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SOME RESULTS FOR JUMPING NONLINEARITIES

E. Norman Dancer

Abstract. We discuss the calculation of critical groups for jumping non-

linearities as the resonance set is crossed. In addition, we produce a counter-
example showing that even “generically” the resonance set is more compli-

cated than previously thought.

In this paper, we establish two main results. Firstly we obtain several new
formulae for critical groups of jumping nonlinearities (in the sense of [3]). In
particular, we improve considerably some results of ours in [4] and in partic-
ular answer a question in [21] (and generalize the main result of [21]). In a
much more general case, we construct an exact sequence in cohomology for the
change in critical groups as we cross the resonance set. Secondly, we construct a
counterexample showing that even geometrically the resonance set for jumping
nonlinearities is more complicated than previously thought (despite claims to the
contrary in the literature). Here the resonance set A0 is the set of (µ, ν) ∈ R2

for which

(1)
−∆u =µu+ + νu− in Ω,

u =0 on ∂Ω,

has a non-trivial solution. This set has been extensively studied (cp. [4], [5], [14],
[17], [26]) but is still poorly understood.
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Note that critical group computations are of interest for a number of reasons.
They are of use when one considers whether the equation

(2) −∆u = g(u)− f in Ω, u = 0 on ∂Ω

has a non-trivial solution for every f ∈ L2(Ω). Here g:R → R is continuous such
that y−1g(y) → µ(ν) as y → ∞(−∞). Indeed, if allow more general sublinear
perturbations of µu+ + νu−, a result in Section 3 of [8] shows that the critical
groups of the mapping u → −∆u− µu+ − νu− in a certain sense determine the
answer to this problem. Secondly, the critical groups can be used to give results
on the multiplicity of solutions of (2) for certain f (cp. [10]). Thirdly, the critical
groups are of importance in deciding if there are non-trivial solutions where
g(0) = 0 and f ≡ 0. Here we also need to make assumptions on the behaviour of
g near zero. Finally, as we will show in [11], these critical group computations
are important in Conley index calculations for competing species systems with
diffusion and large interactions. Note that in all these computations, we usually
need to assume (µ, ν) /∈ A0 so that the structure of A0 is of considerable interest.

1. The main index calculation

Let λ1 < λ2 < . . . denote the distinct eigenvalues of −∆ with Dirichlet
boundary conditions on Ω, let

A0 = {(µ, ν) ∈ R2 : −∆u = uµ+ + νu− in Ω,

u = 0 on ∂Ω has a non-trivial solution}

and let
fµ,ν(u) =

1
2

∫
Ω

|∇u|2 − µ(u+)2 − ν(u−)2.

It is well known that A0 is closed. (Basic results on A0 can be found in [4]).
Then, if (µ, ν) /∈ A0, the critical groups of zero, cj(fµ,ν , 0), are defined to

be the relative cohomology of T ≡ {u ∈ B1 : fµ,ν(u) ≤ 0} relative to T \ {0}
(for a suitable coefficient group). Here B1 is the unit ball in Ẇ 1,2(Ω) (see [3]).
Note that we are using here that, if (µ, ν) /∈ A0, zero is the only critical point
of fµ,ν and fµ,ν(0) = 0. This is also the cohomology of the Conley index of the
isolated critical point zero of −∇fµ,ν for the natural parabolic (or gradient flow
cp. Rybakowski [24]). Then, by homotopy invariance, these critical groups are
independent of (µ, ν) for (µ, ν) in a component of R2 \A0. Thus, if (µ, ν) lies in
a component of R2 \ A0 intersecting the diagonal µ = ν, the critical groups are
easy to calculate since the critical groups are then those of a linear map. Note
that the set A0 is still poorly understood which complicates the study of the
critical groups.

It is also easy to show that fµ,ν and fν,µ have the same critical groups. Thus
we may assume ν ≥ µ.
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Suppose now that λi is one of the distinct eigenvalues −∆ (with boundary
condition) where i > 1. It has been proved by several people (see [16] or [26]) that
in the “box” B̃ = {(µ, ν) : λi−1 < µ, ν < λi+1, ν ≥ µ}, there are two decreasing
continuous curves C1, C2 in B̃ both parametrized by µ, ν = hj(µ), j = 1, 2, both
passing through (λi, λi) and both having in their closure points with µ = λi−1 or
ν = λi+1, such that C1 ∪ C2 ⊆ A0, C2 is above C1 (not necessarily strictly) and
such that (µ, ν) /∈ A0 if (µ, ν) ∈ B̃ and ν < h1(µ) or ν > h2(µ). If ν < h1(µ) or
ν > h2(µ) it is easy to see that (µ, ν) lies in a component of R2 \A0 intersecting
the diagonal and hence the critical groups are easy to calculate. Note also that
the structure of A0 in the domain between C1 and C2 may be quite complicated
(see [1] or [4] or [17]). Our main result is the following. Here ki is the sum of
the multiplicities of the eigenvalues less than λi.

Theorem 1. Assume that λi−1 < µ < λi such that h1(µ) is defined and
ε > 0 such that (µ, ν) /∈ A0 if h1(µ) < ν < h1(µ) + ε. Then, for such ν,
cj+ki

(fµ,ν , 0) = H̃j−1(S̃) for j ≥ 1, where S̃ = {u ∈ Ẇ 1,2(u) : ‖u‖2 = 1, −∆u =
µu+ + h1(µ)u−} and cj(fµ,ν , 0) = 0 if j ≤ ki.

Remarks. Note that we need to use Alexander-Spanier cohomology (see
[19]) in the calculation of the cohomology of S because we are unsure S is a
“nice” space. We proved an equivalent theorem in [4] under a non-degeneracy
hypothesis on the second derivatives of fµ,ν on S. (This extra hypothesis has the
advantage that it ensures that (µ, ν) /∈ A0 if h1(µ) < ν < hi(µ) + ε.) In [4], we
also found that cki

(fµ,ν , 0) = 0 for ν > h1(µ) and (µ, ν) ∈ A0 even if ν ≥ λi+1.
Note that cki

(fµ,ν , 0) = G (where G is the coefficient group) if µ ≤ ν < h1(µ).
We could also use duality theorems to obtain results for homology. We could
also use a similar proof (plus the Alexander duality theorem in cohomology) to
obtain an analogous formula for the critical groups for ν = h2(µ)− t where t is
small and positive. (The result is for homology in this case.) This was already
proved in [21]. As they note, it seems difficult to extend their method to our case.
As in [21], we could easily extend our method to cover the cases of decreasing
reasonably smooth curves µ = k1(s), ν = k2(s) approaching (µ, h1(µ)) in R2 \A0

with little change in the proof . It seems this is not a great improvement in
applications. We could use prove similar results for other boundary conditions.

Let us now give the proof (aside from two technical lemmas). Let Ni denote
the eigenspace corresponding to the eigenvalue λi and let Zi be its orthogonal
complement in Ẇ 1,2(Ω). We write u = n + z where n ∈ Ni, z ∈ Zi and let P be
the corresponding orthogonal projection onto Ni. Then, as in [4], one can easily
see from the contraction mapping theorem that if λi−1 < µ, ν < λi, the equation

(I − P )(−∆(w + n)− µ(w + n)+ − ν(w + n)−) = 0
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has a unique solution w = Sµ,ν(n) in Zi where Sµ,ν is positive homogeneous in
n and continuous in (µ, ν, n). Let

(3) Fµ,ν(n) ≡ P (−∆(Sµ,ν(n) + n)− µ(Sµ,ν(n) + n)+ − ν(Sµ,ν(n) + n)−)

and f̃µ,ν(n) = fµ,ν(n + Sµ,ν(n)). As in [4], we see that Fµ,ν is the gradient of
f̃µ,ν and that

cj(fµ,ν , 0) = cj−ki
(f̃µ,ν , 0) = H̃j−ki({n ∈ Ni : f̃µ,ν(n) < 0, ‖n‖ = 1})

(and is zero if j ≤ ki). The last inequality assumes 0 is not a local minimum of
f̃µ,ν . On the other hand, it is easy to see that S̃ is homeomorphic to Si = {n ∈
Ni : ‖n‖ = 1, Fµ,h1(µ)(n) = 0} and hence we see that it suffices to prove our
result for Fµ,ν . Let Mµ,ν = {n ∈ Ni : ‖n‖ = 1, f̃µ,ν(n) ≤ 0}.

We will prove two technical lemmas

Lemma 1. f̃µ,ν(n) is strictly decreasing in ν if n 6= 0.

Lemma 2. If hi(µ) < ν1 < ν2 < h1(µ) + ε, the natural inclusion of Mµ,ν1

into Mµ,ν2 is a homotopy equivalence and Mµ,ν1 is homotopy equivalent to its
interior.

Remark. Note that Mµ,ν1 ⊆ Mµ,ν2 .

Assuming these lemmas, we complete the proof of Theorem 1. Note that it
is proved in [4] that if ν < h1(µ), 0 is the unique global minimum of f̃µ,ν and
hence by continuity f̃µ,h1(µ)(n) ≥ 0 on Ni. Since f̃µ,ν(n) = 0 if n is a critical
point of f̃µ,ν (by the homogeneity), we see that f̃µ,h1(µ) ≥ 0 on the unit sphere
N1

i of Ni and the zeros are the solutions of Fµ,h1(µ)(n) = 0 on N1
i (that is Si).

Suppose νi are decreasing in (h1(µ), h1(µ) + ε) and converge to h1(µ). It is
easy to see that

⋂
Mµ,νi

= Mµ,h1(µ). (Here we are using Lemma 1.) Since the
Mµ,νi

are compact and since the natural inclusion induce isomorphisms of the
cohomology of the Mµ,νi , we see from theorems on inverse limits in Alexander
Spanier cohomology (cp. Massey [19, p. 238]) that Mµ,νj

(and hence its interior
which is {n ∈ N1

i : f̃µ,νi
(n) < 0}) has the same cohomology as S̃i and our result

follows. (A similar argument appears in [12].) Hence it suffices to prove the two
lemmas.

Proof of Lemma 1. The main difficulty is to prove that if ‖n‖ = 1

(4)
∂

∂ν
f̃µ,ν(n) = −1

2
‖(n + Sµ,ν(n))−‖22.

If this is true, we see that ∂f̃µ,ν(n)/∂ν ≤ 0 and either our claim follows or
n + Sµ,ν(n) ≥ 0 almost everywhere on Ω. If n + Sµ,ν(n) ≥ 0 on Ω, our equation
for Sµ,ν becomes

(I − P )(−∆(n + Sµ,ν(n))− µ(n + Sµ,ν(n)) = 0.
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Since I − P commutes with −∆ and the identity map, this equations reduces
to finding a solution w = Sµ,ν(n) ∈ Zi of −∆w − µw = 0 (with the boundary
condition). Clearly w = 0 is a solution. Since the solution is unique, Sµ,ν(n) = 0.
Then n + Sµ,ν(n) = n which is non-zero. This contradicts our claim that n =
n + Sµ,ν(n) is non-negative on Ω since n does not vanish identically and n is
orthogonal to φ1.

It remains to prove (4). As usual, with jumping nonlinearities we have dif-
ficulty with smoothness, in particular, we are unsure that Sµ,ν is differentiable
in ν. Since all the terms in (3) are Lipschitz in µ, ν, n, it is easy to see that
Sµ,ν(n) is Lipschitz in ν uniformly for n with ‖n‖ = 1. Then

A ≡ f̃µ,ν1(n)− f̃µ,ν(n) = fµ,ν1(n + Sµ,ν1(n))− fµ,ν(n + Sµ,ν(n))

= −1
2
(ν1 − ν)‖(n + Sµ,ν1(n))−‖22 + fµ,ν(n + Sµ,ν1(n))− fµ,ν(n + Sµ,ν(n))

(by the formula for f). Now f is C1 in u as is easily seen. Hence we see that

A = − 1
2
(ν1 − ν)‖(n + Sµ,ν1(n))−‖22

+ f ′µ,ν(n + Sµ,ν(n))(Sµ,ν1(n)− Sµ,ν(n)) + o(‖Sµ,ν1(n)− Sµ,ν(n)‖2)).

Now, since Sµ,ν(n) is Lipschitz in ν, the last term is o|ν1 − ν|. Moreover, the
second term is zero. This follows because Sµ,ν1(n) − Sµ,ν(n) ∈ Zi and the
equation solved by Sµ,ν(n) can be rewritten as f ′µ,ν(n+Sµ,ν(n))w = 0 if w ∈ Zi.

Hence we see that

−(ν − ν1)−1(f̃µ,ν(n)− f̃µ,ν1(n)) =
1
2
‖(n + Sµ,ν1(n))−‖22 + o(1)

and the differentiability in ν and the formula for the derivative follow easily.
This completes the proof of Lemma 1. �

Proof of Lemma 2. Suppose h1(µ) < ν < ν1 < h1(µ) + ε. Since ∇f̃µ,ν =
Fµ,ν , we see that ∇f̃µ,ν(n) is non trivial if ‖n‖ = 1 and (µ, ν) ∈ R2 \ A0. In
particular, if in addition, we assume that f̃µ,ν(n) = 0, then some tangential
component of ∇f̃µ,ν(n) is non-zero (since the equation f̃µ,ν(tn) = t2f̃µ,ν(n) for
t ≥ 0 ensures that the radial component is zero). Now it is easy to see that
f̃µ,ν is C1 in n and hence by the implicit function theorem, Mµ,ν = {n ∈ N1

i :
f̃µ,ν(n) ≤ 0} is a C1-manifold with boundary (possibly not a connected manifold)
with interior {n ∈ N1

i : f̃µ,ν(n) < 0}.
Now, by the proof of Lemma 1, ∂f̃µ,ν(n)/∂ν exists and is continuous in

µ, ν, n. Now as in the construction of tubular neighbourhoods (see [2]), we can
find a C1 vector field z defined on the boundary of Mµ,ν which is close to the
normal to ∂Mµ,ν in N1

i (and hence ∂f̃µ,ν(n)/∂z 6= 0 on the boundary ∂Mµ,ν).
Since points near ∂Mµ,ν can be then uniquely written in the form n + tz(n)
where n ∈ ∂Mµ,ν and t is small (as in [2]), we see by deforming along these lines
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that int Mµ,ν has the homotopy type of Mµ,ν . Moreover, if ν1 is near ν, we see
by applying the implicit function theorem to f̃µ,ν1(n) = 0 that ∂Mµ,ν1 can be
written in the form {n + t(n, ν1)z(n) : n ∈ ∂Mµ,ν} where t is continuous and
t(n, ν) = 0. Hence we can easily deform along n + tz(n) to see that if ν1, ν2 are
close to ν and ν1 < ν2 the natural inclusion of Mµ,ν1 into Mµ,ν2 is a homotopy
equivalence as required. This completes the proof of Lemma 2. �

Remark. One can use compactness to show that ‖(n+Sµ,h1(µ)(n))−‖2 and
‖(n+Sµ,h1µ(n))+‖2 have positive lower bounds on N1

i , therefore one can prove a
similar result even for directions close to the positive quadrant. This idea could
also be used to improve slightly the main result in [21]. Note that the proof
could be simplified a little for directions in the interior of the positive quadrant.

2. A partial generalization

In this short section, we generalize the result of Section 1 to cases where we
cross other curves in A0. The idea here is to obtain an exact sequence relating the
cohomology index for (µ, ν + ε) and (µ, ν − ε). Note that one can use the proof
of Theorem 1 to relate the cohomology index for (µ, ν + ε) to the homology
of {n ∈ N1

i : f̃µ,ν(n) ≤ 0} but in the general case this does not seem a very
convenient object to compute with.

More formally, we assume that (µ, ν) ∈ A0 and there is an ε > 0 such that
(µ, ν + t) 6= A0 if 0 < |t| < ε (though we could generalize this to directions in
the first quadrant or even slightly outside the first quadrant). Choose λi, λj so
λi < µ, ν < λj . Then the equation (1) can be reduced by a Liapounov–Schmidt
reduction to a finite dimensional problem F̃µ,ν(w) = 0 where w ∈ Y . Here
Y is the subspace spanned by the eigenvectors corresponding to eigenvalues in
(λi, λj). As before, F̃µ,ν is the gradient of f̂µ,ν . We assume that f̂µ,ν |Y 1 has
zero as an isolated critical value where Y 1 is the unit sphere in Y . We suspect
that this assumption is independent of the reduction. Note that it always holds
under a regularity assumption like that in Section 1 of [4].

Theorem 2. Under the above assumptions, there exist maps cn, γn, kn so
the following sequence is exact

iq−→ H̃q(Σh(−∇f̂µ,ν |Y 1 , S))
jq−→ cq(f̂µ,ν+ε, 0)

kq−→ cq(f̂µ,ν−ε, 0)
iq+1−→ H̃q+1(Σh(−∇f̂µ,ν |Y 1 , S))

jq+1−→

Here Σ denotes a suspension, the gradient is the gradient on Y 1 and S is a
neighbourhood of the critical points of f̂µ,ν |Y 1 corresponding to the critical value
zero (and this homotopy index is for the map on Y 1).

Remark. We will discuss after the proof further properties of the maps
kq etc. For example, the kq are effectively induced by an inclusion. Theorem 2
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makes it rather difficult for the critical groups of f̂µ,ν (and thus of fµ,ν) not to be
different for ν replaced by ν ± ε unless h(−∇f̂µ,ν |Y1 , S) has trivial cohomology.
Recall that the critical groups of f̂µ,ν and fµ,ν are the same up to a shift in
indices.

Proof. Note that Lemmas 1 and 2 of Section 1 continue to hold for this
case (with the same proof). By the same argument as there, we see up to
isomorphism, h(−F̃µ,ν+ε, 0) has the same cohomology except (for a shift of 1)
as that of {w ∈ Y 1 : f̂µ,ν(w) ≤ 0}. Here we need to see Alexander–Spanier
cohomology.

We use a similar argument but with Steenrod homology to prove that (up the
same shift of 1) h(−∇f̂µ,ν−ε, 0) has the same Steenrod homology as Q̃ = {w ∈
Y 1 : f̂µ,ν(w) < 0}. We need to explain this a little more. Much as before, if εi

decrease to zero Qi = {w ∈ Y 1 : f̂µ,ν−εi
(w) ≤ 0} is compact, increasing in i and

their union is Q̃i. Hence the homology of Q̃ is the direct limit of the homology
of Q̃i (for Steenrod homology). Here we use Lemma 9.1 in [19]. We then argue
as before to deduce that Q̃i and Q̃ have the same Steenrod homology for large i.
Moreover, we can deform Q̃ along gradient to show it has the homotopy type of
a “nice” compact set. Hence, since the homology is finitely generated, we can
use duality between homology and cohomology for compact spaces (cp. Massey
[19, Corollary 4.18]) to see that Q̃i and Q̃ have the same Alexander–Steenrod
cohomology for large i for Z coefficients (and hence for all coefficients).

On the other hand, if zero as an isolated critical point of f̂µ,ν |Y 1 , we can
argue as in [7] and [8] to deduce that the homotopy index of −∇f̂µ,ν on S is
usually obtained as follows. We choose ε > 0 such that zero is the only critical
value of f̂ |Y 1 in [−ε, ε]. We can then argue as in the proof of Proposition 3.5
in [12] to deduce that the cohomology of the homotopy index of −∇f̂ on S is
the relative Alexander–Spanier cohomology of {f̂ ≤ 0} ∩ U , {f̂ ≤ 0, x is not a
critical point f̂ |Y 1 with f̂(x) = 0} ∩ U where U is a suitable neighbourhood of
the critical set corresponding to the critical point zero in Y 1. By excision we can
take U = Y 1. Note that {x ∈ Y 1 : f̂ ≤ 0, x is not a critical point with f(x) = 0}
has the same cohomology as {x ∈ Y 1 : f̂ < 0} since both can be deformed by the
flow onto f̂ ≤ −ε/2. Hence we see that the cohomology of the homotopy index
of −∇f̂ on S is simply the relative cohomology of {x ∈ Y 1 : f̂ ≤ 0} relative to
{x ∈ Y 1 : f̂ < 0}. Thus our theorem is really the cohomology sequence for the
pair (f̂ ≤ 0, f̂ < 0). (Note that we suspend the homotopy index on Y 1 to get
the dimensions to be correct). The proof need slight modifications for the case
where f̂ < 0 is empty (that is 0 is a local minimum of f̂µ,ν) but it is easy to see
the result still holds. �

Remarks. There are many special cases which are much simpler. If the
critical groups are trivial for ν−ε, the exact sequence implies the critical groups
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for ν + ε of f̃µ,ν+ε are simply those of a suspension of the map −∇f̂ on S. A
similar result holds if the critical groups are trivial for ν + ε. With a little care
it can be shown that Theorem 1 (and the Perera–Schechter result) are a special
case of this theorem (but under a slightly additional assumption on f̂ |Y 1 .)

If the homotopy index −∇f̂ |Y 1 on S is trivial our result implies that the
critical groups are the same for ν + ε and ν − µ. Conversely, it in general seems
rather difficult (but maybe not impossible) for the critical groups to be the same
for ν ± ε if the homotopy index of −∇f̂ |Y 1 on S is non-trivial. We need to
be in the situation where {x ∈ Y 1 : f̂(x) ≤ 0} and {x ∈ Y 1 : f̂(x) < 0}
have the same cohomology but the natural inclusion of these spaces does not
induce in isomorphism of cohomology. (For example this can only occur if the
reduced cohomology of the spaces is not-trivial at two adjacent levels j, j + 1.)
Note here that the mapping kq is up to isomorphism the map of H̃q−1{f̃ ≤ 0}
of H̃q−1{f̂ < 0} induced by inclusion. We now consider the calculation of
H̃(h(−∇f̂ , S)). If S̃i are the components of S (assumed to be only finitely many),
it is easy to see from Mayer-Vietoris theorems as in [19]) that H̃(h(−∇f̂ , S)) =⊕

i H̃(h(−∇f̂ , S̃i)). Thus the calculation reduces to components. If S̃i is a
non-degenerate C1-manifold of dimension ji and k̃i unstable directions in Y 1

and either S̃i is a point (or is simply connected) or the coefficients are Z2 or
k̃i = 0 or n− ji − 1, then the Thom isomorphism theorem ensures (cp. Spanier
[27, p. 259]), that H̃j(h(−∇f̂ , S̃i)) = Hj−eki(S̃i). (This is much easier to prove
if S̃i is a point and, in general we need Z2 coefficient because of orientability
problems. If k̃i = n − ji − 1, we also need to replace cohomology by homology
in the right hand side of our formula.) Thus we can calculate the cohomology
of the homotopy index in a number of cases. Moreover, if S̃i consists of isolated
non-degenerate points (or more generally S̃i are non-degenerate manifold caused
by a symmetry group which acts transitively on S̃i) one can argue as in the proof
of Theorem 2 in [4] to prove that (µ, ν + t) /∈ A0 if 0 < |t| < ε. Hence in this
case, one of the assumptions in Theorem 2 automatically holds. We need to be
careful in the interpretation of the theorem if Y is one dimensional.

Corollary 1. Under the assumptions of Theorem 2,

degree(−F̃µ,ν+ε, 0)− degree(−F̃µ,ν−ε, 0) = degree(−∇f̂ |Y 1 , S).

Proof. This follows from the proof of Theorem 2 since (by [24, p. 205])
χ(f̂ ≤ 0) − χ(f̂ < 0) = χ(f̂ ≤ 0/f̂ < 0) and since deg (−∇f̃µ,ν±ε, 0) =
χ(f̂µ,ν±ε|Y 1 ≤ 0) − 1 (for example, see [7, p. 14]). Here χ denotes the Euler
characteristic. �

Remark. As usual, we could reformulate this in terms of degrees on L2(Ω).
Note that one has to be careful in the interpretation of the degree on Y 1 if Y is
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one-dimensional. This case is uninteresting because the result is well known in
this case.

Lastly for this section we want to point out that the three solution result
in [11] holds under much weaker assumptions on the linearity. It suffices to
assume that the nonlinearity f(y) is globally Lipschitz and y−1f(y) → µ(ν) as
y →∞ (y → −∞). The proof of this uses weak convergence and a modification
of ideas of Katriel (see [15]) to prove that the global reduction result in [11] is
still valid for large t and the proof continues as before. We will publish this
elsewhere because the ideas are also useful for improving the applications of
results on bifurcation from a simple eigenvalue and bifurcation from infinity for
partial differential equations. Note that there are a number of results on at least
3 solutions in [18] with no Lipschitz condition on f at all but the 3 solution result
in [11] covers some cases of (µ, ν) which are not covered by their result.

3. A counter-example

As before, we consider the problem

(5)
−∆u = µu+ + νu− in Ω,

u = 0 on ∂Ω.

Let T = {(µ, ν, u) : (µ, ν, u) solves (5), ‖u‖1,2 = 1}. We say that (µ̃, ν̃, ũ) ∈ T

is regular if −∆ − (µ̃χ̃
eu>0 + ν̃χ

eu<0)I (plus the boundary condition) has only a
one-dimensional kernel in Ẇ 1,2(Ω). (Note that the kernel is non-trivial because
it contains u.) Here χ̃D denotes the characteristic function of the set D. The
interest in regularity is that it implies that if µ̃, ν̃ > λ1 then near (µ̃, ν̃, ũ),
T can be written as (µ, ν(µ), u(µ)) where ν(µ̃) = ν̃, u(µ̃) = ũ and ν and u are
continuous in µ and ν(µ) is decreasing in µ (cp. [22] or [23] or [25]). Alternatively
it could be parametrized locally by ν. Thus, if every point of T off the diagonal
is regular, T has a simple structure. Note that the set A0 defined in Section 1 is
the image of T under the natural projection on the first two coordinates. We say
that T is regular if every point of T off the diagonal is regular. There have been
several attempts ([22], [25]) to prove that, for generic Ω, T is regular. We give
a counterexample showing that this is false. In fact, we prove somewhat more.
Our example show that for an open set of Ω in a natural topology, the local
representation of T described above must fail at some point of T . (Thus near
this point, T is no longer a continuous curve or the curve must “bend back”.)
Hence the structure of T is not so simple.

Our construction is based on a simple idea. We find an example where
λi−2 < λi−1 < λi < λi+1 where λi−1 and λi are simple and a closed semicircle T̂

contained in the interior of the “box” {λi−2 < µ, ν < λi+1, ν ≥ µ} such that the
“ends” of T̂ are on the diagonal and (λj , λj) for j = i−1, i are inside T̂ and such
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that T̂ ∩ P̂ T consists of 6 points each of which is regular. Here P̂ is the natural
projection of R2 × Ẇ 1,2(Ω) onto R2. Then there must be a point of P̂ T inside
T̂ not on the diagonal where regularity fails. To see this, one simply notes that
near a regular point T is a simple curve parametrized by µ (where ν is decreasing
in µ) and hence if regularity always hold this curve must continue till it hits the
diagonal where µ = ν. (Note that it is easy to see there are no compactness
troubles.) Thus if regularity holds off the diagonal, we have six distinct curves
in T meeting the diagonal. They can only meet the diagonal at (λi−1, λi−1) or
(λi, λi) (because if (µ, µ) ∈ A0, µ is an eigenvalue of −∆). On the other hand
near a simple eigenvalue, it is well known that T consists of 2 non-intersecting
curves (cp. [14]). Hence we have a contradiction and our claim follows. Finally,
to complete our example, it is easy to see that our assumptions persist under
smooth perturbations of Ω and hence we have the required example. (The only
non-obvious point is that regular solutions persist under smooth perturbations.
We will sketch a proof of this a little later.) Note that our argument would not
be affected if there were other non-regular points on T̂ .

What we actually do is to construct our example is to construct an example
as above except that instead of having two simple eigenvalues λi−1, λi we have a
double eigenvalue between λi−2 and λi+1. We then use a smooth perturbation
of Ω and a theorem of Uhlenbeck [28] (or Micheletti [20]) to split the eigenvalue.
As before, the rest of the structure is unchanged in this perturbation.

The example we now require is in fact the one in Section 3 of [4] though we
need to make extra calculations to check that our construction is valid. We will
produce an example of a double eigenvalue µ̂ such that the function ‖u+‖22 on
{u : −∆u = µ̂u ∈ Ω, u = 0 on ∂Ω, ‖u‖2 = 1} has 6 critical points each of which
is non-degenerate in the sense of [4]. Then, by the theorem in Section 2 of [4], T

near (µ̂, µ̂) will consist of 6 non-intersecting curves. We need to check that near
(µ̂, µ̂) each of the points on these curves is regular. If we prove this, we can then
simply make the semicircle T̂ a small semicircle centre (µ̂, µ̂) and we will have
the required example.

Thus our example reduces to some rather tedious checking (which is compli-
cated by limited smoothness of our maps). However, we will do this which will
give our example.

Firstly, we need to check that if we have a regular point of T and we perturb
the domain, there is a point of T for the perturbed Ω nearby. (Standard linear
operator theory ensures it will still be regular.) To do this we need to consider
the known construction of the curve near (µ̃, ν̃, ũ). Let W = {u ∈ Ẇ 1,2(Ω) ∩
W 2,2(Ω) : ‖u‖2 = 1}. Then the curve is obtained by solving the equation
(u, ν) ∈ W × R → −∆u − µu+ − νu− = 0 for (u, ν) as a function of µ near
(ũ, ν̃) and µ near µ̃. The key point is to use the contraction mapping theorem
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and note that the map (û, τ) → −∆û− µ̃χ̃
eu>0û− ν̃χ̃

eu<0û −τ(ũ)− is a bijection
as a map of Y × R to L2(Ω) where Y is the tangent space to W at ũ. Since
(−∆−(µ̃χ̃

eu>0−ν̃χ̃
eu<0)I)−1 will change continuously under domain perturbation

(cp. [9]), it is rather easy to check the contraction theory argument will still
hold for the perturbed domain (and indeed the neighbourhoods have size locally
independent of Ω). A similar but more complicated argument appears in Step 2
of the proof of Theorem 3 in [9]. This completes the proof of this claim.

Secondly, we need to know that if µ̂ is a multiple eigenvalue of −∆ − µ̂I

(plus the boundary condition on Ω) and if u0 is a non-degenerate critical point
of

∫
Ω
(u+)2 on the unit sphere Ñ in N

bµ = {u ∈ W 2,2(Ω) : −∆u = µ̂u, u = 0
on ∂Ω} then the branch of solutions obtained are regular solutions. This is not
difficult but we need to consider the construction of the branch more carefully.
Firstly note, as ever, we need only prove the regularity for the reduced operator
Fµ,ν where we make a Liapounov–Schmidt reduction to the space N

bµ. In other
words, we need to prove the kernel is one-dimensional. The construction of the
solutions is as follows. Let k = ‖u+

0 ‖22 and note that 0 < k < 1. We look for
solutions u = u0 + o(1), µ = µ̂ + ta, ν = µ̂ + tb where t is positive and small,
a2 + b2 = 1 and a‖u+

0 ‖22 + b‖u−0 ‖22 is close to zero. In this case, it is shown in [4]
that the equation Fµ,ν(n) = 0 becomes

−tP (a(n + Stn)+ + b(n + Stn)−) = 0

where Stw satisfies a Lipchitz condition of o(t) in w and P is the orthogonal
projection onto N

bµ.
To check the kernel we can remove the factor t. Note that our operator is

differentiable because at a solution n + Stn will only vanish on a set of measure
zero. Hence we can use a similar but easier argument to the proof of Theorem 2
in [4] to check that for small t the derivative in n is P ((a0χ̃u0>0 + b0χ̃u0<0)I) +
o(1). Here a2

0 + b2
0 = 1, a0‖u+

0 ‖22 + b0‖u−0 ‖22 = 0.
Hence we only have to prove that the map n → P ((a0χ̃u0>0 +b0χ̃u0<0)n) has

only a one dimensional kernel. This is exactly what is meant by non-degeneracy
and hence we have proved our claim.

It remains to check that for our example in [4] the second eigenvalue µ̂ has
the property that the map ‖u+‖22 on the unit sphere in N

bµ has exactly 6 critical
points and they are non-degenerate. We showed in [4] that the eigenspace N

bµ is
close to the subspace N̂ spanned by Φ1(x) = (φ1(x) − φ3(x))/

√
2 and Φ2(x) =

(φ1(x) − 2φ2(x) + φ3(x))/
√

6. Here we mean close in Lp(B̃) for B̃ a large ball
for all p with p < ∞. Note that the normalization for Φ2 is in error in [4].
We explain our notation here. Ω is close to B1 ∪ B2 ∪ B3 where Bi are disjoint
symmetrically placed balls of radius 1. Moreover, φi(x) is the normalized positive
first eigenfunction on Bi (and defined to be zero elsewhere). Moreover, our
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function F̃ = ‖u+‖22 on N
bµ is close to the corresponding function F̂ = ‖u+‖22

on N̂ . (There are some technical issues here on closeness which we return to
at the end of the proof.) We will prove that F̂ has exactly 6 critical points
on the unit sphere N̂1 in N̂ and each of these is non-degenerate. The result
will follow from this and some simple perturbation arguments. Because of the
rotational symmetry of our problem (rotations though an angle of 2π/3) it will
suffice to prove the non-degeneracy at 2 points on separate orbits. This is all
a rather tedious calculation. Note that N̂1 can be written as {sin sΦ1(x) +
cos sΦ2(x) : 0 ≤ s ≤ 2π}. Note also that F̂ is the sum of three terms, one from
each ball. Denote these terms by F̂i for i = 1, 2, 3. We split our computation
into different ranges of s noting that by the rotational symmetry we need only
consider an interval of s of length 2π/3. For −π/2 ≤ s ≤ π/2, it is easy to
see that Φ̂(s, x) = sin s Φ1(x) + cos sΦ2(x) ≤ 0 on B2 and hence F̂2 ≡ 0 if
−π/2 ≤ s ≤ π/2. On the other hand Φ̂(s, x) = ((1/

√
2) sin s+(1/

√
6) cos s)φ1(x)

on B1. Hence we easily see that F̂1 = (((1/
√

2) sin s+(1/
√

6) cos s)+)2. Similarly
F̂3 = ((−(1/

√
2) sin s + (1/

√
6) cos s)+)2.

Hence we see that on [−π/6, π/6]

F̂ (s) =
(

1√
2

sin s +
1√
6

cos s

)2

+
(
− 1√

2
sin s +

1√
6

cos s

)2

= sin2 s +
1
3

cos2 s = 1− 2
3

cos2 s.

In fact that s = 0 is a critical point comes from a reflection symmetry. It is an
easy computation that s = 0 is a non-degenerate critical point and is the only
critical point on [−π/6, π/6]. On [π/6, π/2], (−1/

√
2) sin s + (1/

√
6) cos s < 0

and hence F̂3 = 0. Hence on [π/6, π/2], F̂ (s) = ((1/
√

2) sin s + (1/
√

6) cos s)2

which has critical points where (1/
√

2) sin s + (1/
√

6) cos s = 0 or (1/
√

2) cos s−
(1/
√

6) sin s = 0 that is tan s =
√

3 or −1/
√

3. The second is clearly impossi-
ble for s ∈ [π/6, π/2] while the first give a unique solution of π/3. Hence we
have exactly 2 critical points on [−π/6, π/2]. An easy computation shows that
F̂ ′′(π/3) 6= 0. From this and our symmetry our claim on critical points follows.
However, we need a little more. An easy check shows that at all our critical
points Φ̂(s) is non-zero on all of B1 ∪B2 ∪B3. We will need this for our pertur-
bation process. In fact, because of the symmetries (which are retained on Ω) we
need only check this for the two critical points above. For s = 0, this is obvious
while it is obviously true for s = π/3 on B1, since F ′

1(π/3) > 0 and it obviously
true on B2. On B3, Φ̂(π/3) = (−(1/

√
2) sin(π/3)+(1/

√
6) cos(π/3))φ3(x) which

is non-zero on B3 which proves our claim.
Our map of interest is really the map F̃ =

∫
Ω
(u+)2 on Nµ. Then F̃ ′(u)h =

2
∫
Ω

u+h and F̃ ′′(u)(h, k) = 2
∫
Ω

χ̃u>0hk where the second derivative is only
known to exist if {x ∈ Ω : u(x) 6= 0} has measure zero. Now it is easy to see
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that critical points of F̃ can only occur near those of F̂ . Conversely, it is easy
to see that there are critical points of F̃ near those of F̂ . (This was implicitly
proved in [4]). Our argument below shows that any critical point of F̃ near
a local minimum of F̂ is a local minimum of F̃ (and a similar result holds for
local maximum). Hence the local uniqueness of the critical points of F̃ follows
(and hence F̃ has exactly 6 critical points on the sphere).

At the critical points of F̂ corresponding to s1 = 0 or s2 = π/3, our earlier
results shows that Φ̂(si) is non-zero almost everywhere on B1 ∪ B2 ∪ B3 and
hence F̂ ′′(Φ̂(si)) exist for i = 1, 2 and

F̂ ′′(Φ̂(si))(h, k) = 2
∫

B1∪B2∪B3

χ̃
bΦ(si)>0hk.

Similarly, if s is near si such that Φ(s) is a critical points of F̃ , we know from
general theory (as in [4]) that Φ(s) only vanishes on a set of Ω of zero measure.
Thus F̃ ′′(Φ(s)) exists and

F̃ ′′(Φ(s))(h̃, k̃) = 2
∫

Ω

χ̃Φ(s)>0h̃k̃.

Now, if ‖h̃‖2 = ‖k̃‖2 = 1 where h̃, k̃ ∈ N
bµ, then as in [4] standard elliptic theory

ensures that we have a bound for ‖h̃‖∞+‖k̃‖∞ which is independent of µ̂ and Ω
(provided we have a bound for µ̂). Hence we can use Holder’s inequality to show
that, given ε > 0 there is a δ > 0 independent of Ω such that |2

∫
U χ̃Φ(s)>0h̃k̃| < ε

if m(U) < δ, h, k ∈ N
bµ, ‖h‖2 = ‖k‖2 = 1. Similar properties hold for F̂ ′′(Φ̂(si)).

Hence we easily see that if s is near si F̃ ′′(Φ(s))(h̃, k̃) is uniformly close to
F̂ ′′(Φ̂(si))(h, k) where ‖h̃‖2 = ‖k̃‖2 = ‖h‖2 = ‖k‖2 = 1, h̃, k̃ ∈ N

bµ, h, k ∈ N̂ and
h and h̃ and k and k̃ are corresponding elements of N

bµ and N̂ . Note that we
have used here the Φ̂(si) is non-zero almost everywhere on B1 ∪B2 ∪B3. Since
F̂ |

bN1 has only non-degenerate critical points, it follows that F̃ |N1
bµ

has only non-

degenerate critical points (which proves our non-degeneracy condition for F̃ ).
Moreover, if Φ(s) is a critical points of F̃ with s near si, Φ(s) is a local minimum
F̃ |N1

bµ
if i = 1 and is a local maximum if i = 2. This completes our construction.

Remarks. (1) If one examines our construction, one sees that in the region
of A0 where we show regularity fails, we see that the dimension of the kernel of
−∆−(µχ̃u>0+νχ̃u<0)I (with the boundary condition) is at most 2-dimensional.
Thus, in this case, one might hope the behaviour of T is still fairly simple. (Lo-
cally our problem is equivalent to a bifurcation problem with a one-dimensional
kernel.)

(2) Our construction is quite flexible. It need not be based on balls. It can
easily be modified to obtain examples on star shaped domains and for a number
of other boundary conditions. (If the boundary conditions are Neumann, we
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need to choose our example so the “joining strips” in the diagram in [4] are
short while to obtain star shaped examples we need to arrange so there are no
joining strips.) Note that the symmetry is important in our construction.

(3) It is possible to prove that in our example “generically” T consists of
C1-curves and 4 of the curves move in to the diagonal while the remaining 2
curves join up and “cancel” in some form of saddle node type bifurcation (for
this region of µ, ν). This is by a rather tedious bifurcation theory argument. As
usual the lack of smoothness makes the proof much more tedious. Note that this
result will continue to hold for nearby domains.
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