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A DIRECT TOPOLOGICAL DEFINITION
OF THE FULLER INDEX FOR LOCAL SEMIFLOWS

Christian C. Fenske

Abstract. We define an index of Fuller type counting the periodic or-
bits of a local topological semiflow on ANR spaces avoiding smoothness

assumptions and approximation processes

1. Introduction

Fuller in his classical article [5] defined an index counting isolated sets of
periodic orbits of a smooth vector field X on a manifold M . A major step in the
argument consists in approximating X by a vector field that has only finitely
many periodic orbits all of which are hyperbolic. Here, we will not assume any
differentiability – we will just consider a local semiflow. In this situation there is
no conceivable way to approximate the semiflow by a semiflow having only finitely
many periodic orbits. In [4] we proposed a complicated approximation process
which approximates the semiflow by a parametrized mapping which respects the
flow structure on sufficiently many periodic orbits. Here, it is our objective to
define the index entirely in terms of the semiflow. Our starting point is the
following expression [2]

Hn(X ×X,X ×X \∆)
g∗−→ Hn(Ω,Ω \ P ) ∼= H1P

i∗−→ H1Ω.
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Here, X is open in Rn, Ω is an open subset of Rn+1, Φ is a local semiflow on X
with Ω ⊂ D(Φ) (the domain of definition of Φ), P := {(x, t) ∈ Ω | φtx = x},
g: Ω→ X is the mapping (x, t) 7→ (x, φtx), H∗ is Alexander–Spanier cohomology,
∼= is Poincaré duality, H∗ is the homology of the complex with Cq(X,A;G) =
Hom(Cq

c (X,A;G), G) where Cq
c denotes Alexander–Spanier cochains with com-

pact support, and i:P → Ω is the inclusion. By Hs
∗ we denote singular ho-

mology, and we just write H∗ or H∗ when there is no difference between the
(co-)homology theories. The homological index I(X,Φ,Ω) then is defined to be
the image of the diagonal class τX ∈ Hn(X×X,X×X\∆) in the above diagram.
Of course, there are some assumptions, viz.

(H’1) P is a compact subset of Ω.
(H’2) There is a t0 ≥ 0 such that φt0 is compact and pr2 P ⊂ (t0,∞).
(H’3) Φ has a compact attractor.

Now it would be straightforward to define a numerical index if one could
show that I(X,Φ,Ω) can be represented as a cycle

∑r
i=1 ciγi where γ1, . . . , γr

are periodic orbits of Φ because then we would define the numerical index as
i(X,Φ,Ω) =

∑r
i=1 ci/mi where mi is the multiplicity of γi. Since I do not see

how to prove this assertion (although there is some evidence in favour of this
conjecture) let us observe that it would be sufficient to find a canonical projection
from H1P to the subgroup generated by the periodic orbits. Note that there is
an operation of S1 on P , T :S1 × P → P , defined by T (exp(2πiθ), (x, t)) = φθtx

where 0 ≤ θ ≤ 1. Now (ignoring difficulties) we could hope to replace H1(S1×P )
by (H0S

1 ⊗ H1P ) ⊕ (H1S
1 ⊗ H0P ). So we should be looking for a mapping

S:H1P → H1S
1 ⊗H0P ∼= H0P . Applying T∗ we will end up in the subgroup

generated by the periodic orbits. The actual construction will be somewhat
different, but this is the basic idea. There is, however, one more task which
has to be solved. If H1Ω = 0 then I(X,Φ,Ω) = 0 so the topological index
does not give any information. Fuller (op. cit.) circumvented this difficulty
by an ingenious configuration-space argument. Call X(k) the subset of those
x1, . . . , xk ∈ Xk consisting of k different points. The cyclic group Zk acts onX(k)

(the action being generated by the shift (x1, . . . , xk) 7→ (x2, . . . , xk, x1)). Call
Xk = X(k)/Zk. If Φ is a local flow on X then (x1, . . . , xk, t) 7→ (φtx1, . . . , φtxk)
defines a local flow on X(k) which yields a local flow on Xk. If, however, Φ is just
a semiflow then φtx1, . . . , φtxk need not be k different points for (x1, . . . , xk) ∈
X(k). In [3] we have explained how to get around this difficulty in the case of a
local semiflow.

Granting all this, there remains, however, still a drawback in our approach:
the introduction of the configuration spaces Xk forces us to use coefficients in Zk

(and not in Q as would be appropriate), and I have not been able to compare
the indices for different values of k.
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2. The setting of the problem

We assume that X is an ANR, Ω ⊂ X × [0,∞) is open, Φ is a local semiflow
with Ω ⊂ D(Φ) which satisfies (H’1)–(H’3). In this situation, it is well-known
that Φ has a uniform compact attractor (i.e. a compact attractor with arbitrarily
small invariant neighbourhoods). So by (H’2) there is an invariant neighbour-
hood U such that clφt0(U) is a compact subset of U . So we may replace Ω by a
smaller open set Ω′ ⊃ P such that cl Φ(Ω′) is compact, i.e. instead of (H’1)–(H’3)
we may assume

(H1) P is a compact subset of Ω, and
(H2) cl Φ(Ω) is compact.

Definition. We say that an index for local semiflows is defined if for all
triplets (X,Φ,Ω) satisfying (H1) and (H2) and each sufficiently large prime k we
may define an element ik(X,Φ,Ω) ∈ Zk such that

(A) ik is additive with respect to Ω, i.e. if Ω1,Ω2 ⊂ Ω are open such that
P ∩ (Ω \ (Ω1 ∪Ω2)) = ∅ then ik(X,Φ,Ω) = ik(X,Φ,Ω1) + ik(X,Φ,Ω2).

(H) (ik is homotopy-invariant) If Ω ⊂ X × [0,∞) × [0, 1] is open and if we
have a continuous map

Φ: Ω→ X, (x, t, λ) 7→ Φλ(x, t)

such that cl Φ(Ω) is compact and that with Ωλ := Ω∩((X×[0,∞))×{λ})
we have that Φλ is a local semiflow with (X,Φλ,Ωλ) satisfying (H1) and
(H2) then ik(X,Φ0,Ω0) = ik(X,Φ1,Ω1) for all sufficiently large primes.

(N) The index is normalized: ik(X,Φ,Ω) is the element in Zk corresponding
to ι/m ∈ Q if P consists of a single periodic orbit γ of multiplicity m

and ι is the fixed point index of the Poincaré mapping with respect to γ.

Two remarks are in order. In (N) we mean that ik(X,Φ,Ω) solves the equa-
tion mx = ι in Zk. Secondly, we comment on the definition of the Poincaré
mapping. Let Φ be a local semiflow on a metric space (X, d) and x a periodic
point with minimal period p. Then γ := Φ({x} × [0, p]) is called the periodic
orbit of x. (Here and in what follows we will write |γ| := γ([0, p]). Moreover,
for x ∈ |γ|, we denote the minimal period of x by p(x) or equivalently by p(γ).)
Choose a neighbourhood O of |γ| such that all y ∈ O have lifetime at least 4p.
Define ψ:O × (−p, 2p)→ [0,∞) by

ψ(y, t) =
∫ t+p/4

t

d(x, φp+sy) ds.

In [1] it is proved that there is a δ > 0 and a ρ < δ such that with S := {y ∈
B(x; δ) | ψ(x, 0) = ψ(y, 0)} and Σ := S ∩ B(x; ρ) we have that the mapping
τ : Σ→ (0,∞) with τ(y) = inf{t > 0 | φty ∈ S} is defined and continuous. Then



198 Ch. C. Fenske

there is a neighbourhood U of |γ| such that the mapping with η(y) := inf{t >
0 | φty ∈ S} is defined and continuous on U \ S.

Let B be a small ball centered at x and y ∈ B. Let σ(y) = τ(y) if y ∈ S,
σ(y) = η(y) if η(y) > 3p/4, and σ(y) = η(y) + τ(φη(y)y) if η(y) < p/4. Let
τ1(y) := σ(y) and let τj+1(y) := τj(y)+ τ(φτj(y)y). The Poincaré map π:B → S

is then defined by π(y) = φτm(y)y.
In this situation, let us fix some terminology. Let t+ > max{p(x) | (x, t) ∈ P}

be fixed. A pair T ′ ⊂ T of open neighbourhoods of |γ| is called a tube around γ
and Σ ⊂ T is called a section at x if

• all points y ∈ T ′ have lifetime at least t+ and Φ({y} × [0, t+]) ⊂ T ,
• for each y ∈ Σ′ := Σ ∩ T ′ we have that τ(y) = inf{t > 0 | φty ∈ Σ} is

defined and defines a continuous mapping τ : Σ′ → (0,∞).

We now proceed as follows. We start by assuming that X = M is an ori-
entable manifold. First we recall the construction of nonbounding cycles. Next,
we turn to the definition of the index. We will then explain how to extend the
definition to the case of simplicial complexes and to the nonorientable case. Fi-
nally, we will deal with local semiflows on ANR spaces (cf. [7] for facts about
ANR).

3. Construction of nonbounding cycles

Let M be an n-dimensional orientable manifold, Ω ⊂ M × (0,∞) open,
Φ:D(Ω)→M a local semiflow such that Ω ⊂ D(Φ).

Assume that P := {(x, t) ∈ Ω | φtx = x} is a compact subset of Ω. Let µ be
the largest multiplicity occurring in P and let k > µ2 be a natural number such
that all prime divisors of k are larger than µ2.

Denote by M (k) the set of those (x1, . . . , xk) ∈Mk for which xi 6= xj when-
ever 1 ≤ i < j ≤ k. M (k) is again an orientable manifold. The cyclic group
Zk operates on M (k) by translations the generator being ζ1: (x1, x2, . . . , xk) 7→
(x2, . . . , xk, x1). We denote the action of ζ ∈ Zk on ξ ∈ M (k) by (ζ, ξ) 7→ ζ · ξ.
Call Mk := M (k)/Zk. Then qk:M (k) →Mk is a regular k-sheeted covering with
group of covering transformations Zk, and M (k) and Mk are manifolds.

Let Qk:M (k)× [0,∞)→Mk× [0,∞) be defined by Qk(ξ, t) = (qk(ξ), t). For
(x, t) ∈ D(Φ) let gk(x, t) = (x, φt/kx, . . . , φ(k−1)t/kx) and Gk(x, t) := Zk ·gk(x, t).

Lemma. There are open sets P ⊂ Ω′′ ⊂ Ω′′ ⊂ Ω′ ⊂ Ω′ ⊂ Ω and a δ > 0 such
that

(i) (φτx, t) ∈ Ω whenever (x, t) ∈ Ω′ and 0 ≤ τ ≤ 2t.
(ii) gk(φτx, t) ∈M (k) whenever (x, t) ∈ Ω′ and 0 ≤ τ ≤ 2t.
(iii) qkgk(x, t) = qkgk(φsx, t) for (x, t) ∈ Ω′ and |s − t/k| < δ if and only if

(x, t) ∈ P and s = t/k.
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(iv) (φτx, t) ∈ Ω′ whenever (x, t) ∈ Ω′′ and 0 ≤ τ ≤ t.

This is proved in [3] in case k > µ is a prime. An inspection of the proof,
however, shows that it is sufficient to assume that all prime divisors of k are
larger than µ.

Now let O(k) := {(ζ · gk(x, t), t, s) | (x, t) ∈ Ω′′, ζ ∈ Zk, |s − t/k| < δ},
Z(k) := {(ζ · gk(x, t), t) | (x, t) ∈ Ω′, ζ ∈ Zk}. Z(k) is a manifold. Let (x, t) ∈ Ω′′

and ζ ∈ Zk and choose a coordinate patch U 3 x in Ω′′ such that φt/k(U)∩U = ∅.
Then ζ · gk maps U homeomorphically onto ζ · gk(U). O(k) is an open subset
of Z(k) × (0,∞), hence a manifold. (In [3] there is a flaw in the argument. In
that article I have used gk(x, t) rather than the Zk-orbit of gk(x, t), but then the
preimage of a point in Zk under qk consists of a single point unless the point is
on a periodic orbit.)

Define a local semiflow Ψ(k) on Z(k) by

ψ(k)
τ (ζ · gk(x, t), t) := (ζ · gk(φτx, t), t).

Let

Ok := {(qkgk(x, t), t, s) | (x, t) ∈ Ω′′, |s− t/k| < δ},
Zk := {(qkgk(x, t), t) | (x, t) ∈ Ω′}.

There is a local semiflow Ψk on Zk defined by

ψk
τ (qkgk(x, t), t) = (qkgk(φτx, t), t).

Obviously, qk:M (k) →Mk is a covering map, and so is qk:Z(k) → Zk, so Ok and
Zk are manifolds (of dimension n+ 2 and n+ 1).

If (x, t) ∈ P then

γk: [0, t/k]→ Zk, τ 7→ (qkgk(φτx, t), t)

is a nonbounding 1-cycle in Zk. This is proven in [3].

4. Definition of the index

We retain the notation adopted above. We first consider the case where
Zk is orientable. We call this the “orientable case”. Choose a generator 1 ∈
Hn+1(Zk × Zk, Zk × Zk \ ∆) (of course, we need not worry about singular or
Alexander–Spanier cohomology at this point). Then we map

Hn+1(Zk × Zk, Zk × Zk \∆)
η∗−→ Hn+1(Ok,Ok \ Pk)

where Pk := {(ξ, s) ∈ Ok | ψk
s ξ = ξ} and η:Ok → Zk × Zk is defined by

η(ξ, s) = (ξ, ψk
s ξ). By Poincaré duality ([9, p. 363]) Hn+1(Ok,Ok \Pk) ∼= H1Pk.

So we arrive at an element J ′k ∈ H1Pk.
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We now proceed to define a homomorphism S:H1Pk → Hs
1(Pk×S1; Zk). We

decompose Pk into finitely many disjoint open (hence also closed) sets P 1
k , . . . , P

l
k

such that all periodic orbits in P j
k are homotopic in Ok (more precisely, if

(ξ1, t1), (ξ2, t2) ∈ P j
k we require that the mappings [0, tj ] → Ok, s 7→ (ψk

s ξj , tj)
be homotopic).

Since the P j
k are disjoint compact subsets of Ok there are disjoint neighbour-

hoods Πj
k ⊃ P j

k in Ok. We decompose each Πj
k into its connected components

(which are open and path-connected) and split the P j
k accordingly. So by slightly

changing the notation we have that Pk decomposes into P 1
k , . . . , P

r
k and each P j

k

is contained in an open path-connected neighbourhood Πj
k. Now by [9, p. 244,

(8.12)] we have that H∗Pk
∼=

⊕r
j=1H

∗P j
k so it will be sufficient to describe

Sj :H1P
j
k → Hs

1(Pk × S1; Zk).
Call ij :P

j
k → Πj

k the inclusion, so ij∗:H1P
j
k → H1Π

j
k. By the Künneth

theorem we have that

Hs
1(P j

k × S
1; Zk) ∼= (Hs

0(P j
k ; Zk)⊗H1S

1)⊕ (Hs
1(P j

k ; Zk)⊗H0S
1)

since the Tor-terms vanish. So it will be sufficient to describe a homomorphism
H1Π

j
k → Hs

0(P j
k ; Zk).

Choose a periodic point (ξj , tj) ∈ P j
k . By [8, p. 71] we may compute Hs

1Πj
k

using only singular simplices σ: [0, 1]→ Πj
k with σ(0) = σ(1) = (ξj , tj).

Let α ∈ Hs
1Πj

k. Choose a cycle c =
∑ν

i=1 λiσi representing α with singular
1-simplices σi: [0, 1] → Πj

k which have 0 and 1 mapped to (ξj , tj). We choose
a point (ξ̃j , tj) with qk(ξ̃j) = ξj and lift the loop σi to (ξ̃j , tj). Then there is
a µi ∈ Zk such that the endpoint of the lifted path equals ζµi

1 · (ξ̃j , tj) where
ζ1 is the covering transformation defined by (ξ̃1, . . . , ξ̃k) 7→ (ξ̃2, . . . , ξ̃k, ξ̃1). Let
S0(α) :=

∑ν
i=1 λiµi (considered as an element of Zk). Then we map α to S(α) :=

S0(α)[(ξj , tj)] where [(ξj , tj)] is the singular 0-cycle in Hs
0(P j

k ; Zk) defined by the
point (ξj , tj).

If we choose another cycle c′ representing α we have that c−c′ is a boundary,
so the corresponding loops lie in the commutator subgroup of π1(Π

j
k; (ξj , tj)).

But if we lift a commutator α ∗β ∗←−α ∗←−β to (ξ̃j , tj) we get a closed loop, so the
corresponding coefficient µ vanishes (here, by ←−α we denote of course the loop
t 7→ α(1 − t)). Since Πj

k is path-connected choosing a different base point will
not change the result either.

We define a mapping T :Hs
0(P j

k ; Zk) → Hs
1(Pk; Zk) by mapping a 0-cycle

[(ξ, t)] to the singular simplex [0, 1] → Pk given by s 7→ (ψk
tsξ, t). So we now

arrive at an element TS(J ′k). Applying the inclusion jk:Pk → Ok we find Jk :=
jk∗TS(J ′k).

From our construction, it is obvious that there are periodic orbits γ1, . . . , γr

(γj : [0, tj ] → Ok with γj(s) = (ψk
s ξ, tj) with ξ a periodic point) such that Jk =
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i=1 ci[γi] and we let ik(X,Φ,Ω) :=

∑r
i=1 ci/m

2
i where mi is the multiplicity of

γi. It is obvious that the index satisfies the additivity property (A).
As to (H) we know from [2] that the homological index is homotopy invariant,

so the only point to be checked is the mapping S. Let Ω be open in M×(0,∞)×
[0, 1] and let Φ: Ω → M be as in (H). Then we have a local semiflow Φ′ on
M × [0, 1] defined by (x, λ), t 7→ (Φλ(x, t), λ). Form M (k) × [0, 1], let

gk((x, λ), t) = (x,Φλ(x, t/k), . . . ,Φλ(x, (k − 1)t/k), λ),

find a set Ω′′ ⊂ M × (0,∞) × [0, 1] as in the Lemma, form Ok, Z(k), and Zk

as above where we always use λ as the last coordinate. Φ′ then gives rise to
a local semiflow Ψ on Zk and we may arrange things in such a way that the
corresponding Ψλ is just Ψ restricted to the set Zλ

k of points in Zk with last
coordinate λ. We have again a local semiflow Ψk on Zk.

Decompose the set of periodic points Pk of Ψk as above so that we have
path-connected sets Πj

k ⊃ P j
k . Let λ0 ∈ [0, 1]. Then P j

k ∩ Zλ
k and Πj

k ∩ Zλ
k may

serve as the corresponding sets for Ψλ. If α ∈ Hs
1(Πj

k ∩ Z
λ0
k ) is represented by∑ν

i=1 λiσi, then σi is of the form σ′i × {λ0}. So for λ sufficiently close to λ0,
σ′i × {λ} will be defined and homotopic to σi. But it is obvious that σ′i × {λ}
gives rise to the same µi as σi.

Proposition. The index ik satisfies the normalization property in the ori-
entable case.

Proof. The proof is split into several steps. We start by showing that
I(M,Φ,Ω) = ι[γ] if M is an orientable manifold and P consists of a single
periodic orbit γ. If m is the multiplicity of γ this means that ik(M,Φ,Ω) = ι/m.
If Zk is orientable we may apply this result to I(Zk,Ψk,Ok). So in the last
step we have to compare the fixed point indices of the Poincaré mappings for Φ
and Ψk.

Assuming for the moment that I(M,Φ,Ω) is a multiple of [γ] we see that we
will not need the homomorphisms S and T in this case since applying the result
to Zk we will have that TS([γk]) = m[γk] (where γk: s 7→ (qkgk(φsx, t0), t0) for
some point x ∈ |γ| and t0 = mp(γ)). The factor m then cancels since in the
definition of ik we divide by m2.

We now turn to the verification of (N). Since the argument in [2] is somewhat
sketchy we give a detailed proof.

With the notation from (N) we assume that X is an n-dimensional orientable
manifold. Observe that the definition of S was the only place where we needed
coefficients in Zk. So we now show that the normalization property holds in case
of integer coefficients.

Let γ′: [0, p(γ)] → X be defined by s 7→ φsx where x is a point on |γ|. We
choose a neighbourhood Ω0 of |γ′| in Ω ∩ (X × {t0}) and an ε > 0 such that
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V := Ω0 × (t0 − ε, t0 + ε) ⊂ Ω. We choose a section Σ at x, and we choose Ω0

and ε so small that τm is defined on Σ and that η is defined on V \ Σ.
Let τ− := inf{τ(y) | y ∈ Σ} and τ+ := sup{τ(y) | y ∈ Σ}. We now claim that

we may choose Ω0 so small that |γ′| is a deformation retract of Ω0 (hence also
of V ). Of course, this need not be true for an arbitrary embedded circle, but we
have a more favourable situation: For t ∈ (0, τ+) let Σt := {y ∈ Ω0\Σ | η(y) = t}
and Σ0 := Σ. Then

⋃
t∈[0,τ+) Σt contains a neighbourhood W of |γ′|. (By

reparametrizing Φ in a neighbourhood of |γ′| we might even arrange things in
such a way that τ− = τ+ = p(γ) so that each point in neighbourhood of |γ′| is
in a unique Σt and Σt ∩ |γ′| = {φp−tx}.)

Reducing the size of W if necessary, we may assume that W ⊂ Ω0. By
what we have just seen we may cover |γ′| by coordinate neighbourhoods Ur =
U0, . . . , Ur−1 contained in W with charts ur = u0, . . . , ur−1 such that Ui∩Uj 6= ∅
for i, j ∈ {0, . . . , r} if and only if |i − j| ≤ 1 and such that each ui(Ui) is an
open ball in Rn. We choose a partition of unity λ0, . . . , λr−1 subordinate to
U0, . . . , Ur−1 and we let again λr := λ0 and we choose retractions ri:Ui → Ui ∩
|γ′|. Then we define hi:Ui×[0, 1]→ Ui by hi(y, t) = u−1

i ((1−t)ui(y)+tui(ri(y))).
Now we are going to paste the hi together to obtain the deformation. Choose

a metric d for X and let y ∈ Ui ∩Ui+1 and t ∈ [0, 1]. Choosing the covering fine
enough we may assume that either ri+1(y) = φσri(y) or ri(y) = φσri+1(y) with
0 ≤ σ < p/4.

Let us assume that the first case occurs. Let then

D = d(hi(y, t), ri(y)) + d(ri(y), ri+1(y)) + d(ri+1(y), hi+1(y, t)).

If α := d(hi(y, t), ri(y)) > 0 and 0 ≤ s ≤ α/D we let

k(y, t, s) = u−1
i ((1−Ds/α)ui(hi(y, t)) + (Ds/α)ui(ri(y))).

If α = 0 we let k(y, t, 0) = hi(y, t) = ri(y). If β := d(ri(y), ri+1(y)) > 0 we let
k(y, t, s) = Φ(ri(y), σ(Ds− α)/β) if α/D ≤ s ≤ (α+ β)/D.

Finally, if γ := D − α− β > 0, we let

k(y, t, s) = u−1
i+1((1− s)Dui+1(ri+1(y))/γ + (Ds− α− β)ui+1(hi+1(y, t))/γ)

if (α+ β)/D ≤ s ≤ 1. Then we put H(y, t) := k(y, t, λi+1(y)). Of course, we let
H(y, t) = hi(y, t) if y ∈ Ui \ (Ui+1 ∪Ui−1). This yields the required deformation.
So we are done if we let Ω0 :=

⋃r−1
i=0 Ui.

Now we choose an open set B0 3 x in Ω0 which is homeomorphic to an open
ball. For (y, t) ∈ B := B0 × (t0 − ε/2, t0 + ε/2) we let

τ ′m(y, t) = t+ τm(y)− t0 + 2(t0 − τm(y))(t− t0)/ε
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if t0 ≤ t ≤ t0 + ε/2 and, if t0 − ε/2 ≤ t ≤ t0,

τ ′m(y, t) = t+ τm(y)− t0 + 2(τm(y)− t0)(t− t0)/ε.

If ε ≥ |t − t0| ≥ ε/2 we let τ ′m(y, t) = t. Then we choose 0 < t1 < t2 such that
η(y) ≥ p(x)− t2 or η(y) < t2 implies y ∈ B0.

For (y, t) ∈ B we abbreviate t′ := (t− τ ′m(y, t))/(t2 − t1) and we let

F (y, t) =


φty if t2 ≤ η(y) ≤ p(x)− t2,
Φ(y,−t′η(y) + t+ t′(p(x)− t2)) if p(x)− t2 ≤ η(y) ≤ p(x)− t1,
Φ(y, t′η(y) + t− t′t2) if t1 ≤ η(y) ≤ t2,
Φ(y, τ ′m(y)) if η(y) ≥ p(x)− t1 or η(y) ≤ t1.

Note that F (y, t) is on the same flowline as φty, so Q := {(y, t) ∈ V | F (y, t) = t}
has points only on |γ′| × (t0 − ε, t0 + ε).

Now for |t − t0| ≥ ε/2 we have that τ ′m(y, t) = t, so fixed points of F have
to lie on |γ′| × (t0 − ε/2, t0 + ε/2). F (x, t) is constructed in such a way that
F ( · , t0) equals π in a neighbourhood of S and φt0 outside a larger neighbourhood.
Moreover, it is easy to see that Q is homeomorphic to |γ′| (since we just made an
affine change in the time-parameter). We choose a neighbourhood O of x such
that O ⊂ B0, O is homeomorphic to an open ball and F ( · , t0) = π in O. So
we have I(X,Φ, V ) = I(X,F, V ) (note that (H) requires a deformation through
semiflows, but our definition works for arbitrary deformations).

Let I(X,Φ, V ) = I(X,F, V ) = I[γ′]. Call c the generator of Hn(V, V \ Q)
which is mapped to [γ′] under the Poincaré isomorphism Hn(V, V \Q) ∼= H1Q ∼=
Z. So the diagonal class τ ∈ Hn(X × X,X × X \ ∆) is mapped to Ic by the
mapping induced by (x, t) 7→ (F (x, t), t).

If we define i:O → V with i(y) = (y, t0), we have that i∗ maps the generator
c of Hn(V, V \Q) to a generator of Hn(O,O \ {x}) ∼= Z. This is seen as follows:
For n > 2 we have that

0 = Hn−1V −→ Hn−1(V \Q) −→ Hn(V, V \Q) −→ 0 = HnV

i∗
y yi∗

0 = Hn−1O −→ Hn−1(O \ {x}) −→ Hn−1(O,O \ {x}) −→ 0 = HnO

Here, the nonzero terms in the horizontal rows are isomorphic (and isomor-
phic to Z), so we will be done if we can show that Hn−1(V \Q)→ Hn−1Sn−1 ∼=
Hn−1(O \ {x}) is an isomorphism. But this is obvious since the inclusion maps
Sn−1 into Ω0×{t0} and Q∩ (O×{t0}) = {(x0, t0)}. (The case n = 1 is uninter-
esting, and n = 2 is either treated similarly or we just add an extra dimension.)

Now ind(X,π,O) is the image of τ under g: (O,O\{x})→ (X×X,X×X\∆)
where g(y) = (y, π(y)) = (y, F (y, t0)), i.e., g∗τ = ind(X,π,O) · i∗c which proves
our assertion.
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So in our situation we have that I(Zk,Ψk,Ok) = (ι′k/m)[γk] where ι′k is the
fixed point index of the Poincaré mapping of γk: s 7→ (qkgk(φsx, t), t) (where x
is a point on γ and t0 = mp(γ)). (Note that as opposed to [2] we here have
to divide by the multiplicity since we do not assume that t0 equals the minimal
period of γ.)

On the other hand, by [3, Proposition 2] we have that ι′k equals the fixed point
index ι of the Poincaré mapping corresponding to γ. Since the situation in [3] is
somewhat different we sketch the argument which is based on the commutativity
property of the fixed point index: Since γ is isolated in X we have that γk is
isolated in Zk.

Choose an ε > 0 and a neighbourhood V of |γ| such that V ×(t0−ε, t0 +ε) ⊂
Ω′′. Let

W := {(qkgk(x, t, ), t, s) | x ∈ V, |t− t0| < ε, |s− t/k| < δ}

where δ is taken from (iii) in the Lemma. On W × [0, 1] define

Θ(qkgk(x, t), t, s, σ) := (qkgk(φsx, (1− σ)t+ σt0), (1− σ)t+ σt0).

Thus, on W , Θ defines a homotopy between Ψk and Ψ′ defined by

ψ′s(qkgk(x, t, ), t) = (qkikφsx, t0)

where ik(x) := gk(x, t0). Since Ψ′ maps into the ANR Vk := qkgk(V ) the com-
mutativity property of the fixed point index shows that in computing the fixed
point index of the Poincaré map for Ψ′ we may restrict Ψ′ to Vk and compute the
fixed point index with respect to the ANR Vk. So we have a local semiflow Ψ′′

on Vk given by ψs
′′qkikx = qkikφsx, and we have to show that ι equals the fixed

point index ι′k of the Poincaré mapping for Ψ′′ for the period t0/k at qkikx0.
We now choose a neighbourhood B of x0 in V such that the sets Φ(B ×

{jt0/k}) are disjoint for j = 0, . . . , k − 1 and such that qkik(B) is contained in
a neighbourhood N of qkikx0 in Xk which is evenly covered by qk.

Choose a neighbourhood N1 of ikx0 in X(k) which is mapped homeomorphi-
cally onto N by qk and call ` := (qk|Nk)−1 | V :N ∩ Vk → N1. We now choose a
neighbourhood O of x0 in B and a section Σ such that the Poincaré mapping π
for the period t0 at x0 is defined. Moreover, we choose the section Σ so small that
η(φ(k−1)t0/ky) < . . . < η(φt0/ky) < τ(y) whenever y ∈ Σ. Call pr1:X(k) → X

the projection onto the first factor. If m := t0/p(x0) = 1 we let π′ := π, and if
m > 1 we denote by π′ the Poincaré mapping for the period (m− 1)p(x0).

We now claim that ι equals ind(X,pr1 `qkikφt0/kπ
′,O). In fact, let y ∈ O.

Then qkikφt0/kπ
′y is the equivalence class of (φt0/kπ

′y, . . . , φ(k−1)t0/kπ
′y, φt0π

′y)
which is lifted by ` to (φt0π

′y, φt0/kπ
′y, . . . , φ(k−1)t0/kπ

′y). But this means that
pr1 `qkikφt0/kπ

′ = φt0π
′.
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Now consider the homotopy clO × [0, 1] → X which is given by (y, s) 7→
Φ(π′y, sτ(π′y) + (1 − s)t0). During the homotopy, each point stays on its flow-
line and the only fixed point is x0. For s = 0, the homotopy starts with
φt0π

′ = pr1 `qkikφt0/kπ
′ and it ends, for s = 1, at π. So we see that ι =

ind(X,pr1 `qkikφt0/kπ
′,O).

The commutativity property for the fixed point index now shows that

ind(X,pr1 `qkikφt0/kπ
′,O) = ind(Vk, qkikφt0/kπ

′ pr1 `, qkik(O)).

So it remains for us to show that the righthand term equals ι′k.
Denote by Σ′ the set of those ikx such that φj/kt0x ∈ Σ for some j ∈

{0, . . . , k − 1} and let Σk := qk(Σ′). Let then qkiky ∈ Σk and assume that
φjt0/ky ∈ Σ. Define

τ ′(qkiky) := η(φ(j−1)t0/ky) if j > 0,

τ ′(qkiky) := η(φ(k−1)t0/ky) if j = 0.

It is easy to see that τ ′ is continuous and that Σk is a section for Ψ′ at qkikx0.
So we consider the homotopy cl qkik(O)× [0, 1]→ Vk which is given by

(ξ, s) 7→ qkikΦ(π′ pr1 `ξ, (1− s)t0/k + sη(φ(k−1)t0/k(π′`ξ)).

Again, during this homotopy, each point stays on its flowline under Ψ′′ and the
only fixed point is qkikx0. The homotopy starts, for s = 0, with qkikφt0/kπ

′ pr1 `
and it ends, for s = 1, at the Poincaré mapping for Ψ′′ and the period t0/k. So
we see that

ι′k = ind(Vk, qkikφt0/kπ
′ pr1 `, qkik(O)).

It is, however, obvious, that ιk can be obtained by computing the fixed point
index of the Poincaré mapping using Zk-coefficients. (If dimX = n, D ⊂ X is an
open set and f :D → X is continuous with no fixed points on ∂D the fixed point
index in Zk is defined to be 〈g∗τk, µk〉 where τk ∈ Hn(D ×D,D ×D \∆; Zk) is
the diagonal class, F is the fixed point set of f in D, µk ∈ Hn(D,D \ F ; Zk) is
the fundamental class and g(x) = (x, f(x)).) �

5. The index for local semiflows on simplicial complexes
and the nonorientable case

Now we turn to the case where X is a finite simplicial complex. We embed
X into some Rn and we choose an open set O ⊃ X and a retraction r:O → X.

Let R:O × R→ X × R be defined by R := r × id and let Ω̃ := R−1(Ω). We
define Ψ: Ω̃→ X by Ψ(x, t) = Φ(r(x), t). Then we have

{(x, t) ∈ Ω̃ | Ψ(x, t) = x} = {(x, t) ∈ Ω | Φ(x, t) = x}

and we may repeat the above construction for Ψ.
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There is but one problem: we have to check that the definition does neither
depend on the embedding nor on the retraction. This is, however, shown in [2]
where it is proved that the homological index does not depend on either of these
choices. If X is an infinite simplicial complex, by (H2) we have that cl Φ(Ω) is
a compact subset of X hence contained in a finite subcomplex K, so we may
define the index by restricting Φ to K.

Now we return to the case where M is a manifold, Ω is open in M × (0,∞)
and Φ is a local semiflow satisfying (H1) and (H2). We proceed exactly as in the
manifold case and form the (possibly non-orientable) manifold Zk, the open set
Ok, and the local semiflow Ψk. Then we embed Zk as a neighbourhood retract
in some Rn, choose a neighbourhood U ⊃ Zk in Rn and a retraction r:U → Zk.

We define R:U × R→ Zk × R by R(x, t) = (r(x), t) and let V := R−1(Ok).
We define Ψ′:V → Zk by Ψ′(x, t) = Ψk(r(x), t). Then P ′ := {(x, t) ∈ V |
Ψ′(x, t) = x} is a subset of Pk and we may define ik(X,Φ,Ω) = ik(Rn+1,Ψ′, V ).

The proof that this definition depends neither on the choice of embedding nor
of retraction reduces to the observation that the homological index I(Zk,Ψk,Ok)
does not depend on these choices. The verification of this fact carries over almost
verbatim from [2]: as a matter of fact, the argument in [2] works for arbitrary
ENR (the proof assumes a PL-embedding but this fact is never used – any
embedding will do).

6. The ANR case

In the general case, we start by choosing a compact ANR Y with cl Φ(Ω) ⊂ Y .
This is achieved as follows. Embed X as a closed subset in a normed linear
space E, choose a neighbourhood W of X and a retraction r:W → X. By [6]
there is a compact ANR C such that cl Φ(Ω) ⊂ C ⊂W .

Let Y := r(C). For simplicity, we now assume that X itself is compact and
that we have an open subset Ω ⊂ X× (0,∞) such that cl Φ(Ω) ⊂ D(Φ) and such
that

P := {(x, t) ∈ Ω | φtx = x} ⊂ Ω.

Now we intend to choose a finite open covering α of X with nerve Nα, canon-
ical projection pα:X → Nα and realization iα:Nα → X and to replace Φ
by F : (x, t) 7→ pα(φtiαx). (If U1, . . . , Un ∈ α and

⋂n
i=1 Ui 6= ∅, we denote

by 〈U1, . . . , Un〉α the simplex of Nα with vertices 〈U1〉α, . . . , 〈Un〉α. A map
p:X → Nα is said to be a canonical projection if p(x) ∈ 〈U1, . . . , Un〉α whenever
x ∈

⋂n
i=1 Ui.)

Note that in defining the homological index we just need a mapping (and
not a semiflow), but in order to make things work we have to make sure that
gk(x, t) := (F (x, 0), F (x, t/k), . . . , F (x, (k − 1)t/k)) consists of distinct points.
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Moreover, in defining the homomorphism S we need periodic orbits of F which
serve as singular 1-cycles.

In order to achieve the second purpose we intend to choose pα and iα in such
a way that iαpα = id on “sufficiently many” periodic orbits.

To solve the first task we choose a metric d on X and let

ρ := min{d(z, φjt/kz) | (z, t) ∈ Ω, j = 1, . . . , k − 1}.

If then F (x, it/k) = F (x, jt/k) for 0 ≤ i < j ≤ k − 1 we would have

pα(φ(j−i)t/ky) = pα(y) with y = iα(x)

which requires that y and φ(j−i)t/ky belong to the open star of one element
of α. So it will be sufficient to choose the covering α so fine that all elements
have diameter less than ρ/3. It is obvious that we may choose open sets Ω′, Ω′′

satisfying (i)–(iii) and (v) in the Lemma.
Now we turn to the second task and choose an open covering κ so fine that

the homological index I(Nα, F, F
−1(Ω)) is defined and does neither depend on α

nor on pα or iα provided the mesh of iα is smaller than κ, cf. [2]. Moreover, we
choose κ so fine that all elements have diameter less than ρ/3.

We choose an open cover β such that each partial realization i:K → X of a
finite polyhedron which has mesh β extends to a full realization of mesh κ. This
is possible since X is an ANR (cf. [7, IV, Theorem 4.2]). Choose a finite open
star refinement β∗ of β and let γ be a periodic orbit of Φ and let x be a point
on γ.

Let (T ′(γ), T (γ)) be a tube around γ with section S(γ) at x. We choose
a positive integer N such that for i = 0, . . . , N − 1 we have that cl Φ({x} ×
[ip(x)/N, (i+ 2)p(x)/N ]) is contained in some element of β∗. Then we choose a
neighbourhood W (γ) of γ and a retraction rγ :W (γ)→ γ. Let

Γ0(x) := ΓN (x) := Φ({x} × ((N − 1)p(x)/N, p(x)] ∪ [0, p(x)/N)),

Γi := Φ({x} × ((i− 1)p(x)/N, (i+ 1)p(x)/N) for i = 1, . . . , N − 1.

Then we choose W (γ) so small that each Γ′i(x) := r−1
γ (Γi(x)) is contained in

some element of β∗ and such that Γ′i(x) ∩ Γ′j(x) 6= ∅ only if |i− j| ≤ 1. Call

U(γ) := U(x) :=
N−1⋃
i=0

Γ′i(x).

We select periodic orbits γ1, . . . , γs and points xi ∈ |γi| such that each periodic
orbit of Φ is homotopic to one of the γi and such that U1 := U(γ1), . . . , Us :=
U(γs) cover pr1 P . Reducing the size of the Ui we may assume that |γi| ∩Uj = ∅
if i 6= j. Then there are neighbourhoods U ′′

i ⊂ clU ′′
i ⊂ U ′

i ⊂ clU ′
i ⊂ Ui such

that the U ′′
i still cover pr1 P . The set pr1 P is covered by α1 := {Γ′i(xj) | j =
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1, . . . , s, i = 0, . . . , N − 1}. We select a finite open cover α2 of X \
⋃s

i=1 U
′
i such

that for each V ∈ α2 we have that

• stα2 V is contained in an element W ∈ β∗ such that W ∩ pr1 P = ∅.
• If Ω ∩ pr−1

1 (V ) 6= ∅ then V ∩ pr1 P = ∅.

Let α be the covering of X which consists of α1 and α2. We will now construct a
canonical projection pα:X → Nα which maps γ1, . . . , γs homeomorphically into
the one-skeleton of Nα.

Let y ∈
⋃
α1. Write rj(y) = φtxj with 0 ≤ t ≤ p(xj) and t = (λ+ i)p(xj)/N

with 0 ≤ λ < 1, 0 ≤ i ≤ N − 1 and let p′α(y) := (1−λ)〈Γ′i(xj)〉α +λ〈Γ′i+1(xj)〉α.
Denote by p′′α:X → Nα any canonical projection and choose a continuous

function λ:X → [0, 1] such that

λ

∣∣∣∣ s⋃
i=1

U ′′
i = 0 and λ

∣∣∣∣ s⋂
i=1

(X \ U ′
i) = 1.

If x ∈ U ′
j we have that p′α(x) and p′′α(x) belong to a common simplex of Nα, so

we may define

pα(x) := (1− λ(x))p′α(x) + λ(x)p′′α(x).

On
⋂s

i=1(X \ U ′
i) we let pα := p′′α. Obviously, on |γj |, pα coincides with p′α, so

we have that pα maps |γj | homeomorphically onto |γ′j | := pα(|γj |).
On the other hand, we define now a partial realization of Nα in the following

way. For i = 0, . . . , N−1, j = 1, . . . , s, and 0 ≤ λ ≤ 1 we map (1−λ)〈Γ′i(xj)〉α +
λ〈Γ′i+1(xj)〉α to Φ(xj , (i+ λ)p(xj)/N).

If 〈U〉α is a vertex with U ∈ α2 we map 〈U〉α to an arbitrary point of U .
This yields a partial realization of Nα with mesh β and we extend this map to
a full realization iα:Nα → X of mesh κ.

We compute now the index of the mapping F onNα as explained above where
we use the one-cycles pα ◦ γ1, . . . , pα ◦ γs and points on these orbits to represent
the 0-cycles required in the definition of the homomorphism S. Then we may
use the argument in [2] to show the independence from the choices involved (i.e.
the choice of covering, projection and realization). Properties (A), (H), and (N)
then are verified as in [2].

To sum up, we have shown

Theorem. There exists an index for local semiflows on ANR which satisfy
conditions (H’1)–(H’3) above.

As was said in the beginning I have not been able to remove the dependence
from k in the definition. In particular, although the index ik(X,Φ,Ω) was defined
for large primes the definition would allow for products of sufficiently large primes
so that one could hope to compare ip(X,Φ,Ω), iq(X,Φ,Ω) and ipq(X,Φ,Ω). But
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Zpq
∼= Zp⊕Zq, and it is easy to see that ip(X,Φ,Ω) and iq(X,Φ,Ω) are just the

two components of ipq(X,Φ,Ω) in Zpq.
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