
Topological Methods in Nonlinear Analysis
Journal of the Juliusz Schauder Center
Volume 19, 2002, 283–301

STRUCTURE OF STEADY STATES
FOR STREATER’S ENERGY-TRANSPORT MODELS

OF GRAVITATING PARTICLES

Piotr Biler — Tadeusz Nadzieja

Dedicated to Professor Andrzej Granas

Abstract. Energy-transport models introduced by R. F. Streater describe

the evolution of the density and temperature of a cloud of self-gravitating
particles. We study the existence of steady states with prescribed mass and

energy for these models.

1. Introduction and equations

The systems of evolution partial differential equations introduced recently
by R. F. Streater, cf. [26]–[29] for further extensions, generalize the classical
Smoluchowski equation [25] proposed as a description of the dynamics of par-
ticles subject to an external potential and Brownian diffusion. We extended
Streater’s models in the paper [9] to the case of self-interacting particles which
mathematically corresponds to the coupling to a mean field Poisson equation.

The Streater’s models in [9] extend also classical drift-diffusion systems of
parabolic-elliptic equations for self-interacting charged particles (Nernst–Planck
and Debye–Hückel models in electrolytes, semiconductors, plasma physics, cf.
e.g. [7] and [4]), and those for gravitationally attracting particles (cf. e.g. [31]
and [11]). The above mentioned systems are isothermal, i.e. they do not take
into account the evolution of the temperature.
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As it can be expected for those models, solutions for electrically interacting
particles are global in time and tend to steady states ([4], [7]), while for attract-
ing particles finite time blow-up of solutions may occur. This phenomenon is
sometimes referred to as a gravitational collapse ([10], [3], [11]).

From a PDE theorist point of view, Streater’s systems are of nonclassical
type. They consist of (formally) parabolic equations governing the evolution of
the density u ≥ 0 (or rather densities u1, . . . , uN of different particle species) of
a cloud of particles. These equations take into account the Brownian diffusion of
particles and their collective motion caused by the gradient of the (mean field)
potential generated by themselves. Another equation governs the evolution of the
temperature ϑ and it involves thermal diffusion, heat production and convection
terms. That equation, representing the balance of heat, is not of parabolic type.

These models preserve the charge or mass, the energy (so that they satisfy
the first law of thermodynamics), and they are compatible with the second law
of thermodynamics.

One of the major mathematical difficulties in an analysis of the evolution of
Streater’s models is connected with the lack of good a priori estimates for the
temperature ϑ which may lead to possible degeneracies and/or singularities in
the equation (where the temperature enters via 1/ϑ factor).

Related energy-transport models in solid state physics considered in e.g. [13],
[16] and [17], also display such difficulties.

Steady states and large time asymptotics of solutions of the evolution prob-
lem have been considered recently in [5] in the case of repulsive electric inter-
actions. In particular, the existence and uniqueness of steady states has been
established for certain external potentials ϕ0 and domains Ω, the convergence
to steady states in bounded domains has been proved, and the intermediate
asymptotics in the case of the whole space Rd was shown for radially symmetric
solutions of the evolution problem.

The analysis of the gravitational interaction of particles has been begun in
the paper [6] where a special boundary condition (the homogeneous Dirichlet)
has been assumed for the potential ϕ. That condition simplified the analysis of
the structure of steady states but was not so physically relevant as the “free”
condition considered in the present paper. Actually, this “free” condition is more
natural and it may lead to new interesting qualitative phenomena in Streater’s
systems like gravitational collapse in the evolution problem (cf. [3], [10], [8] and
[11] for the case of isothermal models).

Some aspects of the analysis of the existence of steady states in the present
paper are different from those in the case of the Dirichlet condition when the
geometry and topology of the domain play an important role, and the structure
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of the set of steady states depends on the shape of the domain in quite a sensitive
way.

Note that the existence of solutions of the initial-boundary value problem
(and the Cauchy problem) is only partially known, even for systems without
self-interaction, cf. [27]. A proof of a global existence result is open and seems
very difficult, cf. comments in [9] and [5]. A rather delicate analysis in [13], [16]
does not extend to the present case.

Although the present paper can be viewed as a companion paper of [6] (e.g.
we will use here in our computations some results concerning radially symmetric
solutions from [6]), the methods used are in many aspects different.

Our study of the steady state problem for Streater’s system involves the
Poisson–Boltzmann–Emden equation arising in the statistical mechanics of grav-
itating particles, cf. e.g. [1], and in Onsager’s approach to turbulence for the
Euler equation in two dimensions (see [18], and for three-dimensional extensions
– [20]). Classical results in [14], [15] as well as (a modification of) the variational
approach to the two-dimensional problem in [12] will be applied here.

An alternative approach to the existence of solutions in two- and higher
dimensional domains is based on the topological Leray–Schauder principle, see
also [10], [19] and [22].

The method of moments will be useful in the present paper as a substitute of
the Rellich–Pohozaev identity in the analysis of steady states with the Dirichlet
boundary condition.

Notation. |v|p denotes the Lp(Ω) norm of the function v; various inessential
constants will be denoted by C, even if they may vary from line to line.

We consider the system of equations for the (single) density u ≥ 0 of a cloud
of the (identical) gravitationally attracting particles, the temperature ϑ > 0 and
the potential ϕ generated by u

ut =∇ ·
(
κ

(
∇u+

u

ϑ
∇(ϕ+ ϕ0)

))
,

(uϑ)t =∇ · (λ∇ϑ) +∇ · (κ(ϑ∇u+ u∇(ϕ+ ϕ0)))

+∇(ϕ+ ϕ0) ·
(
κ

(
∇u+

u

ϑ
∇(ϕ+ ϕ0)

))
,(1)

∆ϕ =u.

The coefficients κ, λ are nonnegative functions of x, u, ϑ, ϕ, and they can vanish
only at ϑ = 0. Note that the case κ(ϑ) = ϑ was postulated by M. Smoluchowski
in the seminal paper ([25]). The relation κ(ϑ) = o(ϑ) as ϑ→ 0 might be assumed
for the consistency with the third law of thermodynamics.

The above system is studied either in a bounded connected domain Ω ⊂ Rd

or in the whole space Rd. In the first case, the equations are supplemented by
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the boundary conditions

(2)
∂u

∂ν
+
u

ϑ

∂

∂ν
(ϕ+ ϕ0) = 0,

∂ϑ

∂ν
= 0,

where ∂/∂ν denotes the exterior normal derivative on the boundary ∂Ω. These
conditions express that there are neither mass flux nor heat flux across the
boundary ∂Ω of the domain. The potential ϕ satisfies the “free” condition

(3) ϕ = Ed ∗ uΩ,

where uΩ(x) = u(x) for x ∈ Ω, uΩ(x) = 0 for x 6∈ Ω, and Ed is the fun-
damental solution of the Laplacian in Rd : E2(z) = (1/2π) log |z|, Ed(z) =
−((d− 2)σd)−1|z|2−d, σd is the area of the unit sphere in Rd. The paper [6] has
dealt with the Dirichlet condition ϕ = 0 on the boundary ∂Ω which is mathe-
matically somewhat simpler, but the free condition is physically more relevant.
The latter is, however, not classical in the PDE theory.

It is reasonable to assume that the given function ϕ0 satisfies the integrability
condition exp(−ϕ0/ϑ1) ∈ L1(Ω) for some ϑ1 > 0, i.e. the external potential ϕ0

is confining at the temperature ϑ1 > 0. In the sequel, we will mainly consider
the case ϕ0 ≡ 0, referring to [11] for an analysis and interpretation of some
cases with singular potentials ϕ0. “Small” potentials ϕ0 are not confining in
unbounded domains like Ω = Rd which implies the nonexistence of nontrivial
steady states, cf. [5] for a similar situation with electric interactions.

The system (1) with the boundary conditions (2) and (3) is supplemented
by the initial data prescribed at t = 0: u(x, 0) = u0(x), ϑ(x, 0) = ϑ0(x).

The boundary conditions (2) guarantee that the total mass M =
∫
Ω
u dx and

the total energy

(4) E =
∫

Ω

u

(
ϑ+ ϕ0 +

1
2
ϕ

)
dx

are preserved, at least for classical solutions.
For sufficiently smooth solutions of (1)–(3), the (neg)entropy

(5) W =
∫

Ω

u log
(
u

ϑ

)
dx

is decreasing, and the following production of entropy formula holds

(6)
dW

dt
= −

∫
Ω

λ
|∇ϑ|2

ϑ2
dx−

∫
Ω

κu

∣∣∣∣∇uu +
1
ϑ
∇(ϕ+ ϕ0)

∣∣∣∣2dx.
The entropy relation (6) implies that for steady states 〈u, ϑ, ϕ〉 one has ϑ =const,
and the flux ∇u+ (u/ϑ)∇(ϕ+ ϕ0) vanishes a.e. in Ω, so that ∇(ue(ϕ+ϕ0)/ϑ) =
0. Thus u has the Boltzmann-distributed form u = γe−(ϕ+ϕ0)/ϑ, where γ =
M(

∫
Ω
e−(ϕ+ϕ0)/ϑ dx)−1, because

∫
Ω
u dx = M , irrespective of the coefficients

κ, λ.
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Note that if the second boundary condition in (2) is replaced by the Dirichlet
condition ϑ = ϑ1, with some ϑ1 > 0, the total energy is no longer conserved.
Nevertheless, all the stationary solutions still have the above Boltzmann form.
To see this, let us calculate the time derivatives of the energy E in (4) and the
entropy W in (5) with no mass flux condition but without making precise the
boundary conditions for ϕ and ϑ

dE

dt
=

1
2

∫
∂Ω

(
ϕt
∂ϕ

∂ν
− ϕ

∂ϕt
∂ν

)
dσ +

∫
∂Ω

λ
∂ϑ

∂ν
dσ

and

dW

dt
= −

∫
Ω

λ
|∇ϑ|2

ϑ2
dx−

∫
Ω

κu

∣∣∣∣∇uu +
1
ϑ
∇ϕ

∣∣∣∣2 dx− ∫
∂Ω

λ

ϑ

∂ϑ

∂ν
dσ.

If the walls of the reservoir Ω are kept at the constant temperature ϑ1, then
dE/dt = dW/dt = 0 for the stationary solution 〈u, ϑ, ϕ〉 implies

∫
∂Ω
λ(∂ϑ/∂ν) dσ

= 0, the flux satisfies ∇u + (u/ϑ)∇ϕ = 0 a.e., |∇ϑ|2/ϑ2 = 0 a.e. hence ϑ = ϑ1

in Ω.
Now we study stationary solutions of the system (1), with ϕ0 ≡ 0, i.e. the

(rescaled) Poisson–Boltzmann–Emden equation

(7) ∆ϕ = M
e−ϕ/ϑ∫

Ω
e−ϕ/ϑ dx

in Ω,

with the condition (3) for ϕ, so that u = ∆ϕ holds.
The problem (3), (7) has a physical meaning as the steady state equation for

the gravitational Streater’s model only in dimensions d ≤ 3. In the sequel, we
shall consider its scaled version (10) below on domains of arbitrary dimension d.
The reason for this is that the properties of solutions do not change much for
d ≥ 3, while they are very different for d = 2 and d = 3.

Scaling the potential satisfying (7) with the condition (3) as ϕ = ϑψ, the
energy (4) becomes

(8) E = Mϑ+
1
2
ϑ2

∫
Ω

ψ∆ψ dx.

The problem of finding a solution of (7) with prescribed energy E and mass
0 < M <∞ is therefore equivalent to looking for a solution of the equation

(9)
E

ϑ2
=

(
E

M2

)
m2 = m+

1
2

∫
Ω

ψ∆ψ dx ≡ E(m,ψ).

Here m = M/ϑ and ψ solves the Poisson–Boltzmann–Emden equation

(10) ψ =
m∫

Ω
e−ψ dx

Ed ∗ e−ψ in Ω,
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in the range of admissible m > 0. In general, this is a union of intervals contained
in an interval with the endpoints 0 and mΩ ≤ ∞, but mΩ < ∞ for, e.g. star-
shaped domains Ω or even mΩ = 0 for Ω = Rd, d ≥ 3.

We restrict our attention to solutions in L∞(Ω)∩H1(Ω), for which the energy
is finite, cf. a comment after Remark 3.3.

The relation E/M2 = E(m,ψ)/m2 is to be satisfied for a solution ψ of (10).
In cases when this problem has multiple solutions, it is useful to define the
quantity

(11) F(m) = inf
ψ− a solution of (10)

E(m,ψ),

where (10) is the Poisson–Boltzmann–Emden equation with the fixed param-
eter m. Note that here the meanings of E , F are different from those in
[6], where (because of the Dirichlet condition imposed on ϕ and ψ), e.g. E =
m− (1/2)

∫
Ω
|∇ψ|2 dx.

2. The two-dimensional case

In this section we will study the Poisson–Boltzmann–Emden equation (7)
with the free condition (3) subject to the energy constraint (8). A variational
principle analogous to the Microcanonical Variational Principle in [12] will be
our main tool in this analysis.

Let us consider the entropy functional

(12) S(ρ) = −
∫

Ω

ρ log ρ dx

on the set D(1, ep) of densities of nonnegative measures ρ ≥ 0,
∫
Ω
ρ dx = 1,

under the constraint of the fixed potential energy

(13) ep = −1
2

∫ ∫
Ω×Ω

Ed(x− y)ρ(x)ρ(y) dx dy,

where d = 2 so that −E2(x − y) = −(1/2π) log |x − y| is a symmetric positive
definite kernel, ep > 0.

Proposition 2.1. If Ω ⊂ R2 is a bounded domain, then the maximization
problem

(14) S(ep) ≡ sup
ρ∈D(1,ep)

S(ρ)

has a unique solution ρ = ρ(ep) such that S(ρ(ep)) = S(ep), for each ep > 0,
and its potential ϕ = E2 ∗ρ satisfies (7) with M = 1 and some ϑ > 0. Moreover,
S(ep) is a continuous function of ep.
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Remark 2.2. The temperature ϑ is obtained as a Lagrange multiplier for the
variational problem (14) so that “true” mass in (10) is m = 1/ϑ. As we remarked
already, m ≤ mΩ, and mΩ <∞ may occur, e.g. in star-shaped domains.

Remark 2.3. Formally, the Euler–Lagrange equation for the problem (14)
is exactly (7) with M = 1, but its derivation needs that ρ > 0 a.e. in Ω. This
may be proved as in [12, Part II], for related problem where E2 is replaced by
the Green function GΩ of the domain Ω.

Proof. The idea is the same as in Proposition 2.1 in Part II of [12]. Since
ρ log ρ ≥ −1/e, S(ep) is finite. Given a maximizing sequence ρn for S(ep) with
ρn ∈ D(1, ep), there exists a weak limit ρ in the sense of the weak convergence
of measures. Since −S(ρn) =

∫
Ω
ρn log ρn dx is bounded, by the de la Vallée-

Poussin criterion, the limit ρ ∈ L1(Ω). Moreover, S(ρ) ≥ S(ep) by the upper
semicontinuity of the entropy S follows, and it remains to prove that

−1
2

∫ ∫
Ω×Ω

E2(x− y)ρ(x)ρ(y) dx dy = ep.

To check this let us split the integral

−
∫ ∫

Ω×Ω

E2(x− y)ρ(x)ρ(y) dx dy = I(ε) + Ic(ε)

into the integrals I(ε) over the set {(x, y) ∈ Ω × Ω : |x − y| < ε} and Ic(ε)
over the complement of this set where |x − y| ≥ ε. Since limn→∞ Ic(ε) =
−

∫ ∫
|x−y|≥εE2(x− y)ρ(x)ρ(y) dx dy → 2ep as ε↘ 0 (no singularities under the

integral appear, and
∫ ∫

Ω×Ω
E2(x − y)ρ(x)ρ(y) dx dy is absolutely convergent),

we need only to show that limε↘0 I(ε) = 0 uniformly with respect to n. Indeed,
for ε ≤ 1,

0 ≤ I(ε) ≤− 1
2π

∫ ∫
|x−y|<ε

log |x− y|ρn(x)ρn(y) dx dy

≤− 1
2π

∫ ∫
|x−y|<ε

|x− y|−1 log |x− y| dx dy

+
1
2π

∫ ∫
|x−y|<ε

log(ρn(x)ρn(y))ρn(x)ρn(y) dx dy,

where the last inequality is obtained by splitting the integration range into the
set where ρn(x)ρn(y) < |x− y|−1 and its complement. Thus, we have

I(ε) ≤ 1
2π

∫ ∫
|x−y|<ε

|x− y|−1| log |x− y|| dx dy

+ 2|s(ρn)| sup
x∈Ω

∫
|x−y|<ε

ρn(y) dy,

which tends to 0 together with ε ↘ 0, uniformly in n, because of the L1(Ω)-
bound on ρn log ρn.
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The remainder of the proof of Proposition 2.1 follows the lines of that of
Proposition 2.3 in Part II of [12], where the authors proved that ρ cannot vanish
on a set of positive measure. The idea is to show that one might improve the value
of S(ρ) by adding mass on the set where ρ vanishes (and, of course, normalizing
mass and the potential energy). The uniqueness of the maximizer follows from
the strict convexity of S. It is also of importance here that the energy E varies
continuously along the branch of maximizers of (14). This can be proved similarly
as was in Propositions 2.2, 2.4 in [12, Part II]. �

Remark 2.4. Observe that the scaling % = µρ, µ > 0, permits us to extend
the above result to the maximization problem of the quantity

−
∫

Ω

% log % dx = µS(ρ)− µ logµ

on the set

D(µ, µ2ep) =
{
% : % ≥ 0,

∫
Ω

% dx = µ,

− 1
2

∫ ∫
Ω×Ω

E2(x− y)%(x)%(y) dx dy = µ2ep

}
.

Remark 2.5. Note also that
∫
Ω
e−ϕ/ϑ dx <∞ for ϕ = E2 ∗ ρ and ϑ > 0 in

bounded two-dimensional domains, but a uniform (with respect to ρ) bound for
this integral can be given whenever 1/ϑ < 4π, cf. the proof of Theorem 1(i) in
[10], and a discussion of the Moser–Trudinger inequality (11) in [6].

Note that the Microcanonical Variational Principle is of little use in higher
dimensions (d ≥ 3) because the limit ρ of a maximizing sequence {ρn}, in general,
does not satisfy the energy constraint (13). The proof of Proposition 2.1 cannot
be extended to d ≥ 3 because of the singularity of the fundamental solution
Ed(x− y) ∼ |x− y|2−d, much stronger than that of E2.

Next we recall from [10, Theorem 1(i)] a result on the unique solvability of
the Poisson–Boltzmann–Emden equation (10) for small m > 0.

Proposition 2.6. The equation (10) in each bounded planar domain Ω has
a unique solution ψ in H1(Ω) for all sufficiently small m > 0. These solutions
form a continuous branch of solutions 〈m,ψ〉 of (10) in [0,∞)×L∞(Ω) emanating
from 〈0, 0〉.

Proof. The idea of the proof is to get an a priori bound on the quantity∫
Ω

exp(s|ψ|) dx for some s > 1, then a bound for |ψ|∞, and finally conclude with
the use of the Leray–Schauder principle applied to the fixed point problem for
the (compact) operator T (ψ) = m(

∫
Ω
e−ψ dx)−1E2 ∗ e−ψ considered in L∞(Ω).

This is achieved for m ∈ (0, 4π), and for small m > 0 the operator T (ψ) turns
out to be a contraction mapping, so the uniqueness of solutions follows.
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Let us give some details of the above mentioned a priori bounds.
For m ∈ (0, 4π) fix β ∈ (m, 4π) and consider 0 ≤ u ∈ L1(Ω), 0 < |u|1 < β,

and ψ = E2 ∗ u. Using the Jensen inequality one has, for s ∈ (1, 4π/β),∫
Ω

exp(s|ψ|) dx ≤
∫

Ω

exp
(
sβ|u|−1

1

∫
Ω

1
2π
| log |x− y||u(y) dy

)
dx

≤
∫

Ω

|u|−1
1

( ∫
Ω

u(y)|x− y|−sβ/(2π) dy

)
dx

≤
∫

Ω

|u|−1
1 u(y)

( ∫
Ω

|x− y|−sβ/(2π) dx

)
dy

≤ sup
y∈Ω

∫
Ω

|x− y|−sβ/(2π) dx ≤ C(β) <∞.

The constant C(β) is bounded, for instance, by 2π(2−sβ/(2π))−1(2δ)2−sβ/(2π) <

∞, where δ =diam Ω, because Ω is contained in a disc of the radius 2δ. Then
we have

|Ω| ≤
( ∫

Ω

e−ψ dx

)s/(s+1)( ∫
Ω

esψ dx

)1/(s+1)

≤
( ∫

Ω

e−ψ dx

)s/(s+1)

| exp(|ψ|)|s/(s+1)
s ,

which implies ( ∫
Ω

e−ψ dx

)−1

≤ |Ω|−1−1/s| exp(|ψ|)|s.

Finally, we obtain with 1/s+ 1/s′ = 1∣∣∣∣m( ∫
Ω

e−ψ dx

)−1

E2 ∗ e−ψ
∣∣∣∣
∞
≤ C(Ω, β)m sup

x∈Ω

( ∫
Ω

| log |x− y||s
′
dy

)1/s′

<∞

which is the required (uniform in {0 ≤ u ∈ L1(Ω) : |u|1 ≤ β}) L∞(Ω)-bound.
The Leray–Schauder theorem concludes the proof. �

Corollary 2.7. In any bounded planar domain Ω E(m,ψ) ≥ m − Cm2

with some C = C(Ω) as m↘ 0.

Proof. Indeed,
∫
Ω
ψ∆ψ dx = O(m2) since

∫
Ω

∆ψ dx = m, and |ψ|∞ =
O(m) as m↘ 0 as was proved before. �

We are ready now to prove the main theorem of this section

Theorem 2.8. If Ω ⊂ R2 is a bounded domain, then the Poisson–Boltz-
mann–Emden equation (7) for arbitrary M > 0 and E ∈ R has a solution satis-
fying the energy relation (8).

Proof. From Proposition 2.6 we have a unique continuous branch of solu-
tions ψm for small m > 0, so that F(m) = E(m,ψm). Corollary 2.7 implies that
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E(m,ψm) is strictly positive for small m > 0. Moreover, from Proposition 2.1,
and scaling properties of solutions of the Microcanonical Variational Principle in
Remark 2.4, it follows that

inf
m>0

E(m,ψm) = −∞

for the solutions ψm of (10) corresponding to the MVP. Indeed, since solutions
of (10) are unique for small m > 0, the values of m = 1/ϑ cannot accumulate at
0 when ep →∞.

Observe that E is continuous along the branch of solutions ψm of (10) con-
sisting of the maximizers of MVP. Moreover, the values of E fill up a half-line
(−∞, E0] with some E0 > 0. These properties of E(m,ψm) put together imply
the solvability of the equation (8) for every E/M2 ∈ R. �

It is worth noting here that for the problem in smooth star-shaped domains
with the Dirichlet boundary condition for the potential ϕ considered in [6], it
follows from [12, Part II, p. 251], that solutions of (10) with E(m,ψ) → −∞
correspond to m→ 8π.

It may happen that all the variational solutions correspond (as seen in [12]) to
the solutions of (10) with m bounded by a constant depending on Ω. However,
in general, there exist solutions of (10) which are not necessarily maximizers
of (14) for larger m, e.g. for all m > 0 in annuli. The situation is different
in star-shaped domains: similarly as in [6] for the Poisson–Boltzmann–Emden
equation with the Dirichlet boundary condition on star-shaped domains, we have
the following nonexistence result

Proposition 2.9. If Ω is a bounded star-shaped domain in Rd, d ≥ 2,
then the equation (10) has no L∞(Ω) ∩H1(Ω) solution for m > mΩ with some
mΩ <∞.

Proof. We may suppose without loss of generality that Ω is star-shaped
with respect to the origin 0 ∈ Rd. The equation (10), as the steady state problem
for vt = ∇ · (κ(∇v + v∇ψ)) with v = ∆ψ, is equivalent to

(15) ∇v + v∇ψ = 0, v = ∆ψ,

in the class of solutions ψ of (10) in L∞(Ω) ∩ H1(Ω). Multiplying the first
equation in (15) by x, we get after an integration by parts

∫
Ω
∇v ·x dx+

∫
Ω
v∇ψ ·

x dx = 0. Then, another integration by parts and the symmetrization of the
second (double) integral leads to

−dm+
∫
∂Ω

v x · ν dσ

+
1
2

∫ ∫
Ω×Ω

v(x)v(y)
1

σd|x− y|d
{(x− y) · x+ (y − x) · y} dx dy = 0.
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Since x · ν ≥ 0 on ∂Ω for any star-shaped domain Ω, we arrive at the inequality

(16) −2dm+
∫ ∫

Ω×Ω

v(x)v(y)σ−1
d |x− y|2−d dx dy ≤ 0,

or

m2σ−1
d δ2−d ≤ 2dm,

where δ =diam Ω. In particular, this gives m ≤ 8π in bounded star-shaped
planar domains (irrespective of their size), and m ≤ 2dσdδd−2 ≡ C(Ω) in d-
dimensional (d ≥ 3) domains Ω, so that mΩ <∞ in these cases. �

The above proof may be extended to a class of domains which are not star-
shaped but rather “dumbbell-like”, cf. [3, remark after Theorem 1].

In the last part of this section we present some computations for radially
symmetric solutions which will sharpen the estimates for the energy E(m,ψ) in
radially symmetric planar domains.

Example 1. Consider the ball B = {x ∈ Rd : r = |x| < A}. It is clear that
the radially symmetric solution ψ of (10) is of the form ψ = ψD + ψ(A), where
ψD is the solution satisfying the Dirichlet condition on ∂B, ψD(A) = 0. Hence
we have

(17)
∫
B

ψ∆ψ dx = −
∫
B

|∇ψ|2 dx+
∫
B

ψ(A)∆ψ dx = −
∫
B

|∇ψ|2 dx+mψ(A),

and it suffices to estimate the value of ψ(A).
If d = 2 then

ψ(A) =
∫
B

∆ψ(y)
1
2π

log |x− y| dy ≤ m

2π
log(2A),

where |x| = A. Thus we obtain

E(m,ψ) ≤ m− 1
2

∫
B

|∇ψD|2 dx+
m2

4π
log(2A)

and lim infm↗8π E(m,ψ) = limm↗8π E(m,ψ) = −∞, because (∂/∂r)ψD(r) =
4Ar((Ar)2 + 8π/m− 1)−1, and

A−2

∫
B

|∇ψD|2 dx = 32π
∫ 1

0

r3
(
r2 +

8π
m
− 1

)−2

dr(18)

= −2m− 16π log
(

1− m

8π

)
→∞

when 0 < m→ mB = 8π, as in Example 1 in Section 4 of [6].

The result on the solvability of the problem (7)–(8) for Ω = R2 is qualitatively
the same as in Theorem 2.8:
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Example 2. Let Ω = R2. It is easy to check that there exists a family of
radially symmetric solutions with ∂ψ(r)/∂r = 4r(k+r2)−1, where the parameter
k > 0 is an arbitrary positive number. All these solutions have their mass equal
to m = 8π.

Integrating we obtain ψ(r) = 2 log(k + r2)− 2 log k + ψ(0), so that∫
R2
ψ∆ψ dx = 2π

∫ ∞

0

∆ψ(r)ψ(r)r dr(19)

= 2π
∫ ∞

0

8kr
(k + r2)2

(2 log(k + r2)− 2 log k + ψ(0))

= 16π(log k + 1)− 16π log k + 8πψ(0) = 16π + 8πψ(0).

Finally, we have

ψ(0) = 2π
∫ ∞

0

∆ψ(r)
1
2π
r log r dr =

8
k

∫ ∞

0

r log r
(1 + (r/

√
k)2)2

dr

= 8
(( ∫ 1

0

+
∫ ∞

1

)
z log z

(1 + z2)2
dz +

∫ ∞

0

1
2

z log k
(1 + z2)2

dz

)
= 2 log k,

and therefore E assumes all the real values from −∞ to ∞.
It is worth noting that in the case of Ω = R2 it is not reasonable to consider

the energy defined as in [6] because
∫

R2 |∇ψ|2 dx = ∞ for each nontrivial ψ.

Our last example in this section is an analysis of radially symmetric solutions
in planar annuli where the problem of existence of steady states with the pre-
scribed energy and mass has qualitatively a different character than in preceding
cases. Note that, besides radial solutions, there exist also nonradial solutions,
cf. [24], [30] and Corollary 2.10 below.

Example 3. Let Ω = {x ∈ Rd : 0 < a < r = |x| < A < ∞} be the
annulus with the inner radius a and the outer radius A. For radially symmetric
solutions of (10) the potential ψ is a radial function, ψ increases on [0,∞), and
ψ(x) = ψ(0) for |x| < a. Thus, for d = 2 we have

mψ(0) =
∫

Ω

ψ(0)∆ψ dx ≤
∫

Ω

ψ∆ψ dx ≤
∫

Ω

ψ(A)∆ψ dx = mψ(A),

and it is sufficient to note that

ψ(0) =
∫

Ω

∆ψ(y)
1
2π

log |y| dy ≥ m

2π
log a,

ψ(A) =
∫

Ω

∆ψ(y)
1
2π

log |x− y| dy ≤ m

2π
log(2A), |x| = A.

Indeed, m + (m2/4π) log a ≤ E(m,ψ) ≤ m + (m2/4π) log(2A), and there exists
`0 ∈ R such that for E/M2 ≤ `0 there are no radially symmetric steady states
of (7) satisfying (8) in the annulus. It is not difficult to see that there exists
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a number `1 ∈ R (`1 ≥ `0) such that if E/M2 ≥ `1, then there is a radially
symmetric steady state.

It is a bit more difficult to prove that `0 = `1 for annuli in two dimensions,
which follows from the existence of a single connected branch of radial solutions.
We refer the reader to Proposition 5.8 in [6] for details of that reasoning in the
case of the Dirichlet condition for ψ.

Comparing the results on radial solutions in Example 3 with Theorem 2.8 we
arrive at the following corollary expressing the phenomenon of symmetry break-
ing for solutions of the Poisson–Boltzmann–Emden equation in two-dimensional
annuli. This was already observed for solutions with the prescribed Dirichlet
homogeneous condition in [23], cf. also [24], [30], by delicate and seemingly more
difficult arguments compared to ours.

Corollary 2.10. There exist solutions of (10) which are not radially sym-
metric.

Proof. As was established in Example 3 for arbitrary radially symmetric
solutions one has E(m,ψ)m−2 ≥ m−1−C(Ω) with a constant C(Ω) depending
on the geometry of the annulus only. Therefore, the bound E/M2 ≥ −C(Ω)
holds. On the other hand, as in the proof of Theorem 2.8, we obtain variational
solutions with M = 1 and ep > 0 arbitrarily large, so that E = E/M2 = ϑ− ep

could be negative and arbitrarily large. Note that m = 1/ϑ cannot tend to 0 as
ep →∞ by the uniqueness of solutions for small m obtained in Proposition 2.6.
Therefore, there exist solutions of the MVP which are not radially symmetric.�

The same argument applies to the case of the Poisson–Boltzmann–Emden
equation with the Dirichlet boundary condition. We need to take into account
Proposition 2.1 in Part II of [12] and Proposition 5.8 in [6].

3. The higher dimensional problem

Our aim in this section is to analyze the existence of solutions of (8) in
d-dimensional domains Ω with d ≥ 3. The ultimate goal is to show that if
E/M2 ≤ `0 for some `0 ∈ R, then there are no solutions, while if E/M2 ≥ `1 for
some `1 ≥ `0, then there exist solutions, i.e. the situation is similar to that for
radially symmetric solutions in two-dimensional annuli.

Recall that Proposition 2.9 states that there are no solutions of (10) with
sufficiently large m (i.e. for m > mΩ with some mΩ ≤ 2dσd(diam Ω)d−2) in
bounded star-shaped domains Ω.

Let us begin with some particular examples, continuing Example 1 from the
preceding section.
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Example 1d. Recall that, based on computations in [14], [15], one can prove
that infm∈[0,mB) F(m) > −∞ in the d-dimensional balls, d ≥ 3. The radially
symmetric solutions form a single connected branch which can be parametrized,
and if 3 ≤ d ≤ 9, the solutions of (10) for given m are not, in general (i.e. for
moderate values of m), unique. Note also that mB < 2dσd if 3 ≤ d ≤ 9, and
mB = 2σd, ψmB

6∈ L∞ if d ≥ 10. Moreover, the endpoint of the branch of
bounded solutions corresponds to an unbounded solution with ∆ψ(r) = 2(d −
2)r−2 whose energy is, however, finite: E(2σd, ψ) > −∞. Here, again `1 = `0
but this constant could be different from that in [6] for the problem with the
Dirichlet condition.

Let us start with a simple observation that ∂ψ(r)/∂r = mσ−1
d r1−d for

every r ≥ A. Moreover, since limr→∞ ψ(r) = 0, we have ψ(A) = ψ(r) −∫ r
A
mσ−1

d ρ1−d dρ = −
∫∞
A
mσ−1

d ρ1−d dρ = −m(σd(d − 2))−1A2−d. This leads
to∫
B

ψ∆ψ dx =
∫
B

∆ψ(ψD +ψ(A)) dx = −
∫
B

|∇ψD|2 dx−m2(σd(d− 2))−1A2−d,

where ψD denotes a solution of (10) with the Dirichlet condition (see (17)), and
infm∈[0,mB) F(m) > −∞. Finally, the claimed existence of `0 = `1 follows.

Continuing Example 2 we note that

Example 2d. There is no radial solution of (10) with finite mass m > 0 in
the whole space Rd (and other radial solutions have their energy equal to −∞).

This follows from another formulation of the problem (10) (in the, so called,
integrated densities) suggested by [14] and [15]. Since this is not of primary
interest here, we skip the details referring to the equations (18)–(20) in [6] which
easily lead to the above mentioned nonexistence result.

An extension of the analysis performed in Example 3 (and in [6], Proposi-
tion 5.8) reveals a much richer structure of radially symmetric solutions of (10)
on higher dimensional annuli.

Example 3d. There exists `0 ∈ R and `1 ≥ `0 such that for E/M2 ≤ `0,
the problem (7)–(8) does not have solutions, and there is a solution for each
E/M2 ≥ `1. In general, solutions with given m > 0 are unique on “thin”
annuli (i.e. those with A/a close to 1), and they are not unique on “thick”
annuli. Moreover, the radially symmetric solutions are unique for sufficiently
small m > 0.

For the proof of former statement, we can easily see that

m−m2(2σd(d− 2))−1a2−d ≤ E(m,ψ) ≤ m−m2(2σd(d− 2))−1(2A)2−d,
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because ∫
Ω

ψ∆ψ dx ≥ mψ(0) = −m
∫

Ω

∆ψ(y)(σd(d− 2))−1|y|2−d dy

≥ −m2(σd(d− 2))−1a2−d.

The second bound is valid in arbitrary bounded domain Ω with diam Ω = 2A
because

(20)
∫

Ω

ψ∆ψ dx = −
∫ ∫

Ω×Ω

∆ψ(x)∆ψ(y)(σd(d− 2))−1|x− y|2−d dx dy

≤ −m2(σd(d− 2))−1(diam Ω)2−d,

and this holds for every (not necessarily stationary) configuration of particles,
so that

E

M2
≤ ϑ

M
− C(Ω)

for some C(Ω) > 0.
A more precise estimate can be given along the lines of the proof of Propo-

sition 5.8 in [6]. The a priori estimates there permit us to prove existence of
steady states on annuli using the topological Leray–Schauder principle.

Our next result concerns general star-shaped domains Ω in Rd where, as was
proved in Proposition 2.9, mΩ <∞.

Proposition 3.1. For each L∞(Ω)∩H1(Ω) solution of the problem (7) with
the condition (3) in a star-shaped domain Ω ⊂ Rd the inequality

E

M2
≥ − 2

d− 2
ϑ

M

holds.

Proof. We employ again (as in the proof of Proposition 2.9) the method
of moments. Since the stationary density has the Boltzmann form, the equation
for steady states of (1) becomes

∇u+
u

ϑ
∇ϕ = 0.

Multiplying this by x and integrating by parts, we get after the symmetrization,
similarly to Proposition 2.9∫

Ω

∇u · x dx+
1
ϑ

∫
Ω

u∇ϕ · x dx = 0,

−dMϑ+ ϑ

∫
∂Ω

ux · ν dσ

+
1
2

∫ ∫
Ω×Ω

u(x)u(y)
1

σd|x− y|d
{(x− y) · x+ (y − x) · y} dx dy = 0,
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and

−2dMϑ+ I ≡ −2dMϑ+
∫ ∫

Ω×Ω

u(x)u(y)σ−1
d |x− y|2−d dx dy ≤ 0.

Thus we arrive at the inequality I ≤ 2dMϑ which leads to

E = Mϑ− 1
2

∫ ∫
Ω×Ω

u(x)u(y)(σd(d− 2))−1|x− y|2−d dx dy

= Mϑ− (2(d− 2))−1I ≥Mϑ− d(d− 2)−1Mϑ

= −2(d− 2)−1Mϑ.

This means E/M2 ≥ −2(d− 2)−1ϑ/M , and returning to the energy relation (8):
(E/M2)m2 ≥ −2m/(d− 2). �

Theorem 3.2. If Ω is a bounded domain in Rd, d ≥ 3, then there exists
a constant `1 ∈ R such that for any E/M2 > `1, there is a nontrivial bounded
solution of the problem (3), (7)–(8).

Proof. There exist solutions of (10) with small m > 0, cf. [10, Theorem 1].
They belong to a continuous branch 〈µ, ψ〉 ∈ [0,∞) × L∞(Ω), ψ = µEd ∗ e−ψ

which emanates from 〈0, 0〉 with µ = m(
∫
Ω
e−ψ dx)−1 ≤ m|Ω|−1 because ψ < 0

in Ω by negativity of Ed. This is a consequence of the Leray–Schauder topological
principle applied to (a subspace of) L∞(Ω). Thus, the function ψ is uniformly
small in L∞(Ω) with respect to small m ≥ 0: |ψ|∞ = O(m) as m ↘ 0, and
E(m,ψ) = m+ (1/2)

∫
Ω
ψ∆ψ dx = m−O(m2). �

Remark 3.3. The nonexistence for E/M2 ≤ `0 in star-shaped domains
would follow from the result of Proposition 3.1 and from a lower bound for the
energy of the form F(m) ≥ αm with some α ∈ R. This, in turn, would be
a consequence of the uniqueness of solutions of (10) with small m > 0. Indeed,
then E(m,ψ) ≥ m − Cm2 for small m > 0. However, we can prove the latter
only for densities ∆ψ in an appropriate Morrey space containing Ld/2(Ω), see
Theorem 1(ii) in [10], and the remark after the proof of Lemma 5.3 in [6].

The uniqueness of solutions for small m > 0 for the problem in d-dimensional
star-shaped domains with the Dirichlet condition imposed on ψ is a consequence
of a result of X. Cabré and P. Majer cited in Theorem 1.4 in [21]. Note also
that there exist irregular solutions of the Poisson–Boltzmann–Emden equation
in d-dimensional domains, d ≥ 3, which have density singularities like c|x|−2,
but here c is a sufficiently large constant, cf. a discussion in [2], [21], and the
proof of Theorem 1(ii) in [10]. For instance, 2(d− 2)|x|−2 is the density of such
an unbounded solution in the ball in Rd, see Example 1d.

We believe that the examples of the structure of steady states described
for balls, radially symmetric solutions in annuli and in star-shaped domains are
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qualitatively generic for all bounded domains Ω ⊂ Rd, d ≥ 3. We formulate a
conjecture, analogous to that in Section 5.4 of [6].

Conjecture. For every bounded domain in Rd, d ≥ 3, there exist `0 ∈ R
such that the problem (3), (7)–(8) has a solution with given M > 0 and E ∈ R
provided E/M2 > `0, and it does not have solution if E/M2 < `0.

Evidently, if Ω ⊂ Rd is such that (10) has solutions for all m > 0, i.e.
mΩ = ∞, the analysis of the local behavior of the function F(m) ∼ m−Cm2 in
a vicinity of 〈0, 0〉 and a global lower bound for F(m) ≥ m−Cm2, will imply the
conjectured result, provided the set of the bounded solutions is a single connected
branch.

It would be also of interest to check for which domains infm∈(0,mΩ) F(m) < 0
because in such a case `0 < 0 holds. Of course, E(m,ψ) = m+ (1/2)

∫
Ω
ψ∆ψ ≤

m − C(Ω)m2 as was proved in (20), Example 3d, shows the above for domains
with mΩ sufficiently large or even mΩ = ∞.

4. Concluding remarks

It is well known that for the isothermal evolution problem a solution may
cease to exist if the initial data u0 is large enough, i.e.

∫
Ω
u0 dx > 8π in the two-

dimensional case or u0 is of high concentration if d ≥ 3. The latter result implies
that there exist initial data of arbitrarily small mass which lead to a finite time
blow-up of solutions. Such a blow-up is accompanied by an unlimited growth of
each Lp(Ω)-norm of solution, p > 1, and even limt↗t0

∫
Ω
u log u dx = ∞ for some

t0 <∞. We refer the reader to [3] for the precise announcements and proofs.

On the other hand, it was proved in [9] that in two-dimensional domains
there is no such a blow-up of solutions of the gravitational Streater’s model in
the sense of the above mentioned result, i.e. in particular,

∫
Ω
u log u dx remains

bounded.

Based on our results concerning the existence of steady states in Streater’s
models, one can conjecture that if d ≥ 3, the domain is star-shaped and E/M2

is initially very negative: E/M2 � −1, then the solution cannot be global in
time. Of course, such initial data do exist, for instance, the Gaussian densities
u0 (restricted to the domain Ω) satisfy this condition provided their variance is
small enough, i.e. they are highly concentrated. This conjecture is supported by
the observation that in higher dimensional domains there is no steady state to
which u(t) could accumulate as t → ∞. Therefore, one expects that either the
density u(t) of the solution blows up in a finite time (a gravitational collapse oc-
curs), or the temperature ϑ(t) becomes infinite (a thermal runaway takes place).
Unfortunately, we cannot prove this assertion in the general case.
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