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ON A RADIAL POSITIVE SOLUTION
TO A NONLOCAL ELLIPTIC EQUATION

Piotr Fijałkowski — Bogdan Przeradzki

Abstract. The existence of a solution to the Dirichlet boundary value

problem for nonlinear Poisson equations with the nonlocal nonlinear term

−∆u = f

�
u,

Z
(g ◦ u)

�
, u|∂U = 0,

is proved by means of fixed point theorems for increasing compact opera-
tors.

1. Introduction

We study the following boundary value problem:

−∆u = f
(
u,

∫
U

g ◦ u
)
,(1.1)

u|∂U = 0,(1.2)

and look for its positive solutions. The domain U ⊂ Rn is assumed to be an
annulus U(R, ρ) = B(0, R) \ B(0, ρ), for 0 < ρ < R or a ball U(R, 0) = B(0, R)
for ρ = 0, what enables us to seek a radial solution

u(x) = v(|x|)

where v: [ρ,R]→ R.
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The study of such problems is motivated by a lot of physical applications
starting from the well-known Poisson–Boltzmann equation (see [1], [8], [13]),
however our assumptions are not satisfied for many physically important exam-
ples.
The method we use is typical for local boundary value problems. We shall

formulate an equivalent fixed point problem and look for its solution in the cone
of nonnegative function in an appropriate Banach space. Here, we work in the
space of continuous functions and obtain at least one solution. If one works in
the space of integrable functions, then the existence of multiple solutions can be
obtained under relatively strong assumptions on the function g (see [3], [4]). We
will use the following theorems:

Theorem 1.1 ([6, p. 41]). Let P be a cone in a Banach space X, i.e. P is
closed convex set such that:

(a) λP ⊂ P for λ ≥ 0,
(b) P ∩ (−P ) = {0},

and this cone is normal, i.e. there exists a positive constant C such that ‖v‖ ≤
C‖w‖, for v, w ∈ P , v ≤ w. Let, for v, w ∈ X, the relation v ≤ w denotes that
w − v ∈ P . Suppose that a mapping T :P → X is completely continuous and
nondecreasing, i.e.

T (v) ≤ T (w), for v ≤ w.
If there exist points v1, v2 ∈ P, v1 ≤ v2, for which v1 ≤ T (v1) and T (v2) ≤ v2,
then the mapping T has a fixed point tv0 ∈ P, for which v1 ≤ v0 ≤ v2.

Theorem 1.2 ([6, p. 94]). Let P be a cone in a Banach space, Ω1 and Ω2 two
bounded open neighbourhoods of zero such that Ω1 ⊂ Ω2. Let T :P∩(Ω2\Ω1)→ P
be a completely continuous mapping. If (the case of expansion)

‖T (v)‖ ≤ ‖v‖ for v ∈ ∂Ω1 and ‖T (v)‖ ≥ ‖v‖ for v ∈ ∂Ω2,

or reversely (the case of compression)

‖T (v)‖ ≥ ‖v‖ for v ∈ ∂Ω1 and ‖T (v)‖ ≤ ‖v‖ for v ∈ ∂Ω2,

then operator T has a fixed point.

2. Main results

Suppose that functions f :R+ × R → R+, g:R+ → R (R+ = [0,∞)) are
continuous. If we look for the radial solutions of BVP (1.1)–(1.2), then function
v should satisfy the following BVP for ordinary differential equation:

(2.1) −v′′(r)− n− 1
r
v′(r) = f

(
v(r), ωn

∫ R
ρ

sn−1g(v(s)) ds
)
,
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with the boundary conditions:

(2.2) v(R) = 0 = v(ρ) for ρ > 0,

or

(2.3) v(R) = 0 = lim
r→0+

v′(r) for ρ = 0,

where ωn stands for the measure of the unit sphere in Rn. The linear homo-
geneous equation −v′′ − (n− 1)v′/r = 0 with both boundary conditions has
only the trivial solution, thus there exists the Green function G. By standard
calculations one can verify that

G(r, t) =
t(Rn−2 −max(r, t)n−2)(min(r, t)n−2 − ρn−2)

(n− 2)(Rn−2 − ρn−2)rn−2

for ρ > 0 and n > 2,

G(r, t) =
t(lnR− ln(max(r, t)))(ln(min(r, t))− ln ρ)

lnR− ln ρ

for ρ > 0 and n = 2,

G(r, t) =
tn−1

n− 2

(
1

max(r, t)n−2
− 1
Rn−2

)
for ρ = 0 and n > 2,

G(r, t) = t(lnR− ln(max(r, t))

for ρ = 0 and n = 2.

The BVP is then equivalent to the integral equation

(2.4) v(r) =
∫ R
ρ

G(r, t)f
(
v(t), ωn

∫ R
ρ

sn−1g(v(s)) ds
)
dt.

Let X = C([ρ,R]) denote the space of real continuous functions on [ρ,R]
with the sup-norm, P denote the cone of nonnegative functions in X and let
T :P → P be defined by the formula

(2.5) T (v)(r) =
∫ R
ρ

G(r, t)f
(
v(t), ωn

∫ R
ρ

sn−1g(v(s)) ds
)
dt.

We look for fixed points of T , since they are positive radial solutions of BVP
(1.1)–(1.2).

Notice that, from the Arzéla–Ascoli Theorem, our operator T is completely
continuous. It is clear that the cone P is normal. Making certain supplementary
assumptions and using Theorem 1.1 we obtain a fixed point of T :
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Theorem 2.1. Let f :R2+ → R+ and g:R+ → R+ be continuous and satisfy
the following conditions:

f(v1, y1) ≤ f(v2, y2) if v1 ≤ v2 and y1 ≤ y2,
g(v1) ≤ g(v2) ifv1 ≤ v2.

If there exists a positive number c1 such that

f

(
c1, ωng(c1)

Rn − ρn

n

)
≤ c1
γ
,

where

γ = sup
r∈[ρ,R]

∫ R
ρ

G(r, t) dt,

then BVP (1.1)–(1.2) has a positive radial solution u0 with the norm ‖u0‖ =
supx∈U |u0(x)| ≤ c1.

Proof. Let v1(t) = 0 and v2(t) = c1, t ∈ [ρ,R]. We have v1, v2 ∈ P and
v1 ≤ v2. It is clear that v1 ≤ T (v1). The assumptions concerning monotonicity
of f and g imply that T is nondecreasing. We shall estimate values of T (v2)

T (v2)(r) =
∫ R
ρ

G(r, t)f
(
v2(t), ωn

∫ R
ρ

sn−1g(v2(s)) ds
)
dt

≤
∫ R
ρ

G(r, t)f
(
c1, ωng(c1)

Rn − ρn

n

)
dt ≤ c1

γ
γ = c1 = v2(r).

Thus T (v2) ≤ v2.
Hence Theorem 1.1 implies the existence of a fixed point v0 of T . We can

define u0(x) := v0(|x|). �

After simple though long calculations, one can compute

γ =
1
2n

(
Rn − ρn

R(n− 2)− ρn−2
− r20 −

Rn−2ρn−2(R2 − ρ2)
rn−20 (Rn−2 − ρn−2)

)
≤ 1
2n
Rn + ρn − ρ2Rn−2 − ρn−2R2

Rn−2 − ρn−2

for ρ > 0 and n > 2, where

r0 =
(
n− 2
2

)1/n
R(n−2)/nρ(n−2)/n(R2 − ρ2)1/n

(Rn−2 − ρn−2)1/n
,

and

γ =
ρ2(lnR− ln r0) +R2(ln r0 − ln ρ)− r20(lnR− ln ρ)

8(lnR− ln ρ)
≤ R

2 − ρ2

8

for ρ > 0 and n = 2, where for ρ = 0

r0 =
(
R2 − ρ2

2(lnR− ln ρ)

)1/2
, γ =

R2

2n
.
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We shall demonstrate an application of the cone-compression version of Theo-
rem 1.2 to obtain a positive radial solution of BVP (1.1)–(1.2) under appropriate
assumptions on the function f :

Theorem 2.2. Let f :R+×R→ R+ and g:R+ → R be continuous. Suppose
there exist constants 0 < A < γ−1, where γ is described above, and B such that:

(2.6) f(v, y) ≤ Av +B

for v ≥ 0 and y ∈ R. Then BVP (1.1)–(1.2) has a positive radial solution.

Proof. We shall demonstrate that operator T defined by (2.5) has a fixed
point in P . If f(0, ωn(Rn − ρn)g(0)/n) = 0, then the function v0(t) = 0, t ∈
[ρ,R] is a fixed point of T . Hence we shall consider the case of

f(0, ωn(Rn − ρn)g(0)/n) > 0.

From the continuity of f and g there exist positive constants K and δ, for which

f

(
v(t), ωn

∫ R
ρ

sn−1g(v(s)) ds
)
≥ K

for any v ∈ P, ‖v‖ ≤ δ. Let v ∈ P, ‖v‖ ≤ δ. We have

‖Tv‖ = sup
r∈[ρ,R]

|T (v)(r)|

= sup
r∈[ρ,R]

∫ R
ρ

G(r, t)f
(
v(t), ωn

∫ R
ρ

sn−1g(v(t)) ds
)
dt ≥ γK.

Setting Ω1 = v ∈ X : ‖v‖ < min(γK, δ), we have ‖T (v)‖ ≥ ‖v‖ for any v ∈
P ∩ ∂Ω1.
Define Ω2 := {v ∈ X : ‖v‖ ≤ Bγ/(1−Aγ)}. Taking v ∈ P ∩∂Ω2, we obtain:

‖T (v)‖ = sup
r∈[ρ,R]

|T (v)(r)|

= sup
r∈[ρ,R]

∫ R
ρ

G(r, t)f
(
v(t), ωn

∫ R
ρ

sn−1g(v(s)) ds
)
dt

≤ sup
r∈[ρ,R]

∫ R
ρ

G(r, t)(Av(t) +B) dt

≤ γA‖v‖+ γB = ABγ
2

1−Aγ
+Bγ =

Bγ

1−Aγ
= ‖v‖.

Thus the cone-compression version of Theorem 1.2 implies the assertion. �

The growth condition (2.6) in the above theorem does not depend on the
second variable of f . This fact implies that none growth conditions for the
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function g are required. Moreover, the proof of Theorem 2.2 can be repeated
without changes in the case of an equation

−v′′(r)− n− 1
r
v′(r) = f(v(r), λ(v))

instead (2.1) with any continuous (nonlinear) functional λ on the space C([ρ,R]).
We shall demonstrate an example of existence theorem with weakened growth

condition for f but with one on g.

Theorem 2.3. Let f :R+×R→ R+ and g:R+ → R be continuous. Suppose
that there exist positive constants A < γ−1, B,C,D, p, q, pq ≤ 1 such that

(2.7) f(v, y) ≤ Av +B + C|y|p

for v ≥ 0, y ∈ R and

(2.8) |g(t)| ≤ D|t|q

for t ∈ R. Then BVP (1.1)–(1.2) has a positive radial solution.

Proof. The theorem can be proved as Theorem 2.2 with certain changes in
the definition of the set Ω2. Before describing Ω2, we estimate using (2.7) and
(2.8):

‖Tv‖ = sup
r∈[ρ,R]

∫ R
ρ

G(r, t)f
(
v(t), ωn

∫ R
ρ

sn−1g(v(s)) ds
)
dt

≤ γ
(
A‖v‖+B + C

(
ωn

∫ R
ρ

sn−1|g(v(s))| ds
)p)

≤ γ
(
A‖v‖+B + CBpωnp

(
Rn − ρn

n

)p
Dp‖v‖pq

)
= (γA+ γB‖v‖−1 + γE‖v‖pq−1)‖v‖

with E = CBpωnp((Rn − ρn)/n)pDp.
Thus there exists a positive constant M, for which

‖T (v)‖ ≤ ‖v‖

whenever ‖v‖ ≥ M and we can define Ω2 := {v ∈ X : ‖v‖ < M}. The required
inequality for v ∈ ∂Ω1 is obtained as in the proof of Theorem 2.2.

3. Solutions that change sign

Let BVP (1.1)–(1.2) be studied without the restriction of the positivity of so-
lutions. Then, we obtain the existence of a solution under the classical Bernstein
type assumptions on f (see [2] or [5]):
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Theorem 3.1. Let f :R2 → R and g:R → R be continuous. Suppose there
exists a positive constant M such that

(3.1) vf(v, y) ≤ 0 for |v| ≥M, y ∈ R.

Then, there exists a radial solution u0 of BVP (1.1)–(1.2) with the norm ‖u0‖ =
supx∈U |u0(x)| ≤M .

Proof. Assume that inequality in (3.1) is sharp, i.e.

vf(v, y) < 0 for |v| ≥M, y ∈ R.

We will use the Leray–Schauder degree theory (see for instance [9]). In the first
step, we obtain a priori bound for solutions of ODE:

(3.2) −v′′ − n− 1
r
v′ = µf

(
v, ωn

∫ R
ρ

tn−1g(v(t)) dt
)
,

with boundary conditions (2.2) or (2.3) for µ ∈ [0, 1]. Let v = v(r) be a solution
of (3.2) and suppose that |v(r)| attains its maximum at r = r0. If v(r0) > M
then v′(r0) = 0 and v′′(r0) ≤ 0, if v(r0) < −M , then v′(r0) = 0 and v′′(r0) ≥ 0;
both cases contradict (3.2). Thus ‖v‖ ≤M .
The BVP (3.2), (2.2) or (2.3) is equivalent to the equation

(3.3) (I − µT )v = 0,

where I stands for the identity mapping. We treat I − µT as a mapping from
the ball B(0,M + ε) ⊂ X into X, where X = C([ρ,R]) with sup-norm. We
know, that the above equation has no solution in X \B(0,M + ε), so the Leray–
Schauder degree deg(I − T,B(0,M + ε)) = deg(I,B(0,M + ε)) = 1. Therefore,
the BVP (2.1)–(2.2) or (2.3) has a solution, which proves the assertion.
The general case (3.1) is proved by applying the perturbation of f by v/n.

New right hand sides satisfy sharp inequality and we get a sequence vn of solu-
tions to the perturbed equations. One can take a convergent subsequence from
this sequence and its limit is a solution to the problem (compare [11]). �
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