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DIMENSION AND INFINITESIMAL GROUPS
OF CANTOR MINIMAL SYSTEMS

Jan Kwiatkowski — Marcin Wata

Abstract. The dimension and infinitesimal groups of a Cantor dynamical

system (X, T ) are inductive limits of sequences of homomorphisms defined
by a proper Bratteli diagram of (X, T ). A method of selecting sequences of

homomorphisms determining the dimension and the infinitesimal groups of

(X, T ) based on non-proper Bratteli diagrams is described. The dimension
and infinitesimal groups of Rudin–Shapiro, Morse and Chacon flows are

computed.

1. Introduction

By a Cantor minimal system (C.m.s.) we mean a pair (X, T ), where X is
a Cantor set and T is a homeomorphism of X. Let BT = {f − f ◦ T−1, f ∈
C(X, Z)} be the coboundary subgroup of the group C(X, Z) of continuous func-
tions f :X → Z with integer values. The dimension group K0(X, T ) of a Cantor
minimal system (X, T ) is the quotient group C(X, Z)/BT . Let M(X, T ) be the
set of all T -invariant Borel probability measures on X. Let

N(X, T ) =
{

f ∈ C(X, Z) :
∫

X

fdµ = 0 for every µ ∈ M(X, T )
}

.

Of course, BT ⊂ N(X, T ). The infinitesimal group Inf(X, T ) of (X, T ) is
the quotient group N(X, T )/BT . The dimension group K0(X, T ) is an or-
dered group with positive cone K0(X, T )+ and a distinguished order unit [1],
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where K0(X, T )+ = C(X, Z+)/BT and [1] is the coset of the constant function
equal to one. The dimension groups K0(X, T ) and the infinitesimal groups
Inf(X, T ) play important roles in the orbital theory of Cantor minimal sys-
tems. It was proved in [5] that K0(X, T ) as an ordered group characterizes
the strong orbit equivalence class of (X, T ). At the same time the ordered
group K̂0(X, T ) ' C(X, Z)/N(X, Z) characterizes the orbit equivalence class of
(X, T ). The dimension group K0(X, T ) and the infinitesimal group Inf(X, T )
are inductive limits arising from a sequence of Kakutani–Rokhlin partitions.
A Kakutani–Rokhlin partition is a partition ξ of X into clopen sets of the form

ξ = {T k(D0,v), 0 ≤ k ≤ h(v)− 1, v ∈ V },

where V is a finite set. In other words, X is partitioned into |V | (|V | is the
cardinality of a set V ) disjoint clopen T -towers ξv, v ∈ V , ξv = {T k(D0,v), 0 ≤
k ≤ h(v)− 1}.

The set B(ξ) =
⋃

v∈V D0,v is called the base of ξ. Let C(ξ) ⊂ C(X, Z) be
the set of functions which are constant on each set T k(D0,v), 0 ≤ k ≤ h(v)− 1,
v ∈ V . Of course C(ξ) is a subgroup of C(X, Z). Let BT (ξ) denote the subgroup
of C(ξ) consisting of all coboundary functions f − f ◦ T−1, f ∈ C(ξ).

Let (X, T ) be a Cantor minimal system and let ξ(n), n ∈ N be a sequence of
Kakutani–Rokhlin partitions, ξ(n) = {T k(D(n)

0,v ), 0 ≤ k ≤ h(n, v) − 1, v ∈ Vn}
satisfying the following conditions:

ξ(n+1) � ξ(n), i.e. ξ(n+1) refines ξn and B(ξ(n+1)) ⊂ B(ξ(n)),(1.1)

the partitions ξ(n) span the clopen topology of X.(1.2)

We have the inclusions: C(ξ(n)) ⊂ C(ξ(n+1)) and BT (ξ(n)) ⊂ BT (ξ(n+1)).
These inclusions determine the natural homomorphisms

Fn:C(ξ(n))/BT (ξ(n)) → C(ξ(n+1))/BT (ξ(n+1)).

The dimension group of (X, T ) is the inductive limit of the homomorphisms
Fn i.e.

(1.3) K0(X, T ) = C(X, Z)/BT

= lim
−→
{Fn:C(ξ(n))/BT (ξ(n)) → C(ξ(n+1))/BT (ξ(n+1))}.

If a sequence ξ(n) satisfies an additional condition

(1.4)
∞⋂

n=1

( ⋃
v∈Vn

D0,v

)
is a single point of X

then

(1.5) K0(X, T ) = lim
−→
{Fn: ZVn → ZVn+1}.
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In this case, the T -towers determine a proper Bratteli diagram of (X, T ). How-
ever, there exist many examples of Cantor minimal systems with natural se-
quences of Kakutani–Rokhlin partitions not satisfying (1.4) and generating the
topologies. In those cases the homomorphisms Fn are defined also by the T -
towers ξ(n), however (1.5) is not valid. To get (1.5), we must replace the group
ZVn by quotient groups ZVn/Z

(n)
c . In this paper we propose a method of de-

scribing groups ZVn/Z
(n)
c and changing a sequence of the homomorphisms {Fn}

to get (1.5).
The group C(ξ(n))/BT (ξ(n)) can be identified with the group ZVn/Z

(n)
c . To

define a subgroup Z
(n)
c ⊂ ZVn , let us consider a subgroup Hn ⊂ C(ξ(n)) consist-

ing of those functions f ∈ C(ξ(n)) which have the null sum over each tower ξ
(n)
v ,

v ∈ Vn. Given f ∈ C(ξ(n)) we can associate a vector xf = 〈xv〉 ∈ ZVn as follows:

(1.6) xf = 〈xv〉, v ∈ Vn, where xv =
h−1∑
k=0

f(T k(D0,v)), h = h(n, v).

The map f → xf is a homomorphism from C(ξ(n)) onto ZVn and its kernel is
the group Hn. Therefore,

(1.7) C(ξ(n))/Hn ' ZVn .

It is easy to check that every function f ∈ Hn is a coboundary. Then we have
Hn ⊂ BT (ξ(n)) ⊂ C(ξ(n)), which implies

(1.8) C(ξ(n))/BT (ξ(n)) ' C(ξ(n))/Hn : BT (ξ(n))/Hn.

By (1.7) we can identify C(ξ(n))/Hn with ZVn and BT (ξ(n))/Hn with a
subgroup Z

(n)
c of ZVn . Hence, (1.8) and (1.3) can be written in the form

(1.9) C(ξ(n))/BT (ξ(n)) = ZVn/Z(n)
c

and

(1.10) K0(X, T ) = lim
−→
{Gn: ZVn/Z(n)

c → ZVn+1/Z(n+1)
c }

where Gn are homomorphisms determined by Fn.
In a similar way we can represent the infinitesimal group Inf(X, T ) as an

inductive limit. For every µ ∈ M(X, T ), let us denote by µv the measure of
the tower ξv i.e. µv = µ(

⋃h−1
i=1 T iD0,v), h = h(n, v) and let Nn = {〈xv〉 ∈ ZVn :∑

v∈Vn
xvµv = 0 for every µ ∈ M(X, T )}. Then

(1.11) Inf(X, T ) = lim
−→
{Gn : Nn/Z(n)

c → Nn+1/Z
(n+1)
c }.

The authors would like to thank Piotr Dowbor for many helpful discussions
concerning the algebraic part of the paper. We also thank Eli Glasner for paying
our attention to papers [3] and [4].
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2. Graphs (αn, Ṽn) determined by the Kakuthani–Rokhlin partitions

To describe the subgroup Z
(n)
c of ZVn , we define a partition αn of the set Vn

(the set of T -towers ξ
(n)
v ).

We say that v
∗∼ v′ if there exists x1 ∈ D0,v, x2 ∈ D0,v′ such that Th(n,v)(x1)

and Th(n,v′)(x2) belong to the same D
(n)
0,v′′ for some v′′ ∈ Vn. We say that v, v′

are αn-equivalent (v αn∼ v′) if there exists a finite sequence v, v1, . . . , vs, v
′ such

that v
∗∼ v1, v1

∗∼ v2, . . . , vs−1
∗∼ vs and vs

∗∼ v′. Notice that αn is an equivalence
relation so it partitions the set Vn into disjoint subsets. Let us denote this
partition by αn as well. Now we define an oriented graph Γn whose vertices are
the elements J ∈ αn and the arrows are elements of Vn. Every v ∈ Vn determines
an arrow ṽ going from a unique I to a unique J in such a way that v ∈ I and
Th(n,v)(D(n)

0,v ) ∈
⋃

v′∈J D
(n)
0,v′ . We will write ṽ = (I, J). By Ṽn we denote the set

of all arrows ṽ, v ∈ Vn.
In this manner, we have defined an oriented graph (αn, Ṽn). It is easy to

remark that the minimality of T implies that (αn, Ṽn) is a connected graph.
Every element x = 〈xv〉v∈Vn

∈ ZVn is an integer valued function defined on Ṽn.
By a cycle Γ of (αn, Ṽn) we mean a closed path Γ = {ṽ1, . . . , ṽs, ṽ1} of (αn, Ṽn)
without loops. The following characterization of the subgroup Z

(n)
c ⊂ ZVn follows

from [1] (see Theorems 2.6 and 4.8).

Theorem 2.1. An element x = 〈xv〉v∈Vn
∈ ZVn belongs to Z

(n)
c if and only if

(2.1)
∑
v∈Γ

xv = 0 for every cycle Γ of (αn, Ṽn).

To give a better description of the subgroup Z
(n)
c of ZVn , n ∈ N consider

linear space QVn , Q
(n)
c and Q

(n)
cc over the field Q (Q is the set of all rational

numbers), where

(2.2) Q(n)
c =

{
x = 〈xv〉v∈Vn

∈ QVn such that∑
v∈Γ

xv = 0 for every cycle Γ of (αn, Ṽn)
}

,

and

(2.3) Q(n)
cc = (Q(n)

c )⊥.

Of course ZVn ⊂ QVn , Z
(n)
c ⊂ Q

(n)
c .

We will define vectors xJ ∈ ZVn for each J ∈ αn. To do this, let us denote by
J+ the set of all arrows arriving to J and by J− the set of all arrows leaving J .
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Let us define xJ = 〈xv〉 as follows:

(2.4) xv =


1 for ṽ ∈ J+,

−1 for ṽ ∈ J−,

0 for the remaining v.

Theorem 2.2.

(a) The vectors xJ , J ∈ αn generate the space Q
(n)
c .

(b) Q
(n)
cc = {x = 〈xv〉v∈Vn

∈ QVn such that
∑

v∈J+ xv =
∑

v∈J− xv for
every J ∈ αn}.

(c) dim Q
(n)
c = |αn| − 1, dim Q

(n)
cc = |Vn| − |αn|+ 1.

Proof. It is evident that xJ ∈ Q
(n)
c . In fact every cycle Γ either does not

pass by J (then all coordinates xv, v ∈ Γ of xJ are zero) or Γ pass through J

and then xv = 1, xv′ = −1 for some v, v′ ∈ Vn and xv = 0 for the remaining v.
Thus xJ satisfies the condition (2.1) i.e. xJ ∈ Q

(n)
c .

Let L be a subspace of Q
(n)
c generated by the vectors xJ . We have proved

that L ⊂ Q
(n)
c . This implies

L⊥ ⊃ (Q(n)
c )

⊥
= Q(n)

cc .

We will prove the equality

(2.5) L⊥ = Q(n)
cc .

Let us take x = 〈xv〉 ∈ L⊥. Then x ⊥ xJ for every J ∈ αn. The last condition
is equivalent to the following equalities

(2.6)
∑

v∈J+

xv =
∑

v∈J−

xv for every J ∈ αn.

Define vectors wΓ = 〈wv〉, v ∈ Vn where Γ is a cycle of (αn, Ṽn) by

wv =

{
1 for v ∈ Γ,

0 for v 6∈ Γ.

It follows from (2.2) that the space Q
(n)
cc is generated by the vectors wΓ.

It is easy to see that wΓ satisfies condition (2.6) for every J ∈ αn. To
prove (2.5), it is enough to show that every vector x satisfying (2.6) is a linear
combination of the vectors wΓ.

First, let us assume that xv ≥ 0 for every v ∈ Vn and x 6= 0. Choose v with
xv > 0. It is not hard to see that there exists a cycle Γ containing v. It follows
from (2.6) that xv′ > 0 for every v′ ∈ Γ. Let us put ε = minv′∈Γ xv′ and let
y = x − ε · wΓ. Then, y satisfies (2.6); moreover, yv ≥ 0. If yv > 0 for some v
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then we repeat the above procedure. It is not hard to see that this procedure is
finite which implies that the vector x is of the form

(2.7) x =
∑

aΓwΓ, Γ runs over all cycles of (αn, Ṽn).

Now, let us assume that there exists v such that xv < 0. Choose v in such
a way that xv = minxv′<0 xv′ . Let us again choose a cycle Γ containing v.
The vector y = x − xv · wΓ satisfies the condition (2.6) and minv′∈Vn yv′ >

minv′∈Vn
xv′ .

Repeating the above reasoning we find a vector y = 〈yv〉 with non-negative
coordinates yv such that y = x −

∑
Γ bΓ · wΓ. Using (2.7) for the vector y we

see that every x ∈ QVn satisfying (2.6) is of the form (2.7). In this manner the
equality (2.5) is proved which implies (a) and (b).

Now we are in a position to prove (c). Consider the matrix A = (a(J, v)),
J ∈ αn, v ∈ Ṽn of the system of equations (2.6). Then a(J, v) are equal to 1, −1,
or 0. Moreover, each column of A corresponding to ṽ = (I, J) either consists of
all zeros if I = J or contains a unique 1, a unique −1 and the remaining entries
are equal to zero if I 6= J . Using the same arguments as in the transportation
problem it is easy to check that rank(A) = |αn| − 1. This implies (c), so the
theorem is proved. �

3. The groups ZVn/Z
(n)
c and the dimension group K0(X, T )

In this part we describe the sequence of groups ZVn and of homomorphisms
Gn from (1.10). The group ZVn/Z

(n)
c is isomorphic to the image of ZVn in Q

(n)
cc

by the natural projection Πn of QVn onto Q
(n)
cc . To find this image, we need a

basis of the space Q
(n)
cc . To do this we use spanning trees of the non-oriented

graph (αn,
˜̃
V n). (We treat every arrow ṽ ∈ Vn as a non-oriented edge ˜̃v.) By

a path in (αn,
˜̃
V n) we mean a sequence of edges P = (˜̃v1, . . . , ˜̃vs) such that ˜̃vi

and ˜̃vi+1 have a common vertex, i = 0, . . . , s− 1. A path P is closed if ˜̃v1 = ˜̃vs.
Using the similar arguments as in the transportation problem, it is easy to prove
the following characterization for a subset E ⊂ Vn of the columns of A to be
linearly independent.

Theorem 3.1. A subset E = En ⊂ Vn of the columns of A is linearly

independent if and only if E does not contain any closed path of (αn,
˜̃
V n).

A spanning tree is a sub-graph (αn, E) of (αn,
˜̃
V n) such that |E| = |αn| − 1,

E does not contain any closed path and for every v /∈ E there exists a unique
path Pv without loops and such that ˜̃v ∈ Pv and the remaining edges of Pv

belong to E. The paths Pv, ˜̃v ∈ ˜̃
V n \E allow to define vectors uv = 〈uv′〉 ∈ QVn .

For this reason, we partition Pv into subsets P+
v and P−

v . Every edge ˜̃v ∈ Pv is
simultaneously an arrow of the graph (αn, Ṽn). We define P+

v as the set of all
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˜̃
v′ ∈ Pv such that ṽ′ has the same orientation as ṽ and P−

v are those which has
the inverse orientation than ṽ. Now define x(v) = 〈xv′〉, v′ ∈ Vn as follows

(3.1) xv′ =


1 for ˜̃

v′ ∈ P+
v ,

−1 for ˜̃
v′ ∈ P−

v ,

0 for the remaining v′ ∈ Vn \ E.

Theorem 3.2. If (αn, E) is a spanning tree of (αn,
˜̃
Vn), then the vectors

x(v), v ∈ Vn \ E form a basis of the space Q
(n)
cc .

Proof. The subspace Q
(n)
cc is determined by the system of linear equations

(2.6). It follows from the Theorems 2.2 and 3.1 that the columns of the matrix
A corresponding to ˜̃v ∈ E form a minor having the order equal to |αn| − 1. For
every v 6∈ E there exists a unique solution y of (2.6) such that yv = 1 and yv′ = 0
if v′ 6= v and v′ /∈ E. The family of such solutions forms a basis of Q

(n)
cc if v runs

all over Vn \ E. It follows from (3.1) that y = x(v), for v ∈ Vn \ E. �

Let x • y =
∑

v∈Vn
xv · yv be the inner product of vectors x, y ∈ QVn . The

basis {x(v)}, v ∈ Vn \E allows us to define a homomorphism In: QVn → QVn\E ,
E := En.

For x = 〈xv′〉 ∈ QVn define In(x) ∈ QVn\E as follows

(3.2) In(x) = 〈x • xv〉, v ∈ Vn \ E.

Theorem 3.3.

(a) ker(In) = Q(n)
c ,

(b) Im(In) = QVn\E,

(c) Q
(n)
cc ' QVn/Q

(n)
c

bIn'QVn\E where În is the induced isomorphism.

Proof. (a) We have ker(In) = {x ∈ QVn : x•xv = 0} for every v ∈ Vn\E} =
Q

(n)
c , because the vectors xv, form a basis of (Q(n)

c )⊥ (see Theorem 3.2).
(b) Let ev′ , v′ ∈ Vn be the standard basis of QVn (i.e. ev′ is the vector with

the coordinate 1 on the position v′ and 0 for the remaining positions) and let êv,
v ∈ Vn \E be the standard basis of QVn\E . It follows from (3.2) that In(ev) = êv

whenever v ∈ Vn \ E. This implies (b).
The property (c) is a consequence of (a) and (b). �

Corollary 3.4.

(a’) ker(In|ZVn) = Z(n)
c ,

(b’) Im(ZVn) = ZVn\E,
(c’) ZVn/Z

(n)
c ' ZVn\E.
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Proof. If x ∈ ZVn , then In(x) ∈ ZVn\E ⊂ QVn\E because the vectors xv,
v ∈ Vn \ E, have integer coordinates. Further ker(In|ZVn) = ker(In) ∩ ZVn =
Q

(n)
c ∩ ZVn = Z

(n)
c Thus (a’) and (b’) are valid. The property (c’) is an evident

consequence of (a’) and (b’). �

The above considerations lead to a tower algorithm (TA) of computing the
dimension and the infinitesimal groups of C.m.s. (X, T ). To formulate it, we
reconstruct the sequence (1.10).

Using the isomorphisms În, n = 1, 2, . . . we can replace ZVn/Z
(n)
c in (1.10)

by ZVn\E and then

K0(X, T ) = lim{Ĝn: ZVn\En → ZVn+1\En+1},

where Ĝn are homomorphisms determined by Gn (or Fn).
Now, we describe the homomorphisms Gn. First, we recall the definitions

of the Fn’s. We have homomorphisms Fn: ZVn → ZVn+1 determined by natu-
ral homomorphisms C(ξ(n))/Hn → C(ξ(n+1))/Hn+1. Let us remind that the
elements v ∈ Vn correspond to the T -towers ξ

(n)
v = {D(n)

0,v , . . . , Th−1(D(n)
0,v )}

h = h(n, v). Every T -towers ξ
(n+1)
w , w ∈ Vn+1 consists of some sub T -towers

η
(n)
v of ξ

(n)
v . Thus, we can write ξ

(n+1)
w =

⋃
v∈Sw

η
(n)
v , where Sw = (v1, . . . , vt) is

a unique sequence of v. Define a matrix {bw,v} = B, w ∈ Vn+1, v ∈ Vn, where
bwv = #{1 ≤ i ≤ t : v = vi}. Using the map f → xf defined by (1.6) it is easy
to conclude that Fn(x) = B · x.

We have the following commuting diagrams

(3.3)

ZVn
Fn−−−−→ ZVn+1

Πn

y yΠn+1

ZVn/Z
(n)
c

Gn−−−−→ ZVn+1/Z
(n+1)
c

cIn

y ydIn+1

ZVn\En −−−−→
cGn

ZVn+1\En+1

where Πn, Πn+1 are the natural homomorphisms and Ĝn = În+1 ◦Gn ◦ (În)−1,
n = 1, 2, . . . Now we describe Ĝn. To do this we find spanning trees (αn, En) of

(αn,
˜̃
V n) and (αn+1, En+1) of (αn+1,

˜̃
V n+1). Now for every n we define a matrix

B̂ = B̂n as follows:

(3.4) Take v ∈ Vn \ En. The v-th column of the matrix Bn is a vector

b(v) = 〈bw,v〉 ∈ ZVn+1 , w ∈ Vn+1.

We compute vectors In+1(b(v)) = 〈̂bw,v〉, w ∈ Vn+1 \ En+1, v ∈ Vn \ En,
using (3.2) and then B̂ = {b̂w,v}, w ∈ Vn+1 \ En+1, v ∈ Vn \ En.
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Theorem 3.5. For every z = 〈zv〉 ∈ ZVn\En , v ∈ Vn \ En, it holds

(3.5) Ĝn(z) = B̂ · z.

Proof. It is enough to check (3.5) for z = êv, v ∈ Vn \ En. From the
equalities In(ev) = êv and Fn(ev) = b(v), v ∈ Vn \En and from the commute of
(3.3) it follows that

Ĝn(êv) = (In+1 ◦ Fn)(ev) = In+1(b(v)) = 〈̂bwv〉,

w ∈ Vn+1 \ En+1. This gives (3.5) for every z ∈ ZVn\En . �

Using the above theorem, (3.3) and (1.10) we get

Corollary 3.6.

(3.6) K0(X, T ) = lim
−→
{Ĝn: ZVn\En → ZVn+1\En+1}.

To describe the cone K0(X, T )+ = C(X, Z+)/BT , we must regard all vectors
In(ev) ∈ ZVn\En when v runs over all Vn. Let us denote Z

(n)
+ = {

∑
v∈Vn

av ·
In(ev) with av ∈ Z+}. Then, we have Ĝn(Z(n)

+ ) ⊂ Z
(n+1)
+ . There are natu-

ral homomorphisms ̂̂
Gn: ZVn\En → K0(X, T ). Then, we can identify the cone

K0(X, T )+ with the set
⋃∞

n=1
̂̂
Gn(Z(n)

+ ). In a similar way we can replace the
sequence (1.10) by a sequence of Ĝn on the subspace Inf(n) = În(Nn/Z

(n)
c ) ⊂

ZVn\En . Thus Inf(X, T ) = lim
−→
{Ĝn: Inf(n) → Inf(n + 1)}.

Before formulating an algorithm (TA) we illustrate previous consideration
using the Chacon flow.

3.1. Chacon flow. We remind briefly the definition of Chacon flow. For
this, we start with the sequence {Bn} of blocks over two symbols (0, s):

B0 = 0, Bn+1 = BnBnsBn, n > 0.

Then
|Bn| =

1
2
(3n+1 − 1) = rn.

Let ω be a one-sided sequence defined by the blocks Bn as follows: ω[0, rn−1] =
Bn, n > 0. We take the subset Y ⊂ {0, s}Z which is the closure of T -orbit of
ω with respect to the left shift. The Cantor minimal system (Y, T ) is called the
Chacon flow. For n > 0, we denote

D
(n)
00 = {x ∈ Y : x[−rn, 2rn − 1] = BnBnBn},

D
(n)
s0 = {x ∈ Y : x[−rn − 1, 2rn − 1] = BnsBnBn},

D
(n)
0s = {x ∈ Y : x[−rn, 2rn] = BnBnsBn},

D(n)
ss = {x ∈ Y : x[−rn − 1, 2rn] = BnsBnsBn}.
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Let Dn =
⋃

p,q=0,s D
(n)
pq . Let us take Kakutani–Rokhlin partition ξ(n) built

by the base Dn and the return time function. Then ξ(n) has four towers ξ
(n)
pq ,

p, q = 0, s corresponding to the sets D
(n)
pq . We have h(00, n) = h(s0, n) = rn and

h(0s, n) = h(ss, n) = rn + 1 (see Figure 3.1).

�... ...
...

...

D00 Ds0 D0s Dss

J1 J2

Figure 3.1

It is known that (Y, T ) is strictly ergodic and the values of the unique T -
invariant measure µ on the sets D

(n)
pq , n > 0 are µ(D(n)

00 ) = µ(D(n)
ss ) = 1/3n+2,

µ(D(n)
0s ) = µ(D(n)

s0 ) = 2/3n+2. Taking (ξ(n)) as above, one can point out
partitions αn introduced in Section 2 (they do not depend on n). We get
Vn = {00, s0, 0s, ss} and J1 = {00, 0s} J2 = {s0, ss}. Then αn = {J1, J2}.
The graph (αn, Ṽn) determined by the T -towers D

(n)
pq is presented in Figure 3.2.�J1 J2 ss00

0s

s0

Figure 3.2

Let us notice that there are three cycles of (αnṼn) namely: Γ1 = {00},
Γ2 = {ss} and Γ3 = {0s, s0}. As a spanning tree of the graph (αn, Ṽn) we can
take (αn, {0s}) (see Figure 3.2), i.e. En = {0s}. Any vector x ∈ ZVn we will
write as x = 〈x00, xs0, x0s, xss〉.

Now for each path Pv, v ∈ Vn \ En = {00, s0, ss} we define vectors x(v) as
in the Section 3. We have:

x(00) = 〈1, 0, 0, 0〉, x(s0) = 〈0, 1, 1, 0〉, x(ss) = 〈0, 0, 0, 1〉.

Then the homomorphisms In: Q4 → Q3 have the form

In(x) = 〈x00, xs0 + x0s, xss〉 = 〈y00, ys0, yss〉 ∈ Q3
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for x = 〈x00, xs0, x0s, xss〉 ∈ Q4.
To find matrices Bn, we must express the T -towers ξ

(n+1)
pq by some sub-T -

towers η(n) of ξ(n). We have:

ξ
(n+1)
00 = η

(n)
00 ∪ η

(n)
0s ∪ η

(n)
s0 , ξ

(n+1)
s0 = η

(n)
s0 ∪ η

(n)
0s ∪ η

(n)
s0 ,

ξ
(n+1)
0s = η

(n)
00 ∪ η

(n)
0s ∪ η(n)

ss , ξ(n+1)
ss = η

(n)
s0 ∪ η

(n)
0s ∪ η(n)

ss .

This leads to the following matrices Bn

Bn =

00 s0 0s ss

00

s0

0s

ss


1 1 1 0
0 2 1 0
1 0 1 1
0 1 1 1

 .

For each column b(v) of the matrix Bn, v ∈ Vn \ En = {00, s0, ss} we calculate
Î(n+1)(b(v)). We have:

b(00) = 〈1, 0, 1, 0〉, b(s0) = 〈1, 2, 0, 1〉, b(ss) = 〈0, 0, 1, 1〉

and

În+1(b(00)) = 〈1, 1, 0〉, În+1(b(s0)) = 〈1, 2, 1〉, În+1(b(ss)) = 〈0, 1, 1〉.

Thus,

B̂n = B̂ =

00 s0 0s

00

s0

ss

 1 1 0
1 2 1
0 1 1


defines the map Ĝn: Z3 → Z3 (see (3.4)). Then Corollary 3.6 results in K0(X, T )
= lim

−→
{Ĝn: Z3 → Z3}. We have det B̂ = 0 so dim Ĝn(Q3) < 3. To indicate

lim
−→
{Ĝn: Z3 → Z3} we must find Ĝn(Z3) and describe the action Ĝn on it. It is

easy to remark that Ĝn(Z3) ⊂ π ⊂ Q3, where π = {y = 〈y00, ys0, yss〉 ∈ Q3 :
y00 + yss = ys0}. Moreover, Ĝn:π → π is one-to-one. Then,

lim
−→
{Ĝn: Z3 → Z3} = lim

−→
{Ĝn:π ∩ Z3 → π ∩ Z3}.

It is convenient to replace the subgroup π∩Z3 by Z2 = {z = 〈z00, zss〉, z00, zss ∈
Z} by putting z00 = y00, zss = yss, 〈y00, y00+yss, yss〉 ∈ π. Let H = Hn: Z2 → Z2

be the isomorphisms determined by Ĝn on π. Then, Hn is defined by the matrix
Cn = C =

[
2 1

1 2

]
. We have the inclusions

. . . ⊃ H−n(Z2) ⊃ H−n+1(Z2) ⊃ . . . ⊃ H−1(Z2) ⊃ Z2.
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Thus we have

K0(X, T ) = lim
−→
{Hn: Z2 → Z2} =

∞⋃
n=0

H−n(Z2) ⊂ Q2.

Now we describe the group Inf(X, T ). Consider the subgroups Nn ⊂ Z4,

Nn =
{

x,
1

3n+2
(x00 + xss) +

2
3n+2

(xs0 + x0s) = 0
}

= {x, x00 + xss + 2(xs0 + x0s) = 0}.

We have In(Nn) = {〈y00, ys0, yss〉 ⊂ Z3 : y00 + 2ys0 + yss = 0} ∈ Z3 and
next Ĝn(In(Nn)) = {〈y00, ys0, yss〉 ∈ π ∩ Z3 : y00 + yss = 0}. Passing to the
coordinates z00, zss we can identify Ĝn(In(Nn)) with the subgroup Z0 = {z =
〈z00, zss〉 ∈ Z2, z00 +zss = 0}. Further Hn|Z0 = id. So we can identify Inf(X, T )
with Z0 ⊂

⋃∞
n=0 H−n(Z2).

To describe the cone K0(X, T )+, let us remark that

In(e00) = ê00 ∈ Z3, In(es0) = ês0 ∈ Z3,

In(e0s) = ês0 ∈ Z3, In(ess) = êss ∈ Z3.

Then Z
(n)
+ = Z3

+, Ĝn(Z3
+) = Z2

+ = {〈z00, zss〉 ∈ Z2 : z00, zss ≥ 0}. Thus,

K0(X, T )+ =
∞⋃

n=0

H−n(Z2
+) = {〈z00, zss〉 ∈ K0(X, T ) : z00 + zss ≥ 0}.

Now we are in a position to formulate the algorithm (TA). We distinguish
Stages I and II of it. The Stage I contains all calculations to get the sequence
(3.6). The Stage II is a simplification of the sequence (3.6) if, for infinitely
many n, dim(Im(Ĝn)) < |Vn \ En|.

3.2. Algorithm (TA).

Stage I.

Step 1. For a given sequence of towers {ξn} find homomorphisms

ZV1 F1−→ ZV2 F2−→ ZV3 −→ · · ·

Step 2. For every T -invariant measure µ calculate the measures µv of every
T -tower ξ

(n)
v . Then define subspaces

(3.7) Nn =
{
〈xv〉 ∈ ZVn :

∑
v∈Vn

xvµv = 0 for every µ ∈ M(X, T )
}

.
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Step 3. Find the partitions αn of the towers {ξn}. For (αn,
˜̃
V n) choose

spanning trees (αn, En) and calculate homomorphisms In using (3.2). Let us
calculate sequence of homomorphisms Ĝn (and matrices B̂n) by (3.4) and (3.5).
Then,

K0(X, T ) = lim
−→
{Ĝn: ZVn\En → ZVn+1\En+1}.

If det(B̂n) 6= 0 for sufficiently large n then we can identify (')K0(X, T ) with the
subgroup

⋃∞
n=1 Ĝ−1

1 ◦ . . . ◦ Ĝ−1
n (ZVn+1\En+1) of the additive group Qmax |Vn\En|.

Step 4. To find the cone K0(X, T )+ consider subsets

Z
(n)
+ =

{ ∑
v∈Vn

av · In(ev) with av ∈ Z+

}
⊂ ZVn\En , n ≥ 1.

Because In(ev) = êv, for v ∈ Vn \ En then

Z
(n)
+ =

{
Z

Vn\En

+ +
∑

v∈En

av · In(ev), av ≥ 0
}

.

Then

(3.8) K0(X, T )+ '
∞⋃

n=1

Ĝ−1
1 ◦ . . . ◦ Ĝ−1

n (Z(n+1)
+ ).

Step 5. Set Inf(n) ' In(Nn). Then

(3.9) Inf(X, T ) = lim
−→
{Ĝn: Inf(n) → Inf(n + 1)}.

Stage II. Inspecting the sequence (3.6) and simplifying.

Step 6. If det(B̂n) = 0 for infinitely many n, then we can reconstruct the
sequence (3.6) to the other one. We replace (3.6) by the sequence

· · · −→ Im(Ĝn−1)
bGn−→ Im(Ĝn) −→ · · ·

which has a form (3.6), too. Namely, find a basis V ′
n of Im(Ĝn−1) and let

Jn: ZV ′
n → Im(Ĝn−1) be the natural isomorphism. We obtain the following

commuting diagram:

· · ·
bGn−1|Im(bGn−2)
−−−−−−−−−→ Im(Ĝn−1)

bGn|Im(bGn−1)
−−−−−−−−→ Im(Ĝn)

bGn+1|Im(Gn)−−−−−−−−→ · · ·xJn

xJn+1

· · · −−−−−−−−→
G′

n−1

ZV ′
n −−−−−−−−→

G′
n

ZV ′
n+1 −−−−−−−−→

G′
n+1

· · ·

where G′
n = J−1

n+1 ◦ Ĝn ◦ Jn. Then, K0(X, T ) = lim
−→
{ZV ′

n
G′

n−→ ZVn+1
′} and

Inf(X, T ) = lim
−→
{Inf ′(n)

G′
n−→ Inf ′(n + 1)}, where Inf ′(n) = J−1

n (Inf(n)).
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Step 6a. To find K0(X, T )+ we choose Z
(n)′

+ = J−1
n (Z(n)

+ ) and

K0(X, T )+ '
∞⋃

n=1

G′
1
−1 ◦ . . . ◦G′

n
−1(Z(n)′

+ ).

Step 7. If dim(Im(G′
n−1)) < |V ′

n| for infinitely many n, then we repeat Step 6.

Step 8. If dim(Im(G′
n−1)) = |V ′

n| for sufficiently large n, then we compute
K0(X, T ), K0(X, T )+, and Inf(X, T ) by (3.6), (3.8) and (3.9) with Vn\En := V ′

n,
Ĝn := G′

n, Z
(n)
+ := Z

(n)′

+ , Inf(n) := Inf ′(n).

Remark 3.7. In the sequel, we present examples of the topological flows.
We compute their dimension groups applying the algorithm (TA). After applying
the Stage I, we get a sequence of the following form

(3.10) Zk bG−→ Zk bG−→ Zk bG−→ · · ·

where Ĝn = Ĝ for n = 1, 2, . . . If det(Ĝ) = 0 then we apply the Stage II. In
this case we choose the positive integer l > 1, such that rank(Ĝl) = rank(Ĝl+1).
Then we choose a group isomorphism J ′: Ĝl(Zk) → Zs, where s = rank(Ĝl) and
we replace the sequence from the Step 6 by the sequence

Zs bG′′

−→ Zs bG′′

−→ Zs bG′′

−→ · · ·

where G′′ = J ′ ◦ Ĝ ◦ (J ′)−1 and det(G′′) 6= 0. Finally, we have K0(X, T ) =
lim
−→
{Zs

cG′′
−→ Zs} ⊂ Qs.

3.3. Relation between our results and results of papers [4] and [3]. In
this section we would like to indicate some relations between some results of our
paper and the main result of [4] and also to compare our algorithm (TA) and the
algorithm described in [3] for computing the dimension groups for substitutions.

Let ξ(n) = {T k(D(n)
0,v ), 0 ≤ k ≤ h(n, v) − 1, v ∈ Vn} be a sequence of

Kakutani–Rokhlin partitions of a Cantor minimal system (X, T ) satisfying the
conditions (1.1) and (1.2). The sequence {ξ(n)} determines a Bratteli diagram
I = (Vn, En) (for the definition see [3] and [4]). The diagram I is proper if
additionally (1.4) holds. Assuming that (1.4) is not satisfied and the set N ′ =⋂∞

n=1(
⋃

v∈Vn
D

(n)
0,v ) is finite, a natural question regarding relations between our

considerations and Theorem 9 of [4] arises. The theorem 9 states the following
isomorphism

(3.11)
K0(I)

Q
⊕ Zν ≡ K0(Π, S),

where K0(I) is the dimension group of the diagram I, Q is a subgroup of K0(I),
ν is a non-negative integer, and (Π, S) is the path-sequence dynamical system
(for the needed definitions see [4]) and K0(Π, S) is its dimension group.
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It is not difficult to see that in our case we can identify the path-sequence
dynamical system (Π, S) with (X, T ). At the same time

K0(I) = lim
−→
{ZVn

Fn−→ ZVn+1},

where Fn are homomorphisms from Step 1 of the algorithm (TA). In [4] the
following formula for ν is given

ν = e− v + c,

where e is the number of ∼ equivalent pairs of maximal paths and minimal paths,
v is the number of maximal or minimal paths and c is the number of components
in the graph whose vertices are maximal or minimal paths connected by the ∼
relation. It is not difficult to remark that in our case ν = 0.

In fact, we identify the set N of minimal paths of (Π, S) with the set⋂∞
n=1(

⋃
v∈Vn

D
(n)
0,v ) = N ′. While the set M of maximal paths is identified with

the set
∞⋂

n=1

( ⋃
v∈Vn

Th(n,v)−1(D(n)
0,v )

)
= M ′ = T−1(N ′).

Moreover, a pair (x, y), x ∈ M ′, y ∈ N ′, is “∼” if and only if y = T (x). Then
e = #N ′, v = 2 · (#N ′) and c = #N ′. Thus, we have ν = 0. Then (3.11) has
the following form

(3.12) lim
−→
{ZVn

Fn−→ ZVn+1}/Q = K0(X, T ).

Let us remark that (1.10) can be written in the form

(3.13) C(X, T )/BT

= lim
−→
{ZVn

Fn−→ ZVn+1}/ lim
−→
{Z(n)

c
Fn−→ Z(n+1)

c } = K0(X, T ).

The formulas (3.12) and (3.13) lead us to ask what the relations between sub-
groups Q and BT = lim

−→
{Z(n)

c
Fn−→ Z

(n+1)
c } are. To answer this question we

must adapt the description of Q from [4] to the case considered here. First we
distinguish subsets B̃n ⊂ ZVn , n ≥ 1. Take any element x ∈ X and consider
its T -trajectory OT (x) = {Tn(x), n ∈ Z}. The trajectory x passes through the
T -towers ξn,v = {T k(D(n)

0,v ), 0 ≤ k ≤ h(n, v) − 1}, v ∈ Vn. Let us mark the

places in 0T (x) whenever it passes through the top Th(n,v)−1(D(n)
0,v ) and denote

by Zn,v the set of such places. Now, take any finite fragment x[i, i + k] = u of x

and define the vector xu = 〈xv〉 ∈ ZVn as follows: xv = #Zn,v ∩ u.
Let B̃n be the set of all vectors xu when u is any finite fragment of x. Next

we define

Qn = {y ∈ ZVn : |y • xu| < ∞, the supremum is taken over all xu ∈ B̃n}.
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Using the minimality of (X, T ), it is easy to check that Qn does not depend on x.
Then Qn is a subgroup of ZVn and Fn(Qn) ⊂ Qn+1. The group Q is defined as

Q = lim
−→
{Qn

Fn−→ Qn+1}.

Now we will show that Z
(n)
c ⊂ Qn for every n ≥ 1, whenever supn #Vn < ∞.

Take x ∈ X and assume that its zero position is marked. Then the positive part
O+

T (x) of the trajectory OT (x) determines an infinite path of the graph (αn, Ṽn).
Let u be a finite fragment of x. First, let us assume that u determines a closed
cycle Γ of (αn, Ṽn) without loops. Then xu = wΓ (see proof of Theorem 2.2).
For y ∈ Z

(n)
c we have y•xu = 0. If u determines a finite numbers of closed cycles

Γs then xu =
∑

s wΓs and again we have y • xu = 0. In general, xu has a form

xu =
∑

s

wΓs
+ x′,

where the coordinates x′v of x′ are bounded by the number supn #Vn. Then, for
every y ∈ Z

(n)
c we have

|y • xu| ≤ sup
n

#Vn ·
∑

v∈Vn

|yv|.

In this manner we get Z
(n)
c ⊂ Qn. As a consequence we have BT ⊂ Q. We are

unable to answer whether Z
(n)
c = Qn for every n and also whether BT = Q.

Now we want to compare the algorithm (TA) with the algorithm from [3].
For the necessary definitions and notions we refer the reader to [3] including the
definitions of substitution minimal systems.

Let σ:A → A+, be a primitive, aperiodic substitution on a finite alphabet A

and let (Xσ, T ) be the corresponding minimal Cantor system. The substitution
σ determines the matrix Mσ = (mab), a, b ∈ A, where

mab = the number of occurrences of a in σ(b).

We can define sets D
(n)
0,a ,

D
(n)
0,a = {x ∈ Xσ : x[0, λn − 1] = σn(a)}, a ∈ A and λn = |σn(a)|.

The sets D
(n)
0,a define disjoint T -towers ξ

(n)′

a = {T k(D(n)
0,a ), 0 ≤ k ≤ λn − 1}. A

substitution σ is proper if there exists a pair r, l ∈ A such that for every a ∈ A,
r is the last letter σ(a) and l is the first letter of σ(a). If σ is proper, then the

towers ξ
(n)
a

′
, a ∈ A satisfy the conditions (1.1), (1.2) and (1.4). In this case

K0(Xσ, T ) = lim
−→
{ZA Mσ−→ ZA}.

The algorithm presented in [3] consists in an associating a primitive, aperiodic
and proper substitution τ to a given primitive, aperiodic substitution σ in such
a way that (Xτ , T ) is topologically isomorphic to (Xσ, T ). Then K0(Xσ, T ) ≡
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K0(Xτ , T ). We can also apply the algorithm (TA) for substitutions. Then Vn

is the set of all triples abc appearing in Xσ and the sets D
(n)
abc are defined in the

following way

D
(n)
abc = {x ∈ Xσ : x[−|σn(a)|, |σn(b)|+ |σn(b)| − 1] = σn(a)σn(b)σn(c)}.

We have Fn = F = (fa′b′c′,abc), where

fa′b′c′,abc = the number of occurrences of the triple abc

in the sequence u′1σ(b′)u′2,

where u′1 is the last letter of σ(a′) and u′2 is the first letter of σ(c′). In general,
the algorithms presented in [3] and (TA) are independent. We illustrate both
algorithms using the example from [3].

3.3.1. Example of a substitution. Let σ be the substitution defined on
the alphabet A = {a, b} by σ(a) = aba, σ(b) = baab. A substitution τ associated
with σ is the following: τ(1) = 112, τ(2) = 1212. Then

Mτ =
(

2 1
2 2

)
and K0(Xσ, T ) = K0(Xτ , T ) = lim

−→
{Z2 Mτ−→ Z2}.

Now we apply the algorithm (TA). We have Vn = {aba, bab, baa, abb}. The
graphs (αn, Ṽn) have the following form

�J1

J2

J3

baa

aba bab

aab

Figure 3.3

where J1 = {aab}, J2 = {baa, bab}, J3 = {aba}. Next, we have

Fn = F =

aab aba baa bab

aab

aba

baa

bab


1 1 0 1
1 2 1 0
0 1 1 1
0 1 0 2

 .
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As a spanning tree we take (αn, baa, aba). Applying Step 3 of (TA) we get

F̂n = F̂ =

bab aab

bab

aab

[
2 1
2 2

]
.

Thus F̂ = Mτ .

4. Examples

4.1. Teoplitz and Teoplitz–Morse flows. Let us remind briefly the def-
inition of Teoplitz flow. Let S be a finite alphabet with at least two symbols.
Consider the sequence of positive integers λn ≥ 2 and let pn = λ1 · . . . · λn,
n ≥ 1. Let us take a sequence of blocks A(n) over S ∪ {−} (“−” is the empty
symbol or the hole) such that |A(n)| = pn and the block A(n+1) is obtained by
a concatenation of λn copies of A(n), where some “holes” are filled by symbols
of S. Let us denote

kn = max{k : A(n)[i] ∈ S, for all 0 ≤ i ≤ k},
ln = max{l : A(n)[pn − i] ∈ S, for all 1 ≤ i ≤ l}.

We make an additional assumption that kn, ln→∞.
Now we define a bisequence ω ∈ SZ as follows: ω[kpn, (k + 1)pn − 1] = A(n)

for each n ≥ 1.
Let X = O(ω) and let T be the left shift. The dynamical system (X, T ) is

called a Teoplitz flow if it is not-periodic.
Now we are in a position to define n-symbols. By a n-symbol we mean each

block B of the form B = ω[kpn, (k + 1)pn − 1] for some k ∈ Z, so each n-symbol
coincides with the block A(n) at every position i such that A(n)[i] ∈ S and the
remaining positions i (the empty positions in A(n)) are filled in some way by the
alphabet S. The set Vn of all n-symbols B

(n)
v is finite. Now we define bases of

Kakuthani–Rokhlin partitions ξn in the following way:

D
(n)
0,v = {x ∈ X : x[0, pn − 1] = B(n)

v , v ∈ Vn}.

The partition ξn consist of |Vn| T -towers

ξ(n)
v = {T i(D(n)

0,v ), i = 0, . . . , pn − 1}, v ∈ Vn.

Let us note that

diam
( ⋃

v∈Vn

D
(n)
0,v

)
≤ max

(
1
kn

,
1
ln

)
→ 0,

hence (1.4) is satisfied, so we have

K0(X, T ) = lim
−→
{ZVn

Fn−→ ZVn+1}.
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The homomorphism Fn is given by the matrix B = [bvw], w ∈ Vn, v ∈ Vn+1,
where bvw is the number of the appearance of n-symbols B

(n)
w in the (n + 1)-

symbol B
(n+1)
v .

Take S = Z2, λn = 5 and let A(1) = 01−10. For n ≥ 2 we define blocks A(n)

with |A(n)| = 5n in such a way that A(n) has the only hole in its middle. Let
A

(n)
i , (i = 0 or 1) be the block A(n) filled by i in the middle. We define the block

A(n+1) = A
(n)
0 A

(n)
1 A(n)A

(n)
1 A

(n)
0 . In this case, we have only two n-symbols: A

(n)
0

and A
(n)
1 , and Vn = {A(n)

0 , A
(n)
1 }. Moreover, A

(n+1)
0 = A

(n)
0 A

(n)
1 A

(n)
0 A

(n)
1 A

(n)
0 ,

A
(n+1)
1 = A

(n)
0 A

(n)
1 A

(n)
1 A

(n)
1 A

(n)
0 . Thus, the homomorphisms Fn(= F ) are given

by the matrix
A

(n)
0 A

(n)
1

A
(n+1)
0

A
(n+1)
1

[
3 2
2 3

]
.

The unique T -invariant measure µ is given by µ(A(n)
0 ) = 1/(2 · 5n) = µ(A(n)

1 ),
pn = 5n, n = 1, 2, . . . Because det(F ) = 5, then

K0(X, T ) =
∞⋃

n=0

F−n(Z2),

Inf(X, T ) = {〈x, y〉 ∈ Z2, x + y = 0},

K0(X, T )+ =
∞⋃

n=0

F−n(Z2
+) = {〈x, y〉 ∈ K0(X, T ), x + y ≥ 0}

(see algorithm (TA), Stage I).
There are Teoplitz flows defined by a sequence of blocks A(n) not satisfying

the condition min(kn, ln) → ∞. An example of such flows are Teoplitz–Morse
flows. Consider sequence of blocks an such that an[i] ∈ S, i = 0, . . . , λn−2 and
an[λn−1] =“−” and each element s ∈ S appears in every an. Define inductively
a sequence of blocks (A(n))n≥0 as follows:

A(0) = a0,

A(n+1) = A(n) an+1[0] A(n) an+1[1] . . . A(n) an+1[λ−2] An−,

n ≥ 0, λ = λn+1. Thus, A(n+1) is obtained as the concatenation of λn+1 copies
of A(n) with holes filled by the successive elements of an+1 except of the latest
hole.

Define a bisequence ω over S ∪ {−} as ω[kpn, (k + 1)pn − 1] = A(n) for every
k ∈ Z and n ≥ 0. The sequence ω has all positions filled by symbols from S

except for the position “−1”, ω[−1] =“−”. We will write ω = a0 ∗ a1 ∗ . . .

Now let X ⊂ SZ be the closure of T -orbit of ω. We get a topological
flow (X, T ) which is called a Teoplitz–Morse flow. We define the sequence of
Kakuthani–Rokhlin partitions {ξn}. As the bases of the towers we take sets

D
(n)
0,gh = {x ∈ X : x[−pn, pn − 1] = A(n) g A(n) h }.
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Let Vn ⊂ S × S be the set of all pairs gh ∈ S × S that appear in the sequence
ωn+1 = an+1 ∗ an+2 ∗ . . . Then Vn is the set of the towers of the partition ξn. It
is easy to see that diam(

⋃
(gh)∈Vn

D
(n)
0,gh) = 1/2, so (1.4) is not satisfied. Thus

we apply the algorithm (TA).
In this case, homomorphisms Fn are given by matrix

Bn = [bghuv]gh∈Vn+1, uv∈Vn

where bghuv equals the number of the appearance of uv in the block gan+1h.
Consider the following example: S = {0, 1}, a2k = 1−, a2k+1 = 0−, for

k ≥ 0. Then,

ω2k = a0 ∗ a1 ∗ . . . = 101110101011101110 . . . ,

ω2k+1 = a1 ∗ a2 ∗ . . . = 010001 . . .

We find that V2k = {01, 10, 00} and V2k+1 = {01, 10, 11}. Thus, homomorphisms
Fn are given by the matrices:

V2k 00 01 10

V2k+1

01

10

11

 1 1 0
1 0 1
0 1 1


V2k+1 01 10 11

V2k

00

01

10

 1 1 0
1 0 1
0 1 1

 .

Define Jg = {gh : gh ∈ Vn}, g ∈ {0, 1}, then the partitions αn = {J0, J1}. The
graphs (αn, Vn) are presented in Figure 4.1.

We choose spanning trees (αn, En), En = {01} in both cases (Figure 4.1)
and calculate the homomorphisms In. We have

I2k〈x00, x01, x10〉 = 〈 x00︸︷︷︸
y00

, x01 + x10︸ ︷︷ ︸
y10

〉,

I2k+1〈x01, x10, x11〉 = 〈x01 + x10︸ ︷︷ ︸
y10

, x11︸︷︷︸
y11

〉.

Now we calculate the homomorphisms Ĝ = Ĝn. They are given by the
matrices:

00 10

10

11

[
2 1
0 1

] 10 11

00

10

[
1 0
1 2

]
.

It is convenient to consider the sequence

Z2
bG2

n−→ Z2
bG2

n−→ Z2
bG2

n−→ · · ·
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�J0 J100

01

10

n even

�J0 J1 11

01

10

n odd

Figure 4.1

instead of the sequence (3.6). The homomorphisms Ĝ2
n are given by the matrix

F =
[

3 2

1 2

]
. Thus, we have

K0(X, T ) =
∞⋃

n=0

F−n(Z2).

The unique invariant measure is given by µ(D(n)
0,gh) = 1/(3 · 2n) for (gh) ∈ Vn,

n = 1, 2, . . . Thus,

N2k = {〈x00, x01, x10〉 ∈ Z3 : x00 + x01 + x10 = 0},
N2k+1 = {〈x01, x10, x11〉 ∈ Z3 : x01 + x10 + x11 = 0}.

Then

I2k(N2k) = {〈y00, y10〉 ∈ Z2 : y00 + y10 = 0},
I2k+1(N2k+1) = {〈y10, y11〉 ∈ Z2 : y10 + y11 = 0}

and
Inf(X, T ) = {〈x, y〉 ∈ Z2 : x + y = 0} ⊂ K0(X, T ).

We have also

K0(X, T )+ =
∞⋃

n=0

F−n(Z2
+) = {〈x, y〉 ∈ K0(X, T ) : x + y ≥ 0}.



182 J. Kwiatkowski — M. Wata

4.2. Morse flow. Let G be a nontrivial finite abelian group. Let B, C be
blocks over G, (|B| = λB , |C| = λC), g ∈ G. Then, B + g denotes the block
(B[0] + g,B[1] + g, . . . , B[λB − 1] + g) and B × C is the block defined as the
concatenation (B + C[0])(B + C[1]) . . . (B + C[λC ]).

Now take the sequence of blocks an over G, such that an contains every
symbol from G and a[0] = 0 for n = 0, 1, . . . and set ω = a0 × a1 × . . . The
one-sided sequence ω is called a generalized Morse sequence if it is not periodic.

Let X = O(ω) and T be the shift. The dynamical system (X, T ) is called a
Morse flow. We define also sequences ωn = an × an+1 × . . . and blocks B(n) =
a0 × . . .× an, |B(n)| = pn, (ω = B(n) × ωn).

Now we define the bases of Kakuthani–Rokhlin partitions ξn in the following
way:

D
(n)
0,vgh = {x ∈ X : x[−pn, 2pn−1] = (B(n)+v)(B(n)+g)(B(n)+h)}, v, g, h ∈ G.

Then Vn is the set of all triples vgh that appear in the sequence ωn+1. The
partition ξn consists of |Vn| T -towers ξ

(n)
vgh = {T i(D(n)

0,vgh) : i = 0, . . . , pn − 1},
vgh ∈ Vn.

The homomorphism Fn is given by the matrix B = [buw], v′g′h′ = w ∈ Vn,
vgh = u ∈ Vn+1, where buw is the number of appearance of the triple v′g′h′ in
the block

(a[λ− 1] + v)(a + g)h = (a[λ− 1] + v), g, (a[1] + g), . . . , (a[λ− 1] + g), h,

where a = an+1, λ = λn+1.
The partition αn consists of sets Jgh, where gh is a pair of elements of G

such, that a triple (ghv) ∈ Vn for some v ∈ G and Jgh = {ghv ∈ Vn}.
Let G = Z2, an = a = 01. Then

ωn = ω = 01101001100101101001011001101001 . . .

and Vn = {001, 010, 011, 100, 101, 110}.
To find the homomorphisms Fn, we must know triples v′g′h′ = w ∈ Vn

appearing in the block (v + 1)(a + g)h = (v + 1)g(g + 1)h, v, g, h ∈ Z2. We have
ξ
(n+1)
vgh = η

(n)
(v+1)g(g+1) ∪ η

(n)
g(g+1)h. The homomorphism Fn = F is given by the

matrix:
001 010 011 100 101 110

001

010

011

100

101

110



0 0 1 0 1 0
0 0 0 1 0 1
0 0 0 0 1 1
1 1 0 0 0 0
1 0 1 0 0 0
0 1 0 1 0 0


.
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�J01 J10

J00

J11
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110011

001

Figure 4.2

The Morse system is uniquely ergodic, the only measure µ is given by µ(D(n)
0,vgh) =

1/(3 · 2n), n = 1, 2, . . . , vgh ∈ Vn. The partition αn has the following form
αn = {J00, J01, J10, J11}. The graph (αn, Ṽn) is presented in Figure 4.2.

We select a spanning tree (αn, En) with En = {100, 101, 110} (see Figure 4.2).
The homomorphisms In = I are defined as follows:

In〈x001, x010, x011, x100, x101, x110〉
= 〈x001 + x100 − x101, x010 + x101, x011 + x110 + x101〉 = 〈y001, y010, y011〉.

Hence the sequence of homomorphisms Ĝn = Ĝ is defined by the matrix:

001 010 011

001

010

011

 0 1 0
1 0 1
1 1 1

 .

Because det(Ĝ) = 0 we apply the Stage II of the algorithm (TA). We have

Ĝ(Z3) = {〈y001, y010, y011〉 ∈ Z3 : y011 = y001 + y010}
Jn' Z2 = {〈y001, y010〉}.

The homomorphism G′
n = G′ is given by the matrix:

G′ =

001 010

001

010

[
0 1
2 1

]
.

Because det(G′
n) = −2 thus K0(X, T ) '

⋃∞
n=0(G

′−n)(Z2).
Next we have

Nn = {x ∈ Z6 : x001 + x010 + x011 + x100 + x101 + x110 = 0}

and

Inf(n) = In(Nn) = {〈y001, y010, y011〉 ∈ Z3 : y001 + y010 + y011 = 0}.
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Moreover,
J−1

n (Inf(n)) = {y ∈ Z2 : y001 + y010 = 0}.
Finally

Inf(X, T ) ' {〈y001, y010〉 ∈ Z2 : y001 + y010 = 0} ' Z.

To describe the cone K0(X, T )+ we find

In(e100) = ê001, In(e101) = 〈−1, 1, 1〉,
In(e110) = ê011, In(evgh) = êvgh,

(vgh) ∈ Vn \En. Then Z
(n)
+ = {Z3

+ + a〈−1, 1, 1〉, a ∈ Z+} for every n ≥ 1. Next
we have

Z
(n)′

+ = J−1
n (Z(n)

+ )

= {J−1
n (Z3

+) + aJ−1
n (〈−1, 1, 1〉), a ∈ Z+} = {Z2

+ + a〈−1, 1〉, a ∈ Z+}.

Then

K0(X, T )+ '
∞⋃

n=0

G′−n(Z(n)′

+ ) = {〈x, y〉 ∈ K0(X, T ) : x + y ≥ 0}.

4.3. Rudin–Shapiro flow. The Rudin–Shapiro flow (X, T ) is a symbolic
topological flow, where X = O(ω) ⊂ {0, 1}Z, T is the shift and ω is the Rudin–
Shapiro sequence. To define the sequence ω, we consider the binary expansion
n =

∑kn

i=0 2i ·εi, εi = 0, 1, εkn = 1 of every positive integer n. Then, we compute
a sequence {a[n]}∞n=0, where a[n] = the number of the appearance of the pair 11
in the block ε0 . . . εkn

for n ≥ 1 and a[0] = 0. The sequence ω[n] is defined as

ω[n] =

{
1 if an is odd,

0 if an is even.

Then ω = 0001001000011101 . . . The sequence ω is determined also by a sequence
of blocks A

(n)
0 , A

(n)
1 over {0, 1} = Z2, n = 0, 1, . . . , such that A

(0)
0 = A

(0)
1 = 0

and A
(n+1)
0 = A

(n)
0 A

(n)
1 , A

(n+1)
1 = A

(n)
0 (A(n)

1 )1, where B0 = B = B + 0 and
B1 = B + 1 in Z2 (B1 is called also the mirror of the block B). Then,

|A(n)
0 | = |A(n)

1 | = 2n and ω[0, 2n+1 − 1] = A
(n)
0 A

(n)
1

for every n ≥ 0. The blocks A
(n)
0 , A

(n)
1 define partitions ξ(n), n ≥ 0, on T -towers

ξ
(n)
ghuv = {T i(D(n)

ghuv), i = 0, . . . , 2n+1 − 1, g, h, u, v ∈ Z2}, where

D
(n)
ghuv = {x ∈ X : x[−2n, 3 · 2n − 1] = (A(n)

1 )g(A(n)
0 )h(A(n)

1 )u(A(n)
0 )v}.

Then Vn = Z4
2 and ZVn = Z16.

To find a matrix Fn: Z16 → Z16 we remark that

ξ
(n+1)
ghuv = η

(n)
g+1,hhu ∪ η

(n)
hu,u+1,v for every ghuv ∈ Z4.
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We have Fn = F , where F has the following form:

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111



0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1
1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0



.

The partition αn of Vn has a form αn = {Jgh, g, h ∈ Z2}, where Jgh =
{ghuv ∈ Vn}. The graph (αn, Ṽn) is presented in Figure 4.3.

�J00 J11

J10

J01

11110000 0011

1100

01101001

1010

0101

1110

01110001

1000

Figure 4.3

To simplify notations, we will write sometimes 0 instead of 0000, 1 instead
of 0001, . . . , 15 instead of 1111. In particular x0000 := x0, y0000 := y0, . . . ,
x1111 := x15, y1111 := y15.
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As a spanning tree we take En = E = {1, 7, 14} (see Figure 4.3). Then by
(3.2) we have I〈x0, . . . , x15〉 = 〈y0, . . . , y15〉, In = I, where

y0 = x0, y9 = x9 + x7 + x14,

y2 = x2 − x1 − x7 − x14, y10 = x10,

y3 = x3 − x1 − x7, y11 = x11 + x14,

y4 = x4 + x1, y12 = x12 + x1 + x7,

y5 = x5, y13 = x13 + x7,

y6 = x6 − x7 − x14, y15 = x15.

y8 = x8 + x1 + x7 + x14,

Next, we compute the homomorphisms Ĝn by (3.4) and (3.5). We have Ĝn = Ĝ

for every n ≥ 1 and Ĝ: Z13 → Z13 is given by the following matrix Ĝ (denoted
by the same symbol).

0 2 3 4 5 6 8 9 10 11 12 13 15

0

2

3

4

5

6

8

9

10

11

12

13

15



0 1 0 0 0 0 1 0 0 0 0 0 0
0 0 −1 1 0 0 −1 1 0 0 −1 −1 −1
0 0 −1 0 1 0 −1 1 0 0 0 −1 −1
0 0 1 0 0 0 1 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 −1 0
1 1 1 0 0 0 1 0 0 0 1 1 1
1 0 1 0 0 0 0 0 0 0 1 1 1
0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 1 0 0
0 0 1 0 0 1 1 0 1 0 0 1 1
0 0 0 0 0 1 0 0 0 1 0 1 1
0 0 0 0 0 0 0 0 0 0 0 1 0



.

Here rank(Ĝ)) = 9, so we apply Stage II of the algorithm (TA). Moreover,

(4.1) Im(Ĝ) = {y ∈ Z13 : y9 = −y0 + y8, y11 = −y2 + y3 + y10,

y13 = −y4 + y5 + y12, y15 = −y6}.

Thus Im(Ĝ) ' Z9 = {〈y0, y2, y3, y4, y5, y6, y8, y10, y12〉} (we omit the coordi-
nates y9, y11, y13, y15), i.e. V ′

n = {0, 2, 3, 4, 5, 6, 8, 10, 12} and Jn: Z9 → Im(Ĝ)
(see Step 6 of the algorithm (TA)) is given by Jn(ei) = ei, i ∈ V ′

n.
The homomorphism Ĝ: Im(Ĝ)→ Im(Ĝ) defines a homomorphism G′: Z9→Z9.

The matrix G′ is obtained from the matrix G by eliminating y9, y11, y13, y15
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using (4.1). Then, we get the following matrix G′

0 2 3 4 5 6 8 10 12

0

2

3

4

5

6

8

10

12



0 1 0 0 0 0 1 0 0
−1 0 −1 2 −1 1 0 0 −2
−1 0 −1 1 0 1 0 0 −1

0 0 1 0 0 0 1 1 0
0 −1 1 0 0 0 0 1 0
0 0 0 1 −1 0 0 0 −1
1 1 1 −1 1 −1 1 0 2
0 0 0 1 0 0 0 0 0
0 0 1 −1 1 0 1 1 1


.

We have rank(G′) = 5 and

Im(G′) = {y ∈ Z9 : y5 = −y0 + y4, y6 = y2 − y3,

y10 = −y0 + y2 + y8, y12 = −y2 + y3 + y4}.

Repeating the same procedure as above we get G′′: Z5 → Z5 given by the matrix

0 2 3 4 8

0

2

3

4

8


0 1 0 0 1
0 3 −4 −1 0
−1 2 −3 0 0
−1 1 1 0 2

0 −2 4 2 1

 .

We have rank(G′′) = 4 and Im(G′′) = {y ∈ Z5 : y8 = 3y0−2y2 +y3−y4}. Then,
Im(G′′) ' Z4.

Consequently, we replace the homomorphism G′′: Im(G′′) → Im(G′′) with
the homomorphism G′′′: Z4 → Z4. It is given by the matrix

0 2 3 4

0

2

3

4


3 −1 1 −1
0 3 −4 −1
−1 2 −3 0

5 −3 3 −2

 .

We have det(G′′′) = 4 and then K0(X, T ) '
⋃∞

n=0 G′′′−n(Z4).
The unique T -invariant measure of (X, T ) µ is given by µ(D(n)

v ) = 1/2n+3

for every n ≥ 1 and v ∈ Vn. Then Nn = {〈xv〉 ∈ Z16 :
∑

v∈Vn
xv = 0}.

It is not hard to remark that

Inf(n) = In(Nn) =
{
〈yv〉v∈Vn\En

∈ Z13 :
∑

v∈Vn\En

yv = 0
}

.
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To find Inf ′(n), we remark that G(Inf(n) ⊂ Inf(n). Then, we have G(Inf(n)) =
G(Z13) ∩ Inf(n). Therefore,

Inf(n)′ =(J−1
n ◦G)(Inf(n)) = J−1

n (G(Z13)) ∩ J−1
n (Inf(n))

= {y ∈ Z9 : y satisfies the equation obtained from∑
v∈Vn\En

yv = 0 by using equations from (4.1) }

= {y ∈ Z9 : y3 + y5 + y8 + y10 + y12 = 0}.

By the same arguments, we get

Inf ′′(n) = {y ∈ Z5 : J(y) ∈ Inf ′(n)} = {y ∈ Z5 : −y0 + y3 + y4 + y8 = 0}.

Finally, Inf ′′′(n) = {y ∈ Z4 : y0−y2+y3 = 0}. We have G′′′(Inf(n)′′′) ⊂ Inf(n)′′′.
Thus,

Inf(X, T ) = lim
−→
{G: Inf ′′′(n) → Inf ′′′(n + 1)}

= {〈y0, y2, y3, y4〉 ∈ K0(X, T ) : y0 − y2 + y3 = 0} ⊂ K0(X, T ).

To describe the cone K0(X, T )+ we find that In(ev) = êv, v ∈ Vn \ En, and

In(e0001) = 〈0,−1,−1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0〉,
In(e0111) = 〈0,−1,−1, 0, 0,−1, 1, 1, 0, 0, 1, 1, 0〉,
In(e1110) = 〈0,−1, 0, 0, 0,−1, 1, 1, 0, 1, 0, 0, 0〉,

in Z13. Thus,

Z
(n)
+ = {Z13

+ + a1In(e0001) + a2In(e0111) + a3In(e1110), a1, a2, a3 ∈ Z+} = Z ′
+.

Let Z
(n)
+

′′
= Z ′′

+ = (G′′ ◦G′ ◦G)(Z ′
+). Then

K0(X, T )+ =
∞⋃

n=0

(G′′′)−n(Z ′′
+).

Of course

K0(X, T )+ ⊂
{
〈y0, y2, y3, y4〉 ∈

∞⋃
n=0

G′′′−n(Z4) : y0 + y3 ≥ y2

}
.

We show that

(4.2)
∞⋃

n=0

(G′′′)−n(Z ′′
+) = {〈y0, y2, y3, y4〉 ∈ K0(X, T ) : y0 + y3 ≥ y2}.

For x ∈ Z4 let L+
x be a positive line defined by x i.e. L+

x = {λx, λ ∈ Z+}. Let
us denote wi = (G′′ ◦ G′ ◦ G ◦ In)(êi) ∈ Z4, êi ∈ Z16, i = 0, . . . , 15. Of course,
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L+
wi

are elements of the cone K0(X, T )+. We need the vectors w0, w2, w5 and
w6. By direct computations we find:

w0 = 〈1,−1,−1, 1〉, w2 = 〈1, 0, 0, 1〉, w5 = 〈0, 0, 1, 0〉, w6 = 〈0,−2,−1, 1〉.

The matrix G′′′ has four eigenvalues λ1 = −1, λ2 = 2, λ3 =
√

2, λ4 = −
√

2, with
the eigenvectors:

x(−1) = 〈0, 1, 1, 0〉, x(2) = 〈1,−2,−1, 2〉,

x(
√

2) = 〈
√

2 + 1,
√

2 + 2, 1,
√

2〉, x(−
√

2) = 〈1−
√

2, 2−
√

2, 1,−
√

2〉.

The vectors x(−1), x(
√

2) and x(−
√

2) form a basis of the subspace

Π = {〈z0, z2, z3, z4〉 : z0 + z3 = z2} ⊂ R4.

Let Πint = Π∩Z4. For any y = 〈y0, y2, y3, y4〉 ∈ Z4, we have y = a · x(2) + u,
u ∈ Π, where a = (y0 + y3 − y2)/2. In particular, we have wi = x(2)/2 + ui,
i = 0, 2, 5, 6, where

u0 =
〈

1
2
, 0,−1

2
, 0

〉
, u2 =

〈
1
2
, 1,

1
2
, 0

〉
,

u5 =
〈
− 1

2
, 1,

3
2
,−1

〉
, u6 =

〈
− 1

2
,−1,−1

2
, 0

〉
.

The subspace Π is G′′′-invariant and the map G′′′ (in the coordinates z0, z3,
z4 of Π; we omit z2 = z0 + z3) is given by the matrix:

F =

0 3 4

0

3

4

 2 0 −1
1 −1 0
2 0 −2

 .

We find that

F−1 =


1 0 −1

2

1 −1 −1
2

1 0 −1

 .

By the induction we check that

F−2l =


1
2l

0 0

1
2l
− 1 1 1− 1

2l

0 0
1
2l

 , F−(2l+1) =


1
2l

0 − 1
2l+1

1 −1 − 1
2l+1

− 1

1
2l

0 − 1
2l

 ,
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for l = 0, 1, 2, . . . We find:

F−2l(u2) =
〈

1
2l+1

,
1

2l+1
, 0

〉
, F−(2l+1)(u2) =

〈
1

2l+1
, 0,

1
2l+1

〉
,

F−(2l+1)(u0) =
〈

1
2l+1

, 1,
1

2l+1

〉
, F−2l(u6) =

〈
− 1

2l+1
,− 1

2l+1
, 0

〉
,

F−(2l+1)(u6) =
〈
− 1

2l+1
, 0,

−1
2l+1

〉
, F−(2l+1)(u5) =

〈
0,−1,− 1

2l+1

1
2l+1

〉
,

Then, we have

(G′′′)−2l(w2) =
1

22l+1
x2 +

〈
1

2l+1
,

1
2l

,
1

2l+1
, 0

〉
,

(G′′′)−2l(w6) =
1

22l+1
x2 +

〈
− 1

2l+1
,− 1

2l
,− 1

2l
, 0

〉
,

(G′′′)−(2l+1)(w2) =
1

22l+2
x2 +

〈
1

2l+1
,

1
2l+1

, 0,
1

2l+1

〉
,

(G′′′)−(2l+1)(w6) =
1

22l+2
x2 +

〈
− 1

2l+1
,− 1

2l+1
, 0,− 1

2l+1

〉
,

(G′′′)−(2l+1)(w0) =
1

22l+2
x2 +

〈
1

2l+1
, 1 +

1
2l+1

, 1,
1

2l+1

〉
,

(G′′′)−(2l+1)(w5) =
1

22l+2
x2 +

〈
0,−1− 1

2l+1
,−1− 1

2l+1
,

1
2l+1

〉
.

Further, we have

2l+1(G′′′)−2l(w2) =
1
2l

x(2) + 〈1, 2, 1, 0〉 = (Al),

2l+1(G′′′)−2l(w6) =
1
2l

x(2) + 〈−1,−2,−1, 0〉 = (Bl),

2l+1(G′′′)−(2l+1)(w2) =
1
2l

x(2) + 〈1, 1, 0, 1〉 = (Cl),

2l+1(G′′′)−(2l+1)(w6) =
1
2l

x(2) + 〈−1,−1, 0,−1〉 = (Dl).

Of course Al, Bl, Cl, Dl ∈
⋃∞

n=0(G
′′′)−n(Z ′′

+). Then,

lim
l

Al = 〈1, 2, 1, 0〉, lim
l

Bl = 〈−1,−2,−1, 0〉,

lim
l

Cl = 〈1, 1, 0, 1〉, lim
l

Dl = 〈−1,−1, 0,−1〉

are some elements of the cone K0(X, T )+. At the same time 〈0, 1, 1, 0〉 =
liml(G′′′)−(2l+1)(w0) and 〈0,−1,−1, 0〉 = liml(G′′′)−(2l+1)(w5) are also elements
of K0(X, T )+. It follows from above that for any vector y ∈ Πint the positive line
L+

y is an element of K0(X, T )+. Then for any y ∈
⋃∞

n=0(G
′′′)−n(Πint) = {y ∈

K0(X, T ), y0 + y3 − y2 = 0} the positive line Ly is an element of K0(X, T )+.
This implies (4.2).
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4.4. Skew product extensions. Let (X, T ) be a Cantor minimal system,
G a finite abelian group and c:X → G a continuous cocycle. Consider a minimal
group extension (X×G, Tc), where Tc(x, g) = (T (x), g+c(x)). Assume that {ξ′n},
ξ′n = {T i(D(n)

0,v ), i = 0, . . . , h(n, v) − 1, v ∈ Vn} is a sequence of Kakuthani–

Rokhlin partitions of (X, T ) generating the topology. The clopen sets T i(D(n)
0,v )×

g, g ∈ G, form partitions ξn of (X × G) generating the topology of X × G.
Because c is continuous we can choose no such that c = const on every T i(D(n)

0,v ),
i = 0, . . . , h(n, v) − 1, v ∈ Vn. Without loss of generality we assume that
this property holds for every n = 1, 2, . . . Then the partitions ξn, n ≥ 1, are
Kakuthani–Rokhlin partitions of (X ×G, Tc) consisting of Tc-towers

ξn(v, g) = {T i
c(D

(n)
0,v × g), i = 0, . . . , h(n, v)− 1}, v ∈ Vn, g ∈ G.

Let (αn, Ṽn) be the oriented graphs determined by ξn (see Section 2). In addition,
we assume that

(4.3) max
J∈αn

(
diam

⋃
v∈J

D
(n)
0,v

)
→ 0.

This implies that

(4.4) max
J∈αn

(
diam

⋃
v∈J

T−1(D(n)
0,v )

)
→ 0.

The conditions (4.3) and (4.4) imply that the sets T−1
c (

⋃
v∈J D

(n)
0,v × g) are

ξn-sets for every J ∈ αn and g ∈ G. Thus, the sets

ξn(J, g) =
⋃
v∈J

ξn(v, g), J ∈ αn,

form a partition of the set Vn × G and it is the smallest partition having this
property. Thus, the sets ξn(J, g), J ∈ αn, g ∈ G form a partition of Vn × G

defined in the Section 2. Denote it by αn × G. We have an oriented graph
(αn ×G, Ṽn ×G). For v ∈ Vn let

d(v) =
h(v)−1∑

i=0

c(T ix), h(v) = h(n, v),

where x ∈ D
(n)
v,0 . The arrows of (αn×G, Vn×G) are characterized by the following

property:

(4.5) Let (J, g) ∈ αn×G and (J ′, h) ∈ αn×G. Then, there exists an arrow v×g

joining the vertices (J, g) and (J ′, h) if and only if v = (J, J ′) and h =
g + d(v).

We will construct a spanning tree (αn × G, E′
n) of the non-oriented graph

(αn ×G,
˜̃

Vn ×G) using a modification of the Kruskal algorithm (see [2]). To do
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this, take a spanning tree (αn, E), E = En of (αn,
˜̃
V n). Let Pv, v ∈ Vn \ E, be

the cycle of (αn,
˜̃
V n) defined in Section 3. Set

(4.6) d(Pv) =
∑

v′∈P+
v

d(v′)−
∑

v′∈P−
v

d(v′).

Let PJJ ′ , J, J ′ ∈ αn, be the unique path joining the vertices J and J ′ inside E.
Let

(4.7) d(PJJ ′) =
∑

v′∈P+
JJ′

d(v′)−
∑

v′∈P−
JJ′

d(v′),

where P+
JJ ′ is the set of all v′ ∈ PJJ ′ having the same orientation as the direction

from J to J ′ and P−
JJ ′ = PJJ ′ \ P+

JJ ′ . In the sequel we need two facts:

(F1) The minimality of (X×G, Tc) implies that the elements d(Pv), v ∈ Vn\E
generate the group G for every n ≥ 1 (this fact is easy to prove).

(F2) A connected acyclic subgraph (α, E) of a connected not oriented graph
(α, V ) is a spanning tree if and only if |E| = |α| − 1 (see [2]).

4.4.1. Construction of a spanning tree of the graph (αn×G,
˜̃

Vn ×G).
Using (F1) we choose v1, . . . , vs ∈ Vn \ E such that

G = H1 = G(a1, . . . , as) ) H2 = G(a2, . . . , as) ) . . .

) Hs = G(as) ) Hs+1 = {0},

where ai = d(Pvi
).

Let ri = rank ai in Hi/Hi+1, i = 1, . . . , s. Of course ri > 1. Then, every
h ∈ G has the unique decomposition h = τ1 · a1 + . . . + τs · as, 0 ≤ τi ≤ ri − 1.
Inductively, we construct a family of connected, acyclic subgraphs S

(m)
g (J) =

(α(m)
g (J), E(m)

g (J)), g ∈ Hm, J ∈ αn, m = 1, . . . , s, satisfying

(4.8)



(a) α
(m)
g (J) ∩ α

(m)
h (J) = ∅, g 6= h, g, h ∈ Hm,

(b)
⋃

g∈Hm

α(m)
g = αn ×G, for every J ∈ αn,

(c) ξn(J, h) ∈ α
(m)
g (J) ⇔ h = τ1 · a1 + . . . + τm−1 · am−1 + g,

h ∈ G, g ∈ Hm,

(d) α
(m)
g (J) = α

(m)
g+dm

(J ′), E
(m)
g (J) = E

(m)
g+dm

(J ′), g ∈ Hm,

where dm ∈ Hm is chosen from the conditions d1 = d(PJJ ′) and d(PJJ ′) =
τ1 · a1 + . . . + τm−1 · am−1 + dm, m > 1.

Step 1. For J ∈ αn and g ∈ G set α
(1)
g (J) = {(J ′, g + d(PJJ ′)), J ′ ∈ αn} ⊂

αn ×G, and E
(1)
g (J) = {ξn(v, g + d(PJJ ′) + d(v)) : (J ′, J ′′) = v ∈ E}.
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It is easy to see that α
(1)
g and E

(1)
g satisfy (4.8). We define a family S

(1)
g (J)

of subgraphs of (αn ×G, Vn ×G) as follows:

S(1)
g (J) = (α(1)

g (J), E(1)
g (J)).

The graphs S
(1)
g (J) are connected and acyclic.

Step m + 1. Assume that we have constructed a family S
(m)
g (J), m < s + 1,

g ∈ Hm, of subgraphs satisfying (4.8). For g ∈ Hm+1 and J ∈ αn define

α(m+1)
g (J) =

rm−1⋃
k=0

α
(m)
g+k·am

(J),

E(m+1)
g (J) =

rm−1⋃
k=0

E
(m)
g+k·am

(J) ∪
rm−2⋃
k=0

ξn(vm, g + k · am),

S(m+1)
g (J) = (α(m+1)

g (J), E(m+1)
g (J)).

Now we check that α(m+1) and E(m+1) satisfy (4.8). Let vm = (J, J ′), J, J ′ ∈ αn.
It follows from (4.5) that the arrow ξn(vm, g+k ·am), g ∈ Hm+1, 0 ≤ k ≤ rm−2,
joins the vertices ξn(J, g + k · am) and ξn(J ′, g + k · am + d(vm)). Of course
ξn(J, g + k · am) ∈ αg+k·am

(J). We will check that ξn(J ′, g + k · am + d(vm)) ∈
αg+(k+1)·am

(J). We use the equality d(vm)− d(PJJ ′) = d(Pvm
). We have

ξn(J ′, g + k · am + d(vm)) = ξn(J ′, g + (k + 1)am + d(PJJ ′))
(4.8)(c)
∈ α

(m)
g+(k+1)am+dm

(J ′)
(4.8)(d)

= α
(m)
g+(k+1)am

(J).

This means that the arrow ξn(J, g + k · am) joins the subgraphs S
(m)
g+k·am

(J) and

S
(m)
g+(k+1)am

(J), k = 0, . . . , rm − 2.

Each S
(m+1)
g (J), g ∈ Hm+1 is an acyclic, connected subgraph of (αn ×

G,
˜̃

Vn ×G). For any J ′′ ∈ αn we define S
(m+1)
g (J ′′) by (4.8)(d). It is not hard

to see that the family {S(m+1)
g (J ′′)}, g ∈ Hm+1 satisfies the conditions (4.8) for

every J ′′ ∈ αn.

4.4.2. A spanning tree of (αn × G,
˜̃

Vn ×G). We finish the construction
of the families {S(m)

g (J)}, g ∈ Hm, J ∈ αn, when m = s + 1. Then we have an

acyclic, connected subgraph S
(s+1)
0 (J) of (αn ×G,

˜̃
Vn ×G).

To prove that S
(s+1)
0 (J) is a spanning tree, we use (F2). Of course, |E(1)

g (J)|
= |αn| − 1. Assume that

|E(m)
g+k·am

(J)| = |α(m)
g+k·am

(J)| − 1 = |α(m)
g (J)| − 1,

for g ∈ Hm+1, k = 0, . . . , rm − 1. We have

|E(m+1)
g (J)| = |E(m)

g+kam
(J)| · rm + rm − 1 = rm|α(m)

g (J)| − 1 = |α(m+1)
g (J)| − 1.
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In this way it holds |E(m)
g (J)| = |α(m)

g (J)| − 1 for every m = 1, . . . , s + 1 and
g ∈ Hm. In particular

|E(s+1)
g (J)| = |α(s+1)

g (J)| − 1 = |αn ×G| − 1.

Therefore, because of (F2), S
(s+1)
0 (J) = (αn × G, E′

n) is a spanning tree of
(αn ×G, Vn ×G).

4.5. A group extension of the Chacon flow. Consider a Chacon se-
quence ω over two symbols 0, 1 (we replace the symbol “s” by “1”) treated as
the elements of the group Z3 = {0, 1, 2}. Define a cocycle c:X = O(ω) → Z3 as
follows: c(x) := x[0], x ∈ X. We have Vn = {00, 01, 10, 11} (see Subsection 3.1).
Then,

d(00) = d(10) =
rn−1∑
i=0

Bn[i] = 1, d(01) = d(11) = 1 +
rn−1∑
i=0

Bn[i] = 2,

for every n ≥ 1. To find the homomorphism F ′
n from ZVn×Z3 → ZVn×Z3 , let us

note that

ξ(n+1)(00, g) = η(n)(00, g) ∪ η(n)(01, g + 1) ∪ η(n)(10, g),

ξ(n+1)(10, g) = η(n)(10, g) ∪ η(n)(01, g + 1) ∪ η(n)(10, g),

ξ(n+1)(01, g) = η(n)c(00, g) ∪ η(n)(01, g + 1) ∪ η(n)(11, g),

ξ(n+1)(11, g) = η(n)(10, g) ∪ η(n)(01, g + 1) ∪ η(n)(11, g),

for g ∈ Z3. So F ′
n is given by the matrix

00×0 00×1 00×2 01×0 01×1 01×2 10×0 10×1 10×2 11×0 11×1 11×2

00×0

00×1

00×2

01×0

01×1

01×2

10×0

10×1

10×2

11×0

11×1

11×2



1 0 0 0 1 0 1 0 0 0 0 0
0 1 0 0 0 1 0 1 0 0 0 0
0 0 1 1 0 0 0 0 1 0 0 0
1 0 0 0 1 0 0 0 0 1 0 0
0 1 0 0 0 1 0 0 0 0 1 0
0 0 1 1 0 0 0 0 0 0 0 1
0 0 0 0 1 0 2 0 0 0 0 0
0 0 0 0 0 1 0 2 0 0 0 0
0 0 0 1 0 0 0 0 2 0 0 0
0 0 0 0 1 0 1 0 0 1 0 0
0 0 0 0 0 1 0 1 0 0 1 0
0 0 0 1 0 0 0 0 1 0 0 1



.

According to (4.5) the graph (αn × Z3, ˜Vn × Z3) (see Figure 4.4) has the
following arrows

(01)× g = ((J1, g) → (J2, g + 2)), (10)× g = ((J2, g) → (J1, g + 1)),

(00)× g = ((J1, g) → (J1, g + 1)), (11)× g = ((J2, g) → (J2, g + 2)),
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g ∈ Z3, J1 = {00, 01}, J2 = {10, 11}.
To calculate In, we find a spanning tree using (4.4.1) and (4.4.2). We select

the same spanning tree (αn, E) E = En = {01} as in Subsection 3.1. According
to (4.6) we have a00 = d(P00) = 1, a11 = d(P11) = 2, a10 = d(P10) = 0.

Next, we have

PJ1J1 = PJ2J2 = P−
J1J2

= P+
J2J1

= {∅} and P+
J1J2

= P−
J2J1

= {01}.

Thus, (4.7) gives d(PJ1J1) = d(PJ2J2) = 0, d(PJ1J2) = 2, d(PJ2J1) = 1.

Now, we apply the procedures 4.4.1 and 4.4.2. Because a00 = 1 generates
Z3, we have s = 1, v1 = (00), Z3 = H1 ) H0 = {0}, r1 = 3, α

(1)
g (J1) =

{(J1, g), (J2, g + 2)}, E
(1)
g (J1) = 01× g = {((J1, g) → (J2, g + 2))}. The graphs

S
(1)
g (J1) = (α(1)

g (J1), E
(1)
g (J1)) are marked in Figure 4.4 with thick lines.

�J1,0

J1,1

J1,2 J2,2

J2,1

J2,0

S
(1)
2 (J1)

S
(1)
1 (J1)

S
(1)
0 (J1)

Figure 4.4

Next, we have

α(2)
g (J1) = α(1)

g (J1) ∪ α
(1)
g+1(J1) ∪ α

(1)
g+2(J1) = α× V, V = Vn,

E′
n = E′ = E(2)

g (J1)

= E(1)
g (J1) ∪ E

(1)
g+1(J1) ∪ E

(1)
g+2(J1) ∪ {(00× 0)} ∪ {(00× 1)}

for every g ∈ Z3, E′
n = E′ = {01 × Z3, 00 × 0, 00 × 1}. The tree (α × G, E′) is

presented on Figure 4.5.
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	J1,0

J1,1

J1,2 J2,2

J2,1

J2,0

01×2

01×1

01×0

10×2

10×1

10×0

00×1

00×0

11×2

11×1

00×2 11×0

Figure 4.5

Next, we have In = I〈x00×0, . . . , x11×2〉 = 〈y00×2, . . . , y11×2〉, where

y00×2 = x00×2 + x00×0 + x00×1,

y10×0 = x10×0 + x01×1,

y10×1 = x10×1 + x01×2,

y10×2 = x10×2 + x01×0,

y11×0 = x11×0 + x00×0 − x01×0 + x01×1,

y11×1 = x11×1 + x00×1 − x01×1 + x01×2,

y11×2 = x11×2 − x00×0 − x00×1 + x01×0 − x01×2.

Thus, the homomorphisms Ĝn are given by the matrices B = Bn

00×2 10×0 10×1 10×2 11×0 11×1 11×2

00×2

10×0

10×1

10×2

11×0

11×1

11×2



1 1 1 1 0 0 0
0 2 0 0 0 1 0
1 0 2 0 0 0 1
0 0 0 2 1 0 0
0 2 0 0 0 1 0
1 0 2 0 0 0 1

−1 −1 −1 1 1 0 0


.

The determinant of the matrix is 0. To find K0(X×Z3, Tc), we apply the Stage II
of the algorithm. In this case rank(Ĝ2) = rank(Ĝ3) = 4. We have y11×0 = y10×0,
y11×2 = y10×2, y11×2 = y10×2 − y00×2.
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We come to the homomorphisms G′
n = G′ given by the matrix

00×2 10×0 10×1 10×2

00×2

10×0

10×1

10×2


1 1 1 1
0 2 1 0
0 0 2 1
0 1 0 2

 .

Since det(G′
n) = 9, K0(X, T ) =

⋃∞
n=0(G

′)−n(Z4). In a sequel, we replace 00× 2
by 1, 10 × 0 by 2, 10 × 1 by 3 and 10 × 2 by 4. By a similar reasoning as in
Subsection 4.3 we find Inf(X, T ) = {y = 〈y1, y2, y3, y4〉 ∈ K0(X, T ) : y2 + y3 +
y4 = 0}.

To describe the cone K0(X, T )+, we must find the images wv of the vectors
êv ∈ Z12, v ∈ Vn × Z3 via In and via Ĝ2

n to Ĝ2
n(Z12) ' Z4. We find

w00×0 = 〈1, 0, 0, 1〉, w00×1 = 〈1, 1, 0, 0〉,
w00×2 = 〈1, 0, 1, 0〉, w11×0 = 〈0, 0, 0, 1〉,
w11×1 = 〈0, 1, 0, 0〉, w11×2 = 〈0, 0, 1, 0〉.

The matrix G′ has the eigenvalue λ = 3 with the eigenvector x3 = 〈3/2, 1, 1, 1〉.
Let Π ⊂ R4 be the subspace defined by Π = {y = 〈y1, y2, y3, y4〉 : y2 + y3 +

y4 = 0}. Then every y ∈ Z4 has the unique decomposition y = a · x3 + u, u ∈ Π,
a = (y2 + y3 + y4)/3. In particular wv = x3/3 + uv, v = 00× 0, 00× 1, 00× 2,
11× 0, 1× 1, 11× 2. We have

u00×0 =
〈

1
2
,−1

3
,−1

3
,
2
3

〉
, u00×1 =

〈
1
2
,
2
3
,−1

3
,−1

3

〉
,

u00×2 =
〈

1
2
,−1

3
,
2
3
,−1

3

〉
, u11×0 =

〈
− 1

2
,−1

3
,−1

3
,
2
3

〉
,

u11×1 =
〈
− 1

2
,
2
3
,−1

3
,−1

3

〉
, u11×2 =

〈
− 1

2
,−1

3
,
2
3
,−1

3

〉
.

The subspace Π is isomorphic to R3 = {z = 〈z1, z2, z3〉, zi ∈ R} by the mapping
y1 = z1, y2 = z2, y3 = z3, y4 = −(z1 + z3). Then the homomorphism G′|Π =
F : Z3 → Z3 is defined by the matrix

F =

1 2 3

1

2

3

 1 0 0
0 2 1
0 −1 1

 .
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The matrix F has the eigenvalues λ1 = 1, λ2 = (3 + i
√

3)/2, λ3 = (3− i
√

3)/2,
with the eigenvectors 〈1, 0, 0〉, 〈0, 1, (i

√
3− 1)/2〉, 〈0, 1, (−1− i

√
3)/2〉. Then,

F−k =


1 0 0

0
1
2
(λ−k

1 + λ−k
2 ) +

i
√

3
6

(λ−k
2 − λ−k

1 ),
i
√

3
2

(λ−k
2 − λ−k

1 )

0
i
√

3
2

(λ−k
1 − λ−k

2 ) λ−k
1

3 + i
√

3
6

+ λ−k
2

i
√

3− 3
6


for k = 0, 1, . . . Taking k = 12l and k = 12l + 6 we get

F−12l =


1 0 0

0
1

36l
0

0 0
1

36l

 , F−12l−6 =


1 0 0

0 − 1
36l+3

0

0 0 − 1
36l+3

 .

Next, we have

(G′)−12l(w00×0) =
1

312l+1
x3 +

〈
1
2
,− 1

36l+1
,− 1

36l+1
,

2
36l+1

〉
,

(G′)−12l(w00×1) =
1

312l+1
x3 +

〈
1
2
,

2
36l+1

,− 1
36l+1

,− 1
36l+1

〉
,

(G′)−12l(w00×2) =
1

312l+1
x3 +

〈
1
2
,− 1

36l+1
,

2
36l+1

,− 1
36l+1

〉
,

(G′)−12l(w11×0) =
1

312l+1
x3 +

〈
− 1

2
,− 1

36l+1
,− 1

36l+1
,

2
36l+1

〉
,

(G′)−12l(w11×1) =
1

312l+1
x3 +

〈
− 1

2
,

2
36l+1

,− 1
36l+1

,− 1
36l+1

〉
,

(G′)−12l(w11×2) =
1

312l+1
x3 +

〈
− 1

2
,− 1

36l+1
,

2
36l+1

,− 1
36l+1

〉
.

Then, the vectors

A = 〈1, 0, 0, 0〉 = lim
l→∞

2(G′)−12l(w00×0)

and

−A = 〈−1, 0, 0, 0〉 = lim
l→∞

2(G′)−12l(w11×0)

are some elements of the cone K0(X, T )+. At the same time the vectors

B1 = 〈0, 0,−3, 3〉 = lim
l→∞

36l+1[(G′)−12l(w00×0) + (G′)−12l(w00×1)

+ (G′)−12l(w00×2) + 2(G′)−12l(w11×0) + (G′)−12l(w11×1)],

C1 = 〈0,−3, 0, 3〉 = lim
l→∞

36l+1[(G′)−12l(w00×0) + (G′)−12l(w00×1)

+ (G′)−12l(w00×2) + 2(G′)−12l(w11×0) + (G′)−12l(w11×2)]
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are elements of K0(X, T )+. Then, the vectors

35(G′)−12(B1) = 〈0, 0,−1, 1〉 = B, 35(G′)−12(C1) = 〈0,−1, 0, 1〉 = C

are elements of K0(X, T )+. Next, we take the images of B,C via (G′)−18. We
get

33(G′)−6(B) = 〈0, 0, 1,−1〉 = −B, 33(G′)−6(B) = 〈0, 1, 0,−1〉 = −C.

Because the vectors A, B, C form a base of the group Πint = Π ∩ Z4 and ±A,
±B, ±C are elements of the cone K0(X, T )+, then the set of all elements of
K0(X, T )+ is

∞⋃
n=0

(G′)−n(Πint) = {y = 〈y1, y2, y3, y4〉 ∈ K(X, T ) : y2 + y3 + y4 = 0}.

In this way, we proved that

K0(X, T )+ = {y = 〈y1, y2, y3, y4〉 ∈ K(X, T ) : y2 + y3 + y4 ≥ 0}.

4.6. Orbit equivalence and strong orbit equivalence. Now, we can ex-
amine the topological orbit equivalence and the topological strong orbit equiv-
alence of the topological flows from the Section 4. For the Cantor minimal
systems, there are known complete invariants of the above orbit equivalences
([5]). We will use the following theorems for Cantor minimal systems (X, T ) and
(Y, S).

Theorem 4.1. The following statements are equivalent:

(a) (X, T ) and (Y, S) are strong orbit equivalent.
(b) K0(X, T ) is order isomorphic to K0(Y, S) by a map preserving the dis-

tinguished order units.

Now let (X, T ) and (Y, S) be strictly ergodic.

Theorem 4.2. The following are equivalent:

(a) (X, T ) and (Y, S) are orbit equivalent.
(b) K̂0(X, T ) is order isomorphic to K̂0(Y, S) by a map preserving the dis-

tinguished order units.
(c) The set of the values {µ(U) : U is a clopen set of X} is equal to the set

of values {ν(U) : V is a clopen set of Y }, where µ and ν are the unique
T -invariant and S-invariant measures.

The dimension group C(X, Z)/BT of each example of the Section 4 is of the
form

⋃∞
n=0 F−n(Zk) ⊂ Qk, where F : Zk → Zk is a homomorphism given by a ma-

trix F with non-negative integer entries and |det(F )| > 1. The natural question
arises when two groups of such kind are isomorphic. The group

⋃∞
n=0 F−n(Zk)
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is an union of increasing chain of groups F−n(Zk), n ∈ N, each of them is a
free abelian group of rank k. Thus, two groups of such kind

⋃∞
n=0 F−n(Zk) and⋃∞

n=0 G−n(Zl) are not isomorphic if k 6= l. It is easy to give a necessary con-
dition for two groups

⋃∞
n=0 F−n(Zk) and

⋃∞
n=0 G−n(Zk) to be isomorphic. Let

PF be the set of prime numbers appearing in the decomposition of det(F ) into
a product of primes.

Fact 4.3. If the group
⋃∞

n=0 F−n(Zk) and
⋃∞

n=0 G−n(Zk) are isomorphic,
where F , G are matrices with non-negative integers such that |det(F )| > 1 and
|det(G)| > 1, then PF = PG.

Proof. It is enough to analyze the groups F−n(Zk)/Zk and G−n(Zk)/Zk,
n = 1, 2, . . . The quotient group F−n(Zk)/Zk is a finite abelian group of the
order |det(F )|n and it is a direct product of some p-groups Gp(n), p ∈ PF . It is
evident that if V :

⋃∞
n=0 F−n(Zk) →

⋃∞
n=0 G−n(Zk) is a group isomorphism then

the quotient groups F−n(Zk)/Zk and G−n(Zk)/Zk contains the same quantity
of p-groups. Thus PF = PG. �

Remark 4.4. Observe that by the general theory of free abelian groups, a
structure of all Fn(Zk) groups is known. Of course Fn(Zk) is a free subgroup of
a rank k of Zk.

(4.9) Then, there is a base u1, . . . , uk of Zk and positive integers d1, . . . , dk such
that v1 = d1 · u1, . . . , vk = dk · uk is a base of F (Zk) and di is a divisor of
di+1 for each i = 1, . . . , k−1. Moreover, the numbers d1, . . . , dk are unique
(see [6]).

The quotient group Zk/F (Zk) is isomorphic to the group Zd1 × . . .×Zdk
. Of

course d1 · . . . · dk = |det(F )|.
A procedure of effective finding the numbers d1, . . . , dk consists of using the

elementary transformations of two types:

– adding linear combinations of some rows (columns) with integer coeffi-
cients to the other ones,

– changing rows (columns).

We demonstrate this procedure on the matrix F =
[

2 1

1 2

]
from the Subsection 3.1.

The successive steps of the procedure we mark by the sign “→”. We have[
2 1
1 2

](
subtracting the second

column from the first one

)
→

[
1 1
−1 2

](
adding the first row
to the second one

)

→
[

1 1
0 3

](
subtracting the first

column from the second one

)
→

[
1 0
0 3

]
.

Then d1 = 1, d2 = 3 and PF = {3}.
Proceeding in the same way we find:
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Example 4.5. Teoplitz flow:[
3 2
2 3

]
→

[
1 0
0 5

]
, d1 = 1, d2 = 5, PF = {5}.

Teoplitz-Morse flow:[
3 2
1 2

]
→

[
1 0
0 4

]
, d1 = 1, d2 = 4, PF = {2}.

Example 4.6.[
0 1
2 1

]
→

[
1 0
0 2

]
, d1 = 1, d2 = 2, PF = {2}.

Example 4.7.
3 −1 1 −1
0 3 −4 −1

−1 2 −3 0
5 −3 3 −2

 −→


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 4

 ,

d1 = 1, d2 = 1, d3 = 1, d4 = 4, PF = {2}.

Example 4.8. 
1 1 1 1
0 2 1 0
0 0 2 1
0 1 0 2

 −→


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 9

 ,

d1 = 1, d2 = 1, d3 = 1, d4 = 9, PF = {3}.

Using the Theorem 4.2 and the Fact 4.3 we can answer which of the topolog-
ical flows described in Subsection 3.1 and Examples 4.1, 4.2 and 4.5 are strong
orbit equivalent.

Corollary 4.9. The Teoplitz–Morse flow from Subsection 4.1 and the Mor-
se flow from Subsection 4.2 are strong orbitally equivalent. The topological flows
from the remaining examples are not strong orbitally equivalent.

To describe which of the topological flows are orbitally equivalent, we use
the Theorem 4.1. It follows from our previous computations:

Example (from Subsection 3.1). K̂0(X, T ) ' {a/3n, a ∈ Z, n = 0, 1, . . . }.

Example 4.5.

K̂0(X, T ) ' {a/5n, a ∈ Z, n = 0, 1, . . . } (Teoplitz flow),

K̂0(X, T ) ' {a/2n, a ∈ Z, n = 0, 1, . . . } (Teoplitz–Morse flow).
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Example 4.6. K̂0(X, T ) ' {a/2n, a ∈ Z, n = 0, 1, . . . }.

Example 4.7. K̂0(X, T ) ' {a/2n, a ∈ Z, n = 0, 1, . . . }.

Example 4.8. K̂0(X, T ) ' {a/3n, a ∈ Z, n = 0, 1, . . . }.

Corollary 4.10. The Chacon flow is orbitally equivalent to the topological
flow in Subsection 4.5. The Teoplitz–Morse flow from the Example 4.6 and the
topological flows from Subsection 4.2 are orbitally equivalent.
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