HARDY-SOBOLEV INEQUALITIES WITH REMAINDER TERMS

Vicenţiu Rădulescu - Didier Smets - Michel Willem

Dedicated to Andrzej Granas

Abstract. We prove two Hardy-Sobolev type inequalities in $\mathcal{D}^{1,2}\left(\mathbb{R}^{N}\right)$, resp. in $H_{0}^{1}(\Omega)$, where Ω is a bounded domain in $\mathbb{R}^{N}, N \geq 3$. The framework involves the singular potential $|x|^{-a}$, with $a \in(0,1)$. Our paper extends previous results established by Bianchi and Egnell ([2]), resp. by Brezis and Lieb ([3]), corresponding to the case $a=0$.

1. Introduction

Let $\mathcal{D}^{1,2}\left(\mathbb{R}^{N}\right)$ be the completion of $\mathcal{D}\left(\mathbb{R}^{N}\right)$ with respect to the norm $\|\nabla u\|_{2}$. Consider the Hardy-Sobolev inequality on $\mathcal{D}^{1,2}\left(\mathbb{R}^{N}\right)$:

$$
\|\nabla u\|_{2}^{2}-S_{a}\left\||x|^{-a} u\right\|_{p}^{2} \geq 0
$$

where $N \geq 3,0<a<1$ and $p=2 N /(N-2+2 a)$.
The minimizers of

$$
S_{a}=\inf \left\{\int_{\mathbb{R}^{N}}|\nabla u|^{2}\left(\int_{\mathbb{R}^{N}} \frac{|u|^{p}}{|x|^{a p}} d x\right)^{-2 / p}: u \in \mathcal{D}^{1,2}\left(\mathbb{R}^{N}\right), u \neq 0\right\}
$$

are given by

$$
C U_{\lambda}(x)=C \lambda^{(N-2) / 2} U(\lambda x),
$$

[^0]where $C \in \mathbb{R}, \lambda>0$ and
\[

$$
\begin{equation*}
U(x)=k_{0}\left(1+|x|^{\alpha}\right)^{-\beta}, \quad \alpha=\frac{2(N-2)(1-a)}{N-2+2 a}, \quad \beta=\frac{N-2+2 a}{2(1-a)} . \tag{1}
\end{equation*}
$$

\]

We choose k_{0} such that $\|\nabla u\|_{2}=S_{a}$ (see [4]). Hence the minimizers of S_{a} consist of a 2 dimensional manifold $\mathcal{M} \subset \mathcal{D}^{1,2}\left(\mathbb{R}^{N}\right)$. The distance between $u \in \mathcal{D}^{1,2}\left(\mathbb{R}^{N}\right)$ and \mathcal{M} is defined by

$$
d(u, \mathcal{M})=\inf \left\{\left\|\nabla\left(u-c U_{\lambda}\right)\right\|_{2}: c \in \mathbb{R}, \lambda>0\right\}
$$

We prove the following result.
Theorem 1.1. For $N \geq 3$ and $0<a<1$, there exists $A=A(N, a)$ such that, for every $u \in \mathcal{D}^{1,2}\left(\mathbb{R}^{N}\right)$,

$$
\|\nabla u\|_{2}^{2}-S_{a}\left\||x|^{-a} u\right\|_{p}^{2} \geq A d(u, \mathcal{M})^{2} .
$$

A similar result was proved by Bianchi and Egnell when $a=0$ (see [2]).
The weak L^{p} norm is defined by

$$
\|u\|_{p, w}=\sup _{S}|S|^{-1 / p^{\prime}} \int_{S}|u(x)| d x
$$

with S being a set of finite measure $|S|$. Let us recall that the conjugate exponent p^{\prime} of p is defined by $1 / p+1 / p^{\prime}=1$.

We deduce from Theorem 1.1 the following result.
Theorem 1.2. Let Ω be a bounded domain of $\mathbb{R}^{N}, N \geq 3$. For $0<a<1$, there exists $B=B(\Omega, a)$ such that, for every $u \in H_{0}^{1}(\Omega)$,

$$
\|\nabla u\|_{2}^{2}-S_{a}\left\||x|^{-a} u\right\|_{p}^{2} \geq B\|u\|_{N /(N-2), w}^{2}
$$

A similar result was proved by Brezis and Lieb when $a=0$ (see [3]).
In Theorem 1.2 it is not possible to replace $\|u\|_{N /(N-2), w}$ by $\|u\|_{N /(N-2)}$. It suffices to use the function U of (1) and a truncation argument.

It is interesting to compare Theorem 1.2 and the improved Hardy-Poincaré inequality due to Vazquez and Zuazua ([7]).

Theorem. Let Ω be a bounded domain of \mathbb{R}^{N}, $N \geq 3$. For $1 \leq q<2$, there exists $C=C(\Omega, q)$ such that, for every $u \in H_{0}^{1}(\Omega)$,

$$
\|\nabla u\|_{2}^{2}-S_{1}\left\||x|^{-1} u\right\|_{2}^{2} \geq C\|u\|_{W^{1, q}(\Omega)}^{2}
$$

Let us recall that $S_{1}=((N-2) / 2)^{2}$ is not attained on $\mathcal{D}^{1,2}\left(\mathbb{R}^{N}\right)$.

2. Proof of Theorem 1.1

We follow the argument of [1]. Consider the eigenvalue problem

$$
\left\{\begin{array}{l}
-\Delta v=\lambda|x|^{-a p} U^{p-2} v \tag{2}\\
v \in \mathcal{D}^{1,2}\left(\mathbb{R}^{N}\right)
\end{array}\right.
$$

Lemma 2.1. The first two eigenvalues of (2) are given by $\lambda_{1}=S_{a}$ and $\lambda_{2}=S_{a}(p-1)$. The eigenspaces are spanned by U and $\left.\frac{d}{d \lambda}\right|_{\lambda=1} U_{\lambda}$, respectively.

Proof. See [6].
Lemma 2.2. For any sequence $\left(u_{n}\right) \subset \mathcal{D}^{1,2}\left(\mathbb{R}^{N}\right) \backslash \mathcal{M}$ such that $\inf _{n}\left\|\nabla u_{n}\right\|_{2}$ >0 and $d\left(u_{n}, \mathcal{M}\right) \rightarrow 0$ we have

$$
\begin{equation*}
\liminf _{n \rightarrow \infty} \frac{\left\|\nabla u_{n}\right\|_{2}^{2}-S_{a}\left\||x|^{-a} u_{n}\right\|_{p}^{2}}{d\left(u_{n}, \mathcal{M}\right)^{2}} \geq 1-\frac{\lambda_{2}}{\lambda_{3}} \tag{3}
\end{equation*}
$$

Proof. We first assume that, for any $n \in \mathbb{N}, d\left(u_{n}, \mathcal{M}\right)=\left\|\nabla\left(u_{n}-U\right)\right\|_{2}$. Since \mathcal{M} is a smooth manifold, $v_{n}=u_{n}-U$ is orthogonal to the tangent space

$$
T_{U} \mathcal{M}=\operatorname{span}\left\{U,\left.\frac{d}{d \lambda}\right|_{\lambda=1} U_{\lambda}\right\}
$$

Therefore Lemma 2.1 yields

$$
\lambda_{3} \int U^{p-2} v_{n}^{2} \frac{d x}{|x|^{a p}} \leq\left\|\nabla v_{n}\right\|^{2}=d^{2}\left(u_{n}, \mathcal{M}\right)
$$

Moreover, we have that

$$
\int U^{p-1} v_{n} \frac{d x}{|x|^{a p}}=-S_{a}^{-1} \int \Delta U v_{n} d x=0
$$

Setting $d_{n}=d\left(u_{n}, \mathcal{M}\right)$, we obtain

$$
\begin{aligned}
\int\left|u_{n}\right|^{p} \frac{d x}{|x|^{a p}}= & \int U^{p} \frac{d x}{|x|^{a p}}+p \int U^{p-1} v_{n} \frac{d x}{|x|^{a p}} \\
& +\frac{p(p-1)}{2} \int U^{p-2} v_{n}^{2} \frac{d x}{|x|^{a p}}+o\left(d_{n}^{2}\right) \\
\leq & 1+p(p-1) d_{n}^{2}+o\left(d_{n}^{2}\right)=1+\frac{p}{2} \frac{\lambda_{2}}{\lambda_{3}} \frac{d_{n}^{2}}{S_{a}}+o\left(d_{n}^{2}\right)
\end{aligned}
$$

and

$$
\left\||x|^{-a} u_{n}\right\|_{p} \leq 1+\frac{\lambda_{2}}{\lambda_{3}} \frac{d_{n}^{2}}{S_{a}}+o\left(d_{n}^{2}\right)
$$

Since $\left\|\nabla u_{n}\right\|_{2}^{2}=S_{a}+d_{n}^{2}$, we obtain

$$
\left\|\nabla u_{n}\right\|_{2}^{2}-S_{a}\left\||x|^{-a} u_{n}\right\|_{p}^{2} \geq\left(1-\frac{\lambda_{2}}{\lambda_{3}}\right) d_{n}^{2}+o\left(d_{n}^{2}\right)
$$

and (3) follows immediately.

In the general case, for every n, there exist $c_{n} \in \mathbb{R}$ and $\lambda_{n}>0$ such that $d\left(u_{n}, \mathcal{M}\right)=\left\|\nabla\left(u_{n}-c_{n} U_{\lambda_{n}}\right)\right\|_{2}$. Setting $w_{n}(x)=c_{n}^{-1} \lambda_{n}^{(2-N) / 2} u_{n}\left(x / \lambda_{n}\right)$, we obtain $\left\|\nabla\left(u_{n}-c_{n} U_{\lambda_{n}}\right)\right\|_{2}=\left|c_{n}\right|\left\|\nabla\left(v_{n}-U\right)\right\|_{2}=\left|c_{n}\right| d\left(v_{n}, \mathcal{M}\right)$. By assumption, $\left|c_{n}\right|$ is bounded away from 0 and

$$
\left\|\nabla\left(v_{n}-U\right)\right\|_{2}=d\left(v_{n}, \mathcal{M}\right)=\left|c_{n}\right|^{-1} d\left(u_{n}, \mathcal{M}\right) \rightarrow 0
$$

Using the first part of the proof and the invariance of the quotient in (3), it is easy to conclude.

Proof of Theorem 1.1. If the theorem is false, there exists a sequence $\left(u_{n}\right) \subset \mathcal{D}^{1,2}\left(\mathbb{R}^{N}\right) \backslash \mathcal{M}$ such that

$$
\frac{\left\|\nabla u_{n}\right\|_{2}^{2}-S_{a}\left\||x|^{-a} u_{n}\right\|_{p}^{2}}{d\left(u_{n}, \mathcal{M}\right)^{2}} \rightarrow 0
$$

We can assume that $\left\|\nabla u_{n}\right\|_{2}=1$ and $d\left(u_{n}, \mathcal{M}\right) \rightarrow L \in[0,1]$. It follows that $\left\||x|^{-a} u_{n}\right\|_{p}^{2} \rightarrow S_{a}^{-1}$. By Theorem 2.4 in [5], going if necessary to a subsequence, we can assume the existence of $\lambda_{n}>0$ such that $\lambda_{n}^{(N-2) / 2} u_{n}\left(\lambda_{n} x\right) \rightarrow V \in \mathcal{M}$ in $\mathcal{D}^{1,2}\left(\mathbb{R}^{N}\right)$. This implies that $L=0$. By Lemma 2.2 , we have a contradiction.

3. Proof of Theorem 1.2

We deduce theorem 1.2 from Theorem 1.1 by adapting the argument of [2]. It suffices to prove the theorem when $\Omega=B(0,1)$ and $u=u^{*}$, where u^{*} denotes the Schwartz symmetrization of u. Indeed, we have that
$\|\nabla u\|_{2} \geq\left\|\nabla u^{*}\right\|_{2}, \quad\left\||x|^{-a} u\right\|_{p}=\left\||x|^{-a} u^{*}\right\|_{p}, \quad\|u\|_{N /(N-2), w}=\left\|u^{*}\right\|_{N /(N-2), w}$.
If Theorem 1.2 is false, there exists a sequence $\left(u_{n}\right) \subset H_{0}^{1}(\Omega)$ such that $u_{n}=u_{n}^{*}$ and

$$
\begin{equation*}
\frac{\left\|\nabla u_{n}\right\|_{2}^{2}-S_{a}\left\||x|^{-a} u_{n}\right\|_{p}^{2}}{\left\|u_{n}\right\|_{N /(N-2), w}^{2}} \rightarrow 0 . \tag{4}
\end{equation*}
$$

We can assume that $\left\|\nabla u_{n}\right\|_{2}=1$. Since $\left\|u_{n}\right\|_{N /(N-2), w}^{2}$ is bounded by Sobolev's inequality, we must have $\left\||x|^{-a} u_{n}\right\|_{p}^{2} \rightarrow S_{a}^{-1}$.

By Theorem 1.1, there exists a sequence $\left(c_{n}, \lambda_{n}\right) \rightarrow(1, \infty)$ such that

$$
d\left(u_{n}, \mathcal{M}\right)=\left\|\nabla\left(u_{n}-c_{n} U_{\lambda_{n}}\right)\right\|_{2} \rightarrow 0, \quad \text { as } n \rightarrow \infty
$$

It is clear that

$$
\begin{aligned}
d\left(u_{n}, \mathcal{M}\right)^{2} & \geq c_{n}^{2} \int_{|x|>1}\left|\nabla U_{\lambda_{n}}\right|^{2} d x \\
& =k_{0}^{2} c_{n}^{2} \lambda_{n}^{N-2+2 \alpha} \alpha^{2} \beta^{2} \int_{1}^{\infty}\left(1+\lambda_{n}^{\alpha} r^{\alpha}\right)^{-2 \beta-2} r^{2 \alpha+N-3} d r \\
& =C_{1} c_{n}^{2} \int_{\lambda_{n}}^{\infty}\left(1+s^{\alpha}\right)^{-2 \beta-2} s^{2 \alpha+N-3} d s \geq C_{2} c_{n}^{2} \lambda_{n}^{2-N}
\end{aligned}
$$

Hence we obtain

$$
\begin{align*}
\left\|u_{n}\right\|_{N /(N-2), w} & \leq\left\|u_{n}-\left.c_{n} U_{\lambda_{n}}\right|_{\Omega}\right\|_{N /(N-2), w}+\left\|c_{n} U_{\lambda_{n}}\right\|_{N /(N-2), w} \tag{5}\\
& \leq C_{3}\left\|u_{n}-c_{n} U_{\lambda_{n}}\right\|_{2 N /(N-2)}+c_{n} \lambda_{n}^{(2-N) / 2}\|U\|_{N /(N-2), w} \\
& \leq C_{4} d\left(u_{n}, \mathcal{M}\right)
\end{align*}
$$

But (4) and (5) contradict Theorem 1.2.

References

[1] T. Bartsch, T. Weth and M. Willem, A Sobolev inequality with remainder term and critical equations on domains with topology for the polyharmonic operator (to appear).
[2] G. Bianchi and H. Egnell, A Note on the Sobolev inequality, J. Funct. Anal. 100 (1991), 18-24.
[3] H. Brezis and E. Lieb, Inequalities with remainder terms, J. Funct. Anal. 62 (1985), 73-86.
[4] E. Lieb, Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities, Ann. of Math. 118 (1983), 349-374.
[5] P. L. Lions, The concentration-compactness principle in the calculus of variations. The limit case, Part 2, Rev. Mat. Iberoamericana 1 (1985), 45-121.
[6] D. Smets and M. Willem, Partial symmetry and asymptotic behaviour for some elliptic variational problems, work in progress, Calc. Var. Partial Differential Equations (to appear).
[7] J. Vazquez and E. Zuazua, The Hardy inequality and the asymptotic behaviour of the heat equation with an inverse square potential, J. Funct. Anal. 173 (2000), 103-153.

Vicenţiu Rădulescu
Department of Mathematics
University of Craiova
1100 Craiova, ROMANIA
E-mail address: vicrad@yahoo.com

Didier Smets
Laboratoire Jacques-Louis Lions
Université Pierre et Marie Curie
4 place Jussieu
75252 Paris Cedex 05, FRANCE
E-mail address: smets@ann.jussieu.fr
Michel Willem
Institut des Mathématiques Pures et Appliquées
Université Catholique de Louvain
Chemin du Cyclotron 2
1348 Louvain-La-Neuve, BELGIUM
E-mail address: willem@amm.ucl.ac.be
TMNA: Volume $20-2002-\mathrm{N}^{\mathrm{o}} 1$

[^0]: 2000 Mathematics Subject Classification. Primary 35J85, 49J40; Secondary 35R45, 47J20.
 Key words and phrases. Hardy-Sobolev inequality, minimization problem, singular potential, Schwartz symmetrization.

