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ZEROS OF CLOSED 1-FORMS, HOMOCLINIC ORBITS
AND LUSTERNIK–SCHNIRELMAN THEORY

Michael Farber

Abstract. In this paper we study topological lower bounds on the number

of zeros of closed 1-forms without Morse type assumptions. We prove that
one may always find a representing closed 1-form having at most one zero.

We introduce and study a generalization cat (X, ξ) of the notion of the

Lusternik–Schnirelman category, depending on a topological space X and
a 1-dimensional real cohomology class ξ ∈ H1(X; R). We prove that any

closed 1-form ω in class ξ has at least cat (X, ξ) zeros assuming that ω

admits a gradient-like vector field with no homoclinic cycles. We show
that the number cat (X, ξ) can be estimated from below in terms of the

cup-products and higher Massey products.

This paper corrects some my statements made in [6], [7].

1. Introduction

The Novikov inequalities [12], [13] estimate the numbers of zeros of differ-
ent indices of closed 1-forms ω on manifolds lying in a given cohomology class,
assuming that all the zeros are non-degenerate in the sense of Morse. Applica-
tions of the Novikov inequalities in mechanics, in geometry, and in symplectic
topology are well-known, see [3], [9], [10], [14], [15].
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In this paper we show that one may always realize a nonzero cohomology
class by a closed 1-form with at most one (degenerate) zero. In the proof we use
the technique of rearrangements of critical points and the result of F. Takens [18],
which describes the conditions when several critical points of a function can be
collided into one.

Central role in this paper plays a suitable generalization of the notion of the
Lusternik–Schnirelman category. For any pair (X, ξ), consisting of a topological
space X and a real cohomology class ξ ∈ H1(X; R), we define a non-negative
integer cat (X, ξ), the category of X with respect to the cohomology class ξ. The
definition of cat (X, ξ) is similar in spirit to the definition of cat (X); it deals with
open covers of X with certain homotopy properties. We show that cat (X, ξ)
depends only on the homotopy type of (X, ξ) and coincides with cat (X) in the
case ξ = 0. If ξ 6= 0 then cat (X, ξ) < cat (X); we show by examples that the
difference, cat (X)− cat (X, ξ), may be an arbitrary positive integer.

The main theorem of the paper (Theorem 4.1) states that any smooth closed
1-form ω on a smooth closed manifold X must have at least cat (X, ξ) geometri-
cally distinct zeros, where ξ = [ω] ∈ H1(X; R) denotes the cohomology class of
ω, assuming that ω admits a gradient-like vector field with no homoclinic cycles.
Recall that a homoclinic orbit is defined as a trajectory γ(t), t ∈ R, such that
both limits limt→∞ γ(t) and limt→−∞ γ(t) exist and are equal. More generally,
a homoclinic cycle of length n is a sequence of orbits γ1, . . . , γn such that

lim
t→∞

γi(t) = lim
t→−∞

γi+1(t)

for i = 1, . . . , n− 1 and

lim
t→∞

γn(t) = lim
t→−∞

γ1(t).�p γ �γ1 γ2

γ3

Figure 1. Homoclinic orbit (left) and homoclinic cycle (right)

Viewed differently, the main theorem of the paper claims that any gradient-
like vector field of a closed 1-form ω has a homoclinic cycle if the number of zeros
of ω is less than cat (M, ξ).

The homoclinic orbits were discovered by H. Poincaré and were studied by
S. Smale. In the mathematical literature there are many results about existence
of homoclinic orbits in Hamiltonian systems. Homoclinic orbits may not exist in
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the gradient systems for functions, i.e. in the case ξ = 0, corresponding to the
classical Lusternik–Schnirelman theory.

In recent papers [5]–[7] we described cohomological cup-length type estimates
on the number of zeros of closed 1-forms. Unfortunately, they are incorrect as
stated. Purely algebraic Proposition 3 of [6] and a similar in character Lemma 6.6
of [7] are incorrect. These algebraic statements hold under slightly stronger
assumptions; in order to meet these assumptions in the main theorems, however,
one has to make extra assumptions on the closed 1-form. This paper gives a
different (more geometric) approach to show that the main results of [7] hold
for closed 1-forms having a gradient-like vector field with no homoclinic cycles.
The cohomological lower bounds of [6] also require some additional assumption,
which will be discussed elsewhere.

I would like to thank Octav Cornea, Pierre Milman, Kaoru Ono and Shmuel
Weinberger for useful discussions and help.

2. Colliding the critical points

In this section we will prove the following realization result.

Theorem 2.1. Let M be a closed connected n-dimensional smooth manifold,
and let ξ ∈ H1(M ; Z) be a nonzero cohomology class. Then there exists a smooth
closed 1-form ω in class ξ having at most one zero.

Proof. We will assume that the class ξ ∈ H1(M ; Z) is indivisible, i.e. is
not a multiple of another integral class. Our statement clearly follows from this
special case.

Our purpose is to show that we may find a smooth map φ:M → S1 with
Morse critical points, having the following properties:

(A) The cohomology class of the closed 1-form ω̃ = φ∗(dθ) coincides with ξ,
where dθ denotes the standard angular form on the circle S1.

(B) All fibers φ−1(b) are connected, where b ∈ S1.
(C) The map φ has at most one critical value b0 ∈ S1. In other words, all

critical points of φ lie in the same fiber f−1(b0).

Having achieved this, we may apply the technique of F. Takens [18, pp. 203–206]
which allows to collide the critical points of φ (equivalently, the zeros of closed
1-form ω̃) into a single degenerate critical point of a closed 1-form ω lying in
the same cohomology class. Namely, first, we may find a piecewise smooth tree
Γ ⊂ φ−1(b0) containing all the critical points of φ. Secondly, we may find a
continuous map Ψ:M →M with the following properties:

• Ψ(Γ) is a single point p ∈ Γ,
• Ψ|M−Γ is a diffeomorphism onto M − p,
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• Ψ is the identity map on the complement of a small neighbourhood of
Γ; in particular, Ψ is homotopic to the identity map M →M .

The circle-valued map φ ◦ Ψ−1 is well-defined and is continuous. Moreover,
φ ◦ Ψ−1 is smooth on M − p. Applying Theorem 2.7 from [18] we see that we
can replace the map φ ◦ Ψ−1 in a small neighbourhood of p by a smooth map
ψ:M → S1 having a single critical point. ψ is homotopic to φ and thus closed
1-form ω = ψ∗(dθ) lies in the cohomology class ξ and has possibly a single zero.

In the rest of the proof we will show that we can find a smooth Morse map
ψ:M → S1 with properties (A)–(C) above.

It is well known that any indivisible class ξ 6= 0 may be realized by a con-
nected codimension one submanifold V ⊂ M with an oriented normal bundle.
Cutting M along V produces a compact cobordism N with ∂N = ∂+N ∪ ∂−N ,
a disjoint union of two copies of V . Consider a Morse function f :N → [0, 1]
having 0 and 1 as regular values and f−1(0) = ∂+N , f−1(1) = ∂−N . We may
assume that f has no critical points of indices 0 and n = dimM . Moreover,
we may construct f , such that all level sets f−1(c), where c ∈ [0, 1], are con-
nected and having the self-indexing property: all critical points of f having
Morse index i lie in f−1(i/n), where i = 1, . . . , n− 1. The map N → S1, where
x 7→ exp(2πif(x)), defines a smooth map φ1:M → S1 in the cohomology class
ξ with connected fibers having the following property: for any critical point
m ∈M , dφ1(m) = 0, with Morse index i, the image φ1(x) equals exp(2πi/n). In
other words, the critical points of φ1 with the same Morse index lie in the same
fiber, and these critical fibers φ−1

1 (b) appear in the order of their Morse indices,
while the point b moves in a positive direction along the circle S1.

For points b1, . . . , br ∈ S1 on the circle S1 we will write

b1 < b2 < . . . < br < b1

to denote that moving from point b1 in a positive direction along the circle S1,
we first meet b2, then b3, . . . , until we again meet b1.

Let us now formulate the following approximation to property (C):

(Cj) All critical points of a smooth Morse map φ:M → S1 with Morse index
i lie in the same fiber φ−1(bi), where bi ∈ S1, i = 1, . . . , n− 1, and

b1 < b1 < . . . < bj = bj+1 = . . . = bn−1 < b1.

In particular, the critical values bj = bj+1 = . . . = bn−1 coincide.

Note that (C1) is equivalent to (C), which is our purpose.
We have found above a smooth map φ1:M → S1, satisfying (A), (B), and

(Cn−1). In the next step we will show that we may replace φ1 by a smooth Morse
map φ2:M → S1 with properties (A), (B) and (Cn−2). Let b1 < . . . < bn−1 < b1
be the critical values of φ1. Consider a point c ∈ S1, lying between bn−2 and
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bn−1. Cut M along the submanifold φ−1
1 (c) and consider the obtained cobordism

N and a Morse function g from N to an interval, obtained by cutting the circle
S1 at point c. All level sets of g are connected. Moving from the bottom of
this cobordism to the top, we meet n − 1 critical levels; first we meet the level
containing the critical points of Morse index n − 1, then the levels containing
the critical points with Morse indices 1, . . . , n − 2. We will use the theory of
S. Smale of rearrangement of critical points. Choose a generic gradient-like vector
field v for g. Then all integral trajectories of ±v, which go out of the critical
points of index n−1, reach ∂N without interaction with the other critical points.
Therefore we may slide the critical points of index n−1 up some distance, putting
them on the same level as the critical point of index n−2, see [11, Theorem 4.1].
In other words, we may replace g by a Morse function g′, which coincides with
g near ∂N , and has the same critical points, but the value at the critical points
of index n − 1 equals the value at the critical points of index n − 2. Note that
the level sets of g′ are all connected:

(a) the bottom level g′−1(0) is unchanged and so it is connected,
(b) passing the critical levels with Morse indices 1, . . . , n−3 may not create

nonconnected level sets,
(c) in principle, nonconnected level sets may appear after passing the top

critical value containing the critical points of indices n − 2 and n − 1;
however in our situation all higher upper level sets are the same as for
the previous function g, and so they are all connected.

Folding this cobordism back, gives a smooth map φ2:M → S1 having properties
(A), (B), and (Cn−2).

We may proceed similarly to find a smooth map φ3:M → S1 with properties
(A), (B), and (Cn−3). The critical values of φ2 are b1 < . . . < bn−2 = bn−1 < b1.
We find a point c ∈ S1 between bn−3 and bn−2 = bn−1 and cut M along φ−1

2 (c).
The Morse function on the obtained cobordism will have n − 2 critical levels.
The lowest will be the level containing all critical points of indices n − 2 and
n − 1 and then the critical levels of points with the Morse indices 1, . . . , n − 3.
Repeating the above procedure, we may slide the critical points of indices n− 2
and n − 3 up the same distance putting them on the same level as the critical
points of index n− 3.

Proceeding in this way inductively we arrive at a smooth map φn−1:M → S1

having properties (A), (B), and (C1) = (C). This completes the proof. �

According to a remark in [3], a statement in the spirit of Theorem 2.1 was
made by Yu. Chekanov at a seminar talk in 1996. As far as I know, no written
account of his work is available.
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3. Category of a space with respect to a cohomology class

3.1. Definition of cat(X, ξ). Let X be a finite CW-complex and let ξ ∈
H1(X; R) be a real cohomology class. We will define below a numerical invariant
cat(X, ξ) (the category of X with respect to class ξ), depending only on the
homotopy type of the pair (X, ξ). It will turn into the classical Lusternik–
Schnirelman category cat(X) in the case ξ = 0. The main property of cat (X, ξ)
is that it gives a relation between the number of geometrically distinct zeros
which have closed 1-forms realizing class ξ, and the homoclinic orbits of their
gradient-like vector fields, see Theorem 4.1.

Fix a continuous closed 1-form ω on X representing the cohomology class ξ.
See Appendix A for definitions.

Definition 3.1. We will define cat(X, ξ) to be the least integer k such that
for any integer N > 0 there exists an open cover

(3.1) X = F ∪ F1 ∪ . . . ∪ Fk,

such that:

(a) Each inclusion Fj → X is null-homotopic, where j = 1, . . . , k.
(b) There exists a homotopy ht:F → X, where t ∈ [0, 1], such that h0 is

the inclusion F → X and for any point x ∈ F ,

(3.2)
∫
γx

ω ≤ −N,

where the curve γx: [0, 1] → X is given by γx(t) = ht(x).

The meaning of the line integral
∫
γ
ω, where γ: [0, 1] → X is a continuous

curve, is explained in Appendix A.
Intuitively, condition (b) means that in the process of the homotopy ht every

point of F makes at least N full twists (in the negative direction) with respect to
ω. We want to emphasize that when N tends to infinity we will obtain a sequence
of different coverings (3.1) with the same number k and with the set F becoming
possibly more and more complicated, so that its limit could be wild, looking like
a fractal. This explains the approximative nature of our Definition 3.1, which
allows these difficulties to be avoided.

Observe that cat (X, ξ) does not depend on the choice of the continuous closed
1-form ω (which appears in Definition 3.1) and depends only on the cohomology
class ξ = [ω]. Indeed, if ω′ is another continuous closed 1-form representing
ξ then ω − ω′ = df , where f :X → R is a continuous function, and for any
continuous curve γ: [0, 1] → X,∣∣∣∣ ∫

γ

ω −
∫
γ

ω′
∣∣∣∣ = |f(γ(1))− f(γ(0))| ≤ C,
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where the constant C is independent of γ. Here we have used the compactness
of X. This shows that if we can construct open covers (3.1) of X such that (b) is
satisfied with an arbitrary large N > 0 then the same is true with ω′ replacing ω.

In general the following inequality

(3.3) cat (X, ξ) ≤ cat (X)

holds since we may always consider covers (3.1) with F empty. Here cat (X)
denotes the classical Lusternik–Schnirelman category of X, i.e. the least integer
k such that there is an open cover X = F ∪F1∪ . . .∪Fk, such that each inclusion
Fj → X is null-homotopic, where j = 1, . . . , k.

Inequality (3.3) can be improved to

(3.4) cat (X, ξ) ≤ cat (X)− 1

assuming that X is connected and ξ 6= 0. This follows because under the above
assumptions any open subset F ⊂ X, which is contractible to a point in X,
satisfies (b) of Definition 3.1 for any N (since we may first contract F to a point
and then rotate the point many times so that inequality (3.2) holds). Hence,
given a categorical open cover X = G1 ∪ . . . ∪ Gr we may set F = G1 and
Fj = Gj+1 for j = 1, . . . , r−1, which gives a cover of X satisfying Definition 3.1.
Observe also that

(3.5) cat (X, ξ) = cat (X,λξ),

for λ ∈ R, λ > 0, as follows clearly from the above definition.

3.2. A reformulation. Sometimes it will be convenient to use a different
version of condition (b) of Definition 3.1, which we will now describe.

Let p: X̃ → X be the normal covering corresponding to the kernel of the
homomorphism of periods (cf. Appendix A)

(3.6) π1(X,x0) → R, [γ] 7→
∫
γ

ω.

The group of covering transformations Γ of this covering equals the image of the
homomorphism (3.6). The induced closed 1-form p∗ω equals df , where f : X̃ → R
is a continuous function. Denote p−1(F ) by F̃ ; it is an open subset invariant
under Γ. Then condition (b) is equivalent to:

(b’) There exists a homotopy h̃t: F̃ → X̃, where t ∈ [0, 1], such that h̃0 is the
inclusion F̃ → X̃, each h̃t is Γ-equivariant, and for any point x ∈ F̃ ,

f(h̃1(x))− f(x) ≤ −N.
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Condition (b’) requires that under the homotopy h̃t any point of F̃ descends
at least N units down, measured by function f . The homotopy h̃t is a lift of
the homotopy ht, which exists because of the HLP (homotopy lifting property)
of coverings. If γ̃y, where y ∈ F̃ , p(y) = x, denotes the path γ̃y(t) = h̃t(y) in X̃
then γx = p∗γ̃y and∫

γx

ω =
∫

p∗eγy

ω =
∫
eγy

p∗ω =
∫
eγy

df = f(h̃1(y))− f(y).

This explains the quivalence between (b) and (b’).

3.3. Examples.

Example 3.2. Consider first the case when ξ = 0. Let us show that then
(3.3) is an equality. ξ = 0 implies ω = df , where f :X → R is continuous. Then
for any continuous curve γ: [0, 1] → X the integral

∫
γ
ω equals f(γ(1))− f(γ(0))

and it cannot become smaller than the variation of f on X. Therefore, for ξ = 0,
inequality (3.2) may be satisfied for large N only if F = ∅. This proves that
cat (X, 0) = cat (X).

Example 3.3. Let X be a mapping torus, i.e. X is obtained from a cylinder
Y × [0, 1], where Y is a compact polyhedron, by identifying points (y, 0) and
(φ(y), 1) for all y ∈ Y , where φ:Y → Y is a continuous map. Note that we
do not assume that φ is a homeomorphism or a homotopy equivalence. We will
denote points of X by pairs 〈y, s〉, where y ∈ Y , s ∈ [0, 1], understanding that
〈y, 0〉 = 〈φ(y), 1〉. X admits a natural projection q:X → S1, where q〈y, s〉 =
exp(2πis), and we will denote by ω = q∗(dθ) the pullback of the standard angular
form dθ of S1; ω is a closed 1-from on X.

Let us show that cat (X, ξ) = 0, where ξ = [ω] ∈ H1(X; R). Given a number
N > 0, define a homotopy ht:X → X, where for t ∈ [0, 1]

ht〈y, s〉 = 〈φn(t,s)(y), s−Nt+ n(t, s)〉.

Here n(t, s) denotes the number of integers contained in the semi-open interval
(s − Nt, s]. It is easy to see that this formula defines a continuous homotopy,
h0 = id and

∫
γx
ω = −N for any point x ∈ X, where γx(t) = ht(x). This shows

that cat (X, ξ) = 0.

Note that the Lusternik–Schnirelman category cat (X) of a mapping torus
may be arbitrarily large (for example, cat (Tn) = n + 1). Hence the above
example shows that the difference cat (X)− cat (X, ξ) may be arbitrarily large.

Example 3.4. In Definition 3.1 the notions “up” and “down” appear non-
symmetrically. Hence it may happen that cat (X, ξ) 6= cat (X,−ξ). We will see
such an example now.
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Consider the mapping torus X, as described in the previous example, with
Y being the sphere S2 and with φ:Y → Y a map of degree 2. We have seen
that cat (X, ξ) = 0, where ξ ∈ H1(X; R) denotes the cohomology class described
above. Let us show that cat (X,−ξ) ≥ 1.

The universal covering p: X̃ → X is Milnor’s telescope; it can be described
as follows. X̃ is obtained from the disjoint union qn∈ZXn, where Xn denotes
Y × [n × n + 1], by identifying any point (y, n) ∈ Xn with (φ(y), n) ∈ Xn−1.
The projection p: X̃ → X maps any point (y, t) ∈ Xn to 〈φ[t−n](y), {t}〉. If ω is
the closed 1-form on X described in the previous example then p∗ω = df where
f : X̃ → R is the continuous function given by f(y, t) = t.�X̃

R
f

Figure 2. Covering of mapping torus

Let Xk ⊂ X̃ denote
⋃
n≥kXn. It is easy to see that H2(Xk; Z) is isomorphic

to Z with the fundamental class of the sphere Y × (k + 1) ⊂ Xk as a genera-
tor. The inclusion Xk → Xk−1 induces on the homology the homomorphism
H2(Xk; Z) → H2(Xk−1; Z) of multiplication by 2. Hence we see that H2(X̃; Z)
is isomorphic to the abelian group Z(2) of rational numbers with denominators
powers of 2 and the image of H2(Xk; Z) can be identified with 2kZ ⊂ Z(2). It fol-
lows that the sphere Y ×k ⊂ Xk cannot be homotoped into Xk by a homotopy in
X̃. Using the condition (b’) of Subsection 3.2 we see that there is no deformation
taking the sphere Y × k up into Xk and this proves that cat (X,−ξ) > 0.

On the contrary, there is a deformation of X̃ taking all points arbitrarily far
down (with respect to f), as we have seen in the previous example.

Example 3.5. Consider a bouquet X = Y ∨ S1, where Y is a finite poly-
hedron, and assume that the class ξ ∈ H1(X,R) satisfies ξ|Y = 0 and ξ|S1 6= 0.
Let us show that then

cat(X, ξ) = cat(Y )− 1.

Consider an open cover X = F ∪ F1 ∪ . . . ∪ Fk satisfying conditions (a) and (b)
of Definition 3.1. Let F ′ denote F ∩ Y and F ′j = Fj ∩ Y . It is easy to show that
F ′ is contractible in Y . This implies that Y = F ′ ∪F ′1 ∪ . . .∪F ′k is a categorical
cover of Y , and hence cat (X, ξ) + 1 ≥ cat (Y ).
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The opposite inequality cat (X, ξ)+1 ≤ cat (Y ) is clear since for any categor-
ical open cover Y = G0 ∪ . . . ∪Gr we may set F = S1 ∪G0 and Fj = Gj , where
j = 1, . . . , r. The set F satisfies (a) and (b) of Definition 3.1 for any integer
N > 0.

This example shows that the integer cat (X, ξ) may assume arbitrary non-
negative values.

3.4. Homotopy invariance.

Lemma 3.6. Let φ:X1 → X2 be a homotopy equivalence, ξ2 ∈ H1(X2; R),
and ξ1 = φ∗(ξ2) ∈ H1(X1; R). Then

(3.7) cat(X1, ξ1) = cat(X2, ξ2).

Proof. Let ψ:X2 → X1 be a homotopy inverse of φ. Choose a closed 1-
form ω1 on X1 in the cohomology class ξ1. Then ω2 = ψ∗ω1 is a closed 1-form
on X2 lying in the cohomology class ξ2.

Fix a homotopy rt:X1 → X1, where t ∈ [0, 1], such that r0 = idX1 and
r1 = ψ ◦ φ. Compactness of X1 implies that there is a constant C > 0 such that
|
∫
αx
ω1| < C for any point x ∈ X1, where αx is the track of the point x under

homotopy rt, i.e. αx(t) = rt(x), where t ∈ [0, 1].
Suppose that cat(X2, ξ2) ≤ k. Given any N > 0, there is an open covering

X2 = F ∪ F1 ∪ . . . ∪ Fk, such that F1, . . . , Fk are contractible in X2 and there
exists a homotopy ht:F → X2, where t ∈ [0, 1], such that

∫
γx
ω2 ≤ −N − C for

any x ∈ F , where γx(t) = ht(x). Define

G = φ−1(F ), Gj = φ−1(Fj), j = 1, . . . , k.

These sets form an open cover of X1 = G∪G1∪. . .∪Gk. Let us show that the set
G ⊂ X1 satisfies condition (b) of Definition 3.1. Define a homotopy h′t:G→ X1,
where t ∈ [0, 1], by

(3.8) h′t(x) =

{
r2t(x) for 0 ≤ t ≤ 1/2,

ψ(h2t−1(φ(x))) for 1/2 ≤ t ≤ 1.

Then h′0 is the inclusion G→ X1 and for any point x ∈ G,∫
γ′x

ω1 ≤ −N

holds, where γ′x(t) = h′t(x) is the track of x under homotopy h′t. The following
diagram

Gj
⊂−−−−→ X1

φ

y xψ
Fj −−−−→

⊂
X2
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is homotopy commutative and the horizontal map below is null-homotopic. This
shows that the inclusion Gj → X1 is null-homotopic, where j = 1, . . . , k. The
above argument proves that cat (X1, ξ1) ≤ cat (X2, ξ2). The inverse inequality
follows similarly. �

4. Estimate of the number of zeros

In this section we will use invariant cat (X, ξ) to obtain a lower bound on the
number of zeros of vector fields having no homoclinic orbits.

Let ω be a smooth closed 1-form on a connected closed smooth manifold M .
We will assume that ω has finitely many zeros. A smooth vector field v is a
gradient-like vector field for ω on M if the following two conditions hold: (1)
ω(v) > 0 on the complement of the set of zeros of v, and (2) in a neighbourhood
Up ⊂M of any zero p ∈M , ωp = 0, the field v|Up coincides with the gradient of
the 1-form ω with respect to a Riemannian metric on Up.

An integral trajectory γ(t) of vector field v is a homoclinic orbit if both limits
limt→±∞ γ(t) = γ(±∞) exist and are equal. The point p = γ(±∞) is then a
zero of v. Note that

∫
γ
ω > 0 for any homoclinic orbit γ. Hence, homoclinic

orbits do not exist in the case ξ = 0, i.e. in the classical gradient systems.
More generally, a homoclinic cycle with n edges is a sequence of trajectories

γ1, . . . , γn of the field v, such that all the limits limt→±∞ γi(t) exist, where
i = 1, . . . , n, and

lim
t→∞

γi(t) = lim
t→−∞

γi+1(t), i = 1, . . . , n.

For i = n this means that limt→∞ γn(t) = limt→−∞ γ1(t), and so the union of
the curves γi form a closed cycle.

Theorem 4.1. Let ω be a smooth closed 1-form on a closed manifold M and
let ξ = [ω] ∈ H1(M ; R) denote the cohomology class of ω. If ω admits a gradient-
like vector field v with no homoclinic cycles, then ω has at least cat (M, ξ) geo-
metrically distinct zeros.

Here is a different formulation of the above theorem:

Theorem 4.2. If the number of zeros of a smooth closed 1-form ω is less
than cat (M, ξ), where ξ = [ω] ∈ H1(M ; R) denotes the cohomology class of ω,
then any gradient-like vector field for ω has a homoclinic cycle.

Combined with Theorem 2.1, this shows that there may exist homoclinic
cycles which cannot be destroyed while perturbing the gradient-like vector field.
This “focusing effect” starts when the number of zeros of a closed 1-form becomes
less than the number cat (M, ξ). It is a new phenomenon, not occuring in the
Novikov theory: assuming that the zeros of ω are all Morse it is always possible to
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find a gradient-like vector field v for ω such that any integral trajectory connects
a zero with higher Morse index with a zero with lower Morse index (by the
Kupka–Smale Theorem [16]).

4.1. Proof of Theorem 4.1. Let p1, . . . , pk ∈M denote all the zeros of ω.
Assume that there exists a gradient-like vector field v for ω with no homoclinic
orbits. Our purpose is to show that then cat (M, ξ) ≤ k.

Fix a number N > 0. Consider the flow M × R → R, where (m, t) 7→ m · t,
generated by the field −v.

Choose small closed disks Uj around each point pj , where j = 1, . . . , k. We
will assume that for i 6= j the disks Ui and Uj are disjoint. Also, we will fix a
Riemannian metric on M such that in the disks Ui, where i = 1, . . . , k, the field
v is the gradient of ω with respect to this metric.

We claim that: one may choose closed disks Vi, where i = 1, . . . , k, such
that:

(a) pi ∈ IntVi and Vi ⊂ IntUi.
(b) The disk Vi is gradient-convex (see Appendix A) in the following sense.

Consider the covering π: M̃ → M corresponding to the kernel of the
homomorphism of periods (3.6). Then the form ω lifts to M̃ as a smooth
function f : M̃ →M , i.e. π∗ω = df , and the field v lifts to a gradient-like
vector field ṽ of function −f . We require any lift to M̃ of the disk Vi to
be gradient-convex, see Appendix B.�pi

Ui∂Vi

Vi

Figure 3. Disks Ui and Vi

(c) Let ∂−Vi denote the set of points p ∈ ∂Vi, such that for all sufficiently
small τ > 0, p · τ /∈ Vi holds. Then we require that for any p ∈ ∂−Vi
there exists no real number tp > 0, such that: the point p · tp belongs
to IntVi, and

∫ p·tp
p

ω ≥ −N , where the integral is calculated along the
integral trajectory σp: [0, tp] →M , σp(t) = p · t.

Assume first that Vi is any neighbourhood satisfying (a) and (b). Then any
trajectory p · t, where p ∈ ∂−Vi, leaves Ui before it can re-enter Vi. This follows
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from the gradient convexity of Vi, since the disk Ui also lifts to the covering
M̃ →M . Hence:

(i) There exists a > 0, such that for any p ∈ ∂−Vi and t > 0 with p · t ∈ Vj
holds t ≥ a.

We may take a = min{liv−1
i : i = 1, . . . , k}, where li > 0 denotes the distance

between Vi and M − IntUi, and vi = max |v(x)| for x ∈ Ui − IntVi.
Note that if we shrink the disks Vi the number a > 0 may only increase,

assuming that Vi are sufficiently small.

(ii) There exists b > 0, such that for any p ∈ ∂−Vi and t > 0 with p · t ∈ Vj
holds ∫ p·t

p

ω < −b.

We may take b = min{εia : i = 1, . . . , k}, where εi = min{ω(v)(x)} for x ∈
Ui − IntVi. Suppose that we can never achieve (c) by shrinking the disk Vi,
satisfying conditions (a) and (b). Then there exists an infinite sequence of points
pi,n ∈ ∂−Vi, where n = 1, 2, . . . , and two sequences of real numbers ti,n > 0 and
si,n < 0 such that:

(1) the set pi,n · [si,n, 0] is contained in the disk Vi and the point pi,n · si,n
converges to pi as n tends to ∞,

(2) pi,n · ti,n converges to pi,
(3)

pi,n·ti,n∫
pi,n

ω ≥ −N.

Let γi,n ∈ H1(M) denote the homology class of the loop obtained as follows.
Start at the point pi,n ∈ ∂−Vi, follow the trajectory pi,n · [0, ti,n], and then
connect the endpoint pi,n · ti,n with pi,n by a path inside Vi.

�A

pi

B C

Vi

A = pi,n, B = pi,n · si,n, C = pi,n · ti,n

Figure 4. An orbit returning to the original disk Vi
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We claim that the set {γi,n}n≥1 ⊂ H1(M) of thus obtained homology classes
is finite. This would follow once we show that the total length Li,n of the
parts of any trajectory of the form pi,n · [0, ti,n], spent outside the union of the
neighbourhoods U1 ∪ . . .∪Uk, is bounded above by a constant independent of n.
Writing ∫

γ

ω =
∫ b

a

ω(γ̇(t)) dt =
∫ b

a

ω(γ̇(t))
|γ̇(t)|

· |γ̇(t)| dt

and using (3) above, it is easy to see that

Li,n ≤ N · c−1,

where the constant c > 0 is given by

c = min
{
ω(vx) · |vx|−1 : x ∈M −

k⋃
i=1

IntUi

}
.

Passing to a subsequence, we may assume that pi,n converges to a point qi ∈ ∂−Vi
and the sequences si,n and ti,n have finite or infinite limits, which we denote
by si and ti correspondingly. We may also assume that the homology class
γi,n ∈ H1(M) is independent of n. Properties (1) and (2) imply that ti = ∞ and
si = −∞.

First we want to show that limt→−∞ qi · t = pi. We will identify Vi with one
of its lifts to the covering M̃ . If there exists s < 0 such that f(qi · s) > f(pi) + ε

for some ε > 0, then the set {(x, s) ∈ M̃×R; f(x ·s) > f(pi)+ε} (which is open)
contains (pi,n, si,n) for all n sufficiently large, which contradicts (1). This shows
that on the covering M̃ , qi · s→ pi holds for s→ −∞. Hence the same relation
holds on the initial manifold M as well.

Now we want to understand the limit limt→∞ qi · t. Consider the above lift
of Vi to the covering M̃ , such that the flow becomes the gradient-like flow ṽ of
function −f : M̃ → R. The points pi,n · ti. n all belong to a translate gVi of the
disk Vi, where g is independent of n. The trajectory qi · t in M̃ for large t may
either reach the neighbourhood gVi, or it may be “caught” by some other critical
point of f on the way.

Let us show that in the first case the point qi · t tends to gpi, as t tends to ∞
and hence the vector field v on M has a homoclinic orbit, starting and ending
at pi. If it is not true that limt→∞ qi · t = gpi, then f(qi · t) < f(gpi) − ε for
some t and ε > 0. Then the open set {(x, t) ∈ M̃ × R; f(x · s) < f(gpi) − ε}
would contain (pi,n, ti,n) for all n sufficiently large, which contradicts (2). This
shows that on the covering M̃ , qi · t → gpi holds for t → ∞. Hence on M , the
trajectory qi · t tends to pi for t→∞.

Consider now the second possibility, when the trajectory qi · t, after leaving
Vi, tends, as t tends to ∞, to another zero pj 6= pi of ω. We will show that in this
case the vector field v has a homoclinic cycle with the number of edges greater
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�
Vi

pi

pi,n
q′i

hVj

p′i,n

p′′i,nq′′i

gpi
gVi

Figure 5. Creation of homoclinic cycle; picture in fM

than 1. Consider the flow determined by v on the covering M̃ , corresponding to
the kernel of the homomorphism of periods (3.6). Under our assumptions, the
limit of qi · t equals hpj for t→∞, where h is an element of the group of periods
of ω. Statement (ii) (see above) gives a positive constant b > 0, such that

f(gpi) + b < f(hpj) and f(hpj) + b < f(pi).

Then, for large n, the trajectory, starting at pi,n, enters the neighbouurhood hVj
at some point p′i,n ∈ ∂(hVj) and leaves it at some point p′′i,n ∈ ∂−(hVj). We have
p′i,n · τi,n = p′′i,n, where τi,n > 0. Passing to a subsequence, we may assume that
the sequences p′i,n, p

′′
i,n, τi,n converge. Denote by q′i ∈ ∂(hVj) and q′′i ∈ ∂−(hVj)

the limits of p′i,n and p′′i,n correspondingly. Clearly, lim τi,n = ∞. Repeating the
arguments above, we find that

lim
t→−∞

q′i · t = pi, lim
t→∞

q′i · t = hpj = lim
t→−∞

q′′i · t.

The limit limt→∞ q′′i · t either equals gpi, or it equals h1pj1 ∈ M̃ , where

f(gpi) + b < f(h1pj1) and f(h1pj1) + b < f(hpj).

Continuing by induction, we obtain downstairs (i.e. on the manifold M) a ho-
moclinic cycle “starting and ending”at pi. The number of steps in the above
process is finite (at most [N/b]).
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�Vi pi

p′′i,n

p′i,n

pj

Vj

Figure 6. Creation of homoclinic cycle; picture in M

This proves the existence of the disks Vi with properties (a), (b), (c), assum-
ing that the vector field v has no homoclinic cycles.

Next we will construct an open cover F ∪F1∪ . . .∪Fk = M . We will define F
as the set of all points p ∈M such that there exists a positive number tp > 0, so
that the integral curve σp: [0, tp] →M , where σp(t) = p · t, satisfies

∫
σp
ω = −N .

It is clear that F is open, and p 7→ tp is a continuous real-valued function on F .
We may define a homotopy

hτ :F → F, by hτ (p) = p · (τtp), τ ∈ [0, 1].

This homotopy satisfies condition (b) of Definition 3.1.
Now we will define the sets Fj , where j = 1, . . . , k. We say that p ∈ Fj if for

some tp > 0 the point p · tp belongs to the interior of Vj , and∫
σp

ω > −N,

where σp: [0, tp] → M is given by σp(t) = p · t. It is clear that Fj is open. The
sets F, F1, . . . , Fk cover M . Indeed, for any point p ∈M either

p·t∫
p

ω < −N

for some t > 0, or the trajectory γ(t) = p · t “enters”, a zero pj , so that

lim
t→∞

p·t∫
p

ω ≥ −N.

In the first case p belongs to F , and in the second case p belongs to Fj .
Now we will show that the set Fj , where j = 1, . . . , k, is contractible in M .

For any point p ∈M let Jp ⊂ R denote the set Jp = {t ≥ 0; p · t ∈ Vj}. Because
of our assumption about the gradient-convexity of neighbourhood Vj , the set Jp
is a union of disjoint closed intervals, and some of these intervals may degenerate
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to a point. Consider the first interval [αp, βp] ⊂ Jp. If this interval degenerates
to a point (i.e. the trajectory through p touches Vj), then p does not belong to
the set Fj , according to our assumption (c). By the same reason, points of ∂−Vj
do not belong to Fj .

Assume now that p ∈ Fj and p /∈ IntVj . Then the point p · t lies in the
interior of Vj for αp < t < βp. Also, we have

p·αp∫
p

ω > −N.

The function φj :Fj → R, given by

φj(p) =

{
0 for p ∈ IntVj ,

αp for p ∈ Fj − IntVj ,

is continuous. To show this, suppose that a sequence of points xn ∈ Fj , where
n = 1, 2, . . . , converges to x0 ∈ Fj . First consider the case x0 ∈ Vj . Since
x0 ∈ Fj , we conclude that x0 /∈ ∂−Vj (because of condition (c)), i.e. x0 ·τ belongs
to IntVj for all τ ∈ (0, ε). It follows that for any τ ∈ (0, ε), xn·τ ∈ IntVj holds for
all large n. Therefore, αxn < τ for all large n. Hence, the sequence αxn converges
to 0. Consider now the case when x0 does not belong to Vj . Then the trajectory
x0 · t does not touch Vj for t < αx0 (again, because of condition (c)) and t = αx0

is the first moment when the trajectory penetrates Vj . We know also that the
velocity vector vx is transversal to the boundary ∂Vj , where x = x0 · αx0 . Then
the sequence αxn

converges to αx0 , as follows from the continuity of solutions of
ordinary differential equations with respect to the initial conditions.

We may define a homotopy

hτ :Fj →M, hτ (p) = p · (τφj(p)), p ∈ Fj , τ ∈ [0, 1].

Here h0 is the inclusion Fj →M and h1 maps Fj into the disk Vj . This completes
the proof. �

5. Moving homology classes

Here we study the effect of condition (b’) of Subsection 3.2 on homology
classes. For simplicity we assume that the group of periods Γ ⊂ R is infinite
cyclic. k will denote a field. Let X̃ → X be an infinite cyclic covering, i.e.
a regular covering of a finite CW-complex having an infinite cyclic group of
covering transformations. In this section we will denote by τ : X̃ → X̃ a fixed
generator of this group.

Let K ⊂ X̃ be a compact subset such that X̃ is the union of the translates
τ i(K), where i ∈ Z.
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Definition 5.1. We will say that a homology class z ∈ Hq(X̃;k) is movable
to ∞ if for any integer N ∈ Z there exists a cycle in

⋃
i>N τ

i(K) representing
z. Similarly, a homology class z ∈ Hq(X̃;k) is movable to −∞ if for any integer
N ∈ Z there exists a cycle in

⋃
i<N τ

i(K) representing z.

It is clear that the above properties of the homology class z ∈ Hq(X̃;k) do
not depend on the choice of compact K.

The following lemma gives an approximative condition of movability. Rough-
ly, it claims: if a cycle can be moved a sufficiently large distance away then it
may be moved arbitrarily far away. The word “cycle” means “singular cycle with
coefficients in k”.

Lemma 5.2. Let K ⊂ X̃ be a compact subset such that
⋃
j∈Z τ

j(K) coincides
with X̃. Then there exists an integer N > 0 (depending on K), such that the
following properties hold:

(a) Let a cycle c in K be homologous in X̃ to a cycle in
⋃
j≥N τ

j(K). Then
the homology class [c] ∈ Hq(X̃;k) is movable to ∞.

(b) Let a cycle c in K be homologous in X̃ to a cycle in
⋃
j≤−N τ

j(K).
Then the homology class [c] ∈ Hq(X̃;k) is movable to −∞.

Proof. Denote

Vr = im[Hq(K;k) → Hq(X̃;k)] ∩ im
[
Hq

(( ⋃
j≥r

τ jK

)
;k

)
→ Hq(X̃;k)

]
,

where r = 1, 2, . . . . Then V1 ⊃ V2 ⊃ . . . is a decreasing sequence of finite-
dimensional vector spaces. Hence, there exists an integer N , such that VN coin-
cides with V∞ = ∩r>0Vr. Any homology class z ∈ V∞ is movable to ∞. Thus,
this N satisfies (a). Similarly, we may increase N , if necessary, such that (b) is
satisfied as well. �

Lemma 5.3. Given a homology class z ∈ Hq(X̃;k), the following conditions
are equivalent:

(i) z is movable to ∞,
(ii) z is movable to −∞,
(iii) z is a torsion element of k[τ, τ−1]-module Hq(X̃;k), i.e. there exists a

nontrivial Laurent polynomial p(τ) ∈ k[τ, τ−1], such that p(τ)z = 0.

Proof. We will show that (i) implies (iii) and that (iii) implies both (i)
and (ii). The implication (ii)⇒(iii) follows similarly.

Assume that a class z ∈ Hq(X̃;k) is movable to ∞. Realize z by a cycle
c in X̃ and specify a compact subset K ⊂ X̃ containing c and such that X̃ =⋃
i∈Z τ

i(K). Assume that N > 0 is large enough, so that it satisfies Lemma 5.3
and the subset τN (K) is disjoint from K. Let us show that for any integer r ≥ N
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the homology class z may be realized by a cycle in τ r(K). Since z is movable to
∞, there exists a cycle c′ in U =

⋃
j≥2r τ

j(K) representing z. Write X̃ = B ∪C,
where B contains K, C contains U and B ∩ C = τ rK. In the Mayer–Vietoris
sequence

Hq(B ∩ C;k) → Hq(B;k)⊕Hq(C;k) → Hq(X̃;k),

the difference [c]− [c′] goes to zero. Hence there is a cycle in B∩C = τ rK, which
is homologous to c in B and homologous to c′ in C. This proves our claim.

Consider

V =
⋂
r≥N

im[Hq(τ rK;k) → Hq(X̃;k)] ⊂ Hq(X̃;k).

It is a finite dimensional k-linear subspace; we observe that V is invariant under
τ−1. Hence, by the Caley–Hamilton Theorem, there exists a polynomial p(τ) ∈
k[τ ], such that p(τ−1) acts trivially on V . Since z belongs to V , we obtain
p(τ−1)z = 0. This shows that (i) implies (iii).

Let us show that (iii) implies (i) and (ii). Suppose that z ∈ Hq(X̃;k) is such
that p(τ)z = 0 for a Laurent polynomial

p(τ) =
r+∑̀
i=r

aiτ
i, ai ∈ k, where ar 6= 0, ar+` 6= 0.

Consider the ring R = k[τ, τ−1]/J , where J is the ideal generated by p(τ). The
powers τ i, where i = r, r + 1, . . . , r + ` − 1, form an additive basis of R. Since
multiplication by τ is an automorphism of R, we obtain that for any integer N ,
the powers τN , . . . , τN+`−1 form a linear basis of R as well. In particular, we
may express 1 ∈ R as a linear combination of τN , . . . , τN+`−1 in R. This means
that for any N we may find numbers bj ∈ k, where j = N, . . . , N + `− 1, such
that

z =
N+`−1∑
j=N

bjτ
jz in Hq(X̃;k).

Assume that K ⊂ X̃ is a compact subset such that X̃ =
⋃
j∈Z τ

jK and class
z can be realized by a cycle c in K. Then for any integer N , class z may be
realized by the cycle

N+`−1∑
j=N

bjτ
jc lying in

⋃
N≤j<N+`

τ jK.

Hence z is movable to both ends ±∞ of X̃. �

6. Cohomological lower bound for cat (X, ξ)

In this section we will give cohomological lower bounds on cat (X, ξ). For
simplicity we assume that ξ is integral, i.e. ξ ∈ H1(X; Z).
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6.1. Statement of the result. Let k be a field. Given a finite CW-complex
X and an integral cohomology class ξ ∈ H1(X; Z). For any nonzero a ∈ k there
is a local system over X with fiber k such that the monodromy along any loop
γ in X is a multiplication by a〈ξ,γ〉

a〈ξ,γ〉:k → k, q 7→ a〈ξ,γ〉q, for q ∈ k.

Here 〈ξ, γ〉 ∈ Z denotes the value of the class ξ on the loop γ. This local system
will be denoted aξ. The cohomology of this local system Hq(X; aξ) is a vector
space over k of finite dimension. Note that for a = 1 the local system aξ is
the constant local system k. If a, b ∈ k∗ are two nonzero numbers, there is an
isomorphism of local systems

aξ ⊗ bξ ' (ab)ξ.

Hence we have a well-defined cup-product pairing

(6.1) ∪: Hq(X; aξ)⊗Hq′(X; bξ) → Hq+q′(X; (ab)ξ).

The following Theorem is one of the main results of this section.

Theorem 6.1. Assume that there exist cohomology classes

u ∈ Hq(X; aξ), v ∈ Hq′(X; bξ), wj ∈ Hdj (X;k), where j = 1, . . . , r,

such that

(i) d1 > 0, . . . , dr > 0,
(ii) the cup product

(6.2) u ∪ v ∪ w1 ∪ w2 ∪ . . . ∪ wr ∈ Hd(X; (ab)ξ),

is nontrivial, where d = q + q′ + d1 + . . .+ dr,
(iii) the numbers a, b ∈ k∗ do not belong to a finite subset Supp(X, ξ) ⊂ k∗

depending on the pair (X, ξ), see below.

Then cat (X, ξ) > r.

Property (iii) may also be expressed by saying that the numbers a ∈ k∗ and
b ∈ k∗ are generic.

For ξ 6= 0 and a 6= 1 the bundle aξ admits no globally defined flat sections and
so the zero-dimensional cohomology H0(X; aξ) = 0 vanishes. Hence for ξ 6= 0
the classes u and v in Theorem 6.1 must automatically have positive degrees, i.e.
q > 0 and q′ > 0.

6.2. The set Supp(X, ξ). For ξ = 0 we will define Supp(X, ξ) ⊂ k∗ to
be the empty set. Now we will define the set Supp(X, ξ) ⊂ k∗ assuming that
ξ ∈ H1(X; Z) is nonzero and indivisible. Let p: X̃ → X be the infinite cyclic
covering corresponding to ξ. Fix a generator τ : X̃ → X̃ of the group of covering
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translations such that f(τx) = f(x) + 1 for all x ∈ X̃, where f : X̃ → R is a
continuous function satisfying df = p∗ω. Here ω is a closed 1-form on X in the
cohomology class ξ. Since the translate τ : X̃ → X̃ acts on the homology, we
obtain that H∗(X̃;k) is a graded module over the ring Λ = k[τ, τ−1] of Laurent
polynomials. The ring Λ is Noetherian, hence H∗(X̃;k) is finitely generated
over Λ. Its Λ-torsion submodule T = TorΛ(H∗(X̃;k)) (which, according to the
previous section, coincides with the set of homology classes movable to ±∞)
is a finite-dimensional k-vector space. Multiplication by τ is an invertible k-
linear operator τ :T → T . We will define the set Supp(X, ξ) ⊂ k∗ as the set of
eigenvalues of τ−1:T → T .

In the case when ξ = λη, where η ∈ H1(X; Z) is indivisible and λ ∈ Z, λ > 0,
we will define the set Supp(X, ξ) as {a ∈ k∗; aλ ∈ Supp(X, η)}.

Note that for k = C the set Supp(X, ξ) ⊂ C consists of finitely many algebraic
numbers. Hence for k = C in Theorem 6.1 one may always take for a, b ∈ C∗

arbitrary transcendental numbers.

6.3. Lifting property. The proof of Theorem 6.1 is based on the following
lifting property of cohomology classes:

Theorem 6.2. Let X be a finite CW-complex, ξ ∈ H1(X; Z), a ∈ k∗,
a /∈ Supp(X, ξ). Fix a continuous closed 1-form ω in cohomology class ξ and a
compact K ⊂ X, such that ξ|K = 0. Then for any open subset F ⊂ K satisfying
condition (b) of Definition 3.1 with respect to closed 1-form ω with integer N > 0
large enough, the homomorphism

(6.3) Hq(X,F ; aξ) → Hq(X; aξ)

is an epimorphism.

Proof. We have already observed in Example 3.2 that for ξ = 0 condition
(b) of Definition 3.1 may be satisfied for large N only if F = ∅. Therefore
Theorem 6.2 is true for ξ = 0.

We will assume below that ξ 6= 0. Moreover, without loss of generality, we
may assume that class ξ ∈ H1(X; Z) is indivisible.

Let f : X̃ → R be a continuous function (unique up to a constant) satisfying
df = p∗ω. Then f(τx) = f(x) + 1 for all x ∈ X̃, where τ : X̃ → X̃ a generator of
the group of translations. Since ξ|K = 0, the compact K ⊂ X may be lifted to
X̃. Fix such a lift K ⊂ X̃. We will assume that the function f |K assumes values
in [0, c] ⊂ R for some integer c > 0; this may always be achieved by adding a
constant to f .

Let N ′ > 0 be the number given by Lemma 5.2 applied to a lift of K to X̃.
Then any cycle in K ⊂ X̃, which is homologous in X̃ to a cycle in

⋃
j≤−N ′ τ j(K),
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is movable to −∞, and hence (according to Lemma 5.3) represents a Λ-torsion
homology class in H∗(X̃;k).

It follows that for any subset F ⊂ K satisfying condition (b’) of Subsec-
tion 3.2 with N > N ′, the homomorphism H∗(F̃ ;k) → H∗(X̃;k) induced by the
inclusion F̃ → X̃, takes values in the Λ-torsion submodule T of H∗(X̃;k). The
set F̃ is a disjoint union of infinitely many copies of F and hence the homology
of F̃ is H∗(F̃ ;k) ' H∗(F ;k)⊗k Λ.

The claim that (6.3) is an epimorphism is equivalent to the claim that
H∗(X; aξ) → H∗(F ; aξ) is the zero map. Using duality between homology and
cohomology we see that the latter is equivalent to the statement that the ho-
momorphism H∗(F ; a−ξ) → H∗(X; a−ξ), induced by the inclusion F → X on
the homology of the dual local system a−ξ, is zero. Since ξ|F = 0, the local
system a−ξ|F ' k is trivial. Hence we want to show that the homomorphism
H∗(F ;k) → H∗(X̃; a−ξ) is zero. The inclusion F → X equals the composition
F

⊂−→K −→ X̃
p−→ X, and we know that H∗(F ;k) → H∗(X̃;k) takes values in

the Λ-torsion submodule T .
To complete the proof it is enough to show that p∗(T ) = 0 holds for a /∈

Supp(X, ξ), where the homomorphism p∗:H∗(X̃;k) → H∗(X; a−ξ) is induced
by the covering projection p: X̃ → X. Consider the following well-known exact
sequence

· · · → Hi(X̃;k) τ−b−→ Hi(X̃;k)
p∗−→Hi(X; bξ) → · · ·

where b = a−1. The linear map τ − b:T → T is an isomorphism (here we use
the assumption that a /∈ Supp(X, ξ)) and hence the submodule T ⊂ H∗(X̃;k) is
contained in the image of τ − b and therefore p∗(T ) = 0. �

6.4. Proof of Theorem. If ξ = 0 under the conditions of Theorem 6.1 the
classical Lusternik–Schnirelman theory gives cat (X) > r+2; hence Theorem 6.1
holds for ξ = 0.

We will assume below that the class ξ 6= 0 is nonzero and indivisible. Suppose
that cat (X, ξ) ≤ r. Let us show that any cup-product (6.2) satisfying conditions
(i)–(iii) of Theorem 6.1 must vanish. Since ξ is an integral class ξ ∈ H1(X; Z),
we may cover X by two open subsets X = U ∪W , such that ξ|U = 0, ξ|W = 0.
Choose a continuous closed 1-form ω in cohomology class ξ. Our assumption
cat (X, ξ) ≤ r implies that for any N > 0 there is an open cover X = F ∪ F1 ∪
. . . ∪ Fr satisfying properties (a) and (b) of Definition 3.1.

Each cohomology class wj ∈ Hdj (X;k) may be lifted to a relative coho-
mology class w̃j ∈ Hdj (X,Fj ;k), where j = 1, . . . , r. This follows from the
cohomological exact sequence

Hdj (X,Fj ;k) → Hdj (X;k) → Hdj (Fj ;k),
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since dj > 0 and the second map vanishes as a consequence of the fact that the
inclusion Fj → X is null-homotopic.

Assuming that N > 0 is large enough we may use the lifting property of
Theorem 6.2, applied to compact K = U , to find a lift of the cohomology class
u ∈ Hq(X; aξ) to a relative cohomology class ũ ∈ Hq(X,F ∩ U ; aξ). Similarly,
by Theorem 6.2 applied to the compact W , we may lift the class v ∈ Hq′(X; bξ)
to a relative cohomology class ṽ ∈ Hq′(X,F ∩W ; aξ). Therefore the product
(6.2) is obtained from the product

ũ ∪ ṽ ∪ w̃1 ∪ . . . ∪ w̃r ∈ H∗(X,X; (ab)ξ) = 0

(lying in the trivial group) by restricting onto X. Hence any cup-product (6.2)
must vanish. �

Remark. Lemma 6.6 in [7] is incorrect as stated. As a consequence Propo-
sition 6.5 and Corollary 6.7 of [7] are correct only with some extra conditions.
The lifting property of Theorem 6.2 of the present paper replaces Corollary 6.7
of [7].

6.5. Cohomological estimate using Massey products. Let X be a
finite CW-complex and let ξ ∈ H1(X; Z).

Definition 6.3. A cohomology class v ∈ Hq(X;k) is called a ξ-survivor if
vanishes the cup-product v∪ ξ = 0 and vanish all higher Massey products of the
form

〈v, ξ, . . . , ξ︸ ︷︷ ︸
r times

〉 ∈ Hq+1(X;k)

for any r > 1.

We refer to Sections 5 and 9 of paper [7], where these Massey products are
described in detail.

Theorem 6.4. Let X be a finite CW-complex and let ξ ∈ H1(X; Z) be in-
divisible. Assume that there exist cohomology classes wj ∈ Hdj (X;k) of positive
degree dj > 0, where j = 1, . . . , r, having a nonzero cup-product

0 6= w1 ∪ w2 ∪ . . . ∪ wr ∈ H∗(X;k).

If among the classes w1, . . . , wr at least two are ξ-survivors, then

cat (X, ξ) ≥ r − 1.

Proof. We may assume in the proof that the coefficient field k is alge-
braically closed; otherwise we could replace k by its algebraic closure.

Suppose that the first two cohomology classes w1, w2 are ξ-survivors. It
is shown in Section 9.5 of [7], that one may deform w1 and w2 to cohomology
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classes w′1 ∈ Hd1(X; aξ) and w′2 ∈ Hd2(X; a−ξ), where a ∈ k is generic, such
that the cup-product

0 6= w′1 ∪ w′2 ∪ w3 ∪ . . . ∪ wr ∈ H∗(X;k)

is still nonzero. Now Theorem 6.4 follows from Theorem 6.1. �

Example 6.5. Let Tn = S1 × . . . × S1 be an n-dimensional torus. Fix a
point x = (x1, . . . , xn) ∈ Tn and for i = 1, . . . , n consider the (n−1)-dimensional
subtorus Tn−1

i ⊂ Tn consisting of points with i-th coordinate equal to xi. Let
X = Tn#(S1 × Sn−1) be obtained from Tn by adding a handle of index 1. In
other words, we remove from Tn interiors of two small disjoint disks D1 and D2

and connect their boundaries by a tube Sn−1 × [0, 1]. We will assume that the
disksD1 andD2 do not meet the subtori Tn−1

i for i = 1, . . . , n. Let ξ ∈ H1(X; Z)
be the cohomology class, Poincaré dual to ∂D1.

Each torus Ti ⊂ X has a trivial normal bundle and hence determines a
cohomology class wi ∈ H1(X; Z). It is clear that the cup-product

w1 ∪ . . . ∪ wn ∈ Hn(X; Z)

is nonzero since T1, . . . , Tn are mutually transversal and their intersection con-
sists of one point. As in Section 5 of [7] one may show that the classes wi are
all ξ-survivors. Theorem 6.4 applies and gives cat (X, ξ) ≥ n − 1. By Theorem
4.1 any smooth closed 1-form in class ξ has at least n− 1 geometrically distinct
zeros.

This estimate is sharp and cannot be improved. Indeed, since dimX = n

Theorem 3.2 of [7] claims that there always exists a closed 1-form ω in class ξ
with n− 1 zeros.

Example 6.6. Let X be a bouquet X = Y ∨ S1 as in Example 3.5. We
will assume that the cohomology class ξ ∈ H1(X; Z) is such that ξ|Y = 0 and
ξ|S1 6= 0 is the generator. We want to find the estimate given by Theorem 6.4
in this example. We have Hq(X;k) = Hq(Y ;k) for q > 1 and H1(X;k) =
H1(Y ;k)⊕H1(S1;k). The last summand is generated by class ξ. It has trivial
cup-products and Massey products with all other classes. If cohomology classes
wj ∈ Hdj (Y ;k), where j = 1, . . . , r, are such that dj > 0 and

0 6= w1 ∪ . . . ∪ wr ∈ H∗(Y ;k),

then Theorem 6.4 applies and gives cat (X, ξ) ≥ r − 1. In Example 3.5 we have
shown that cat (X, ξ) = cat (Y ) − 1. Hence we obtain cat (Y ) ≥ r, which is
weaker by 1 than the well-known inequality claiming that cat (Y ) is greater than
the cup-length of Y .

This example shows that our cohomological estimates may be slightly im-
proved.
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Appendix A. Closed 1-forms on topological spaces

Differential 1-forms are defined only for smooth manifolds. Closed 1-forms
may be defined for general topological spaces, as we show in this appendix.

A continuous closed 1-form ω on a topological space X is defined as a collec-
tion {fU}U∈U of continuous real-valued functions fU :U → R, where U = {U} is
an open cover of X, such that for any pair U, V ∈ U the difference

fU |U∩V − fV |U∩V :U ∩ V → R

is a locally constant function. Another such collection {gV }V ∈V (where V is
another open cover of X) defines an equivalent closed 1-form if for any point
x ∈ X there is an open neighbourhood W such that for some open sets U ∈ U
and V ∈ V containing W the difference fU |W − gV |W is locally constant. The
set of all continuous closed 1-forms on X is a real vector space.

As an example consider an open cover U = {X} consisting of the whole space
X. Then any continuous function f :X → R defines a closed 1-form on X, which
is denoted by df .

For two continuous functions f, g:X → R holds df = dg if and only if the
difference f − g:X → R is locally constant.

One may integrate continuous closed 1-forms along continuous paths. Let ω
be a continuous closed 1-form onX given by a collection of continuous real-valued
functions {fU}U∈U with respect to an open cover U of X. Let γ: [0, 1] → X be a
continuous path. The line integral

∫
γ
ω is defined as follows. Find a subdivision

t0 = 0 < t1 < . . . < tN = 1 of the interval [0, 1] such that for any i the image
γ[ti, ti+1] is contained in a single open set Ui ∈ U . Then we define

(A.1)
∫
γ

ω =
N−1∑
i=0

[fUi(γ(ti+1))− fUi(γ(ti))].

The standard argument shows that the integral (A.1) does not depend on the
choice of the subdivision and the open cover U .

Lemma A.1. For any pair of continuous paths γ, γ′: [0, 1] → X with common
beginning γ(0) = γ′(0) and common end points γ(1) = γ′(1), holds∫

γ

ω =
∫
γ′
ω,

provided that γ and γ′ are homotopic relative to the boundary.

Proof. It is standard. �

Any closed 1-form defines the homomorphism of periods

(A.2) π1(X,x0) → R, [γ] 7→
∫
γ

ω ∈ R
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given by integration of 1-form ω along closed loops γ: [0, 1] → X with γ(0) =
x0 = γ(1).

Lemma A.2. The homomorphism of periods (A.2) is a group homomor-
phism.

Lemma A.3. Let X be a path-connected topological space. A continuous
closed 1-form ω on X equals df for a continuous function f :X → R if and only
if ω defines a trivial homomorphism of periods (A.2).

Proof. If ω = df then
∫
γ
ω = f(q)− f(p) holds for any path γ in X, where

q = γ(1), p = γ(0). Hence
∫
γ
ω = 0 if γ is a closed loop.

Conversely, assume that the homomorphism of periods (A.2) is trivial. One
defines a continuous function f :X → R by

f(x) =
∫ x

x0

ω.

Here the integration is taken over an arbitrary path connecting x0 to x. Assume
that ω is given by a collection of continuous functions fU :U → R with respect
to an open cover {U} of X. Then for any two points x, y lying in the same
path-connected component of U ,

f(y)− f(x) =
∫ y

x

ω = fU (y)− fU (x).

This shows that the function f − fU is locally constant on U . Hence df = ω. �

Any continuous closed 1-form ω on a topological space X defines a (singular)
cohomology class [ω] ∈ H1(X; R). It is defined by the homomorphism of periods
(A.2) viewed as an element of Hom(H1(X); R) = H1(X; R). As follows from
the above lemma, two continuous closed 1-forms ω and ω′ on X have the same
cohomology class [ω] = [ω′] if and only if their difference ω−ω′ equals df , where
f :X → R is a continuous function.

Recall that a topological space X is homologically locally connected if for
every point x ∈ X and a neighbourhood U of x there exists a neighbourhood V
of x in U such that H̃q(V ) → H̃q(U) is trivial for all q.

Lemma A.4. Let X be a paracompact Hausdorff homologically locally con-
nected topological space. Then any singular cohomology class ξ ∈ H1(X; R) may
be realized by a continuous closed 1-form on X.

Proof. Consider the following exact sequence of sheaves over X

(A.3) 0 → RX → CX → BX → 0.
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Here RX denotes the sheaf of locally constant functions, CX denotes the sheaf
of real-valued continuous functions, and BX denotes the sheaf of germs of con-
tinuous functions modulo locally constant. More precisely, BX is the sheaf cor-
responding to the presheaf U 7→ CX(U)/RX(U). Comparing this with our defi-
nition of a continuous closed 1-form, we find that the space H0(X;BX) of global
sections of BX coincides with the space of continuous closed 1-forms on X.

From (A.3), using that CX is a fine sheaf, we obtain an exact sequence

0 → H0(X; R) → H0(X;CX) d−→ H0(X;BX)
[ ]−→ H1(X; RX) → 0.

Here H0(X;CX) = C(X) is the set of all continuous functions on X, and the
map d acts by assigning to a continuous function f :X → R the closed 1-form
df ∈ H0(X;BX). The group H1(X; RX) is the Čech cohomology Ȟ1(X; R)
and the map [ ] assigns to a closed 1-form ω its Čech cohomology class [ω] ∈
Ȟ1(X; R). The natural map Ȟ1(X; R) → H1(X; R) is an isomorphism assuming
that X is paracompact, Hausdorff, and homologically locally connected, cf. [17,
Chapter 6, Section 9]. This implies our statement. �

As we have shown in the proof, the space of continuous closed 1-forms
H0(X;BX) on a connected topological space X can be described by the fol-
lowing short exact sequence

0 → C(X)/R d−→ H0(X;BX)
[ ]−→ Ȟ1(X; R) → 0.

Appendix B. Gradient-convex neighbourhoods

Let M be a smooth manifold and let f :M → R be a C2-smooth function
with isolated critical points. Let v be a gradient-like vector field for f . This
means that v(f) > 0 on the complement of the set of critical points, and v

coincides with the gradient of f on an open neighbourhood of the critical points
with respect to a Riemannian metric.

We will denote by M × R → M , (m, t) 7→ m · t, the flow of the field v; we
will assume that it is defined for all t ∈ R.

Lemma B.1. Any open neighbourhood V ⊂ M of a critical point p ∈ M ,
dfp = 0, contains a compact neighbourhood U of p, such that

(1) for any point m ∈ M the set Jm = {t ∈ R : m · t ∈ U} ⊂ R is either
empty, or a closed interval [am, bm], possibly degenerated to a point, i.e.
with am = bm,

(2) the function {m ∈ M : Jm 6= ∅} → R, where m 7→ am ∈ R, is continu-
ous.

The proof below was essentially suggested by P. Milman.
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Proof. We will assume that f(p) = 0, V is compact, and point p is the
only critical point of function f in V . Let V0 be an open neighbourhood of p
with compact closure V 0 ⊂ V and such that in V0 there exist local coordinates
x1, . . . , xn and v|V0 is the gradient of f with respect to a Riemannian metric gij .
Fix a smooth function ψ:M → [0, 1], such that ψ|V0 ≡ 0 and ψ|(M−V ) ≡ 1.

We want to show that there is a constant λ > 0 such that the derivative of
the function

Ψ = 〈grad f, grad f〉:M → R+

along the gradient flow of f satisfies in V0 the inequalities:

(B.1) −λΨ ≤ dΨ
dt

≤ λΨ.

In the local coordinates,

Ψ =
∑
ij

gij · ∂f
∂xi

· ∂f
∂xj

and

dΨ
dt

=
∑
ij

〈grad gij , grad f〉 · ∂f
∂xi

· ∂f
∂xj

+ 2
〈

grad f,
∑
ij

gij · ∂f
∂xj

· grad
∂f

∂xi

〉
.

Both the first and second terms in this sum can be viewed as symmetric bilinear
forms in the partial derivatives of f with continuous coefficients, and hence our
statement (B.1) follows.

We will define now two smooth functions F+, F−:M → R by

(B.2) F± = ±2f + λ−1 ·Ψ + ψ.

In V0 − {p} using (B.1) we have

dF+

dt
= 2Ψ + λ−1 · dΨ

dt
≥ Ψ > 0,

dF−
dt

= −2Ψ + λ−1 · dΨ
dt

≤ −Ψ < 0.

Hence we conclude that F+ increases and F− decreases along the gradient flow
of f in V0 − {p}.

We set g = max{F+, F−}:M → R+. It is a continuous function with g(p) =
0. For any number 0 < c small enough, the set Uc = {x ∈ M ; g(x) < c} is an
open neighbourhood of p, contained in V0.

Let V1 be an open neighbourhood of p with V 1 ⊂ V0. Let ε > 0 be such that
any trajectory γ(t) ∈ M of the flow of v with γ(t1) ∈ V 1, and γ(t2) ∈ M − V0,
where t1 < t2, satisfies

(B.3) f(γ(t2))− f(γ(t1)) > ε.
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We will show that U c satisfies the conditions of the lemma assuming that
0 < c < ε and c is small enough, so that Uc ⊂ V1. Since ∂U c = g−1(c), a
trajectory γ(t) = m · t enters the set U c at t = a if and only if F−(γ(a)) = c

and F+(γ(a)) ≤ c. Moreover, if F−(γ(a)) = c and F+(γ(a)) = c, the trajectory
leaves U c immediately (i.e. the trajectory γ(t) is tangent to the boundary ∂Uc),
and if F−(γ(a)) < c, the trajectory penetrates the interior of U c.

Similarly, if t = b is such that F−(γ(b)) ≤ c and F+(γ(b)) = c, the trajectory
γ(t) leaves the set U c for t > b. We know that while γ(t) stays in V1, the function
F+ increases and so the trajectory remains away from U c. Can this trajectory
return to U c for some large time t = c > b? If this happens, then f(γ(c)) > ε

(because of (B.3) and using f(γ(b)) ≥ 0) and hence g(γ(c)) > ε.
This proves that under our assumptions on c the set {t; γ(t) ∈ U c} coincides

with the interval [a, b].
Now we are left to prove statement (2). Let A ⊂M denote the set of points

m ∈M , such that m · t belongs to V1 for some t. Since dF−/dt < 0, the equation
F−(m · am) = c defines a continuous function of m ∈ A. Similarly, the equation
F+(m · bm) = c defines a continuous function A → R, where m 7→ bm. The set
{m ∈M ; Jm 6= ∅} equals {m ∈ A; am ≤ bm}. This implies our claim (2). �
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