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INFINITELY MANY SOLUTIONS
OF SUPERLINEAR FOURTH ORDER

BOUNDARY VALUE PROBLEMS

Bryan P. Rynne

Abstract. We consider the boundary value problem

u(4)(x) = g(u(x)) + p(x, u(0)(x), . . . , u(3)(x)), x ∈ (0, 1),

u(0) = u(1) = u(b)(0) = u(b)(1) = 0,

where:

(i) g: R → R is continuous and satisfies lim|ξ|→∞ g(ξ)/ξ = ∞ (g is

superlinear as |ξ| → ∞),

(ii) p: [0, 1]× R4 → R is continuous and satisfies

|p(x, ξ0, ξ1, ξ2, ξ3)| ≤ C +
1

4
|ξ0|, x ∈ [0, 1], (ξ0, ξ1, ξ2, ξ3) ∈ R4,

for some C > 0,

(iii) either b = 1 or b = 2.

We obtain solutions having specified nodal properties. In particular, the

problem has infinitely many solutions.

1. Introduction

We consider the boundary value problem

u(4)(x) = g(u(x)) + p(x, u(0)(x), . . . , u(3)(x)), x ∈ (0, 1),(1.1)
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304 Superlinear Problems

u(0) = u(1) = u(b)(0) = u(b)(1) = 0,(1.2)

where:

(i) g: R → R is continuous and satisfies

(1.3) lim
|ξ|→∞

g(ξ)/ξ = ∞

(g is superlinear as |ξ| → ∞),
(ii) p: [0, 1]× R4 → R is continuous and satisfies

(1.4) |p(x, ξ0, ξ1, ξ2, ξ3)| ≤ C +
1
4
|ξ0|, x ∈ [0, 1], (ξ0, ξ1, ξ2, ξ3) ∈ R4,

for some C > 0,
(iii) either b = 1 or b = 2.

In order to state our results we first recall some standard notation to describe
the nodal properties of solutions. For any integer r ≥ 0, let Cr[0, 1] denote
the standard Banach space of real valued, r-times continuously differentiable
functions defined on [0, 1], with the norm |u|r =

∑r
i=0 |u(i)|0, where | · |0 denotes

the usual sup-norm on C0[0, 1]. Let

E = {u ∈ C3[0, 1] : u satisfies (1.2)}, X = E ∩ C4[0, 1], Y = C0[0, 1].

From now on ν will denote an element of {±}, that is, either ν = + or ν = −.
For each integer k ≥ 1 and ν ∈ {±}, let Sk,ν denote the set of u ∈ E such that:

(i) u has only simple zeros in (0, 1) and has exactly k − 1 such zeros,
(ii) νu(3−b)(0) > 0 and u(3−b)(1) 6= 0 (with the obvious interpretation of

νu(3−b)(0)).

The sets Sk,ν are disjoint and open in E. A solution of (1.1)–(1.2) (and other
boundary value problems below) is a function u ∈ X satisfying (1.1), but when
using nodal properties it is convenient to regard u as an element of E. Our main
result is the following theorem.

Theorem 1.1. There exists an integer k0 ≥ 1 such that for all integers
k ≥ k0 and each ν the problem (1.1)–(1.2) has at least one solution uk,ν ∈ Sk,ν .

Superlinear problems of similar form to (1.1)–(1.2) have been considered in
many papers, particularly in the second and fourth order cases, with either peri-
odic or separated boundary conditions, see for example [1]–[4], [8], [10] and the
references therein. Specifically, the second order periodic problem is considered
in [3], while [2], [4] consider the corresponding problem with separated bound-
ary conditions, and results similar to Theorem 1.1 are obtained in each of these
papers. The fourth order periodic problem is considered in [1], [8], while [10]
considers a general 2mth order problem with separated boundary conditions.
The assumptions in [8] are closest to those adopted here, but only one solution
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is obtained there. The papers [1], [10] impose additional assumptions, similar to
the condition

lim
|ξ0|→0

(g(ξ0) + p(x, ξ0, ξ1, ξ2, ξ3))/ξ0 = 0,

and they obtain the result in Theorem 1.1, with the improvement that k0 = 1.
Such conditions are not imposed in the other papers cited above, so k0 = 1
cannot be obtained in them. In fact, an example on p. 187 of [4] shows that the
result of Theorem 1.1 is optimal for the second order problem, in the sense that
the result need not be true with k0 = 1, and an adaptation of this example also
shows that Theorem 1.1 is optimal in this sense, see Remark 2.13 below.

Condition (1.4) can be regarded as a linear growth rate condition on p.
In [3], in the second order case with p a function of u and u′, a more gen-
eral linear growth rate condition is allowed. In Section 5 of [8], in the fourth
order case, a boundedness condition of the form |p(x, ξ0, ξ1, ξ2, ξ3)| ≤ q(x), where
q ∈ L1(0, 1), is assumed.

We use a global bifurcation argument to prove the theorem instead of the con-
tinuation methods used in [2]–[4], [8] (a bifurcation method is also used in [10]).
In [5] an nth order superlinear problem similar to the above is studied and a result
similar to Theorem 1.1 is obtained. However, in [5] a single boundary condition
is imposed at one end point and n− 1 conditions are imposed at the other end
point, and the proof uses a shooting method which depends on this distribution
of the boundary conditions.

2. Proof of Theorem 1.1

By redefining g and p suitably, if necessary, we may suppose that

(2.1) g(ξ)ξ ≥ 0, ξ ∈ R,

while retaining the growth conditions (1.3) and (1.4). For any u ∈ X we define
e(u): [0, 1] → R by e(u)(x) = p(x, u(0)(x), . . . , u(3)(x)), x ∈ [0, 1]. It follows
from (1.4) that

(2.2) |e(u)(x)| ≤ C +
1
4
|u(x)|, x ∈ [0, 1].

For any s ∈ R let G(s) =
∫ s

0
g(ξ) dξ ≥ 0, and for any s ≥ 0 let

γ(s) = max{|g(ξ)| : |ξ| ≤ s}, Γ(s) = max{G(ξ) : |ξ| ≤ s}.

We now consider the boundary value problem

(2.3) u(4) = λu + α(g(u) + e(u)), u ∈ X,

where α ∈ [0, 1] is an arbitrary fixed number and λ ∈ R. In the following
lemmas (λ, u) ∈ R×X will be an arbitrary solution of (2.3) while R ≥ 0 will be
an arbitrary number. Also, η1, η2, . . . , will be constants and ζ1, ζ2, . . . , will be
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continuous functions (from [0,∞) to [0,∞) unless stated otherwise) and these
will depend only on g and p, not on (λ, u) or α.

By (1.2) and Rolle’s theorem, for any u ∈ X each of the functions u(j),
j = 0, . . . , 3, has a zero in [0, 1], so repeated application of the mean value
theorem shows that

(2.4) |u(j)|0 ≤ |u(j+1)|0, j = 0, . . . , 3.

Lemma 2.1. There exists ζ1 such that if

(2.5) 0 ≤ λ ≤ R, |u′′|0 ≤ R,

then |u|3 ≤ ζ1(R).

Proof. By (2.2)–(2.5) |u(4)|0 ≤ (1/4)ζ1(R) := R2 + γ(R) + C + R, so the
result follows from (2.4). �

Lemma 2.2. For any x0, x1 ∈ [0, 1],

u′′(x1)2 + λu(x1)2 + 2αG(u(x1))− 2u′(x1)u′′′(x1) = u′′(x0)2 + λu(x0)2

+ 2αG(u(x0))− 2u′(x0)u′′′(x0)− 2α

∫ x1

x0

e(u)(ξ)u′(ξ) dξ.

Proof. Multiply (2.3) by u′ and integrate. �

Lemma 2.3.

(a) There exists an increasing function ζ2 such that if 0 ≤ λ ≤ R, and∑3
j=0 |u(j)(x0)| ≤ R, for some x0 ∈ [0, 1], then |u′′|0 ≤ ζ2(R).

(b) If b = 1 then there exists a constant η1 ≥ 0 such that if |u′′|0 ≥ η1 then
|u′′(x0)| ≥ |u′′|0/2 for x0 ∈ {0, 1}.

Proof. (a) Choose x1 ∈ [0, 1] such that |u′′|0 = |u′′(x1)|. If x1 ∈ (0, 1) then
u′′′(x1) = 0, while if x1 ∈ {0, 1} then b = 1 (or u ≡ 0) and u′(x1) = 0. In either
case we obtain from (2.2), (2.4) and Lemma 2.2

|u′′|20 ≤ R2 +R3 +2Γ(R)+2R2 +2
(

C +
1
4
|u|0

)
|u′′|0 ≤ K(R)+2C|u′′|0 +

1
2
|u′′|20,

where K(R) = (3+R)R2+2Γ(R). Hence |u′′|0 ≤ ζ2(R) := max{1, 2K(R)+4C}.
(b) Choosing x0 ∈ {0, 1} and x1 as in the proof of part (a) now yields

(using (1.2))

u′′(x0)2 ≥ |u′′|20 − 2C|u′′|0 −
1
2
|u′′|20,

which proves the result. �
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From now on it will be convenient to deal with the cases b = 1 and b = 2
separately (for instance, Lemma 2.4 below is clearly false when b = 1) so, until
stated otherwise, we now suppose that b = 2. The modifications required to deal
with the case b = 1 will be described below.

By (1.3) we can choose η2 ≥ 1 such that

(2.6) |ξ| ≥ η2 ⇒ |g(ξ)| ≥ C +
1
4
|ξ|.

We also define functions ζ3 and ζ4 (with ζ4: R → [η2,∞)) by

ζ3(ξ) = ξ(ξ + ξ2) + γ(ξ + ξ2) + C + (ξ + ξ2)/4, ξ ≥ 0,

ζ4(ξ) =

{
η2 + ζ2(ξ + ξ2 + ζ3(ξ)) + η1 + 2(ξ2 + γ(ξ) + C + ξ/4) for ξ ≥ η2,

ζ4(η2) for ξ < η2.

Clearly, these functions are increasing.

Lemma 2.4. If R ≥ η2, 0 ≤ λ ≤ R and |u′′|0 ≥ ζ4(R) then, for any x0 ∈
[0, 1] with |u(x0)| ≤ R, we have |u′(x0)| ≥ R2.

Proof. Suppose that for some R ≥ η2 there exists x0 ∈ (0, 1) such that
|u(x0)| ≤ R and |u′(x0)| < R2. We will show that this is impossible if |u′′|0 ≥
ζ4(R). Suppose, for now, that u′′(x0) ≥ 0 and u′′′(x0) ≥ 0. We first show that
u(x) > −R − R2 for x ∈ (x0, 1]. Suppose, on the contrary, that there exists
x ∈ (x0, 1] such that u(x) = −R − R2, and let x1 > x0 be the least such point,
so that u(x) ≥ −R − R2 on [x0, x1]. Then, from Taylor’s theorem, (2.1)–(2.3)
and (2.6),

1
2
u′′(x0) +

1
3!

u′′′(x0)(x1 − x0) ≤ − 1
4!

(λu(y) + α(g(u(y)) + e(u)(y))(x1 − x0)2

≤ 1
4!

ζ3(R)(x1 − x0)2,

where y ∈ [x0, x1]. This implies that

(2.7) u′′(x0) ≤
1
2
ζ3(R), u′′′(x0) ≤

1
2
ζ3(R),

but, by Lemma 2.3, this is impossible if |u′′|0 ≥ ζ4(R), which proves that u(x) ≥
−R−R2 on (x0, 1]. But now, from (1.2) and Taylor’s theorem (as above),

0 = u′′(1) ≥ u′′(x0) + u′′′(x0)(1− x0)−
1
2
ζ3(R)(1− x0)2,

so that (2.7) again holds and we again have a contradiction, which proves the
result when u′′(x0) ≥ 0 and u′′′(x0) ≥ 0. A similar argument holds if u′′(x0) ≤ 0
and u′′′(x0) ≤ 0, while if u′′(x0) and u′′′(x0) have opposite signs then we con-
sider u on the interval [0, x0) and again use a similar argument.
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Finally, if x0 ∈ {0, 1} (so that u(x0) = 0) and |u(x0)| < R2, then by con-
tinuity there exists x′0 ∈ (0, 1) such that |u(x′0)| ≤ R and |u′(x′0)| < R2, which
contradicts the result just proved. �

We now consider the problem

(2.8) u(4) = λu + θ(|u′′|0/ζ4(λ))(g(u) + e(u)), u ∈ X,

where θ: R → R is an increasing, C∞ function with θ(s) = 0, s ≤ 1 and θ(s) = 1,
s ≥ 2 (we have replaced α in (2.3) with the function θ(|u′′|0/ζ4(λ))). The
nonlinear term in (2.8) is a continuous function of (λ, u) ∈ R×X and is zero for
λ ∈ R, |u′′|0 ≤ ζ4(λ), so (2.8) becomes a linear eigenvalue problem in this region
and overall the problem can be regarded as a bifurcation (from u = 0) problem.

Regarding the linear problem, define the operator L:X → Y by Lu = u(4),
u ∈ X. Corollary 2 and Theorems 1 and 3 of [7] show that the eigenvalue problem
Lu = µu, has a set of eigenvalues 0 < µ1 < µ2 < . . . with limk→∞ µk = ∞.
Each eigenvalue µk, k ≥ 1, is simple (in the sense used in [9]; this follows from [7]
and the formal self-adjointness of L with respect to the L2(0, 1) inner product)
and has a corresponding eigenfunction φk ∈ Sk,+. The next lemma now follows
immediately.

Lemma 2.5. The set of solutions (λ, u) of (2.8) with |u′′|0 ≤ ζ4(λ) is

{(λ, 0) : λ ∈ R} ∪ {(λk, tφk) : k ≥ 1, |t| ≤ ζ4(λ)/|φ′′k |0}.

We also have the following global bifurcation result for (2.8).

Lemma 2.6. For each k ≥ 1 and ν there exists a connected set Ck,ν ⊂ R×E

of non-trivial solutions of (2.8) such that Ck,ν ∪ (µk, 0) is closed and connected
and:

(i) there exists a neighbourhood Nk of (µk, 0) in R×E such that Nk∩Ck,ν ⊂
R× Sk,ν ,

(ii) either Ck,ν ∩ Ck′,ν′ 6= ∅, for some (k′, ν′) 6= (k, ν), or Ck,ν meets infinity
in R× E (that is, there exists a sequence (λn, un) ∈ Ck,ν , n = 1, 2, . . . ,
such that |λn|+ |un|3 →∞).

Proof. Since L−1:Y → X exists and is bounded (see Corollary 3 of [7]),
(2.8) can be rewritten in the form

(2.9) u = λL−1u + θ(|u′′|0/ζ4(λ))L−1(g(u) + e(u)),

and since L−1 can be regarded as a compact operator from Y to E, it is clear
that finding a solution (λ, u) of (2.8) in R×X is equivalent to finding a solution
of (2.9) in R× E. This problem is of the form considered in [9] (see also [6]) so
the lemma follows from the results there. �
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In the second order Sturm–Liouville problem considered in [9] nodal proper-
ties are preserved on the set Ck,ν (that is, Ck,ν ⊂ R× Sk,ν with the appropriate
definition of Sk,ν) and this prevents the first alternative in part (ii) of the the-
orem occurring. For the problem (2.8) nodal properties need not be preserved
so we must consider this alternative. However, we will rely on preservation of
nodal properties for “large” solutions, encapsulated in the following result.

Lemma 2.7. If (λ, u) is a solution of (2.8) with λ ≥ 0 and |u′′|0 ≥ ζ4(λ)
then u ∈ Sk,ν , for some k ≥ 1 and ν.

Proof. If u 6∈ Sk,ν for any k ≥ 1 and ν then u must have a double zero,
but this contradicts Lemma 2.4. �

In view of Lemmas 2.5 and 2.7, in the following lemmas we suppose that
(λ, u) is an arbitrary non-trivial solution of (2.8) with λ ≥ 0 and u ∈ Sk,ν , for
some k ≥ 1 and ν.

Lemma 2.8. There exists an integer k0 ≥ 1 (depending only on ζ4(0)) such
that if λ = 0 and ζ4(0) ≤ |u′′|0 ≤ 2ζ4(0) then k < k0.

Proof. Let x1, x2 be consecutive zeros of u. Then there exists x3 ∈ (x1, x2)
such that u′(x3) = 0, and hence, by Lemma 2.4 (with R = η2), |u(x3)| ≥ 1.
Hence, |x2 − x1| ≥ 2/|u′|0, and so, by (2.4), k ≤ |u′′|0/2 ≤ ζ4(0). �

Now let

VR(u) = {x ∈ [0, 1] : |u(x)| ≥ R}, WR(u) = {x ∈ [0, 1] : |u(x)| < R}.

Lemma 2.9. Suppose that R ≥ η2, 0 ≤ λ ≤ R and |u′′|0 ≥ ζ4(R). Then
WR(u) consists of exactly k + 1 intervals, each of length less than 2/R, and
VR(u) consists of exactly k intervals.

Proof. Lemma 2.4 implies that |u′(x)| ≥ R2 for all x ∈ WR(u), from which
the result follows immediately. �

Lemma 2.10. There exists ζ5, satisfying limR→∞ ζ5(R) = 0, and η3 ≥ η2

such that, for any R ≥ η3, if either

(a) 0 ≤ λ ≤ R and |u′′|0 = 2ζ4(R),

or

(b) λ = R and ζ4(R) ≤ |u′′|0 ≤ 2ζ4(R),

then the length of each interval of VR(u) is less than ζ5(R).

Proof. Define H = H(R) by

H(R)4 := min{R, min{g(ξ)/ξ : |ξ| ≥ R} − (C/R + 1/4)},
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and let ζ5(R) := 2π/H(R). By (1.3), limR→∞H(R) = ∞, so limR→∞ ζ5(R) = 0
and we may choose η3 ≥ η2 sufficiently large that H(R) > 0 for all R ≥ η3.

Choose x0, x2 such that u(x0) = u(x2) = R and u > R on (x0, x2), that
is, I := [x0, x2] is an interval of VR(u) (the case of intervals on which u < 0
is similar). By (2.8) and the construction of H, if either (a) or (b) holds then
u(4)(x) ≥ H4u(x) > 0 for x ∈ I, and by Lemma 2.4, u′(x0) > 0 and u′(x2) < 0.
Suppose now that x2 − x0 > ζ5(R), that is l := 2π/(x2 − x0) < H. Defining
x1 = (x0 + x2)/2 and

v(x) = 1 + cos l(x− x1), x ∈ I,

we have

v(x0) = v(x2) = v′(x0) = v′(x2) = v′′′(x0) = v′′′(x2) = 0,

v′′(x0) = v′′(x2) = l2, v(4)(x) = l4(v(x)− 1), x ∈ I,

and hence, from the above results,

0 > l2(u′(x2)− u′(x0)) =
∫ x2

x0

d

dx
(u′′′v − uv′′′ − u′′v′ + u′v′′) dx

=
∫ x2

x0

(u(4)v − uv(4)) dx ≥
∫ x2

x0

(H4uv − l4(v − 1)u) dx > l4
∫ x2

x0

u dx > 0,

and this contradiction shows that x2−x0 ≤ ζ5(R), which proves the lemma (the
final part of the proof is from p. 71 of [8]). �

Now choose an arbitrary integer k ≥ k0 and ν, and choose Λ > max{η3, µk}
such that

(2.10) 2(k + 1)/Λ + kζ5(Λ) < 1.

Let

B = {(λ, u) : 0 ≤ λ ≤ Λ, ζ4(λ) ≤ |u′′|0 ≤ 2ζ4(Λ)},
D1 = {(λ, u) : 0 ≤ λ ≤ Λ, |u′′|0 = ζ4(λ)},
D2 = {(0, u) : 2ζ4(0) ≤ |u′′|0 ≤ ζ4(Λ)}.

It follows from Lemma 2.5 that Ck,ν “enters” B through the set D1, while from
Lemma 2.7, Ck,ν ∩ B ⊂ R × Sk,ν . Thus, by Lemmas 2.1 and 2.6, Ck,ν must
“leave” B, and since Ck,ν is connected it must intersect ∂B. However, Lem-
mas 2.8–2.10 (together with (2.10)) show that the only portion of ∂B (other
than D1) which Ck,ν can intersect is D2. Thus there exists a point (0, uk,ν) ∈
Ck,ν ∩ D2, and clearly uk,ν provides the desired solution of (1.1)–(1.2), which
completes the proof of the theorem when b = 2.

We now suppose that b = 1 and describe the necessary modifications to the
above argument to prove the result in this case. We assume from now on that



B. P. Rynne 311

λ ≥ 0 and |u′′|0 ≥ ζ4(λ) ≥ η1 so that, in view of part (b) of Lemma 2.3, we can
define numbers z0, z1 ∈ (0, 1) by the following conditions:

u′(z0) = u′(z1) = 0, u′(x) 6= 0 for x ∈ (0, z0) ∪ (z1, 1).

As noted above, Lemma 2.4 is false if b = 1. However, the following modified
result holds in this case.

Lemma 2.11. The result of Lemma 2.4 holds for x0 ∈ [z0, z1].

Proof. It follows from the boundary conditions (1.2) and the definition of
the points z0, z1, that there exist points s0 ∈ (0, z0), s1 ∈ (z1, 1), such that
u′′(s0) = u′′(s1) = 0. We now follow the proof of Lemma 2.4, except that in
obtaining the second contradiction we use the point s1 rather than 1. This proves
the result in the case u′′(x0) ≥ 0 and u′′′(x0) ≥ 0. As in the proof of Lemma 2.4,
the other cases are dealt with similarly. �

It is now clear that u is strictly monotonic on the intervals [0, z0], [z1, 1] and
Lemma 2.7 holds (using part (b) of Lemma 2.3). Furthermore, |u(z0)| > R,
|u(z1)| > R, and if we define y0 ∈ [0, z0), y1 ∈ (z1, 1] by |u(y0)| = |u(y1)| = R (so
that W 0

R(u) := [0, y0), W 1
R(u) := (y1, 1], are the intervals of WR(u) containing 0

and 1 respectively), then |u′(y0)| 6= 0, |u′(y1)| 6= 0, so the only further result now
needed to prove the theorem when b = 1 is the following.

Lemma 2.12. There exists ζ6, satisfying limR→∞ ζ6(R) = 0, such that if
0 ≤ λ ≤ R and |u′′|0 ≥ ζ4(R) then the length of each interval W 0

R(u), W 1
R(u) is

less than ζ6(R).

Proof. We consider W 0
R(u) and suppose that u ≥ 0 on W 0

R(u) (the other
cases are similar). Let

K = K(R) := R2 + γ(R) + C +
1
4
R ≤ 1

2
ζ4(R) ≤ u′′(0)

(by part (b) of Lemma 2.3). Then, using the definition of ζ4 and expressing the
values of u′(y0) and u(y0), respectively, in terms of the Taylor expansion of u

about x = 0, yields the following results:

u′′(0)y0 +
1
2!

u′′′(0)y2
0 +

1
3!

Ky3
0 ≥ 0 ⇒ u′′′(0)y0 ≥ −7

3
u′′(0),

R +
1
4!

K ≥ 1
2
y2
0(u′′(0) +

1
3
u′′′(0)y0) ≥

1
9
y2
0u′′(0) ≥ 1

18
y2
0ζ4(R).

Hence, y0 ≤ ζ6(R) :=
√

18(R + K)/ζ4(R), and it can readily be seen from the
above definitions that limR→∞ ζ6(R) = 0, which proves the result. �

This completes the proof of the theorem for both b = 1 and b = 2.
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Remark 2.1. Consider the problem

u(4) = u max{K2, u2}, u ∈ X.

Given any k0 ≥ 1, the method of proof of Lemma 2.9 can be used to show that
if K is sufficiently large then there is no solution of this problem with fewer than
k0 − 1 zeros, that is, there is no solution u ∈ Sk,ν for k < k0. Thus Theorem 1.1
is optimal in the sense that the result need not hold for all k ≥ 1.
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