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A MULTIPLICITY RESULT
FOR A DEGENERATE ELLIPTIC EQUATION

WITH CRITICAL GROWTH
ON NONCONTRACTIBLE DOMAINS

Elisa Garagnani — Francesco Uguzzoni

Abstract. In this paper we consider the semilinear problem with critical

growth in the Heisenberg group −∆Hn u = u(Q+2)/(Q−2) + λu in Ω, u > 0
in Ω, u = 0 in ∂Ω, and we provide a multiplicity existence result involving

Lusternik–Schnirelmann category.

1. Introduction

We consider the critical boundary value problem

Pλ(Ω)


−∆Hnu = u(Q+2)/(Q−2) + λu in Ω,

u > 0 in Ω,

u = 0 in ∂Ω,

where Ω is a smooth bounded open subset of the Heisenberg group Hn, ∆Hn is
the subelliptic Laplacian (also called Kohn Laplacian) on Hn, Q = 2n+ 2 is the
homogeneous dimension of Hn and λ is a real parameter. In what follows we
also denote by λ1 the first eigenvalue of −∆Hn .
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When 0 < λ < λ1, Pλ(Ω) has at least a solution whatever the topology of Ω
is (see [8]). This is the Heisenberg-counterpart of a classical result by Brezis and
Nirenberg ([6]) related to the Laplacian operator.

The aim of this paper is to show a first multiplicity result for Pλ(Ω). Indeed,
we find at least m+1 solutions of Pλ(Ω), where m ≡ catΩ(Ω), if λ is small enough
and if Ω is assumed to satisfy a suitable geometric condition of regularity, which,
broadly speaking, means that ∂Ω is “flat” near its characteristic points (see
Definition 2.1 of H-flat domains). Precisely, we prove the following result.

Theorem 1.1. Let Ω be a H-flat bounded domain of Hn noncontractible in
itself. Then there exists λ ∈ (0, λ1) such that for all λ ∈ (0, λ) problem Pλ(Ω)
has at least catΩ(Ω) + 1 distinct solutions.

Throughout the paper we denote by catX(Y ) the Lustenik–Schnirelman cat-
egory of Y in X, i.e. the least nonnegative integer m such that Y can be covered
by m closed and contractible subsets of X.

In order to prove the above theorem, we consider the functional fλ(u) =
‖∇Hnu‖22 − λ‖u‖22 constrained to the manifold V = {u ∈ S1

0(Ω) | ‖u+‖
Q∗ = 1},

whose critical points give solutions of Pλ(Ω) (see below for the notations). In
analogy with the Euclidean case in [21] and [16], we find m critical levels be-
low the best Sobolev constant S (see (2.3)) corresponding at least to m distinct
solutions (see Theorem 4.1). Moreover, we establish the existence of a further
solution, as in [20] for the Euclidean setting. Indeed, in this paper, we find m−1
other critical levels greater than S, corresponding to different values of the cate-
gory of a fixed set with respect to a varying ambient space (see Proposition 4.2).
We expect that these critical levels give at least other m − 1 distinct solutions
(in addition to the one already found). However this is still an open problem,
even in the setting of the classical Laplace operator.

The main tools in the proof of Theorem 1.1 are a representation theorem for
Palais–Smale sequences (see Theorem 2.2) and some techniques introduced by
Benci and Cerami in [1] and by Passaseo in [20]. We stress that the proof of the
cited representation theorem is much more delicate than in the Euclidean setting
and leads to the further H-flat assumption for the domain Ω (see also [9]).

For the reader convenience we now fix the main notation before recalling the
background results related to the problem Pλ(Ω). The Heisenberg group Hn is
the homogeneous Lie group whose underlying manifold is R2n+1 with the group
law defined by

(1.1) ξ · ξ′ = (x+ x′, y + y′, t+ t′ + 2(x′y − xy′)),

for every ξ = (x, y, t), ξ′ = (x′, y′, t′) ∈ Hn.
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The subelliptic Laplacian on Hn is defined as

∆Hn =
n∑

j=1

(X2
j + Y 2

j ), where Xj = ∂xj + 2yj∂t, Yj = ∂yj − 2xj∂t.

Consider the left translations on Hn and, for λ > 0, the natural H-dilations so
defined

(1.2)
τξ: Hn 7→ Hn, τξ(ξ′) = ξ · ξ′,
δλ: Hn 7→ Hn, δλ(x, y, t) = (λx, λy, λ2t).

Denoting by ∇Hn = (X1, . . . , Xn, Y1, . . . , Yn) the subelliptic gradient on Hn,
then both ∇Hn and ∆Hn are invariant with respect to left translations and they
are homogeneous (respectively of degree 1 and 2) with respect to the dilations.
In other words we have ∇Hn (u ◦ τξ) = ∇Hnu ◦ τξ, ∇Hn (u ◦ δλ) = λ∇Hnu ◦ δλ,
∆Hn (u ◦ τξ) = ∆Hnu ◦ τξ, ∆Hn (u ◦ δλ) = λ2∆Hnu ◦ δλ. The Jacobian determinant
of δλ is λQ, where Q = 2n + 2. This number Q is called the homogeneous
dimension of Hn and it plays a role analogous to the topological dimension in
the Euclidean case. The homogeneous norm of the space is

(1.3) d0(x, y, t) = ((|x|2 + |y|2)2 + t2)1/4

and the natural distance is defined by d(ξ′, ξ) = d0(ξ−1 · ξ′). We shall denote by
Bd(ξ, r) the d-ball of center ξ and radius r. Notice that, by definition of d, we
have τξ(Bd(0, r)) = Bd(ξ, r), δr(Bd(0, 1)) = Bd(0, r). A basic role is played by
the following Sobolev-type inequality:

(1.4) ‖u‖2
Q∗

≤ C‖∇Hnu‖22, for all u ∈ C∞
0 (Hn),

where Q∗ = 2Q/(Q− 2) and C > 0 only depends on the homogeneus dimen-
sion Q. This inequality ensures in particular that

(1.5) ‖u‖ := ‖∇Hnu‖2

is a norm on C∞
0 (Ω). We denote by S1

0(Ω) the closure of C∞
0 (Ω) with respect to

this norm. Then with the inner product 〈u, v〉S1
0(Ω) =

∫
Ω
〈∇Hnu,∇Hn v〉, S1

0(Ω)
becomes a Hilbert space. Notice that the number Q∗ in (1.4) is the critical
Sobolev exponent for ∆Hn since the embedding S1

0(Ω) ↪→ LQ∗
(Ω) is continuous

but not compact, even if Ω is bounded.
Following the arguments in [6] for the classical Laplacian case, it is easy to

prove that if λ ≥ λ1, then Pλ(Ω) has no solutions, where λ1 is the first eigenvalue
of −∆Hn in S1

0(Ω),

(1.6) λ1 = min
u∈S1

0(Ω)
‖u‖2=1

‖∇Hnu‖22.
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The existence of a solution to Pλ(Ω) is also strictly related to the topology
and the geometry of Ω. For instance, we refer to [13], where the notion of
δ-starshapedness is introduced. Let us define the vector field

X =
n∑

j=1

(xj∂xj
+ yj∂yj

) + 2t∂t.

Then a piecewise C1 open set of Hn, Ω 6= Hn, is said to be δ-starshaped with
respect to a point ξ0 ∈ Ω if X · N ≥ 0 at every point of ∂(τξ−1

0
(Ω)), where N

denote the outer unit normal to the boundary of τξ−1
0

(Ω). In [13], it is proved that
if Ω is δ-starshaped and λ ≤ 0, then Pλ(Ω) has no solution. A remarkable fact
is that in the same paper they give a first example of noncontractible domain,
precisely Ω = {(z, t) ∈ Hn|r0 < |z| < r1, |t| < T} for fixed r0, r1, T > 0, in which
Pλ(Ω) has at least one solution for λ ≤ 0.

The case λ = 0, i.e. the problem

P0(Ω)


−∆Hnu = uQ∗−1 in Ω,

u > 0 in Ω,

u = 0 in ∂Ω,

has been intensively studied. First of all in the case Ω = Hn Jerison and Lee
found an explicit solution ω of P0(Hn) (see [14], [15]) and proved that any other
solution in S1

0(Hn) can be obtained from ω by H-dilations and left translations.
On the other hand, if Ω is a halfspace of Hn then in [17], [23] it is shown that
P0(Ω) has no solution in S1

0(Ω). These uniqueness and non existence results allow
the proof of a representation theorem based on the concentration compactness
principle. Since the exponent Q∗ is the critical exponent, the Palais–Smale
sequences of the functional naturally associated to the problem Pλ(Ω) are in
general not compact. In [9] the authors studied this loss of compactness for
λ = 0 and they proved that the nonnegative Palais–Smale sequences can be
represented in terms of the solutions of the same problem on a different open
subset D of Hn, called set at infinity. In the same paper, a complete description
of such sets D was given along with a definition of H-flat domains for which the
sets at infinity can only be the whole space Hn or a halfspace. In conclusion,
since in a halfspace there is no solution while in the whole space all the solutions
are known, one can obtain a complete characterization of the compactness levels
for a H-flat domain (see [9, Theorem 3.5]). This allows the authors in [9] to
prove a Bahri–Coron type existence result for the problem P0(Ω). In [9] it is
also proved that there exist contractible domains in which P0(Ω) has solution.
As it is well known, the above mentioned characterization is crucial in the proof
of the existence results for semilinear problems with critical growth. For this
reason in Section 2 we sketch the proof of an analogous representation theorem
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for a functional related to Pλ(Ω). Then, in Section 3, properties of the functional
fλ constrained to V are studied and in Section 4 we prove our main results.

We would like to end this introduction by citing the recent papers [2]–[5], [7],
[11], [12], [18], [19] where related topics on the Heisenberg group are investigated.

2. Representation theorem

Let us first recall the definition of H-flat domain introduced in [9].

Definition 2.1. Let Ω be a smooth bounded domain of Hn, ξ0 ∈ ∂Ω
and ϕ be a smooth function which describes ∂Ω in a neighbourhood of ξ0, i.e.
ϕ:Bd(ξ0, R) 7→ R such that ϕ(ξ) = 0 if and only if ξ ∈ ∂Ω ∩Bd(ξ0, R), ϕ(ξ) > 0
if and only if ξ ∈ Ω ∩Bd(ξ0, R), ∇ϕ(ξ) 6= 0 for all ξ ∈ Bd(ξ0, R) (∇ denotes the
Euclidean gradient). The point ξ0 is called characteristic if ∇Hnϕ(ξ0) = 0. In
this case, Ω is called H-flat at ξ0 if

qHϕ(ξ0) = 0

where qHϕ(ξ0) is the quadratic form associated to the Hessian matrix∇2
Hnϕ along

the vector fields of the subelliptic gradient ∇Hn , i.e.

(qHϕ(ξ0))(z) =
2n∑

i,j=1

((∇Hn )i(∇Hn )jϕ)(ξ0)zizj for allz ∈ R2n,

where (∇Hn )i denotes the i-th component of ∇Hn . We say that Ω is H-flat if it
is H-flat at any characteristic point of its boundary.

If u ∈ S1
0(Ω), µ > 0, ξ ∈ Hn, we will denote

(2.1) uµξ = µ(Q−2)/2u ◦ δµ ◦ τξ−1 .

Then uµξ ∈ S1
0(τξ(δµ−1(Ω))), ‖uµξ‖Q∗ = ‖u‖

Q∗ and ‖∇Hnuµξ‖2 = ‖∇Hnu‖2.
For the case λ = 0, Jerison and Lee found an explicit solution of the problem

P0(Ω)


−∆Hnu = uQ∗−1 in Ω,

u > 0 in Ω,

u = 0 in ∂Ω,

when Ω = Hn (see [14], [15]). Precisely, letK:S1
0(Hn)\{0} 7→ R be the functional

(2.2) K(u) =
‖∇Hnu‖22
‖u‖2

Q∗

and

(2.3) S = inf
S1

0(Hn)\{0}
K.

Then, by (1.4), we have S > 0. S is called the best Sobolev constant for the
embedding of S1

0(Ω) in LQ∗
(Ω). Moreover, S = infS1

0(Ω)\{0}K for all non empty



58 E. Garagnani — F. Uguzzoni

open set Ω ⊆ Hn and the infimum is achieved when Ω = Hn, while this does
not happen when Ω 6= Hn. Indeed Jerison and Lee proved that, up to a positive
constant C, the function

(2.4) ω(ξ) =
C

((1 + |x|2 + |y|2)2 + t2)(Q−2)/4

is such that K(ω) = K(ωµξ) = S. Moreover, ω is the unique solution of the
problem P0(Ω) in Ω = Hn (in the sense that all other solutions are of the
form ωµξ).

We recall that in [9, Theorem 3.5] a representation theorem for Palais–Smale
sequences of the functional F (u) = (1/2)

∫
Ω
|∇Hnu|2−(1/Q∗)

∫
Ω
|u|Q∗

associated
to P0(Ω) is proved when Ω is H-flat. We shall now consider these functionals

Fλ:S1
0(Ω) 7→ R, Fλ(u) =

1
2

∫
Ω

(|∇Hnu|2 − λu2)− 1
Q∗

∫
Ω

|u+|Q
∗
,(2.5)

F0:S1
0(Ω) 7→ R, F0(u) =

1
2

∫
Ω

|∇Hnu|2 −
1
Q∗

∫
Ω

|u+|Q
∗
,(2.6)

F∞:S1
0(Hn) 7→ R, F∞(u) =

1
2

∫
Hn

|∇Hnu|2 −
1
Q∗

∫
Hn

|u+|Q
∗
.(2.7)

Our main goal of this section is to prove the following representation theorem
for Palais–Smale sequences of Fλ.

Theorem 2.2. Let Ω be a H-flat domain of Hn and let (uk) be a sequence
in S1

0(Ω) such that

Fλ(uk) → l and F ′
λ(uk) → 0 as k →∞.

Then there exist a function u0 ∈ S1
0(Ω), F ′

λ(u0) = 0, an integer m ≥ 0, m
divergent sequences (λ1k), . . . , (λmk) in R+ and m sequences (ξ1k), . . . , (ξmk)
in Ω such that (up to subsequences)

(a) uk = u0 +
∑m

i=1 ωλikξik
+ o(1) in S1

0(Hn) as k →∞,
(b) Fλ(uk) = Fλ(u0) +mF∞(ω) + o(1), as k →∞,

where ωλikξik
is according to (2.1) and ω is defined in (2.4). We observe that

F∞(ω) = SQ/2/Q.

Remark 2.3. The hypothesis Ω H-flat allows to characterize the problems
at infinity and to obtain a complete description of the compactness levels of the
Palais–Smale sequences. Without that hypothesis, one can still obtain existence
results but only at low levels (as in [8]).

The proof is based on standard techniques already adopted on proving anal-
ogous theorems present in literature. But, since Theorem 2.2 is not directly
referable to the representation theorems in [8], [9], neither to the results in the
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Euclidean case in [22], [1], it is opportune to give a sketch of the proof and un-
derline the main differences. The first lemma allows us to consider Palais–Smale
sequences of F0 weakly convergent to 0 instead of Palais–Smale sequences of Fλ.

Lemma 2.4. Let uk be as in Theorem 2.2. Then there exist u0 ∈ S1
0(Ω)

such that (taking a subsequence if necessary) uk → u0 weakly in S1
0(Ω) and

F ′
λ(u0) = 0. Moreover, vk ≡ uk−u0 is a Palais–Smale sequence for F0, precisely

(a) F0(uk − u0) = Fλ(uk)− Fλ(u0) + o(1),
(b) F ′

0(uk − u0) = o(1),
(c) ‖∇Hn (uk − u0)‖22 = ‖∇Hnuk‖22 − ‖∇Hnu0‖22 + o(1).

We refer to [1] or [22] for the proof of an analogous proposition.
If ξ ∈ Hn and A is a subset of Hn, we denote d(ξ,A) = inf{d(ξ, a) | a ∈ A}.

Lemma 2.5. Let Ω be a H-flat domain of Hn and let (vk) be a sequence in
S1

0(Ω) such that vk → 0 weakly but vk 9 0 in S1
0(Ω) and F ′

0(vk) → 0. Then there
exist a sequence (ξk) in Ω, a divergent sequence (λk) in R+, λkd(ξk, ∂Ω) → ∞,
and a function $ in S1

0(H) such that F ′
∞($) = 0 and

ṽk ≡ λ
−(Q−2)/2
k vk ◦ τξk

◦ δ−1
λk

→ $ weakly in S1
0(Ω).

Proof. The construction of the sequences (λk), (ξk) and of the function $
solution of the problem P+

∞(D) : −∆Hnu = (u+)Q∗−1 in D (set at infinity related
to Ω, i.e. D is obtained as limit of the subsequence of sets Ωk = δλk

(τξ−1
k

(Ω))),
can be made as in [8, Lemma 2.3]. However in our case Ω is H-flat, so D = Hn

or D is a halfspace. The last case is not possible because we already pointed
out that P+

∞(D) has no solution in an halfspace (see [17] and [23]). So we can
conclude that D = Hn and F ′

∞($) = 0. We explicitly notice that in this case the
hypothesis of vk to be nonnegative is not necessary because $ > 0 is consequence
of our definition of F∞. In fact, because of F ′

∞($)h =
∫

Hn〈∇Hnu,∇Hnh〉 −∫
Hn |u+|Q∗−1h, choosing as test function h = $− in F ′

∞($)h = 0, it is easy to
conclude that $− ≡ 0. �

Lemma 2.6. Let vk, λk, ξk, $ be as in Lemma 2.5. Then it is possible
to consider a projection Pk:S1

0(H) 7→ S1
0(Ω) (that can depend on k) with the

following properties

(a) ‖∇Hn (Pk$λkξk
)‖22 = o(1),

(b) ‖∇Hn v
(2)
k ‖22 = ‖∇Hn vk‖22−‖∇Hn$‖22 + o(1), where v(2)

k = vk −Pk$λkξk
,

(c) F0(v
(2)
k ) = F0(vk)− F∞($) + o(1),

(d) F ′
0(v

(2)
k ) = o(1).

Proof. Even if our metric is different from the Euclidean one, the idea
introduced in [22] can be adopted also in this case. In particular we choose
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ϕ ∈ C∞
0 (Hn), 0 ≤ ϕ ≤ 1, ϕ ≡ 1 in Bd(0, 1), ϕ ≡ 0 in Hn − Bd(0, 2) and we

denote λk ≡ λ
1/2
k (d(ξk, ∂Ω))1/2. Then we define

Pk$λkξk
(ξ) = $λkξk

(ξ)(ϕ ◦ δλk
◦ τξ−1

k
)(ξ).

Using the invariance with respect to left translations of the subelliptic gradient,
its homogeneous property with respect to dilations and (2.1), as in [22], all the
properties can be verified. �

From these results, Theorem 2.2 easily follows.

Proof of Theorem 2.2. Using a standard iteration (see [8] or [22]) based
on Lemma 2.5 and on the properties of Lemma 2.7, it is easy to find m so-
lutions ω(1), . . . , ω(m) of the problem at infinity F ′

∞(u) = 0 such that uk =
u0 +

∑m
i=1 ωλikξik

+ o(1) in S1
0(Hn) as k → ∞. However we explicitly observe

that if ω(i) is such that F ′
∞(ω(i)) = 0, then ω(i) > 0 and so it is a solution of

P∞(Hn) and, in particular, it can be obtained from ω by translations and dila-
tions. In conclusion, noting that F∞(ω(i)

λikξik
) = F∞(ω(i)) = F∞(ω), we get the

thesis. �

3. Preliminaries

Let Ω be a bounded domain of Hn and let fλ:S1
0(Ω) 7→ R be the functional

defined by

(3.1) fλ(u) =
∫

Ω

|∇Hnu|2 − λ

∫
Ω

u2.

We consider the following C2-manifold of S1
0(Ω)

(3.2) V = {u ∈ S1
0(Ω) | ‖u+‖

Q∗ = 1}.

Then there is a correspondence between critical points of the restriction fλ|V

and solutions of the problem Pλ(Ω). More precisely

Remark 3.1. If λ ∈ (0, λ1), then u is a solution of Pλ(Ω) if and only if
u = u/‖u‖

Q∗ is a critical point of fλ|V and u = (fλ(u))(Q−2)/4
u.

This fact becomes clear if we observe that every critical point u of fλ|V is
nonnegative. In fact there exists µ ∈ R such that ∆Hnu+ λu+ µ(u+)Q∗−1 = 0,
but this implies (multiplying for u−, integrating and by definition of λ1) that
(λ− λ1)‖u−‖22 ≤ 0. So, since λ < λ1, u− ≡ 0. Then u ≥ 0.

Proposition 3.2. Denoting by Sλ = infV fλ, we have 0 < Sλ < S for all
λ ∈ (0, λ1).

Proof. First of all we notice that if u ∈ V , then

1 = ‖u+‖2Q∗ ≤ C‖∇Hnu
+‖22 ≤ C‖∇Hnu‖22
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and so ‖∇Hnu‖22 ≥ C−1 > 0. This implies

0 < fλ(u+) ≤ fλ(u) for all u ∈ S1
0(Ω) and λ ∈ (0, λ1).

In fact

fλ(u) = ‖∇Hnu‖22
(

1− λ
‖u‖22

‖∇Hnu‖22

)
≥ C−1

(
1− λ

λ1

)
> 0.

In conclusion Sλ > 0. In order to prove that Sλ < S, the function ω plays a
basic role. In fact the following lemma shows that if we multiply the functions
ωµ0 (see (2.1)) for a suitable cut-off function ϕ, then vµ = ϕωµ0 is such that

(3.4) fλ

(
vµ

‖vµ‖Q∗

)
< S, if µ� 1.

In particular, Sλ < S. �

Lemma 3.3. Let R > 0 such that Bd(0, R) ⊂ Ω (supposing 0 ∈ Ω) and
ϕ ∈ C∞

0 (Bd(0, R)), 0 ≤ ϕ ≤ 1, ϕ ≡ 1 in Bd(0, R/2). We consider the functions

(3.5) vµ = ϕωµ0

where µ > 0, ω is defined in (2.4) and ωµ0 = µ(Q−2)/2ω ◦ δµ in according with
(2.1). Then

(3.6) fλ

(
vµ

‖vµ‖Q∗

)
≤


S − λ

cµ2
(1 + o(1)) as µ→∞, if Q > 4,

S − λ

cµ2
logµ(1 + o(1)) as µ→∞, if Q = 4,

for some positive constants c.

Proof. The main point of this proof is the strict relation between the func-
tions ω and the norm d0. In fact these functions have the same behavior far from
the origin. This fact allows us to use Heisenberg-polar coordinates. We recall in
fact that for every 0 ≤ r1 < r2 and for every measurable f : [r1, r2] 7→ R, we have

(3.7)
∫

Bd(0,r2)\Bd(0,r1)

f(d0(ξ)) dξ = Q|Bd(0, 1)|
∫ r2

r1

f(ρ)ρQ−1 dρ,

if at least one of the two integrals exists (we denote by | · | the Lebesgue measure
on R2n+1). Let us first consider ‖vµ‖22:

‖vµ‖22 ≥
∫

Bd(0,R/2)

ω2
µ0 =

1
µ2

∫
Bd(0,R/2)

ω2

≥ 1
cµ2

(
1 +

∫
Bd(0,R/2µ)\Bd(0,1)

1
(d0(ξ))2Q−4

dξ

)
=

1
cµ2

(
1 +

∫ µR/2

1

1
ρQ−3

dρ

)
.

Then, ifQ > 4, ‖vµ‖22 = (1+o(1))/cµ2 and, ifQ = 4, ‖vµ‖22 = logµ(1+o(1))/cµ2.



62 E. Garagnani — F. Uguzzoni

Concerning ‖vµ‖
Q∗

Q∗
, we have

‖vµ‖
Q∗

Q∗
=

∫
ω

Q∗

µ0 −
∫

(1− ϕ
Q∗

)ω
Q∗

µ0 = SQ/2 −
∫

(1− ϕ
Q∗

)ω
Q∗

µ0 .

Arguing as before we obtain

0 ≤
∫

(1− ϕ
Q∗

)ω
Q∗

µ0 ≤
∫

d0(ξ)>R/2

ω
Q∗

µ0 dξ =
∫

d0(η)>µR/2

ω
Q∗

dη

≤ 1
c

∫
d0(η)>µR/2

1
d0(η)

2Q dη =
1
c

∫ ∞

µR/2

1
ρQ+1

dρ = O(µ
−Q

) as µ→∞.

This proves that ‖vµ‖
Q∗

Q∗
= SQ/2 +O(µ

−Q

).
Let us now estimate ‖∇Hn vµ‖22, using the fact that ωµ0 is a solution of

P∞(Hn), ∫
|∇Hn vµ|2 =

∫
〈∇Hnωµ0,∇Hn (ωµ0ϕ

2)〉+
∫
|∇Hnϕ|2ω2

µ0

=
∫
ω

Q∗

µ0ϕ+
∫
|∇Hnϕ|2ωµ0.

Finally, following the lines of the other estimates, we obtain

‖∇Hn vµ‖22 = SQ/2 +O(µ−Q) +O(µ−Q+2) = SQ/2 +O(µ−Q+2).

Consequently, if Q > 4,

(3.8) fλ

(
vµ

‖vµ‖Q∗

)
=
‖∇Hn vµ‖22 − λ‖vµ‖22

‖vµ‖2Q∗
≤ SQ/2 − λ(1 + o(1))/cµ2

S(Q−2)/2(1 +O(µ−Q))(Q−2)/Q

=
(
S − λ

cµ2
(1 + o(1))

)
(1 +O(µ−Q))(Q−2)/Q

=
(
S − λ

cµ2
(1 + o(1))

(
1 +

2−Q

Q
O(µ−Q)

)
(1 + o(1))

= S − λ

cµ2
(1 + o(1)).

Arguing in the same way we also obtain the estimate for the case Q = 4. �

Our last goal for this section is to exhibit some levels where fλ|V satisfies the
Palais–Smale condition. Precisely,

Theorem 3.4. For all λ ∈ (0, λ1) and for all c ∈ R such that 0 < c <

(SQ/2
λ + SQ/2)2/Q and c 6= S, if (uk) is a sequence in V satisfying

fλ(uk) → l > 0 and f ′λ|V (uk) → 0 as k →∞,

then there exists a subsequence of (uk) that converges in S1
0(Ω).
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The proof of the analogous result in the Euclidean case, given in [20], is
also valid in our contest. But in order to apply those technique we have to use
Theorem 2.2.

4. Multiplicity results

The aim of this section is to show that, if λ is small enough, then for noncon-
tractible H-flat domains it is possible to find more than one solution of Pλ(Ω).
More precisely

Theorem 4.1. Let Ω be a bounded H-flat domain of Hn. If Ω is noncon-
tractible, i.e. m = catΩ(Ω) > 1, then there exists λ ∈ (0, λ1) such that, for all
λ ∈ (0, λ), the problem Pλ(Ω) has a least m solutions u1,λ, . . . , um,λ ∈ S1

0(Ω)
satisfying fλ(ui,λ) ∈ [Sλ, S[, where ui,λ = ui,λ/‖ui,λ‖Q∗ , for i = 1, . . . ,m.

Moreover, we will find another solution in the following way. First of all,
fixed r > 0 small enough, consider these two sets homotopically equivalent to Ω

(4.1) Ω+
r = {ξ ∈ Hn | d(ξ,Ω) ≤ r}, Ω−

r = {ξ ∈ Ω | d(ξ, ∂Ω) ≥ r}

and the map ψµ: Ω−
r 7→ V defined by

(4.2) ψµ(ξ) =
vµ ◦ τξ−1

‖vµ ◦ τξ−1‖
Q∗
,

where vµ = ϕωµ0 (see (3.5)). From now on, we will denote by fc
λ the sublevels

fc
λ = {u ∈ V | fλ(u) ≤ c},

for c ∈ R, where V is the manifold defined in (3.2). We define the levels

ĉλ,µ,k = inf{c ∈ R | catfc
λ
(ψµ(Ω−

r )) ≤ k}

for k ∈ N, 1 ≤ k ≤ m−1. We will prove next proposition that is closely inspired
by Passaseo method in [20].

Proposition 4.2. Let Ω be a H-flat domain of Hn. If m = catΩ(Ω) > 1,
then for all λ ∈ (0, λ) (λ as in Theorem 4.1) there exists µ̂ > 0 such that for all
µ > µ̂ we have

(4.4) ĉλ,µ,k ∈ ]S, (SQ/2
λ + SQ/2)2/Q[ for k = 1, . . . ,m− 1.

Moreover, ĉλ,µ,k are m− 1 critical levels of fλ|V .

Probably these critical levels correspond to distinct solutions but this is still
an open problem. However we can certainly conclude as follows
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Corollary 4.3. In the same hypothesis of Theorem 4.1, there exists also at
least one solution ûλ of Pλ(Ω) such that fλ(ûλ‖ûλ‖Q∗ ) ∈ ]S, (SQ/2

λ + SQ/2)2/Q[.

Now we start with the proof of Theorem 4.1. Let β:V 7→ Hn be the function
defined by

(4.5) β(u) =
∫

Ω

(
u+(ξ)

)Q∗

ξ dξ.

Remark 4.4. β(ψµ(ξ)) = ξ for all ξ ∈ Ω−
r .

Proof. Applying the group law (1.1), we get

β(ψµ(ξ)) = ‖vµ‖
−Q∗

Q∗

∫
Bd(ξ,r)

(vµ(ξ−1 ◦ η))
Q∗

η dη

= ‖vµ‖
−Q∗

Q∗

∫
Bd(0,r)

(ξ ◦ η′)(vµ(η′))
Q∗

dη′

= ‖vµ‖
−Q∗

Q∗

( ∫
Bd(0,r)

(z + z′)v
Q∗

µ (η′) dη′,∫
Bd(0,r)

(t+ t′)v
Q∗

µ (η′) dη′ + 2
∫

Bd(0,r)

(x′y − xy′)v
Q∗

µ (η′) dη′
)
,

where we denote ξ = (z, t) = (x, y, t) and η′ = (z′, t′) = (x′, y′, t′). Now v
−Q∗

µ is
an even function, then we obtain

β(ψµ(ξ)) = ‖vµ‖
−Q∗

Q∗

(
z

∫
Bd(0,r)

v
Q∗

µ , t

∫
Bd(0,r)

v
Q∗

µ

)
= (z, t) = ξ. �

The main step in the proof of Theorem 4.1 is the following result.

Lemma 4.4. We have

lim
λ→0+

Iλ > S, where Iλ ≡ inf
u∈V

β(u)/∈Ω+
r

fλ(u).

Proof. We give a direct proof of this lemma making use of the repre-
sentation theorem cited in [9]. First of all we notice that this limit exists,
in particular limλ→0+ Iλ = supλ>0 Iλ. By contradiction, consider a sequence
(µi) in R+, limi→∞ µi = 0, and a sequence (ui) in V , β(ui) /∈ Ω+

r such that
lim supi→∞ fµi

(ui) ≤ S. Then, by (3.3), lim supi→∞ fµi
(u+

i ) ≤ S. Moreover,
‖∇Hnu

+
i ‖22 ≥ S and (using Hölder inequality) ‖u+

i ‖22 ≤ |Ω|2/Q. In conclusion we
get

lim
i→∞

‖∇Hnu
+
i ‖

2
2 = S.

We prove that this implies β(ui) ∈ Ω+
r for i� 1.

In what follows, for brevity, we will denote by ‖ · ‖ the norm in S1
0(Ω) (see

(1.5)) and by F the functional F0 defined in (2.6).
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We fix δ1 > 0 such that if u ∈ V , v ∈ S1
0(Ω), ‖u− v‖ ≤ δ1 then β(v) ∈ Ω+

r/2

implies β(u) ∈ Ω+
r . This is possible; in fact, for example, fix R such that

Ω ⊂ Bd(0, R) and 0 < δ1 ≤ r/C2Q∗
Q∗R where C is the constant in (1.4) and

suppose ‖u − v‖ ≤ δ1. We have β′(u)h = Q∗ ∫
Ω
ξ(u+)Q∗−1h, for all h ∈ S1

0(Ω).
Then

|β′(u)h| ≤ Q∗R

∫
Ω

(u+)Q∗−1|h| ≤ Q∗R‖u+‖Q∗−1
Q∗ ‖h‖Q∗ ≤ CQ∗R‖u‖Q∗−1

Q∗ ‖h‖.

In conclusion ‖β′(u)‖ ≤ CQ∗R‖u‖Q∗−1
Q∗ . Moreover, there exists t ∈ [0, 1] such

that h = (1− t)v − tu satisfies

d0(β(v)− β(u)) ≤ ‖β′(h)‖‖v − u‖ ≤ CQ∗Rδ1‖h‖Q∗−1
Q∗ .

But

‖h‖Q∗ ≤ ‖h− u‖Q∗ + ‖u‖Q∗ = ‖(1− t)(v− u)‖Q∗ + 1 ≤ C‖v− u‖+ 1 ≤ Cδ1 + 1

and so, since δ1 ≤ r/C2Q∗
Q∗R ≤ 1/C because r is small,

|β(v)− β(u)| ≤ CQ∗Rδ1(Cδ1 + 1)Q∗−1 ≤ CQ∗Rδ12Q∗−1 ≤ r/2.

Then, if β(v) ∈ Ω+
r/2, |β(u)| ≤ |β(v)− β(u)|+ |β(v)| ≤ r.

Consider now the functional K defined in (2.2). We extend K on S1
0(Ω)

defining K(0) = S. Then K:S1
0(Ω) 7→ R is lower semi-continuous. Moreover,

since ui ∈ V , there exists a sequence (εi) in R+, limi→∞ εi = 0 such that
K(u+

i ) = ‖u+
i ‖2 = S + εi. Applying Ekeland Theorem (see Theorem 1.1 in [10])

we can conclude that for all δ > 0 and for all i ∈ N there exists vi ∈ S1
0(Ω) such

that

(a) K(vi) = K(u) + εi‖vi − u‖/δ for all u ∈ S1
0(Ω),

(b) K(vi) ≤ K(u+
i ),

(c) ‖vi − u+
i ‖ ≤ δ.

From (a) and (b), we have K(vi) → S and K ′(vi) → 0 for i→∞. Define now

vi = ρi|vi| where ρi ≡ ‖vi‖(Q−2)/2‖vi‖−Q/2
Q∗ .

Then F (vi) = 1
QK(vi)Q/2 and so limi→∞ F (vi) = SQ/2/Q. It is also easy to

verify that limi→∞ F ′(vi) = 0. Then vi is a Palais–Smale sequence of F at the
level F∞(ω) = SQ/2/Q. Then from representation Theorem 3.5 in [9], there exist
a divergent sequence (µi), µi > 0 and a sequence (ξi) in Ω such that (taking a
subsequence of vi if necessary)

‖vi − ωµiξi
‖ → 0 for i→∞.



66 E. Garagnani — F. Uguzzoni

Since Ω is bounded, we can suppose ξ → ξ0. By use of (2.1) and Lebesgue
Theorem, we obtain

lim
i→∞

∫
Bd(0,R)

ξ(ωµiξi
(ξ))Q∗

dξ = ξ0S
Q/2.

Denoting by h̃i = v+
i − ωµiξi we have

β(vi) =
∫

Bd(0,R)

ξ(h̃i + ωµiξi)
Q∗

=
∫

Bd(0,R)

ξωQ∗

µiξi
+

Q∗−1∑
k=0

ck

∫
Bd(0,R)

ξ(h̃i)Q∗−kωk
µiξi

,∣∣∣∣ ∫
Bd(0,R)

ξ(h̃i)Q∗−kωk
µiξi

∣∣∣∣ ≤ R

∫
Bd(0,R)

|vi − ωµiξi |Q
∗−kωk

µiξi

≤ R‖vi − ωµiξi
‖Q∗−k

Q∗ ‖ωµiξi
‖k

Q∗

= CR(S(Q−2)/4)k‖vi − ωµiξi
‖Q∗−k → 0

for all k = 0, . . . , Q∗ − 1 and so limi→∞ β(vi) = ξ0S
Q/2. In particular

lim
i→∞

β(vi)
K(vi)Q/2

= ξ0.

We infer that this implies, if δ is small enough, the existence of i0 ∈ N such that
|β(vi0)− ξ0| < r/2. In fact, from (c), follows ‖vi‖Q∗ ≤ Cδ + 1, since

|‖vi‖Q∗ − 1| = |‖vi‖Q∗ − ‖u+
i ‖Q∗ | ≤ ‖vi − u+

i ‖Q∗ ≤ C‖vi − u+
i ‖ ≤ Cδ.

Then

|β(vi)− ξ0| =
∣∣∣∣‖vi‖Q/(Q−2)

Q∗
β(vi)

K(vi)Q/2
− ξ0

∣∣∣∣
=

∣∣∣∣‖vi‖Q∗/2
Q∗

(
β(vi)

K(vi)Q/2
− ξ0

)
+

(
‖vi‖Q∗/2

Q∗ − 1
)
ξ0

∣∣∣∣
= o(1) +R((Cδ + 1)Q∗/2 − 1) for i→∞.

Taking now δ < δ1, δ small enough and i0 large we obtain |β(vi0) − ξ0| < r/2.
This implies, up to a new choice of r, that also d(vi0), ξ0) < r/2. By the choice
of δ1, we get β(ui0) ∈ Ω+

r , in contradiction with the hypothesis. �

We are now able to prove Theorem 4.1.

Proof of Theorem 4.1. We set cλ,µ ≡ fλ(vµ/‖vµ‖Q∗ ). Then, by Lem-
ma 3.3, cλ,µ < S for µ� 1. Since Theorem 3.4, it is verified (PS) condition for
fλ in fcλ,µ

λ . Moreover, as in [6], using Lemma 4.5 and Remark 4.4, we can prove
that

(4.6) catfc
λ
(ψ(Ω−

r )) ≥ catΩ+
r
(Ω−

r ) = catΩ(Ω) = m for all c ∈ [cλ,µ, Iλ[,
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and so there exist at least m critical points of fλ|V in fcλ,µ

λ . �

We conclude with the

Proof of Proposition 4.2. For simplicity we write ĉk instead of ĉλ,µ,k.
Obviously we have ĉk ≤ ĉk−1, for all k = 1, . . . ,m − 1. Moreover, Iλ ≤ ĉm−1,
otherwise there exist c ∈ [cλ,µ, Iλ[ such that ĉm−1 ≤ c. Then, by definition of
ĉm−1 and by (4.6), we get

catfc
λ
(ψµ(Ω−

r )) ≤ cat
f
bcm−1
λ

(ψµ(Ω−
r )) < catΩ(Ω) ≤ catfc

λ
(ψµ(Ω−

r )),

that is a contradiction. Let now prove that ĉk is an asymptotic critical level,
for all k = 1, . . . ,m − 1. In fact, if ĉk is not a critical level, we can consider
ε ∈ (0, ĉk − S) and a homeomorphism η:V 7→ V such that

(a) η(u) = u if |fλ(u)− ĉk| ≥ ĉk − S,
(b) η(fbck+ε

λ ) ⊂ fbck−ε
λ .

But ψµ(Ω−
r ) ⊂ fbck−ε

λ . Moreover, (a) leads to the identity

η(ψµ(Ω−
r )) = (ψµ(Ω−

r )).

Consequently, using (b),

k ≥ cat
f
bck+ε

λ

(ψµ(Ω−
r )) = cat

η(f
bck+ε

λ )
(ψµ(Ω−

r )) ≥ cat
f
bck−ε

λ

(ψµ(Ω−
r )),

in contradiction with the definition of ĉk.
Finally, in order to prove that, when µ � 1, ĉk ∈ ]S, (SQ/2

λ + SQ/2)2/Q[, we
follow the lines of [20, Lemma 3.6 and Remark 3.7] with minor modifications
and using the estimates (3.6). We omit the computation for the sake of brevity.
So, since Theorem compactness, ĉk are m− 1 critical levels of fλ|V . �
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