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AN ESSENTIAL MAP THEORY FOR Uκc AND PK MAPS

Ravi P. Agarwal — Donal O’Regan

Abstract. This paper presents a continuation theory for Uκ
c maps. The

analysis is elementary and relies on properties of retractions and fixed point

theory for self maps. Also we present a separate theory for a certain subclass

of Uκ
c maps, namely the PK maps.

1. Introduction

In this paper we present a new essential map approach for Uκc maps. In
particular we obtain new results for maps which are either

(a) approximable, or
(b) admissible (strongly) in the sense of Górniewicz.

The maps considered will also satisfy various compactness criteria described in
Section 2. Our analysis is elementary and combines properties of the Minkowski
functional with fixed point theory for self maps. In [1] we introduced the notion
of an essential map for a particular subclass of Uκc maps, namely the DKT maps.
In this paper we extend this notion (the proofs here are different) to enable us
to discuss a more general class of maps, namely the PK maps. The theory and
results in this paper complement and extend previously known results in the
literature (see [1], [2], [6], [8], [10], [11] and the references therein).
For the remainder of this section we present some definitions and some known

facts. Let X and Y be subsets of Hausdorff topological vector spaces E1 and E2,
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respectively. We will look at maps F :X → K(Y ); here K(Y ) denotes the family
of nonempty compact subsets of Y . We say F :X → K(Y ) is Kakutani if F
is upper semicontinuous with convex values. A nonempty topological space is
said to be acyclic if all its reduced Čech homology groups over the rationals are
trivial. Now F :X → K(Y ) is acyclic if F is upper semicontinuous with acyclic
values. F :X → K(Y ) is said to be an O’Neill map if F is continuous and if the
values of F consist of one or m acyclic components (here m is fixed).
Given two open neighbourhoods U and V of the origins in E1 and E2, re-

spectively, a (U, V )-approximate continuous selection (see [6]) of F :X → K(Y )
is a continuous function s:X → Y satisfying

s(x) ∈ (F [(x+ U) ∩X] + V ) ∩ Y for every x ∈ X.

We say F :X → K(Y ) is approximable if it is a closed map and if its restriction
F |K to any compact subset K of X admits a (U, V )-approximate continuous
selection for every open neighbourhood U and V of the origins in E1 and E2,
respectively.
For our next definition let X and Y be metric spaces. A continuous single

valued map p:Y → X is called a Vietoris map if the following two conditions
are satisfied:

(a) for each x ∈ X, the set p−1(x) is acyclic,
(b) p is a proper map i.e. for every compact A ⊆ X we have that p−1(A) is
compact.

Definition 1.1. A multifunction φ:X → K(Y ) is admissible (strongly) in
the sense of Górniewicz, if φ:X → K(Y ) is upper semicontinuous, and if there
exists a metric space Z and two continuous maps p:Z → X and q:Z → Y such
that

(a) p is a Vietoris map, and
(b) φ(x) = q(p−1(x)) for any x ∈ X.

Remark 1.1. It should be noted (see [8, p. 179]) that φ upper semicontin-
uous is redundant in Definition 1.1.

Suppose X and Y are Hausdorff topological spaces. Given a class X of maps,
X (X,Y ) denotes the set of maps F :X → 2Y (nonempty subsets of Y ) belonging
to X , and Xc the set of finite compositions of maps in X . A class U of maps is
defined by the following properties:

(a) U contains the class C of single valued continuous functions,
(b) each F ∈ Uc is upper semicontinuous and compact valued, and
(c) for any polytope P , F ∈ Uc(P, P ) has a fixed point, where the interme-
diate spaces of composites are suitably chosen for each U .
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Definition 1.2. F ∈ Uκc (X,Y ) if for any compact subset K of X, there is
a G ∈ Uc(K,Y ) with G(x) ⊆ F (x) for each x ∈ K.

Examples of Uκc maps are the Kakutani maps, the acyclic maps, the O’Neill
maps, and the maps admissible in the sense of Górniewicz.

For a subset K of a topological space X, we denote by CovX(K) the di-
rected set of all coverings of K by open sets of X (usually we write Cov(K) =
CovX(K)). Given two maps F,G:X → 2Y and α ∈ Cov(Y ), F and G are
said to be α-close, if for any x ∈ X there exists Ux ∈ α, y ∈ F (x) ∩ Ux and
w ∈ G(x) ∩ Ux.
By a space we mean a Hausdorff topological space. In what follows Q denotes

a class of topological spaces. A space Y is an extension space for Q (written
Y ∈ ES(Q)) if for any pair (X,K) in Q with K ⊆ X closed, any continuous
function f0:K → Y extends to a continuous function f :X → Y .
A space Y is an approximate extension space for Q (and we write Y ∈

AES(Q)) if for any α ∈ Cov(Y ) and any pair (X,K) in Q with K ⊆ X closed,
and any continuous function f0:K → Y , there exists a continuous function
f :X → Y such that f |K is α-close to f0.

Definition 1.3. Let V be a subset of a Hausdorff topological space E. Then
we say V is Schauder admissible if for every compact subset K of V and every
covering α ∈ CovV (K), there exists a continuous function (called the Schauder
projection) πα:K → V such that

(a) πα and i:K → V are α-close,
(b) πα(K) is contained in a subset C ⊆ V with C ∈ AES(compact).

If V ∈ AES(compact) then V is trivially Schauder admissible. If V is an
open convex subset of a Hausdorff locally convex topological space E, then it is
well known that V is Schauder admissible.

The following fixed point result was established in [5].

Theorem 1.1. Let V be a Schauder admissible subset of a Hausdorff topo-
logical space E and F ∈ Uκc (V, V ) a compact map. Then F has a fixed point.

A nonempty subset X of a Hausdorff topological vector space E is said to
be admissible if for every compact subset K of X and every neighborhood V
of 0, there exists a continuous map h:K → X with x − h(x) ∈ V for all x ∈ K
and h(K) is contained in a finite dimensional subspace of E. X is said to be
q-admissible if any nonempty compact, convex subset Ω of X is admissible. X is
said to be q-Schauder admissible if any nonempty compact, convex subset Ω of
X is Schauder admissible.

The following fixed point result was established in [4].
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Theorem 1.2. Let Ω be a q-Schauder admissible, closed, convex subset of
a Hausdorff topological vector space E with x0 ∈ Ω. Suppose F ∈ Uκc (Ω,Ω) with
the following property:

(1.1) A ⊆ Ω, A = co({x0} ∪ F (A)) implies A is compact.

Then F has a fixed point in Ω.

Let (E, d) be a pseudometric space. For S ⊆ E, let B(S, ε) = {x ∈ E :
d(x, S) ≤ ε}, ε > 0, where d(x, S) = infy∈Y d(x, y). The measure of noncom-
pactness (see [7]) of the set M ⊆ E is defined by α(M) = inf Q(M) where

Q(M) = {ε > 0 :M ⊆ B(A, ε) for some finite subset A of E}.

Let E be a locally convex Hausdorff topological vector space, and let P be
a defining system of seminorms on E. Suppose F :S → 2E ; here S ⊆ E. The
map F is said to be a countably P -concentrative mapping (see [7]) if F (S)
is bounded, and for p ∈ P for each countably bounded subset X of S we
have αp(F (X)) ≤ αp(X), and for p ∈ P for each countably bounded non-p-
precompact subset X of S (i.e. X is not precompact in the pseudonormed space
(E, p)) we have αp(F (X)) < αp(X); here αp( · ) denotes the measure of non-
compactness in the pseudonormed space (E, p). In this paper when we consider
countably P -concentrative maps it is worth remarking here that in fact the re-
sults hold if the maps are countably condensing in the sense of [12, pp. 353, 356].

The following fixed point result was established in [9].

Theorem 1.3. Let Ω be a nonempty, closed, convex subset of a Fréchet
space E (P is a defining system of seminorms). Suppose F ∈ Uκc (Ω,Ω) is a
countably P -concentrative mapping. Then F has a fixed point in Ω.

The following fixed point results were established in [3].

Theorem 1.4. Let Ω be a q-Schauder admissible closed, convex subset of a
Hausdorff topological vector space E with x0 ∈ Ω. Suppose F ∈ Uκc (Ω,Ω) with
the following conditions holding:

(1.2)

{
for any relatively compact, convex subset A of Ω

with co(F (A)) ⊆ A we have F (A) ⊆ co(F (A))

and

(1.3) A ⊆ Ω, A = co({x0} ∪ F (A)) implies A is compact.

Then F has a fixed point in Ω.
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Theorem 1.5. Let Ω be a q-Schauder admissible closed, convex subset of
a Hausdorff topological vector space E with x0 ∈ Ω. Suppose F ∈ Uκc (Ω,Ω) maps
compact sets into relatively compact sets and assume (1.2) holds. In addition
suppose the following conditions are satisfied:{

A ⊆ Ω, A = co({x0} ∪ F (A)) with A = C
and C ⊆ A countable, implies A is compact,

(1.4) {
for any relatively compact subset A of Ω

there exists a countable set B ⊆ A with B = A,
(1.5)

and

(1.6) if A is a compact subset of Ω then co(A) is compact.

Then F has a fixed point in Ω.

Remark 1.2. If F is a Kakutani map then (1.2) is not needed in Theo-
rems 1.4 and 1.5 (see [3]).

Remark 1.3. If F : Ω→ 2Ω is lower semicontinuous then (1.2) holds (see [3]).

Finally let Z and W be subsets of Hausdorff topological vector spaces Y1
and Y2 and F a multifunction. We say F ∈ PK(Z,W ) if W is convex, and there
exists a map S:Z →W with

Z =
⋃
{intS−1(w) : w ∈W}, co(S(x)) ⊆ F (x) for x ∈ Z,

and S(x) 6= ∅ for each x ∈ Z; here S−1(w) = {z : w ∈ S(z)}. Finally we recall
the following selection theorem (see [10]).

Theorem 1.6. If Z is paracompact, W is convex, and F ∈ PK(Z,W ). Then
there exists a continuous (single valued) function f :Z → W with f(x) ∈ F (x)
for each x ∈ Z. Moreover, if Z is compact, then f ⊆ co(A) for some finite subset
A of W .

2. Essential maps

In this section we present a homotopy type result for essential Uκc maps. Here
E is a Hausdorff locally convex topological vector space, C is a closed convex
subset of E, U ⊆ C is convex, U is an open subset of E, and 0 ∈ U . Notice
intCU = U since U is open in C. We will consider maps F :U → K(C) (here
K(C) denotes the family of nonempty compact subsets of C and U denotes the
closure of U in C). Throughout our map F :U → K(C) will satisfy one of the
following conditions:

(H1) F is compact,
(H2) if D ⊆ U and D ⊆ co({0} ∪ F (D)) then D is compact,
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(H3) F is countably P -concentrative and E is Fréchet (here P is a defining
system of seminorms),

(H4) F is lower semicontinuous and if D ⊆ U and D ⊆ co({0} ∪ F (D)) then
D is compact, or

(H5) F is lower semicontinuous, F maps compact sets into relatively compact
sets, and if D ⊆ U , D ⊆ co({0} ∪ F (D)) with K ⊆ D countable and
K = D then D is compact and in this case we also assume
(a) for any relatively compact convex set A of E there exists a countable
set B ⊆ A with B = A, and

(b) if Q is a compact subset of E then co(Q) is compact.

Fix i ∈ {1, 2, 3, 4, 5}.

Definition 2.1. We say F ∈ LSi(U,C) if F ∈ Uκc (U,C) satisfies (Hi).

Definition 2.2. We say F ∈ LSi∂U (U,C) if F ∈ LSi(U,C) with x /∈ Fx for
x ∈ ∂U ; here ∂U denotes the boundary of U in C.

Definition 2.3. A map F ∈ LSi∂U (U,C) is essential in LSi∂U (U,C) if for
every G ∈ LSi∂U (U,C) with G|∂U = F |∂U there exists x ∈ U with x ∈ G(x).

Theorem 2.1. Fix i ∈ {1, . . . , 5} and let E be a Hausdorff locally convex
topological vector space, C a closed convex subset of E, U ⊆ C convex, U an
open subset of E, 0 ∈ U , F ∈ LSi(U,C) and assume the following condition
holds:

(2.1) x /∈ λFx for x ∈ ∂U and λ ∈ (0, 1].

Then F is essential in LSi∂U (U,C) (in particular F has a fixed point in U).

Proof. Let H ∈ LSi∂U (U,C) with H|∂U = F |∂U . We must show H has
a fixed point in U . Let µ be the Minkowski functional on U and let r:E → U
be given by

r(x) =
x

max{1, µ(x)}
for x ∈ E.

Let G = rH. Now G ∈ Uκc (U,U) since Uκc is closed under compositions. Next
we show G satisfies the compactness criteria in Theorem’s 1.1–1.5 (i.e. G satisfies
the conditions in Theorem 1.i). We will just consider the case i = 5 since the
cases i = 2, 4 are similar and the cases i = 1, 3 are immediate. Let i = 5. Now
H ∈ LS5(U,C) implies H is lower semicontinuous so G is lower semicontinuous
(since r is continuous), so (1.2) holds with F replaced by G. Now letD ⊆ U , D =
co({0} ∪ G(D)), K ⊆ D countable and K = D. Now since r(A) ⊆ co({0} ∪ A)
for any subset A of E we have

D ⊆ co({0} ∪ co({0} ∪H(D))) = co({0} ∪H(D)).
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This implies D is compact since H ∈ LS5(U,C). As a result G satisfies (1.4).
Now Theorem 1.5 guarantees that there exists x ∈ U with x ∈ G(x) = rH(x)
(the same result holds if i ∈ {1, . . . , 4}). Thus x = r(y) for some y ∈ H(x) with
x ∈ U = U ∪ ∂U (note intCU = U since U is open in E). Now either y ∈ U
or y /∈ U . If y ∈ U then r(y) = y, so x = y ∈ H(x), and we are finished since
x = y ∈ U since (2.1) with H|∂U = F |∂U implies

(2.2) x /∈ λHx for x ∈ ∂U and λ ∈ (0, 1].

If y /∈ U then r(y) = y/µ(y) with µ(y) > 1. Thus x = λy (i.e. x ∈ λH(x)) with
0 < λ = 1/µ(y) < 1. Note x ∈ ∂U since µ(x) = µ(λy) = 1 (note ∂U = ∂EU
since intCU = U). As a result x ∈ λH(x) with λ = 1/µ(y) ∈ (0, 1) and x ∈ ∂U ,
and this contradicts (2.2). �

Remark 2.1. In (H4) and (H5), F lower semicontinuous can be replaced by

(2.3)

{
for any relatively compact, convex subset A of U

with co(F (A)) ⊆ A we have F (A) ⊆ F (A).

To see this suppose G is as in Theorem 2.4 and suppose A is a relatively compact,
convex subset of U with co(G(A)) ⊆ A. Then since H satisfies (2.3) (with F
replaced by H) and since r is continuous we have

G(A) = rH(A) ⊆ r(H(A)) ⊆ rH(A) = G(A).

Thus G satisfies (2.3) (with F replaced by G).

Remark 2.2. In fact Theorem 2.1 is a homotopy result since we will now
show that the zero map is essential in LSi∂U (U,C). Then the zero map essential
in LSi∂U (U,C) with F ∼= 0 and (2.1) guarantees (Theorem 2.1) that F is essential
in LSi∂U (U,C).
To show the zero map is essential in LSi∂U (U,C) let θ ∈ LSi∂U (U,C) with

θ|∂U = {0}. Let µ and r be as in Theorem 2.1 and let J = rθ. As in Theorem 2.1,
Theorem’s 1.1–1.5 guarantee that there exists x ∈ U with x ∈ J(x) = rθ(x).
Thus x = r(y) for some y ∈ θ(x) and essentially the same argument as in
Theorem 2.1 yields x ∈ U with x ∈ θ(x).
In fact we can generalize the theory presented above as follows. We assume

F :U → K(C) satisfies either (H1), (H2), (H3) or one of the following conditions:
(H6) if D ⊆ U and D ⊆ co({0} ∪ F (D)) then D is compact, or
(H7) if D ⊆ U , D ⊆ co({0}∪F (D)) with K ⊆ D countable and K = D then

D is compact and in this case we also assume
(a) for any relatively compact convex set A of E there exists a countable
set B ⊆ A with B = A, and

(b) if Q is a compact subset of E then co(Q) is compact.

Fix i ∈ {1, 2, 3, 6, 7}.
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Definition 2.4. We say F ∈ GLSi(U,C) if F ∈ Uκc (U,C) satisfies condi-
tion (A).

We assume condition (A) is such that

(2.4)

{
for any map F ∈ GLS(U,C) and any continuous single valued
map r:E → U we have that rF satisfies condition (A).

Example 2.1. If condition (A) means either the map is

(a) approximable, or
(b) admissible in the sense of Gorniewicz, or
(c) in Uκc ,

then clearly (2.4) holds.

Definition 2.5. We say F ∈ GLSi(U,C) if F ∈ GLS(U,C) satisfies (Hi).

Definition 2.6. We say F ∈ GLSi∂U (U,C) if F ∈ GLSi(U,C) with x /∈ Fx
for x ∈ ∂U .

Definition 2.7. A map F ∈ GLSi∂U (U,C) is essential in GLSi∂U (U,C) if
for every G ∈ GLSi∂U (U,C) with G|∂U = F |∂U there exists x ∈ U with x ∈ G(x).

Essentially the same reasoning as in Theorem 2.1 establishes the following
result.

Theorem 2.2. Fix i ∈ {1, 2, 3, 6, 7} and let E be a Hausdorff locally convex
topological vector space, C a closed convex subset of E, U ⊆ C convex, U an
open subset of E, 0 ∈ U , F ∈ GLSi(U,C) and assume (2.1) and (2.4) hold. Also
suppose the following condition holds:

(2.5) any map Φ ∈ GLSi(U,U) has a fixed point.

Then F is essential in GLSi∂U (U,C).

Next we present a more natural “homotopy” type property for PK maps.
Again E is a Hausdorff locally convex topological vector space, C is a closed
convex subset of E, U ⊆ C is convex, U is an open subset of E, 0 ∈ U , and U is
paracompact.

Remark 2.3. We refer the reader to [2] where a different essential map
approach is presented for certain subclasses of Uκc maps in Hausdorff topological
vector spaces (see also Theorem 2.4 in this paper).
Throughout our map F ∈ PK(U,C) will satisfy either (H1), (H2), (H3), (H6)

or (H7).

Remark 2.4. If F ∈ PK(U,C) satisfies (H3) then the assumption that U is
paracompact is redundant since E is a Fréchet space in this case.
Fix i ∈ {1, 2, 3, 6, 7}.
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Definition 2.8. We say F ∈ PKi(U,C) if F ∈ PK(U,C) satisfies (Hi).

Definition 2.9. We say F ∈ PKi∂U (U,C) if F ∈ PKi(U,C) with x /∈ Fx
for x ∈ ∂U .

Definition 2.10. We say f ∈ CPKi(U,C) if f :U → C is a single valued
continuous map with f satisfying (Hi) (with F replaced by f).

Definition 2.11. A map F ∈ PKi∂U (U,C) is essential in PKi∂U (U,C) if for
any continuous selection f :U → C of F there exists xg ∈ U with xg = g(xg) for
every g ∈ CPKi(U,C) with x 6= g(x) for x ∈ ∂U and g|∂U = f |∂U .

Theorem 2.3. Fix i ∈ {1, 2, 3, 6, 7} and let E be a Hausdorff locally convex
topological vector space, C a closed convex subset of E, U ⊆ C convex, U an
open subset of E, 0 ∈ U , U paracompact, F ∈ PKi(U,C) and assume (2.1) holds.
Then F is essential in PKi∂U (U,C) (in particular F has a fixed point in U).

Proof. Let f :U → C be any continuous selection of F (guaranteed of
course from Theorem 1.6). Let g ∈ CPKi(U,C) with x 6= g(x) for x ∈ ∂U and
g|∂U = f |∂U . Now (2.1) implies x 6= λf(x) for x ∈ ∂U and λ ∈ (0, 1] and this
together with g|∂U = f |∂U implies

(2.6) x 6= λg(x) for x ∈ ∂U and λ ∈ (0, 1].

Let µ and r be as in Theorem 2.1 and let h = rg. Notice h:U → U is continuous
and it is easy to check (as in Theorem 2.1) that h satisfies the compactness
criteria in Theorem 1.i since g ∈ CPKi(U,C). Now Theorem’s 1.1–1.5 (see also
Remark 2.1) guarantees that there exists x ∈ U with x = rg(x). Thus x = r(y)
where y = g(x) and x ∈ U . Now either y ∈ U or y /∈ U . If y ∈ U then r(y) = y,
so x = y = g(x), and we are finished since x = y ∈ U (see (2.6)). If y /∈ U then
r(y) = y/µ(y) with µ(y) > 1. Thus x = λy = λg(x) with 0 < λ = 1/µ(y) < 1.
Note x ∈ ∂U since µ(x) = µ(λy) = 1, and so (2.6) is contradicted. �

Remark 2.5. As in Remark 2.2 we will show Theorem 2.3 is a homotopy
result. To see this we need only to show that the zero map is essential in
PKi∂U (U,C). To see this let θ ∈ CPKi(U,C) with x 6= θ(x) for x ∈ ∂U and
θ|∂U = 0 (here we are considering the zero map so f(x) = 0 for x ∈ U). Let µ
and r be as in Theorem 2.1 and let j = rθ. Now Theorems 1.1–1.5 guarantee
that there exists x ∈ U with x = j(x) = rθ(x). Essentially the same argument
as in Theorem 2.3 yields x ∈ U with x = θ(x).

Next we present another approach motivated from the ideas in [2]. Here E
will be a Hausdorff topological vector space (we do not assume locally convex),
C is a closed convex subset of E, U is an open subset of C, 0 ∈ U and U is
paracompact.
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Fix i ∈ {1, 2, 3, 6, 8}. Here F ∈ PK(U,C) satisfies (H8) if the following
holds:

(H8) if D ⊆ U , D ⊆ co({0}∪F (D)) with K ⊆ D countable and K = D then
D is compact and in this case we also assume
(a) either E is a normal space or E is such that any closed subset is
compact if and only if it is sequentially compact,

(b) for any relatively compact convex set A of E there exists a countable
set B ⊆ A with B = A, and

(c) if Q is a compact subset of E then co(Q) is compact.

Theorem 2.4. Fix i ∈ {1, 2, 3, 6, 8} and let E be a Hausdorff topological
vector space, C a closed convex subset of E, U an open subset of C, 0 ∈ U , U
paracompact, F ∈ PKi(U,C) and assume (2.1) holds. In addition suppose

(2.7) the zero map is essential in PKi∂U (U,C).

Then F is essential in PKi∂U (U,C) (in particular F has a fixed point in U).

Proof. Let f :U → C be any continuous selection of F (guaranteed of
course from Theorem 1.6) and let g ∈ CPKi(U,C) with x 6= g(x) for x ∈ ∂U
and g|∂U = f |∂U . Let

Q = {x ∈ U : x = λg(x) for some λ ∈ [0, 1]}.

Now Q 6= ∅ is closed. In fact it is easy to check (see the argument in [2]) that
Q is compact. Also Q ∩ ∂U = ∅ since (2.1) implies x 6= λg(x) for x ∈ ∂U and
λ ∈ (0, 1]. Now since Hausdorff topological vector spaces are completely regular
there exists a continuous map µ:U → [0, 1] with µ(∂U) = 0 and µ(Q) = 1.
Define a map Rµ by Rµ(x) = µ(x)g(x). It is easy to see (see the argument
in [2]) that Rµ ∈ CPKi(U,C) with Rµ|∂U = 0. Now (2.7) guarantees that there
exists x ∈ U with x = Rµ(x). Thus x ∈ Q so µ(x) = 1, i.e. x = g(x). �

Notice Remark 2.5 gives an example of when (2.7) is satisfied. Here are other
examples.

Example 2.2. Here E is a Hausdorff topological vector space, C a closed
convex subset of E, U an open subset of C, 0 ∈ U and U paracompact.
(a) If i = 1 and C is Schauder admissible then (2.7) holds (with i = 1).
To see this let θ ∈ CPKi(U,C) with x 6= θ(x) for x ∈ ∂U and θ|∂U = 0. Let

J(x) =

{
θ(x) for x ∈ U,
0 for x ∈ C\U.

Clearly J :C → C is a continuous compact map. Theorem 1.1 (applied to J)
guarantees that there exists x ∈ C with x = J(x). If x /∈ U we have x =
J(x) = 0, which is a contradiction since 0 ∈ U . Thus x ∈ U so x = J(x) = θ(x).
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(b) If i = 2, C is q-Schauder admissible and assume the following condition
is satisfied:

(2.8) co(A) is compact for any compact subset A of E.

Then (2.7) holds (with i = 2).

To see this let θ and J be as in (a). Let D ⊆ C with D = co({0} ∪ J(D)).
Then

(2.9) D ⊆ co({0} ∪ θ(D ∩ U))

and so D ∩ U ⊆ co({0} ∪ θ(D ∩ U)).
Now since θ ∈ CPK2(U,C) (i.e. θ satisfies (H2)) we have that D ∩ U is

compact, and so θ continuous guarantees that θ(D ∩ U) is compact. This to-
gether with (2.8) implies co({0}∪ θ(D ∩ U)) is compact. Now (2.9) implies D is
compact. Theorem 1.2 (applied to J) guarantees that there exists x ∈ C with
x = J(x), and as in (a) we have x ∈ U so x = θ(x).
(c) If i = 3 (so automatically E is a Fréchet space) then (2.7) holds (with

i = 3).

To see this let θ and J be as in (a). It is clear that J is a countably P -
concentrative map. Now apply Theorem 1.3.

(d) If i = 6, C is q-Schauder admissible and assume (2.8) holds. Then (2.7)
holds (with i = 6).

To see this let θ and J be as in (a) and essentially the same reasoning as in
(b) guarantees that J satisfies (1.3). Now apply Theorem 1.4.

(e) If i = 8, C is q-Schauder admissible and assume (2.8) holds. Then (2.7)
holds (with i = 8).

To see this let θ and J be as in (a). Now let D ⊆ C, D = co({0} ∪ J(D)),
A = D and A ⊆ D countable. Then

D ∩ U ⊆ co({0} ∪ θ(D ∩ U).

Also A ∩ U is countable, A ∩ U ⊆ D ∩ U and A ∩ U = D ∩ U since

A ∩ U ⊆ D ∩ U ⊆ D ∩ U = A ∩ U ⊆ A ∩ U

since U is open. Now since θ ∈ CPK8(U,C) we have that D ∩ U is compact,
and as in (b) we have that D is compact. Now apply Theorem 1.5.

Remark 2.6. The PK maps in Theorems 2.3 and 2.4 could be replaced by
other classes of maps in the literature which have a continuous selection theorem
similar to Theorem 1.6.
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