \& 0 <br>
1 \& 0 \& 2 \& 0 \& 0 \& 0 \& 1 <br>
-1 \& -1 \& -1 \& 1 \& 1 \& 0 \& 0\end{array}\right]\).

The determinant of the matrix is 0 . To find $K^{0}\left(X \times \mathbb{Z}_{3}, T_{c}\right)$, we apply the Stage II of the algorithm. In this case $\operatorname{rank}\left(\widehat{G}^{2}\right)=\operatorname{rank}\left(\widehat{G}^{3}\right)=4$. We have $y_{11 \times 0}=y_{10 \times 0}$, $y_{11 \times 2}=y_{10 \times 2}, y_{11 \times 2}=y_{10 \times 2}-y_{00 \times 2}$.

We come to the homomorphisms $G_{n}^{\prime}=G^{\prime}$ given by the matrix

| $00 \times 2$ |
| :---: |
| $10 \times 0$ |
| $10 \times 1$ |
| $10 \times 2$ |\(\left[\begin{array}{cccc}00 \times 2 \& 10 \times 0 \& 10 \times 1 \& 10 \times 2 <br>

1 \& 1 \& 1 \& 1 <br>
0 \& 2 \& 1 \& 0 <br>
0 \& 0 \& 2 \& 1 <br>
0 \& 1 \& 0 \& 2\end{array}\right]\).

Since $\operatorname{det}\left(G_{n}^{\prime}\right)=9, K^{0}(X, T)=\bigcup_{n=0}^{\infty}\left(G^{\prime}\right)^{-n}\left(\mathbb{Z}^{4}\right)$. In a sequel, we replace $00 \times 2$ by $1,10 \times 0$ by $2,10 \times 1$ by 3 and $10 \times 2$ by 4 . By a similar reasoning as in Subsection 4.3 we find $\operatorname{Inf}(X, T)=\left\{\bar{y}=\left\langle y_{1}, y_{2}, y_{3}, y_{4}\right\rangle \in K^{0}(X, T): y_{2}+y_{3}+\right.$ $\left.y_{4}=0\right\}$.

To describe the cone $K^{0}(X, T)^{+}$, we must find the images $\bar{w}_{v}$ of the vectors $\widehat{e}_{v} \in \mathbb{Z}^{12}, v \in V_{n} \times \mathbb{Z}_{3}$ via $I_{n}$ and via $\widehat{G}_{n}^{2}$ to $\widehat{G}_{n}^{2}\left(\mathbb{Z}^{12}\right) \simeq \mathbb{Z}^{4}$. We find

$$
\begin{array}{ll}
\bar{w}_{00 \times 0}=\langle 1,0,0,1\rangle, & \bar{w}_{00 \times 1}=\langle 1,1,0,0\rangle, \\
\bar{w}_{00 \times 2}=\langle 1,0,1,0\rangle, & \bar{w}_{11 \times 0}=\langle 0,0,0,1\rangle, \\
\bar{w}_{11 \times 1}=\langle 0,1,0,0\rangle, & \bar{w}_{11 \times 2}=\langle 0,0,1,0\rangle .
\end{array}
$$

The matrix $G^{\prime}$ has the eigenvalue $\lambda=3$ with the eigenvector $\bar{x}_{3}=\langle 3 / 2,1,1,1\rangle$.
Let $\Pi \subset \mathbb{R}^{4}$ be the subspace defined by $\Pi=\left\{\bar{y}=\left\langle y_{1}, y_{2}, y_{3}, y_{4}\right\rangle: y_{2}+y_{3}+\right.$ $\left.y_{4}=0\right\}$. Then every $\bar{y} \in \mathbb{Z}^{4}$ has the unique decomposition $\bar{y}=a \cdot \bar{x}_{3}+\bar{u}, \bar{u} \in \Pi$, $a=\left(y_{2}+y_{3}+y_{4}\right) / 3$. In particular $\bar{w}_{v}=\bar{x}_{3} / 3+\bar{u}_{v}, v=00 \times 0,00 \times 1,00 \times 2$, $11 \times 0,1 \times 1,11 \times 2$. We have

$$
\begin{array}{ll}
\bar{u}_{00 \times 0}=\left\langle\frac{1}{2},-\frac{1}{3},-\frac{1}{3}, \frac{2}{3}\right\rangle, & \bar{u}_{00 \times 1}=\left\langle\frac{1}{2}, \frac{2}{3},-\frac{1}{3},-\frac{1}{3}\right\rangle, \\
\bar{u}_{00 \times 2}=\left\langle\frac{1}{2},-\frac{1}{3}, \frac{2}{3},-\frac{1}{3}\right\rangle, & \bar{u}_{11 \times 0}=\left\langle-\frac{1}{2},-\frac{1}{3},-\frac{1}{3}, \frac{2}{3}\right\rangle, \\
\bar{u}_{11 \times 1}=\left\langle-\frac{1}{2}, \frac{2}{3},-\frac{1}{3},-\frac{1}{3}\right\rangle, & \bar{u}_{11 \times 2}=\left\langle-\frac{1}{2},-\frac{1}{3}, \frac{2}{3},-\frac{1}{3}\right\rangle .
\end{array}
$$

The subspace $\Pi$ is isomorphic to $\mathbb{R}^{3}=\left\{\bar{z}=\left\langle z_{1}, z_{2}, z_{3}\right\rangle, z_{i} \in \mathbb{R}\right\}$ by the mapping $y_{1}=z_{1}, y_{2}=z_{2}, y_{3}=z_{3}, y_{4}=-\left(z_{1}+z_{3}\right)$. Then the homomorphism $G^{\prime} \mid \Pi=$ $F: \mathbb{Z}^{3} \rightarrow \mathbb{Z}^{3}$ is defined by the matrix

$$
\left.F=\begin{array}{l}
1 \\
2 \\
2
\end{array} \begin{array}{rrr}
1 & 2 & 3 \\
1 & 0 & 0 \\
0 & 2 & 1 \\
0 & -1 & 1
\end{array}\right] .
$$

The matrix $F$ has the eigenvalues $\lambda_{1}=1, \lambda_{2}=(3+i \sqrt{3}) / 2, \lambda_{3}=(3-i \sqrt{3}) / 2$, with the eigenvectors $\langle 1,0,0\rangle,\langle 0,1,(i \sqrt{3}-1) / 2\rangle,\langle 0,1,(-1-i \sqrt{3}) / 2\rangle$. Then,

$$
F^{-k}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \frac{1}{2}\left(\lambda_{1}^{-k}+\lambda_{2}^{-k}\right)+\frac{i \sqrt{3}}{6}\left(\lambda_{2}^{-k}-\lambda_{1}^{-k}\right), & \frac{i \sqrt{3}}{2}\left(\lambda_{2}^{-k}-\lambda_{1}^{-k}\right) \\
0 & \frac{i \sqrt{3}}{2}\left(\lambda_{1}^{-k}-\lambda_{2}^{-k}\right) & \lambda_{1}^{-k} \frac{3+i \sqrt{3}}{6}+\lambda_{2}^{-k} \frac{i \sqrt{3}-3}{6}
\end{array}\right]
$$

for $k=0,1, \ldots$ Taking $k=12 l$ and $k=12 l+6$ we get

$$
F^{-12 l}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \frac{1}{3^{6 l}} & 0 \\
0 & 0 & \frac{1}{3^{6 l}}
\end{array}\right], \quad F^{-12 l-6}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & -\frac{1}{3^{6 l+3}} & 0 \\
0 & 0 & -\frac{1}{3^{6 l+3}}
\end{array}\right] .
$$

Next, we have

$$
\begin{aligned}
& \left(G^{\prime}\right)^{-12 l}\left(\bar{w}_{00 \times 0}\right)=\frac{1}{3^{12 l+1}} \bar{x}_{3}+\left\langle\frac{1}{2},-\frac{1}{3^{6 l+1}},-\frac{1}{3^{6 l+1}}, \frac{2}{3^{6 l+1}}\right\rangle, \\
& \left(G^{\prime}\right)^{-12 l}\left(\bar{w}_{00 \times 1}\right)=\frac{1}{3^{12 l+1}} \bar{x}_{3}+\left\langle\frac{1}{2}, \frac{2}{3^{6 l+1}},-\frac{1}{3^{6 l+1}},-\frac{1}{3^{6 l+1}}\right\rangle, \\
& \left(G^{\prime}\right)^{-12 l}\left(\bar{w}_{00 \times 2}\right)=\frac{1}{3^{12 l+1}} \bar{x}_{3}+\left\langle\frac{1}{2},-\frac{1}{3^{6 l+1}}, \frac{2}{3^{6 l+1}},-\frac{1}{3^{6 l+1}}\right\rangle, \\
& \left(G^{\prime}\right)^{-12 l}\left(\bar{w}_{11 \times 0}\right)=\frac{1}{3^{12 l+1}} \bar{x}_{3}+\left\langle-\frac{1}{2},-\frac{1}{3^{6 l+1}},-\frac{1}{3^{6 l+1}}, \frac{2}{3^{6 l+1}}\right\rangle, \\
& \left(G^{\prime}\right)^{-12 l}\left(\bar{w}_{11 \times 1}\right)=\frac{1}{3^{12 l+1}} \bar{x}_{3}+\left\langle-\frac{1}{2}, \frac{2}{3^{6 l+1}},-\frac{1}{3^{6 l+1}},-\frac{1}{3^{6 l+1}}\right\rangle, \\
& \left(G^{\prime}\right)^{-12 l}\left(\bar{w}_{11 \times 2}\right)=\frac{1}{3^{12 l+1}} \bar{x}_{3}+\left\langle-\frac{1}{2},-\frac{1}{3^{6 l+1}}, \frac{2}{3^{6 l+1}},-\frac{1}{3^{6 l+1}}\right\rangle .
\end{aligned}
$$

Then, the vectors

$$
\bar{A}=\langle 1,0,0,0\rangle=\lim _{l \rightarrow \infty} 2\left(G^{\prime}\right)^{-12 l}\left(\bar{w}_{00 \times 0}\right)
$$

and

$$
-\bar{A}=\langle-1,0,0,0\rangle=\lim _{l \rightarrow \infty} 2\left(G^{\prime}\right)^{-12 l}\left(\bar{w}_{11 \times 0}\right)
$$

are some elements of the cone $K^{0}(X, T)^{+}$. At the same time the vectors

$$
\begin{aligned}
\bar{B}_{1}=\langle 0,0,-3,3\rangle= & \lim _{l \rightarrow \infty} 3^{6 l+1}\left[\left(G^{\prime}\right)^{-12 l}\left(\bar{w}_{00 \times 0}\right)+\left(G^{\prime}\right)^{-12 l}\left(\bar{w}_{00 \times 1}\right)\right. \\
& \left.+\left(G^{\prime}\right)^{-12 l}\left(\bar{w}_{00 \times 2}\right)+2\left(G^{\prime}\right)^{-12 l}\left(\bar{w}_{11 \times 0}\right)+\left(G^{\prime}\right)^{-12 l}\left(\bar{w}_{11 \times 1}\right)\right], \\
\bar{C}_{1}=\langle 0,-3,0,3\rangle= & \lim _{l \rightarrow \infty} 3^{6 l+1}\left[\left(G^{\prime}\right)^{-12 l}\left(\bar{w}_{00 \times 0}\right)+\left(G^{\prime}\right)^{-12 l}\left(\bar{w}_{00 \times 1}\right)\right. \\
& \left.+\left(G^{\prime}\right)^{-12 l}\left(\bar{w}_{00 \times 2}\right)+2\left(G^{\prime}\right)^{-12 l}\left(\bar{w}_{11 \times 0}\right)+\left(G^{\prime}\right)^{-12 l}\left(\bar{w}_{11 \times 2}\right)\right]
\end{aligned}
$$

are elements of $K^{0}(X, T)^{+}$. Then, the vectors

$$
3^{5}\left(G^{\prime}\right)^{-12}\left(\bar{B}_{1}\right)=\langle 0,0,-1,1\rangle=\bar{B}, \quad 3^{5}\left(G^{\prime}\right)^{-12}\left(\bar{C}_{1}\right)=\langle 0,-1,0,1\rangle=\bar{C}
$$

are elements of $K^{0}(X, T)^{+}$. Next, we take the images of $\bar{B}, \bar{C}$ via $\left(G^{\prime}\right)^{-18}$. We get

$$
3^{3}\left(G^{\prime}\right)^{-6}(\bar{B})=\langle 0,0,1,-1\rangle=-\bar{B}, \quad 3^{3}\left(G^{\prime}\right)^{-6}(\bar{B})=\langle 0,1,0,-1\rangle=-\bar{C}
$$

Because the vectors $\bar{A}, \bar{B}, \bar{C}$ form a base of the group $\Pi_{\mathrm{int}}=\Pi \cap \mathbb{Z}^{4}$ and $\pm \bar{A}$, $\pm \bar{B}, \pm \bar{C}$ are elements of the cone $K^{0}(X, T)^{+}$, then the set of all elements of $K^{0}(X, T)^{+}$is

$$
\bigcup_{n=0}^{\infty}\left(G^{\prime}\right)^{-n}\left(\Pi_{\mathrm{int}}\right)=\left\{\bar{y}=\left\langle y_{1}, y_{2}, y_{3}, y_{4}\right\rangle \in K(X, T): y_{2}+y_{3}+y_{4}=0\right\}
$$

In this way, we proved that

$$
K^{0}(X, T)^{+}=\left\{\bar{y}=\left\langle y_{1}, y_{2}, y_{3}, y_{4}\right\rangle \in K(X, T): y_{2}+y_{3}+y_{4} \geq 0\right\}
$$

4.6. Orbit equivalence and strong orbit equivalence. Now, we can examine the topological orbit equivalence and the topological strong orbit equivalence of the topological flows from the Section 4. For the Cantor minimal systems, there are known complete invariants of the above orbit equivalences ([5]). We will use the following theorems for Cantor minimal systems $(X, T)$ and $(Y, S)$.

Theorem 4.1. The following statements are equivalent:
(a) $(X, T)$ and $(Y, S)$ are strong orbit equivalent.
(b) $K^{0}(X, T)$ is order isomorphic to $K^{0}(Y, S)$ by a map preserving the distinguished order units.

Now let $(X, T)$ and $(Y, S)$ be strictly ergodic.
Theorem 4.2. The following are equivalent:
(a) $(X, T)$ and $(Y, S)$ are orbit equivalent.
(b) $\widehat{K}^{0}(X, T)$ is order isomorphic to $\widehat{K}^{0}(Y, S)$ by a map preserving the distinguished order units.
(c) The set of the values $\{\mu(U): U$ is a clopen set of $X\}$ is equal to the set of values $\{\nu(U): V$ is a clopen set of $Y\}$, where $\mu$ and $\nu$ are the unique $T$-invariant and $S$-invariant measures.

The dimension group $C(X, \mathbb{Z}) / B_{T}$ of each example of the Section 4 is of the form $\bigcup_{n=0}^{\infty} F^{-n}\left(\mathbb{Z}^{k}\right) \subset \mathbb{Q}^{k}$, where $F: \mathbb{Z}^{k} \rightarrow \mathbb{Z}^{k}$ is a homomorphism given by a ma$\operatorname{trix} F$ with non-negative integer entries and $|\operatorname{det}(F)|>1$. The natural question arises when two groups of such kind are isomorphic. The group $\bigcup_{n=0}^{\infty} F^{-n}\left(\mathbb{Z}^{k}\right)$
is an union of increasing chain of groups $F^{-n}\left(\mathbb{Z}^{k}\right), n \in \mathbb{N}$, each of them is a free abelian group of rank $k$. Thus, two groups of such kind $\bigcup_{n=0}^{\infty} F^{-n}\left(\mathbb{Z}^{k}\right)$ and $\bigcup_{n=0}^{\infty} G^{-n}\left(\mathbb{Z}^{l}\right)$ are not isomorphic if $k \neq l$. It is easy to give a necessary condition for two groups $\bigcup_{n=0}^{\infty} F^{-n}\left(\mathbb{Z}^{k}\right)$ and $\bigcup_{n=0}^{\infty} G^{-n}\left(\mathbb{Z}^{k}\right)$ to be isomorphic. Let $\mathcal{P}_{F}$ be the set of prime numbers appearing in the decomposition of $\operatorname{det}(F)$ into a product of primes.

FACT 4.3. If the group $\bigcup_{n=0}^{\infty} F^{-n}\left(\mathbb{Z}^{k}\right)$ and $\bigcup_{n=0}^{\infty} G^{-n}\left(\mathbb{Z}^{k}\right)$ are isomorphic, where $F, G$ are matrices with non-negative integers such that $|\operatorname{det}(F)|>1$ and $|\operatorname{det}(G)|>1$, then $\mathcal{P}_{F}=\mathcal{P}_{G}$.

Proof. It is enough to analyze the groups $F^{-n}\left(\mathbb{Z}^{k}\right) / \mathbb{Z}^{k}$ and $G^{-n}\left(\mathbb{Z}^{k}\right) / \mathbb{Z}^{k}$, $n=1,2, \ldots$ The quotient group $F^{-n}\left(\mathbb{Z}^{k}\right) / \mathbb{Z}^{k}$ is a finite abelian group of the order $|\operatorname{det}(F)|^{n}$ and it is a direct product of some $p$-groups $G_{p}(n), p \in \mathcal{P}_{F}$. It is evident that if $V: \bigcup_{n=0}^{\infty} F^{-n}\left(\mathbb{Z}^{k}\right) \rightarrow \bigcup_{n=0}^{\infty} G^{-n}\left(\mathbb{Z}^{k}\right)$ is a group isomorphism then the quotient groups $F^{-n}\left(\mathbb{Z}^{k}\right) / \mathbb{Z}^{k}$ and $G^{-n}\left(\mathbb{Z}^{k}\right) / \mathbb{Z}^{k}$ contains the same quantity of $p$-groups. Thus $\mathcal{P}_{F}=\mathcal{P}_{G}$.

Remark 4.4. Observe that by the general theory of free abelian groups, a structure of all $F^{n}\left(\mathbb{Z}^{k}\right)$ groups is known. Of course $F^{n}\left(\mathbb{Z}^{k}\right)$ is a free subgroup of a rank $k$ of $\mathbb{Z}^{k}$.
(4.9) Then, there is a base $u_{1}, \ldots, u_{k}$ of $\mathbb{Z}^{k}$ and positive integers $d_{1}, \ldots, d_{k}$ such that $v_{1}=d_{1} \cdot u_{1}, \ldots, v_{k}=d_{k} \cdot u_{k}$ is a base of $F\left(\mathbb{Z}^{k}\right)$ and $d_{i}$ is a divisor of $d_{i+1}$ for each $i=1, \ldots, k-1$. Moreover, the numbers $d_{1}, \ldots, d_{k}$ are unique (see [6]).
The quotient group $\mathbb{Z}^{k} / F\left(\mathbb{Z}^{k}\right)$ is isomorphic to the group $\mathbb{Z}_{d_{1}} \times \ldots \times \mathbb{Z}_{d_{k}}$. Of course $d_{1} \cdot \ldots \cdot d_{k}=|\operatorname{det}(F)|$.

A procedure of effective finding the numbers $d_{1}, \ldots, d_{k}$ consists of using the elementary transformations of two types:

- adding linear combinations of some rows (columns) with integer coefficients to the other ones,
- changing rows (columns).

We demonstrate this procedure on the matrix $F=\left[\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right]$ from the Subsection 3.1. The successive steps of the procedure we mark by the sign " $\rightarrow$ ". We have
$\left[\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right]\binom{$ subtracting the second }{ column from the first one }$\rightarrow\left[\begin{array}{cc}1 & 1 \\ -1 & 2\end{array}\right]\binom{$ adding the first row }{ to the second one }

$$
\rightarrow\left[\begin{array}{ll}
1 & 1 \\
0 & 3
\end{array}\right]\binom{\text { subtracting the first }}{\text { column from the second one }} \rightarrow\left[\begin{array}{ll}
1 & 0 \\
0 & 3
\end{array}\right]
$$

Then $d_{1}=1, d_{2}=3$ and $\mathcal{P}_{F}=\{3\}$.
Proceeding in the same way we find:

Example 4.5. Teoplitz flow:

$$
\left[\begin{array}{ll}
3 & 2 \\
2 & 3
\end{array}\right] \rightarrow\left[\begin{array}{ll}
1 & 0 \\
0 & 5
\end{array}\right], \quad d_{1}=1, d_{2}=5, \mathcal{P}_{F}=\{5\}
$$

Teoplitz-Morse flow:

$$
\left[\begin{array}{ll}
3 & 2 \\
1 & 2
\end{array}\right] \rightarrow\left[\begin{array}{ll}
1 & 0 \\
0 & 4
\end{array}\right], \quad d_{1}=1, d_{2}=4, \quad \mathcal{P}_{F}=\{2\}
$$

Example 4.6

$$
\left[\begin{array}{ll}
0 & 1 \\
2 & 1
\end{array}\right] \rightarrow\left[\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right], \quad d_{1}=1, d_{2}=2, \quad \mathcal{P}_{F}=\{2\}
$$

Example 4.7.

$$
\left[\begin{array}{rrrr}
3 & -1 & 1 & -1 \\
0 & 3 & -4 & -1 \\
-1 & 2 & -3 & 0 \\
5 & -3 & 3 & -2
\end{array}\right] \longrightarrow\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 4
\end{array}\right]
$$

$d_{1}=1, d_{2}=1, d_{3}=1, d_{4}=4, \mathcal{P}_{F}=\{2\}$.
Example 4.8.

$$
\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
0 & 2 & 1 & 0 \\
0 & 0 & 2 & 1 \\
0 & 1 & 0 & 2
\end{array}\right] \longrightarrow\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 9
\end{array}\right],
$$

$d_{1}=1, d_{2}=1, d_{3}=1, d_{4}=9, \mathcal{P}_{F}=\{3\}$.
Using the Theorem 4.2 and the Fact 4.3 we can answer which of the topological flows described in Subsection 3.1 and Examples 4.1, 4.2 and 4.5 are strong orbit equivalent.

Corollary 4.9. The Teoplitz-Morse flow from Subsection 4.1 and the Morse flow from Subsection 4.2 are strong orbitally equivalent. The topological flows from the remaining examples are not strong orbitally equivalent.

To describe which of the topological flows are orbitally equivalent, we use the Theorem 4.1. It follows from our previous computations:

EXAMPLE (from Subsection 3.1). $\widehat{K}^{0}(X, T) \simeq\left\{a / 3^{n}, a \in \mathbb{Z}, n=0,1, \ldots\right\}$.
Example 4.5.

$$
\begin{aligned}
& \widehat{K}^{0}(X, T) \simeq\left\{a / 5^{n}, a \in \mathbb{Z}, n=0,1, \ldots\right\} \\
& \widehat{K}^{0}(X, T) \simeq\left\{a / 2^{n}, a \in \mathbb{Z}, n=0,1, \ldots\right\} \quad \text { (Teoplitz flow) } \\
& \text { (Teoplitz-Morse flow). }
\end{aligned}
$$

EXAMPLE 4.6. $\widehat{K}^{0}(X, T) \simeq\left\{a / 2^{n}, a \in \mathbb{Z}, n=0,1, \ldots\right\}$.
Example 4.7. $\widehat{K}^{0}(X, T) \simeq\left\{a / 2^{n}, a \in \mathbb{Z}, n=0,1, \ldots\right\}$.
Example 4.8. $\widehat{K}^{0}(X, T) \simeq\left\{a / 3^{n}, a \in \mathbb{Z}, n=0,1, \ldots\right\}$.
Corollary 4.10. The Chacon flow is orbitally equivalent to the topological flow in Subsection 4.5. The Teoplitz-Morse flow from the Example 4.6 and the topological flows from Subsection 4.2 are orbitally equivalent.

## References

[1] S. Bezuglyi and J. Kwiatkowski, The topological full group of a Cantor minimal system is dense in the full group, Topol. Methods Nonlinear Anal. 16 (2000), 371-397.
[2] T. H. Cormen, Ch. E. Leiserson and R. L. Rivest, Introduction to Algorithms, 2nd edition, MIT Press, 2001.
[3] F. Durand, B. Host and Ch. F. Skau, Substitution dynamical systems, Bratteli diagrams and dimension groups, Ergodic Theory Dynam. Systems 19 (1999), 953-993.
[4] A. H. Forrest, K-groups associated with substitution minimal systems, Israel J. Math. 98 (1997), 101-139.
[5] T. Giordano, I. F. Putnam and Ch. F. Skau, Topological orbit equivalence and $C^{*}$-crossed products, J. Reine Angew. Math. 469 (1995), 51-111.
[6] A. Kurosh, The Theory of Groups, New York Chelsea Publ. Comp., vol. 1, 1955; vol. 2, 1956.

Jan Kwiatkowski
The College of Economics and Computer Science
Wyzwolenia 30
10-106 Olsztyn, POLAND
E-mail address: jkwiat@mat.uni.torun.pl
Marcin Wata
Mathematics and Informatics Faculty
Nicolaus Copernicus University
Chopina 12/18
87-100 Toruń, POLAND
E-mail address: mwata@mat.uni.torun.pl


[^0]:    2000 Mathematics Subject Classification. Primary 37B05; Secondary 54H20, 37A15, 37A20.
    Key words and phrases. Bratteli diagrams, Dimension groups, Kakutani-Rokhlin partitions.

