PERTURBING FULLY NONLINEAR SECOND ORDER ELLIPTIC EQUATIONS

Philippe Delanoë

Abstract

We present two types of perturbations with reverse effects on some scalar fully nonlinear second order elliptic differential operators: on the other hand, first order perturbations which destroy the global solvability of the Dirichlet problem, in smooth bounded domains of \mathbb{R}^{n}; on the other hand, an integral perturbation which restore the local solvability, on compact connected manifolds without boundary.

Introduction

Perturbing scalar second order elliptic equations can bring both bad news and good news. The bad news (Section 1) is that positivity, hence in some cases ellipticity, can be destroyed by a first order perturbation. Let us illustrate this phenomenon with an example. Denote by $B(0,1)$ the open unit ball centered at the origin in \mathbb{R}^{2}; there exists a smooth (in fact radial) solution of the Dirichlet problem: $u_{x x} u_{y y}-u_{x y}^{2}=1$ in $B(0,1), u=0$ on $\partial B(0,1)$. By Theorem 2 below, for any small enough real $\varepsilon \neq 0$, there exists a smooth function f positive on $\bar{B}(0,1)$ with $f \equiv 1+\varepsilon u_{x}$ outside an arbitrarily small ball in $B(0,1)$, such that the perturbed problem: $z_{x x} z_{y y}-z_{x y}^{2}+\varepsilon z_{x}=f$ in $B(0,1), z=0$ on $\partial B(0,1)$, admits no smooth solution in the connected component of $\left\{z_{x x} z_{y y}-z_{x y}^{2}>0\right\}$

[^0]where u lies. A similar result holds e.g. with the laplacian $u_{x x}+u_{y y}$ instead of the Monge-Ampère operator, but it does not affect the ellipticity of the solution (just the positivity of the laplacian). The idea of the proof first arose in [8] in connection with a particular geometric equation in dimension 4 .

The good news (Section 2) concern the local solvability of a generic (scalar second order elliptic) fully nonlinear equation without zeroth-order term posed on a compact manifold. Here the difficulty lies in the fact that the local image of the differential operator is expected to have codimension 1, but no equation is known for it. We provide an integral perturbation device, first used in [5], to cope with this situation. We treat also zeroth-order perturbations regardless of monotonicity.

1. Non-existence via a first order perturbation

1.1. Assumptions. Let \mathcal{D} be a domain of $\mathbb{R}^{n}, n>1$. On the second jetbundle $J^{2} \mathcal{D} \rightarrow \mathcal{D}$ we are given a smooth real function f positive on a strict subset $\mathcal{P}(f)$ of $J^{2} \mathcal{D}$ which still projects onto \mathcal{D}, with f vanishing on the boundary of $\mathcal{P}(f)$. We assume that the zero section lies in the boundary of $\mathcal{P}(f)$ and that, for any $X \in \mathcal{P}(f)$, there exists a point in the kernel through X of the natural projection $J^{2} \mathcal{D} \rightarrow J^{1} \mathcal{D}$ which lies in the boundary of $\mathcal{P}(f)$. In other words, if r denotes the variable of $\operatorname{ker}\left(J^{2} \mathcal{D} \rightarrow J^{1} \mathcal{D}\right)$ and (x, z, p) the $J^{1} \mathcal{D}$ variables (with $x \in \mathcal{D}, z \in \mathbb{R}$ and $\left.p \in T_{x}^{*} \mathcal{D}\right)$, then we have: $f(x, 0,0,0)=0$ and

$$
\begin{equation*}
\forall(x, z, p, r) \in \mathcal{P}(f), \exists r^{\prime}, f\left(x, z, p, r+r^{\prime}\right)=0 \tag{1}
\end{equation*}
$$

Let Ω be a smooth bounded domain of \mathbb{R}^{n} with closure contained in \mathcal{D}, F, the differential operator associated to f on Ω and $P(F)$, a connected component of the counterset of $\mathcal{P}(f)$ by the second-jet map $u \in C^{\infty}(\bar{\Omega}) \mapsto j^{2} u \in J^{2} \bar{\Omega}$. We assume that $P(F)$ is convex, the operator F, elliptic on $P(F)$ and that, for any $z \in P(F)$, if the principal symbol of $d F[z]$ is positive (resp. negative) definite, then its zeroth-order coefficient $d F[z](1)$ is non-positive (resp. non-negative) in other words $\partial f / \partial z \leq 0$ (resp. $\partial f / \partial z \geq 0$). In particular then, the maximum principle ([10]) implies that $d F[z]$ is one-to-one whenever $z \in P(F)$.

The preceding set of assumptions is typically fulfilled for a k-hessian operator $F[z]=\sigma_{k}[\lambda(D d z)]\left(D\right.$ stands for the canonical flat connection of \mathbb{R}^{n}; see [4]).
1.2. A non-existence theorem. Under the preceding assumptions, we shall prove the following result:

Theorem 1. Let G be a first order differential operator on \mathcal{D} and $u \in P(F)$. Assume there exists $x_{0} \in \Omega$ such that $G[u]\left(x_{0}\right)>0$. Then, for any compact subset K of $P(F)$, there exists a real $\varepsilon>0$ such that, for any $s \in(0, \varepsilon)$, setting $F_{s}:=F+s G$, there exists a function $\psi \in C^{\infty}(\bar{\Omega})$ positive on $\bar{\Omega}$ such that
$\psi \equiv F_{s}[u]$ outside an arbitrarily small ball centered at x_{0} and that the Dirichlet problem: $F_{s}[z]=\psi$ in $\Omega, z=u$ on $\partial \Omega$, admits no solution in K.

The sign of s is of course essential in this statement. Let us differ the proof to the next section and concentrate on the basic case when the first order operator G is a fixed directional derivative.

Proposition 1. Let $u \in P(F)$ be non-constant. Then there exists a unit vector $\xi \in \mathbb{R}^{n}$ such that Theorem 1 holds with $G[z]=d z(\xi)$.

Proof. Let $u \in P(F)$ be non-constant. Since $F[0]=0$, the function u satisfies in Ω the second order linear equation $L u=v$ where $v=F[u]$ and $L=\int_{0}^{1} d F[t u] d t$. But $0 \in \partial P(F)$ and $P(F)$ is convex, so L is elliptic. Let $y_{0} \in \partial \Omega$ be such that $u\left(y_{0}\right)=\max \partial \Omega u$. Take for ξ the outward unit normal to $\partial \Omega$ at y_{0}. Since $v>0$ and u is non-constant, Hopf-Oleinik's lemma (see [10]) implies $d u(\xi)\left(y_{0}\right)>0$. Taking $x_{0} \in \Omega$ close enough to y_{0} proves the proposition.

From this proof, one readily infers the
Corollary 1. Let $u \in P(F)$ be non-constant, and constant on $\partial \Omega$. Then, for any unit vector $\xi \in \mathbb{R}^{n}$, Proposition 1 holds.

Under the additional assumption

$$
\frac{\partial f}{\partial z} \equiv 0
$$

one can strengthen the preceding results as follows:
Theorem 2. Let $u \in P(F)$, then there exists a unit vector $\xi \in \mathbb{R}^{n}$ and a real number $\varepsilon>0$ such that, for any $s \in(0, \varepsilon)$, there exists a function $\psi \in C^{\infty}(\bar{\Omega})$ positive on $\bar{\Omega}$ with $\psi=F[u]+s d u(\xi)$ outside an arbitrarily small ball centered at x_{0}, such that the Dirichlet problem: $F[z]+s d z(\xi)=\psi$ in $\Omega, z=u$ on $\partial \Omega$, admits no solution in $P(F)$. Furthermore, if u is constant on $\partial \Omega$, then the preceding statement holds with the unit vector $\xi \in \mathbb{R}^{n}$ arbitrary and with $s \in(-\varepsilon, \varepsilon)$.

Theorem 2, whose proof follows closely that of Theorem 1 (see below), takes a considerable strength when the Dirichlet map associated to F, sends $P(F)$ onto $\left\{\psi \in C^{\infty}(\bar{\Omega}), \psi>0\right\} \times C^{\infty}(\partial \Omega)$ and the ellipticity of F may fail on $\partial P(F)$, as it is the case for k-hessian operators when Ω is a $(k-1)$-convex domain, $k>1$ (see [4]), in particular, for the example given in the introduction.

Proof of Theorem 1. We need a few auxiliary lemmas.
Lemma 1. Let $u \in P(F)$ and $x_{0} \in \Omega$. For any small real $\rho>0$, there exists a function $u_{0} \in \partial P(F)$ with the following properties:
(i) u_{0} coincides with u outside the euclidean ball $B\left(x_{0}, \rho\right)$,
(ii) the $C^{1}\left[\overline{B\left(x_{0}, \rho\right)}\right]$ norm of $\left(u-u_{0}\right)$ is $O(\rho)$.

Proof. Fix $r>0$ such that $B\left(x_{0}, r\right) \subset \Omega$ and let ϕ be a smooth cut-off function satisfying: $\phi=1$ in $B\left(x_{0}, r / 2\right), \phi=0$ outside $B\left(x_{0}, r\right)$. By (1) we can find a quadratic polynomial q_{0} satisfying: $q_{0}\left(x_{0}\right)=0, d q_{0}\left(x_{0}\right)=0$ and

$$
f\left[x_{0}, d u\left(x_{0}\right), D d\left(u+q_{0}\right)\left(x_{0}\right)\right]=0
$$

Setting $y=x-x_{0}$, let us define:

$$
w(y)=\phi(x) q_{0}(x)
$$

and, for any real $R>1$,

$$
z_{R}(x)=R^{-2} w(R y)
$$

The function z_{R} belongs to $C^{\infty}(\bar{\Omega})$ and it is supported in $B\left(x_{0}, r / R\right)$. Furthermore, since

$$
d z_{R}(x)=R^{-1} d w(R y)
$$

the $C^{1}\left[\overline{B\left(x_{0}, r / R\right)}\right]$ norm of z_{R} is $O\left(R^{-1}\right)$. However, at x_{0},

$$
D d z_{R}\left(x_{0}\right) \equiv D d q_{0}\left(x_{0}\right),
$$

therefore the smaller positive real a_{0} such that the function $\left(u+a_{0} z_{R}\right)=: u_{0}$ belongs to $\partial P(F)$ is well-defined and satisfies $a_{0} \leq 1$. For R large enough (depending on ρ) the function u_{0} fulfills all the requirements of Lemma 1.

Lemma 2. Let $u \in P(F)$ and u_{0} be as in Lemma 1, with x_{0} as in Theorem 1. There exists a real number $\varepsilon_{0}>0$ such that, for any $s \in\left(0, \varepsilon_{0}\right)$ and any small enough $\rho>0$ (as in Lemma 1), the function $\psi=F_{s}\left[u_{0}\right]$ is positive on $\bar{\Omega}$.

Proof. For $\rho>0$ small enough, setting $2 \delta=G[u]\left(x_{0}\right)$, we have $G\left[u_{0}\right] \geq \delta$ on $\overline{B\left(x_{0}, \rho\right)}$ by Lemma 1(ii). Moreover, $F\left[u_{0}\right] \geq 0$ because $u_{0} \in \partial P(F)$. Therefore

$$
F_{s}\left[u_{0}\right] \geq s \delta>0 \text { on } \overline{B\left(x_{0}, \rho\right)} .
$$

Outside $B\left(x_{0}, \rho\right)$ we have $F_{s}\left[u_{0}\right]=F_{s}[u]$ by Lemma 1(i). So there exists $\varepsilon_{0}>0$ such that, for any $s \in\left(0, \varepsilon_{0}\right)$, the function $F_{s}\left[u_{0}\right]$ is positive outside $B\left(x_{0}, \rho\right)$. Altogether, the function $\psi=F_{s}\left[u_{0}\right]$ is positive on $\bar{\Omega}$ as claimed.

Lemma 3. For any $u_{0} \in \partial P(F)$ and any compact subset $K \subset P(F)$, there exists a real $\varepsilon_{1}>0$ such that, for any $s \in\left(-\varepsilon_{1}, \varepsilon_{1}\right)$ and any $u \in K$, setting $u_{t}=t u+(1-t) u_{0}$ for $t \in[0,1]$, the Dirichlet map:

$$
z \in C^{\infty}(\bar{\Omega}) \mapsto\left(L_{u, s}[z],\left.z\right|_{\partial \Omega}\right) \in C^{\infty}(\bar{\Omega}) \times C^{\infty}(\partial \Omega)
$$

associated to the linear operator $L_{u, s}=\int_{0}^{1} d F_{s}\left[u_{t}\right] d t$ is an isomorphism.
Proof. Since $P(F)$ is convex, the function u_{t} lies in $P(F)$ for $t>0$, so the operator $L_{u, s}$ is elliptic.

For each $z \in P(F)$, the Dirichlet map associated to the linear operator $d F[z]$ is an isomorphism. Indeed, by ellipticity it is Fredholm and it can readily be
deformed continuously into an isomorphism, so it has zero index (e.g. by [11, Theorem IV, 5.17]). By the maximum principle [10] it is one-to-one (recalling our sign assumption on $\partial f / \partial z)$, it is thus also onto, by the Fredholm alternative theory (e.g. [3, p. 464]), hence an isomorphism, by the open mapping theorem (e.g. [12, Chapter 1]).

Let us consider the Fréchet space \mathcal{L}_{2}^{∞} of linear maps of second order L from

$$
C_{0}^{\infty}:=\left\{z \in C^{\infty}(\bar{\Omega}),\left.z\right|_{\partial \Omega}=0\right\}
$$

to $C^{\infty}(\bar{\Omega})$ such that, for each integer j and, for some fixed $\alpha \in(0,1)$, the norm

$$
\|L\|_{j}=\sup \left\{|L z|_{C^{j, \alpha}(\bar{\Omega})}, z \in C_{0}^{\infty},|z|_{C^{j+2, \alpha}(\bar{\Omega})}=1\right\}
$$

is finite. Recall \mathcal{L}_{2}^{∞} can be endowed with the metric (e.g. [12, Chapter 1]):

$$
d\left(L, L^{\prime}\right):=\sum_{j=0}^{\infty} 2^{-j} \frac{\left\|L-L^{\prime}\right\|_{j}}{1+\left\|L-L^{\prime}\right\|_{j}}
$$

Let \mathcal{L}_{2}^{0} be the completion of \mathcal{L}_{2}^{∞} for the norm $\|\cdot\|_{0}$. The canonical imbedding $\mathcal{J}_{0}: \mathcal{L}_{2}^{\infty} \rightarrow \mathcal{L}_{2}^{0}$ is continuous and the set Isom ${ }_{2}^{0}$ of isomorphisms in \mathcal{L}_{2}^{0} is open (e.g. by [11, Theorem IV, 1.16]), hence so is $\operatorname{Isom}_{2}^{\infty}=\mathcal{J}_{0}^{-1}\left\{\right.$ Isom $\left._{2}^{0}\right\}$. Moreover, given any small real $\delta>0$, the map

$$
(u, s) \in P(F) \times[-\delta, \delta] \mapsto L_{u, s} \in \mathcal{L}_{2}^{\infty}
$$

is continuous, hence uniformly continuous on $K \times[-\delta, \delta]$, and

$$
\widetilde{K}=\left\{L_{u, 0} \mid u \in K\right\}
$$

is a compact subset of $\mathrm{Isom}_{2}^{\infty}$. Therefore, on the one hand, there exists a tubular neighbourhood \mathcal{V} (for the metric d) of the compact \widetilde{K}, contained in $\mathrm{Isom}_{2}^{\infty}$, on the other hand, given this neighbourhood \mathcal{V}, there exists $\varepsilon_{1} \in(0, \delta)$ such that:

$$
L_{u, s} \in \mathcal{V} \text { for all } s \in\left(-\varepsilon_{1}, \varepsilon_{1}\right) \text { and all } u \in K
$$

Lemma 3 is proved.
Proof of Theorem 1. We are given u, x_{0} and K. Let u_{0} be as in Lemma 1 and ε_{1}, as in Lemma 3. Take ε_{0} and ψ as in Lemma 2, with $\varepsilon_{0} \leq \varepsilon_{1}$. Let us argue by contradiction and assume the existence of $u_{1} \in K$ satisfying: $F_{s}\left[u_{1}\right]=\psi$ in Ω, $u_{1}=u_{0}$ on $\partial \Omega$. For $t \in[0,1]$, set $u_{t}=t u_{1}+(1-t) u_{0}$. The function $u=u_{1}-u_{0}$ satisfies $L[u]=0$ in $\Omega, u=0$ on $\partial \Omega$, with $L=\int_{0}^{1} d F_{s}\left[u_{t}\right] d t$. By Lemma 3, it implies $u \equiv 0$, which is absurd since $u_{0} \in \partial P(F)$. So Theorem 1 holds.

Proof of Theorem 2. First of all, when $\partial f / \partial z=0$ necessarily $F[z]=0$ if z is constant; so $u \in P(F)$ cannot be constant. Given u and x_{0}, take u_{0} as in Lemma 1, ε_{0} and ψ as in Lemma 2, and argue again by contradiction, now with an arbitrary function u_{1} fixed in $P(F)$. Since $\partial f / \partial z=0$ and $G[z]=d z(\xi)$, the
operator $L=\int_{0}^{1} d F_{s}\left[u_{t}\right] d t$ has no zeroth-order term. Moreover, it is elliptic by the convexity of $P(F)$. So L is one-to-one, by the maximum principle (see [10]), which is enough to conclude as above.

2. Local existence via integral perturbation

In this section, we are given a second order differential operator F_{0} on a compact connected manifold M of dimension n (without boundary), satisfying:

$$
\begin{equation*}
F_{0}[u+\text { constant }] \equiv F_{0}[u] . \tag{2}
\end{equation*}
$$

Let $u_{0} \in C^{\infty}(M)$ be a smooth real function on M at which F_{0} is elliptic. Given $\psi \in C^{\infty}(M)$ close to $\psi_{0}=F_{0}\left[u_{0}\right]$, we want to solve the equation $F_{0}[u]=\psi$ with $u \in C^{\infty}(M)$ close to u_{0}.
2.1. The local image problem. Let us start with a couple of elementary observations.

Lemma 4. Given any neighbourhood \mathcal{U} of ψ_{0} in $C^{\infty}(M)$, there is no neighbourhood of $u_{0} \in C^{\infty}(M)$ mapped onto \mathcal{U} by F_{0}.

Proof. Let us argue by contradiction and assume the existence of a nonzero real number c, arbitrarily small, such that the equation $F_{0}[u]=\psi_{0}+c$ admits a solution $u_{1} \in C^{\infty}(M)$ close to u_{0}. Setting $u_{t}=t u_{1}+(1-t) u_{0}$ for $t \in[0,1]$, we infer that $v=u_{1}-u_{0}$ satisfies on M the second order linear equation $L v=c$, where $L=\int_{0}^{1} d F_{0}\left[u_{t}\right] d t$. For u_{1} close to u_{0}, this equation is elliptic; moreover, condition (2) readily implies that L has no zeroth-order term. The maximum principle [10] thus implies that v is constant, contradicting $c \neq 0$.

Lemma 5. For any $u \in C^{\infty}(M)$ close enough to u_{0}, the kernel of $d F_{0}[u]$ coincides with the functions on M which are constant: $\operatorname{ker} d F_{0}[u]=\mathbb{R}$.

Proof. For any $u \in C^{\infty}(M)$, the kernel of $d F_{0}[u]$ certainly contains the constant functions, due to (2). Conversely, if $d F_{0}[u]$ is elliptic (as it is the case for u close to u_{0}), then $\operatorname{ker} d F_{0}[u] \subset \mathbb{R}$ due to the maximum principle.

Fixing an auxiliary Lebesgue measure $d \lambda$ on M, it is easy to see that the restriction of $d F_{0}[u]$ to the subspace

$$
\mathbb{R}_{d \lambda}^{\perp}=\left\{v \in C^{\infty}(M),\langle v\rangle=0\right\}
$$

(where $\langle v\rangle$ stands for the $d \lambda$-average of v over M), is one-to-one when u is close to u_{0} in $C^{\infty}(M)$. Therefore the restriction of F_{0} to the affine subspace $u_{0}+\mathbb{R}_{d \lambda}^{\perp}$ is an immersion near u_{0} into $C^{\infty}(M)$. Moreover, the local image of that immersion coincides with that of F_{0} due to condition (2).

The problem which we are now facing consists in identifying an equation for the local image of F_{0}. In other words, in order to solve locally the equation
$F_{0}[u]=\psi$, we look for an a priori constraint on $F_{0}[u]$, for u near u_{0}, telling us where ψ should lie (near ψ_{0}) for the equation to be solvable.
2.2. A self-adjointness ansatz? Whenever F_{0} is linear, the Fredholm alternative theory (cf. e.g. [3, p. 464]) solves the problem. Specifically then, there exists a riemannian metric g and a vector field ξ on M such that, up to sign:

$$
F_{0}[z]=\Delta z+d z(\xi)
$$

where Δ stands for the (positive) laplacian of g. Now ψ lies in the image of F_{0} if and only if it is L^{2} orthogonal to the 1-dimensional subspace:

$$
\text { coker } F_{0}=\left\{v \in C^{\infty}(M), \Delta v+\operatorname{div}(v \xi)=0\right\}
$$

where L^{2} and div are both relative to (the Lebesgue measure of) g.
In the fully nonlinear case, which we are considering here for F_{0}, we can first complement Lemma 5 with

Lemma 6. For any u close to u_{0} in $C^{\infty}(M)$, the image of $d F_{0}[u]$ has codimension 1.

Proof. We can speak of the (formal) adjoint of $d F_{0}[u]$ in $L^{2}(M, d \lambda)$. The elliptic operator $d F_{0}[u]$ is Fredholm, of index zero because it can be deformed continuously into a (second-order elliptic) self-adjoint operator. So it has a 1dimensional cokernel, whose $L^{2}(M, d \lambda)$-orthogonal coincides with the image of $d F_{0}[u]$ according to Fredholm theory. The lemma is proved.

The local image problem thus amounts to integrating near ψ_{0} in $C^{\infty}(M)$ the codimension 1 distribution (coker $\left.d F_{0}[u]\right)^{\perp}$. The simplest way to do it is to find a Lebesgue measure $d \lambda$ with respect to which $d F_{0}[u]$ is identically self-adjoint. Indeed then, we have the following result (pointed out to us by Pengfei Guan):

Proposition 2. Let F_{0} be as above, satisfying (2), and $d \lambda$ be a Lebesgue measure on M. If $d F_{0}[u]$ is self-adjoint in $L^{2}(M, d \lambda)$ for all u close to u_{0} in $C^{\infty}(M)$, then the local image of F_{0} near ψ_{0} consists of the codimension 1 affine submanifold:

$$
\Sigma_{0}=\left\{\psi \in C^{\infty}(M), \psi \text { close to } \psi_{0}, \int_{M} \psi d \lambda=\int_{M} \psi_{0} d \lambda\right\}
$$

Proof. Near u_{0} in $C^{\infty}(M)$, consider the map $u \mapsto \int_{M} F_{0}[u] d \lambda$. Under the self-adjointness assumption, recalling Lemma 5, we see that its derivative at u, given by $v \mapsto \int_{M} d F_{0}[u](v) d \lambda$, vanishes identically. So the map is constant, proving that the local image of F_{0} lies in Σ_{0}.

It remains to prove that F_{0} is onto Σ_{0} near u_{0}. To do so, we use the elliptic inverse function theorem with constraints of [7, Theorem 2, p. 686] applied at u_{0} to the map (for u close to u_{0}):

$$
u \in\left(u_{0}+\mathbb{R}_{d \lambda}^{\perp}\right) \mapsto F_{0}[u] \in \Sigma_{0}
$$

Under the self-adjointness assumption, the derivative of this map at u_{0} is readily seen to be an automorphism of $\mathbb{R} \frac{1}{d \lambda}$ by the Fredholm alternative theory. So [7, Theorem 2] implies:

$$
\forall \psi \in \Sigma_{0} \text { near } \psi_{0}, \exists u \in\left(u_{0}+\mathbb{R}_{d \lambda}^{\perp}\right) \text { near } u_{0}, F_{0}[u]=\psi
$$

The proof is complete.
Nontrivial examples for Proposition 2 are provided by the Calabi-Yau operator on compact Kähler manifolds, $d \lambda$ being the riemannian measure (cf. e.g. [2]), and by the almost-Kähler version of it (as easily verified) ([8]).

Can Proposition 2 serve as an ansatz to solve our image problem? In other words, given $\left(F_{0}, u_{0}\right)$, can one always find a Lebesgue measure $d \lambda$ such that Proposition 2 holds? The answer is no, as shown by the following counterexample (Proposition 3 below).

Pick a riemannian metric g on M, with Levi-Civita connection ∇, and take for $F_{0}[z]$ the second elementary symmetric function $\widetilde{\sigma_{2}}[\lambda(z)]$ of the eigenvalues with respect to g of $(g+\nabla d z)$, with $\widetilde{\sigma_{2}}$ normalized by $F_{0}[0]=\widetilde{\sigma_{2}}(1, \ldots, 1)=1$. This is indeed a second order fully nonlinear operator satisfying (2). Moreover (see [9]), it is elliptic on the open convex set

$$
P\left(F_{0}\right)=\left\{z \in C^{\infty}(M), F_{0}[z]>0\right\} .
$$

If $|\cdot|$ stands for the g-norm and Δ, for the (positive) g-laplacian, we have:

$$
F_{0}[z]=1-\frac{2}{n} \Delta z+\frac{1}{n(n-1)}\left[(\Delta z)^{2}-|\nabla d z|^{2}\right]
$$

and a routine computation yields the identity:

$$
\begin{equation*}
\int_{M}\left(F_{0}[z]-1\right) d \mu \equiv \frac{1}{n(n-1)} \int_{M} \operatorname{Ricci}(\vec{\nabla} z, \vec{\nabla} z) d \mu \tag{3}
\end{equation*}
$$

where $d \mu$ (resp. Ricci, $\vec{\nabla}$) denotes the Lebesgue measure of g (resp. its Ricci tensor, its gradient operator). Therefore, whenever g is Ricci-flat, the image of F_{0} lies a priori in the following smooth codimension 1 submanifold:

$$
\left\{\psi \in C^{\infty}(M), \int_{M}(\psi-1) d \mu=0\right\} .
$$

Actually then, F_{0} and $d \mu$ also fulfill the assumptions of Proposition 2 near $u_{0}=0$ (routine exercise).

Proposition 3. If g is not Ricci-flat, there exists no Lebesgue measure $d \lambda$ on M such that, for any u close enough to $u_{0}=0$ in $C^{\infty}(M)$, the operator $d F_{0}[u]$ is formally self-adjoint with respect to $d \lambda$.

Proof. Let us argue by contradiction and pick a Lebesgue measure $d \lambda$ for which $d F_{0}[u]$ is self-adjoint at each u close enough to $u_{0}=0$ in $C^{\infty}(M)$. By Proposition 2, the functional

$$
\phi(u)=\int_{M}\left(F_{0}[u]-1\right) d \lambda
$$

vanishes identically in $C^{\infty}(M)$ near $u_{0}=0$. Therefore $d \phi(0)(v)=0$ for all $v \in C^{\infty}(M)$, which reads

$$
\int_{M} d F_{0}[0](v) d \lambda=0
$$

or else,

$$
\int_{M} \Delta v d \lambda=0
$$

In other words, the Radon-Nikodym derivative ρ of $d \lambda$ with respect to $d \mu$, satisfies $\Delta \rho=0$ in the distribution sense on M. Since Δ is elliptic, ρ must be smooth [2, p. 85] and the maximum principle [10] implies that ρ is constant. Recalling $\phi(u) \equiv 0$ and (3), we reach a contradiction unless g is Ricci-flat.

From Proposition 3 we conclude that the image problem remains open for a generic fully nonlinear second-order differential operator F_{0} satisfying (2) on M compact.
2.3. An integral perturbation device. To cope with the preceding situation and restore a local solvability, the idea is to break the invariance of F_{0} expressed by (2), at a somewhat lower cost (loosing the locality of the operator). Let $\langle z\rangle$ still denote the average on M of a function z with respect to a fixed Lebesgue measure $d \lambda$.

Theorem 3. Let $\left(F_{0}, u_{0}, \psi_{0}\right)$ be as above, with F_{0} satisfying (2). Without loss of generality, assume: $\left\langle u_{0}\right\rangle=0$. Then, given any nonzero real number s, the perturbed operator

$$
F_{s}[z]:=F_{0}[z]+s\langle z\rangle
$$

is a smooth diffeomorphism from a neighbourhood of u_{0} in $C^{\infty}(M)$ onto a neighbourhood of ψ_{0} in $C^{\infty}(M)$.

REmark 1. If $F_{s}\left[z_{s}\right]=F_{t}\left[z_{t}\right]$ with $s t \neq 0$ and both z_{s} and z_{t} close enough to u_{0} in $C^{\infty}(M)$, then Theorem 3 implies:

$$
z_{t}=z_{s}+\frac{1}{t}(s-t)\left\langle z_{s}\right\rangle
$$

One may thus use the normalization $s=1$ without loss of generality.

Remark 2. The idea of adding an average term goes back to [5, Theorem 1] (see also [6, p. 426]) where it is used to invert (globally) in $C^{\infty}(M)$ the elliptic riemannian Monge-Ampère operator:

$$
u \mapsto F_{0}[u]=\log \left[\frac{\operatorname{det}(g+\nabla d u)}{\operatorname{det}(g)}\right],
$$

g standing for a smooth riemannian metric and ∇, for its Levi-Civita connection. Another global application is drawn in [9].

Remark 3. Fix $s \neq 0$ and set: $\psi \mapsto S(\psi)$ for the local solution map defined by Theorem $3, G_{s}$ for the open subset of functions ψ_{1} close to ψ_{0} in $C^{\infty}(M)$ satisfying $\left\langle S\left(\psi_{1}\right)\right\rangle \neq 0$. Granted the next corollary, we now know an equation for the image by F_{0} of a neighbourhood of u_{0} in $C^{\infty}(M)$, namely: $\langle S(\psi)\rangle=0$.

The proof of Theorem 3, given below, relies on an inverse function theorem argument. With Theorem 3 at hand, we can characterize the ill-posedness of the original equation $F_{0}[z]=\psi$ with ψ near ψ_{0} as follows:

Corollary 2. Let $s, F_{0}, u_{0}\left(\right.$ and $\left.\psi_{0}\right)$ be as in Theorem 3, and let ψ_{1} be given in G_{s} (cf. Remark 3). Then the equation $F_{0}\left[u_{1}\right]=\psi_{1}$ admits no solution $u_{1} \in C^{\infty}(M)$ such that the operator F_{0} remains elliptic along the path $t \in$ $[0,1] \mapsto u_{t}:=t u_{1}+(1-t) u_{0}$.

Proof. Let us argue by contradiction and take $\psi_{1} \in G_{s}$ and u_{1} as stated. By (2), we may assume $\left\langle u_{1}\right\rangle=0$. So u_{1} solves $F_{s}\left[u_{1}\right]=\psi_{1}$ as well. If u_{1} is close enough to u_{0} we reach a contradiction by the very definition of G_{s}; if not, we need to argue further. Since ψ_{1} is close to ψ_{0}, Theorem 3 provides a solution z_{1} of $F_{s}\left[z_{1}\right]=\psi_{1}$ close to u_{0} in $C^{\infty}(M)$. It follows that F_{0} remains elliptic along the path $t \in[0,1] \mapsto v_{t}=t u_{1}+(1-t) z_{1}$. Now $v=u_{1}-z_{1}$ satisfies on M the linear elliptic equation $L[v]=0$, where $L=\int_{0}^{1} d F_{s}\left[v_{t}\right] d t$. Noting that $L[v+$ constant $] \equiv L[v]$, we conclude from the maximum principle that $v=0$, which is absurd since $\langle v\rangle=-\left\langle z_{1}\right\rangle \neq 0$.

Corollary 2 yields the global ill-posedness of elementary hessian equations $\widetilde{\sigma_{k}}[\lambda(z)]=\psi>0$ (with notations used for Proposition 3 above) on a compact riemannian manifold, since these equations are a priori elliptic and their ellipticity set is convex (cf. [9, Section 1]).
2.4. Proof of Theorem 3. For any fixed nonzero real s, the operator F_{s} is an elliptic map in the sense of [7] from a neighbourhood of u_{0} in $C^{\infty}(M)$, to $C^{\infty}(M)$. Theorem 3 thus follows from the elliptic inverse function Theorem [7, Theorem 2] provided we can prove the following linear result:

Theorem 4. For $s \neq 0$, the linear operator $d F_{s}\left[u_{0}\right]$ is an automorphism of $C^{\infty}(M)$.

Proof. Since F_{0} is elliptic at u_{0}, satisfying (2), there exist a riemannian metric g and a vector field ξ, both smooth on M, such that the linear operator $L_{s}=d F_{s}\left[u_{0}\right]$ reads, up to sign:

$$
\begin{equation*}
L_{s}[z]=\Delta z+d z(\xi) \pm s\langle z\rangle \tag{4}
\end{equation*}
$$

where Δ stands for the (positive) laplacian of g. Without loss of generality, we may take $+s\langle z\rangle$ in the right-hand side (the sign of s here is unimportant).

Clearly, L_{s} is a continuous linear map from $C^{\infty}(M)$ to itself; it is one-toone by the maximum principle (easy check). According to the open mapping Theorem [12, Chapter 2], it remains only to show that L_{s} is onto, which we now do with an argument inspired from [5, Lemma 2, p. 346]. Let $d \mu_{g}$ be the canonical Lebesgue measure of the metric g, and $d \lambda$, the Lebesgue measure used to define the average $\langle\cdot\rangle$ in Theorem 3 ; let $\rho \in L^{1}\left(M, d \mu_{g}\right)$ be the density of $d \lambda$ with respect to $d \mu_{g}$. Set:

$$
V=\int_{M} d \lambda \equiv \int_{M} \rho d \mu_{g}, \quad V_{g}=\int_{M} d \mu_{g}, \quad\langle z\rangle_{g}=\frac{1}{V_{g}} \int_{M} z d \mu_{g}
$$

for a generic real function $z \in L^{1}\left(M, d \mu_{g}\right)$.
Lemma 7. The formal $L^{2}\left(M, d \mu_{g}\right)$ adjoint of the operator L_{s} is given by

$$
\begin{equation*}
L_{s}^{*}[z]=\Delta z+\operatorname{div}(z \xi)+s \rho \frac{V_{g}}{V}\langle z\rangle_{g} . \tag{5}
\end{equation*}
$$

In particular, the adjoint of the differential operator L_{0} is given by

$$
L_{0}^{*} z=\Delta z+\operatorname{div}(z \xi)
$$

The latter has a 1-dimensional null space and, if $w \in \operatorname{ker} L_{0}^{*}$, then

$$
w \neq 0 \Rightarrow\langle w\rangle_{g} \neq 0
$$

Formula (5) is routinely obtained, integrating by parts on M (compact without boundary) with the measure $d \mu_{g}$. The assertion on the dimension was proved in Lemma 6; for the last assertion, we argue by contradiction: if $w \neq 0$ satisfies $\langle w\rangle_{g}=0$ and spans ker L_{0}^{*} then, according to Fredholm Theorem [3, p. 464], one can solve on M the equation

$$
\Delta z+d z(\xi)=1
$$

because its right-hand side is orthogonal to w in $L^{2}\left(M, d \mu_{g}\right)$. But the maximum principle ([10]) implies that the solution z must be constant, which is absurd.

With Lemma 7 at hand, we can complete the proof of Theorem 4 as follows. Given any $\psi \in C^{\infty}(M)$ and $s \neq 0$, consider the ratio

$$
c(s, \psi):=\left(\int_{M} w \psi d \mu_{g}\right)\left(s \int_{M} w d \mu_{g}\right)^{-1}
$$

where w stands for a nonzero element of $\operatorname{ker} L_{0}^{*}$; clearly, $c(s, \psi)$ does not depend on a particular choice of such a w. The function $[\psi-s c(s, \psi)]$ is orthogonal to $\operatorname{ker} L_{0}^{*}$ in $L^{2}\left(M, d \mu_{g}\right)$, so by the Fredholm Theorem [3, p. 464] one can solve on M the equation $L_{0} z=\psi-s c(s, \psi)$. Moreover, since the solution z is defined up to an additive constant (by Lemma 5), we can define z by imposing:

$$
\langle z\rangle=c(s, \psi) .
$$

Now $z \in C^{\infty}(M)$ satisfies $L_{s} z=\psi$ as required, so L_{s} is indeed onto.
Remark 4. When the density ρ lies only in $L^{1}\left(M, d \mu_{g}\right)$, the operator L_{s} provides an example of an automorphism of $C^{\infty}(M)$ whose formal $L^{2}\left(M, d \mu_{g}\right)$ adjoint, given by (5), maps $C^{\infty}(M)$ to $L^{1}\left(M, d \mu_{g}\right)$ only.
2.5. Zeroth-order perturbation. Let F_{0}, u_{0} and ψ_{0} be as in Theorem 3. We wish to deduce from Theorem 4 a local existence result for the equation:

$$
\begin{equation*}
F_{0}[z]=\psi+s z \tag{6}
\end{equation*}
$$

near u_{0}, where $\psi \in C^{\infty}(M)$ is close to ψ_{0} and $s \neq 0$ is a small real parameter. Although the sign of s is irrelevant for our result, let us stress that it can be on the resonant side of zero, where s could interfere with the spectrum of $d F_{0}[z]$ (whereas for s on the other side of zero, equation (6) is a priori locally invertible).

Theorem 5. Let F_{0}, u_{0} and ψ_{0} be as in Theorem 3. Then there exists a neighbourhood \mathcal{V} of ψ_{0} in $C^{\infty}(M)$ and a real number $s_{0}>0$ such that, for any $\psi \in \mathcal{V}$ and any nonzero $s \in\left(-s_{0}, s_{0}\right)$, equation (6) admits a unique solution u close to u_{0} in $C^{\infty}(M)$. Moreover, this solution depends smoothly on the data (ψ, s), for $s \neq 0$.

Proof. We first consider, near the origin in $\mathbb{R} \times C^{\infty}(M) \times C^{\infty}(M)$, the smooth map $(s, \phi, v) \mapsto \mathcal{G}(s, \phi, v) \in C^{\infty}(M)$ defined by

$$
\mathcal{G}(s, \phi, v)=F_{0}\left[u_{0}+v\right]+\langle v\rangle-\left(\psi_{0}+\phi\right)-s\left(u_{0}+v\right) .
$$

It satisfies $\mathcal{G}(0,0,0)=0$ and, by Theorem 4 ,

$$
\frac{\partial \mathcal{G}}{\partial v}(0,0,0) \equiv d F_{1}\left[u_{0}\right]
$$

is an automorphism of $C^{\infty}(M)$. An implicit function theorem argument, using [7, Theorem 2], yields near zero the existence of a smooth solution-map $(s, \phi) \mapsto$ $v=\mathcal{S}(s, \phi)$ such that: $\mathcal{G}[s, \phi, \mathcal{S}(s, \phi)]=0$. The theorem follows for $s \neq 0$, by letting $\psi=\psi_{0}+\phi$ and

$$
u=u_{0}+\mathcal{S}(s, \phi)-\frac{1}{s}\langle\mathcal{S}(s, \phi)\rangle
$$

Remark 5. The idea of pushing the parameter s toward the resonant side accross the value $s=0$ by means of the equation $\mathcal{G}(s, \phi, v)=0$ goes back to [5 ,

Theorem 2] (where an existence result is proved for any value of $s \neq 0$, for the riemannian Monge-Ampère equation). Using it for the complex Monge-Ampère equation, Th. Aubin could take up the $c_{1}>0$ case of the Calabi's conjecture (cf. [1, footnote p. 148]).

Acknowledgments. This note was prepared for a fully nonlinear workshop held in April 2001 at the Newton Institute (Cambridge, UK); my warmest thanks go to Neil Trudinger for his invitation. I am also grateful to Pengfei Guan for his remark on self-adjointness (cf. Proposition 2).

References

[1] Th. Aubin, Réduction du cas positif de l'équation de Monge-Ampère sur les variétés kählériennes compactes à la démonstration d'une inégalité, J. Funct. Anal. 57 (1984), 143-153.
[2] , Nonlinear Analysis on Manifolds. Monge-Ampère Equations, Springer-Verlag, 1982.
[3] A. L. Besse, Einstein Manifolds, Springer-Verlag, 1987.
[4] L. Caffarelli, L. Nirenberg and J. Spruck, The Dirichlet problem for nonlinear second order elliptic equations III: functions of the eigenvalues of the hessian, Acta Math. 155 (1985), 261-301.
[5] Ph. Delanoë, Equations du type Monge-Ampère sur les variétés riemanniennes compactes, II, J. Funct. Anal. 41 (1981), 341-353.
[6] Equations du type Monge-Ampère sur les variétés riemanniennes compactes, III, J. Funct. Anal. 45 (1982), 403-430.
[7] , Local inversion of elliptic problems on compact manifolds, Math. Japon. 35 (1990), 679-692.
[8] , Sur l'analogue presque-complexe de l'équation de Calabi-Yau, Osaka J. Math. 33 (1996), 829-846.
[9] , Hessian equations on compact non-negatively curved riemannian manifolds, Calc. Var. (2002) (to appear).
[10] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, second edition, Springer-Verlag, 1983.
[11] T. Kato, Perturbation Theory for Linear Operators, Springer-Verlag, 1980.
[12] W. Rudin, Functional Analysis, McGraw-Hill, 1973.

[^0]: 2000 Mathematics Subject Classification. 35J60, 35B20, 35A07.
 Key words and phrases. Gradient perturbation, degenerate elliptic, ill-posed, integral perturbation.

 Supported by the CNRS.

