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EXISTENCE OF SOLUTIONS TO SOME ELLIPTIC SYSTEM
IN SOBOLEV SPACES WITH THE WEIGHT

AS A POWER OF THE DISTANCE FROM SOME AXIS

Wojciech M. Zajączkowski

Abstract. We examine some overdetermined elliptic system in a domain
in R3 which contains an axis. Assuming that data functions belong to

Sobolev spaces with weights equal to a power of the distance from the

axis we prove existence of solutions in the corresponding kind of weighted
Sobolev spaces.

1. Introduction

In this paper we prove the existence and some regularity properties of solu-
tions to the following overdetermined elliptic system (see also [6])

(1.1)

rot v = ω in Ω,

div v = 0 in Ω,

v · n = 0 on ∂Ω,

where Ω is a bounded domain in R3, v = (v1(x), v2(x), v3(x)), x = (x1, x2, x3)
and n is a unit outward normal vector to the boundary ∂Ω.
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The given vector ω = (ω1(x), ω2(x), ω3(x)) ∈ R3 must satisfy the compati-
bility condition

(1.2) divω = 0 in Ω.

Assume that ω ∈ Hkµ(Ω;L) (or W k2,µ(Ω;L)), k ∈ N0 = N ∪ {0}, µ ∈ R+, which
is a Sobolev space with the weight equal to the µ-power of the distance from an
axis L passing through Ω (for the notation see Section 2). Then we show the
existence of such solutions to (1.1) that v ∈ Hk+1µ (Ω;L) (or W k+12,µ (Ω;L)) and
the corresponding estimate holds.
Unfortunately we do not know how to solve problem (1.1) directly. Therefore

we introduce potentials for v. By [1, Lemma 1] there exists a vector u such that

(1.3) v = rotu, divu = 0, u · τα|∂Ω = 0,

where τα, α = 1, 2, are tangent vectors to ∂Ω.
The vector u is defined as

(1.4) u = u1 + u2,

where

u1(x) =
1
4π
rot
∫
Ω

v(y)
|x− y|

dy, u2(x) = ∇ψ(x),

where ψ is a solution to the Dirichlet problem

(1.5) ∆ψ = 0, ψ|∂Ω = −ψ0,

with

(1.6) u1 · τα|∂Ω = ψ0,τα , α = 1, 2,

and τα is the curvilinear coordinate along the curve tangent to vector τα, α =
1, 2.
Using the potential u we write (1.1) in the form

(1.7)

−∆u = ω,
u · τα|∂Ω = 0, α = 1, 2,

divu|∂Ω = 0,

where we have taken into account that

(1.8) ∆divu = 0, divu|∂Ω = 0

implies

(1.9) divu = 0.
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In a curvilinear system of coordinates (τ1, τ2, n) and in a neighbourhood of
∂Ω the vector u can be written in the form

u =
2∑
µ=1

uτµτµ + unn,

where uτµ = u · τµ, un = u · n and n is the coordinate along the curve tangent
to the normal vector n. Then (1.7) can be replaced by

(1.10)

−∆u = ω in Ω,

uτα = 0, α = 1, 2, on ∂Ω,

n · ∇un + undivn = 0 on ∂Ω.

From now on we shall restrict our considerations to problem (1.10). To
prove existence and regularity of solutions to (1.10) we prove the existence of
weak solutions and next using a partition of unity we increase regularity locally.
From [6] we have

Definition 1.1. A weak solution to problem (1.10) is defined to be a func-
tion u ∈ H1(Ω), uτ |∂Ω = 0, such that

(1.11)
∫
Ω

∇u · ∇η dx+
∫
∂Ω

unηndivnds =
∫
Ω

ω · η dx,

holds for all η ∈ H1(Ω), ητ |∂Ω = 0, where divω = 0. Moreover, see [6].

Lemma 1.2. Let ω ∈ L2(Ω). Then there exists a weak solution to (1.10)
such that u ∈ H1(Ω), uτ |∂Ω = 0 and

(1.12) ‖u‖H1(Ω ≤ c‖ω‖L2(Ω).

Since any increasing of regularity of the weak solutions in nontrivial in
a neighbourhood of the axis only we shall restrict examining of (1.10) to such
neighbourhoods. Taking the idea from [8] we apply the Kondratiev technique
[2], [5] to the following artificial problem

(1.13)

−∆u = ω,
u|Γ0 = u|Γ2π,

n · ∇u|Γ0 = −n · ∇u|Γ2π,

where ω has a compact support, Γ0 = Γ2π = {x ∈ R3 : x2 = 0}, n|Γ0 =
(0,−1, 0), n|Γ2π = (0, 1, 0).
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2. Notation and auxiliary results

We introduce a system of local coordinates (x1, x2, x3) such that the axis x3
is the distinguished axis L in Ω. We denote x′ = (x1, x2) and |x′| =

√
x21 + x

2
2.

Following Kondratiev [2] there are introduced spaces Hkµ(R2; 0) and Hkµ(R3;L),
k ∈ N0, µ ∈ R+ with the norms

‖u‖Hkµ(R2;0) =
( ∑
|α′|≤k

∫
R2

|Dα
′

x′ u|2|x′|2(µ−(k−|α
′|)) dx′

)1/2
,

and

‖u‖Hkµ(R3;L) =
( ∑
|α|≤k

∫
R3

|Dαxu|2|x′|2(µ−(k−|α|)) dx
)1/2

,

where α′ = (α1, α2), α = (α1, α2, α3) are multiindices, Dα
′

α′ = ∂α1x1 ∂
α2
x2 , D

α
x =

∂α1x1 ∂
α2
x2 ∂

α3
x3 , |α

′| = α1+α2, |α| = α1+α2+α3. Moreover, H0µ(R2; 0) = L2,µ(R2; 0),
H0µ(R3;L) = L2,µ(R3;L).
Let ζ(t) ∈ C∞0 (R+) be a monotone function such that ζ(t) = 1 for t ≤ 1/2

and ζ(t) = 0 for t ≥ 1. Moreover,

‖u‖Hkµ(Ω;L) =
( ∑
|α|≤k

∫
Ω

|Dαxu(x)|2(%(x, L))2(µ−(k−|α|)) dx
)1/2

,

where %(x, L) = dist(x, L), and

‖u‖Wk2,µ(Ω;L) =
( ∑
|α|≤k

∫
Ω

|Dαxu(x)|2(%(x, L))2µ dx
)1/2

.

We introduce also

‖u‖
eHkµ(R3;0)

=
( ∑
|α|≤k

∫
R3

|Dαxu|2|x|2(µ−(k−|α|)) dx
)1/2

,

where |x| = (x21 + x22 + x23)1/2.
Finally we introduce spaces Lk2,µ(R2; 0) and Lk2,µ(R3;L) with the norms

‖u‖Lk2,µ(R2;0) =
( ∑
|α′|=k

∫
R2

|Dα
′

x′ u|2|x′|2µ dx′
)1/2

and

‖u‖Lk2,µ(R3;L) =
( ∑
|α|=k

∫
R3

|Dαxu|2|x′|2µ dx
)1/2

.

Next we recall the following Hardy inequality. Let

u(j) =
∑

|α′|=α1+α2≤j

Dα
′

x′ u(x)|x′=0
xα11
α1!

xα22
α2!

.
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Then

(2.1) ‖u− u(j)‖L2,µ−k(R3;L) ≤ c‖u‖Lk2,µ(R3;L),

where k − µ− 2 < j < k − µ− 1, µ ∈ (0, 1). We need also the Hardy inequality
in the form

(2.1′)

∞∫
0

|u|2r2µ dr ≤ c
∞∫
0

|u ,r|2r2µ+2 dr, µ ∈ R,

µ 6= −1/2, where the both sides of (2.1′) exist and u ,r = ∂ru.
Now we recall some results from [2]. Let us consider the problem

(2.2)

−∆′u = f in R2,

u|γ0 = u|γ2π ,
u ,ϕ|γ0 = u ,ϕ|γ2π ,

where ∆′ = ∂2x1 + ∂2x2 , γ0 = γ2π = {x ∈ R2 : x2 = 0}, r, ϕ are the polar
coordinates. First we find solutions of the homogenous problem (2.2). Expressing
homogeneous problem (2.2) in the polar coordinates we have

(2.3)

1
r
∂r(rur) +

1
r2
u ,ϕϕ = 0,

u|ϕ=0 = u|ϕ=2π,
uϕ| ,ϕ=0 = uϕ| ,ϕ=2π.

A general solution of (2.3)1 has the form

(2.4) u = rα(a1 sinαϕ+ a2 cosαϕ),

where a1, a2 are arbritrary parameters. Using (2.4) in (2.3)2,3 yields

(2.5) sin 2πα = 0, cos 2πα = 1,

so α is an arbitrary integer number. Therefore solutions of (2.3) have the form

(2.6) u1k = rk sin kϕ, u2k = rk cos kϕ,

where k ∈ Z.
Introducing new variable τ = − ln r and the new quantity v(τ, ϕ) = u(e−τ , ϕ)

we write (2.2) in the form

(2.7)

v ,ττ + v ,ϕϕ = fe−2τ ≡ F,
v|ϕ=0 = v|ϕ=2π,

v ,ϕ|ϕ=0 = v ,ϕ|ϕ=2π.
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Applying the Fourier transform

(2.8) v(τ, ϕ) =

∞∫
−∞

eiλτ ṽ(λ, ϕ) dλ

to (2.7) and putting σ = −iλ yield

(2.9)

σ2ṽ + ṽ ,ϕϕ = F̃ ,

ṽ|ϕ=0 = ṽ|ϕ=2π,
ṽ ,ϕ|ϕ=0 = ṽ ,ϕ|ϕ=2π.

In view of the above considerations we see that solutions of homogeneous prob-
lem (2.9) have the form (2.6) when σ ∈ Z.
Assume that f ∈ Hkµ(R2, 0). Then

(2.10)
k∑
s=0

∞+ih∫
−∞+ih

|λ|2s‖F̃‖2Hk−s(0,2π) dλ ≤ ‖f‖
2
Hkµ(R2,0)

,

where h = 1 + k − µ. Then from [2] we have

Theorem 2.1. Assume that f ∈ Hkµ(R2; 0), µ ∈ (0, 1), k ∈ N0, h 6= 0. Then
there exists a unique solution u ∈ Hk+2µ (R2; 0) of (2.2) such that

(2.11) ‖u‖Hk+2µ (R2;0) ≤ c‖f‖Hkµ(R2;0).

Moreover,

Theorem 2.2. Assume that f ∈ Hkµ(R2; 0) ∩ Hk
′

µ′ (R2; 0), µ, µ′ ∈ (0, 1),
k, k′ ∈ N0 and

h(k′, µ′) = h′ = 1 + k′ − µ′ > 1 + k − µ = h = h(k, µ),

where h, h′ 6∈ Z. Assume that there exist integer numbers such that l1, . . . , lµ ∈
(h, h′). Then there exists two solutions of problem (2.2) u ∈ Hk+2µ (R2; 0) and
u′ ∈ Hk′+2µ (R2; 0) such that

(2.12) ‖u‖Hk+2µ (R2;0) ≤ c‖f‖Hkµ(R2;0), ‖u
′‖
Hk
′+2
µ′ (R2;0) ≤ c‖f‖Hk′µ′ (R2;0),

and

(2.13) u =
lµ∑
σ=l1

(aσrσ sinσϕ+ bσrσ cosσϕ) + u′.

Let Bl2(Rn) be a closure of smooth functions with compact supports in the
seminorm

〈u〉(l)2,Rn =
( ∑
|α|=[l]

∫
Rn

∫
Rn

∣∣∣∣Dαu(x)−2Dαu(x+ y2
)
+Dαu(y)

∣∣∣∣2 dx dy

|x− y|n+2(l−[l])

)1/2
,
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where [l] is the integer part of l (the seminorm in the main part of the norm of
the Besov space Bl2(Rn)).

Theorem 2.3. Let u ∈ Lk2,µ(R3, L), µ > −1 and |α| < k − µ − 1. Then
Dαu|L ∈ Bk−µ−|α|−12 (L) and

〈Dαu〉(k−µ−|α|−1)2,L ≤ c‖u‖Lk2,µ(R3;L).

Let ϕα ∈ Bk−µ−|α|−12 (L), where α = (α1, α2) with |α| < k − µ− 1, be given
functions with compact supports on L.

Then there exists a function u ∈ Lk2,µ(R3;L) with a compact support such
that Dαx′u|L = ϕα and

‖u‖Lk2,µ(R3;L) ≤ c
∑
α

〈ϕα〉(k−µ−|α|−1)2,L .

3. Regularity problem for (1.13)

In view of the form of (1.13) we can treat u and ω as scalar valued functions,
however they are vector valued.

Lemma 3.1. Assume that ω ∈ L2,µ(R3;L), µ ∈ (0, 1), has a compact support.
Then there exists a solution to problem (1.13) such that

(3.1) ‖u− u(0)‖H∗2µ (R3;L) ≤ c‖ω‖L2,µ(R3;L),

where u(0) = u|r=0 and H∗2µ (R2;L) is defined by (3.23).

Proof. By a weak solution to problem (1.13) we mean a function u ∈
H1(R3) satisfying the integral identity

(3.2)
∫
R3

∇u · ∇ϕdx =
∫
R3

ω · ϕdx,

which holds for any ϕ ∈ H1(R3). Inserting ϕ = u in (3.2), passing to the spherical
coordinates, using the Hardy inequality (2.1′) with µ = 1 and compactness of
the support of ω we obtain

(3.3)
∫
R3

|∇u|2 dx ≤ c
∫
R3

|ω|2 dx.

Using the Hardy inequality (2.1’) once again we have existence of weak solutions
(3.2) in H̃10 (R3; 0) and the estimate

(3.4) ‖u‖
eH10 (R3;0)

≤ c‖ω‖L2(R3).
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Applying the Fourier transform

(3.5) u(x) =

∞∫
−∞

eix3ξũ(x′, ξ) dξ

to (1.13) implies

(3.6)

−∆′ũ+ ξ2ũ = ω̃,
ũ|γ0 = ũ|γ2π ,

∂ũ

∂x2

∣∣∣∣
γ0

=
∂ũ

∂x2

∣∣∣∣
γ2π

.

In view of the Parseval identity the identity (3.2) takes the form

(3.7)
∫
R2

(∇′ũ · ∇′ϕ+ ξ2ũ · ϕ) dx′ =
∫
R2

ω̃ · ϕdx′,

which holds for any ϕ ∈ H1(R2), where ϕ̃ was replaced by ϕ for simplicity. To
increase regularity of weak solutions determined by (3.7) we need some estimates
involving parameter ξ to apply Kondratiev results. From [5] we have the estimate

(3.8) ξ2
∫
R2

(|∇′ũ|2 + ξ2|ũ|2)|x′|2µ dx′ ≤ c
∫
R2

|ω̃|2|x′|2µ dx′,

where µ ∈ (0, 1).
In view of (3.3) and the Parseval identity we obtain the estimate

(3.9)
∫
R2

(|∇′ũ|2 + ξ2|ũ|2) dx′ ≤ c
∫
R2

|ω̃|2 dx′.

From (3.8) after applying the Hardy inequality we get

(3.10) ξ2‖ũ‖H1µ(R2;0) + ξ
4‖ũ‖2L2,µ(R2;0) ≤ c‖ω̃‖

2
L2,µ(R2;0).

Let us introduce the function

(3.11) ũR = ũζ
(
|ξ| |x′|
R

)
,

where R will be chosen large enough. Then ũR is a solution to the problem

(3.12)

−∆′ũR + ξ2ũR = ω̃ζ − 2∇′ũ∇′ζ − ũ∆′ζ ≡ hR,
ũR|γ0 = ũR|γ2π ,

ũR,ϕ|γ0 = ũR,ϕ|γ2π ,

where u in the r.h.s. is the weak solution.
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Since |∇′ζ| ≤ c|ζ̇|/|x′|, |∇′2ζ| ≤ c
|x′|2 (|ζ̇| + |ζ̈|), where c does not depend on

R and dot denotes the derivative with respect to the argument,we obtain that

(3.13) ‖2∇′ũ∇′ζ + ũ∇′2ζ‖2L2,µ(R2;0)

≤ c |ξ|
2

R2

∫
R2

(|∇′ũ|2|x′|2µ + |ũ|2|x′|2µ−2) dx′ ≤ c

R2

∫
R2

|ω̃|2|x′|2µ dx′,

where (3.8) was used. Hence hR ∈ L2,µ(R2; 0) and

(3.14) ‖hR‖L2,µ(R2;0) ≤ c
(
1 +
1
R2

)
‖ω̃‖L2,µ(R2;0).

Therefore for ũR we obtain the estimates (3.8), (3.9) and (3.10).

Multiplying (3.12)1 by ũR|x′|2µ and integrating the result over R2 yield

(3.15)
∫
R2

(|∇′ũR|2 + ξ2|ũR|2)|x′|2µ dx′ ≤ c
∫
R2

|ũR|2|x′|2µ−2 dx′

+
∫
R2

|ω̃| |ũR| |x′|2µζ dx′ + c
∫
R2

(|∇′ũ| |x′|−1|ζ̇|+ |ũ| |x′|−2(|ζ̇|+ |ζ̈|)|ũR| |x′|2µ dx′,

where the constants c do not depend on R. Since ũR vanishes for |ξ| |x′| ≥ R,
the first integral on the r.h.s. of (3.15) can be estimated by

c

R2

∫
R2

ξ2|ũR|2|x′|2µ dx′.

Using compactness of the support of ω̃ the second integral on the r.h.s. of (3.15)
we estimate by

c

∫
R2

|ω̃| |ũR| |x′|2µ−1 dx′ ≤ ε
∫
R2

|ũR|2|x′|2µ−2 dx′ + c(ε)
∫
R2

|ω̃|2|x′|2µ dx′

≤ εc
∫
R2

|∇′ũR|2|x′|2µ dx′ + c(ε)
∫
R2

|ω̃|2|x′|2µ dx′.

Finally the last term on the r.h.s. of (3.15) we estimate by

c(ε)
∫
R2

|ũR|2|x′|2µ−2(|ζ̇|2 + |ζ̈|2) dx′ + ε
∫
R2

(|∇′ũ|2|x′|2µ + |ũ|2|x′|2µ−2) dx′

≤ c(ε)
R2

∫
R2

|ξ|2|ũR|2|x′|2µ dx′ + εc
∫
R2

|∇′ũ|2|x′|2µ dx′,

where in the first integral we used |x′|−2 ≤ c|ξ|2/R2 and in the second the Hardy
inequality.
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Assuming that R is large enough we obtain from the above considerations
the inequality

(3.16)
∫
R2

(|∇′ũR|2 + ξ2|ũR|2)|x′|2µ dx′

≤ c
∫
R2

|ω̃|2|x′|2µ dx′ + εc
∫
R2

|∇′ũ|2|x′|2µ dx′.

Passing with R→∞ in (3.16) yields

(3.17)
∫
R2

(|∇′ũ|2 + ξ2|ũ|2)|x′|2µ dx′ ≤ c
∫
R2

|ω̃|2|x′|2µ dx′.

Finally, from (3.16) and (3.17), we have

(3.18)
∫
R2

(|∇′ũR|2 + ξ2|ũR|2)|x′|2µ dx′ ≤ c
∫
R2

|ω̃|2|x′|2µ dx′.

Let us consider the problem

(3.19)

−∆′ũR = ω̃ζ − 2∇′ũ∇′ζ − ũ∇′2ζ − ξ2ũR ≡ g̃R,
ũR|γ0 = ũR|γ2π ,

ũR,ϕ|γ0 = ũR,ϕ|γ2π .

In view of the above considerations we have that g̃R ∈ L2,µ(R2; 0) and

(3.20) ‖g̃R‖L2,µ(R2;0) ≤ c‖ω̃‖L2,µ(R2;0).

Since hR ∈ L2,µ(R2; 0) and (3.14) solutions of (3.12) satisfy (3.8). From the
estimate we obtain (3.20).
Using compactness of the support of ω̃ and (3.17) we have

‖g̃R‖L2,µ+1(R2;0) ≤ c(‖ω̃‖L2,µ+1(R2;0) + ‖∇
′ũ‖L2,µ(R2;0)(3.21)

+ ‖ũ‖L2,µ−1(R2;0) + ‖ξ
2ũR‖L2,µ+1(R2;0))

≤ c(‖ω̃‖L2,µ(R2;0) + ‖ξ
2ũR‖L2,µ+1(R2;0)).

Finally the last norm we estimate in the way∫
R2

ξ4|ũR|2|x′|2µ+2 dx′ ≤ c
∫
R2

ξ2|ũR|2|x′|2µ dx′ ≤ c
∫
R2

|ω̃|2|x′|2µ dx′,

where we used that ũR vanishes for |ξ| |x′| ≥ R and (3.18)
Considering problem (3.19) we see that g̃R ∈ L2,µ(R2; 0) ∩ L2,µ+1(R2; 0).

Therefore, by Theorem 2.2, we have two solutions ũ1R ∈ H2µ(R2; 0) and ũ2R ∈
H2µ+1(R2; 0).
Moreover, 1− µ > 0 > 1− (1 + µ) = −µ, so Theorem 2.2 implies that

ũ2R = ũ
1
R + c0,
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where we assume that c0 = ũ|r=0 = ũ(0) because ũ1R|r=0 = 0 and ũ2R|r=0 6= 0
and corresponds to the weak solution.
Therefore the weak solution is such that ũ − ũ(0) ∈ H2µ(R2; 0) and the esti-

mate holds

(3.22) ‖ũ− ũ(0)‖H2µ(R2;0) ≤ c‖ω̃‖L2,µ(R2;0).

Finally, by the Parseval identity, we have that

‖u− u(0)‖H∗2µ (R3;L) ≡
∫
R1

(|ξ|4‖ũ‖2L2,µ(R2;0) + |ξ|
2‖ũ‖2H1µ(R2;0)(3.23)

+ ‖ũ− ũ(0)‖2H2µ(R2;0)) dξ ≤ c‖ω‖
2
L2,µ(R3;L).

This concludes the proof. �

Next we have

Lemma 3.2. Assume that ω ∈ H1µ(R3;L), µ ∈ (0, 1) and has a compact
support. Then there exists a solution to problem (1.13) such that u − u(0) −
ux1(0)x1 − ux2(0)x2 ∈ H∗3µ (R3;L) and

(3.24) ‖u− u(0)− ux1(0)x1 − ux2(0)x2‖H∗3µ (R3;L) ≤ c‖ω‖H1µ(R3;L),

where

‖u− u(0) − ux1(0)x1 − ux2(0)x2‖2H∗3µ (R3;L)

=
∫
R1

(|ξ|6‖ũ‖2L2,µ(R2;0) + |ξ|
4‖ũ‖2H1µ(R2;0) + |ξ|

2‖ũ− ũ(0)‖2H2µ(R2;0)

+ ‖ũ− ũ(0)− ũx1(0)x1 − ũx2(0)x2‖2H3µ(R2;0)) dξ.

Proof. From (3.8) we obtain the estimate

(3.25) ξ4
∫
R2

(|∇′ũ|2 + ξ2|ũ|2)|x′|2µ dx′ ≤ cξ2
∫
R2

|ω̃|2|x′|2µ dx′.

Now we consider problem (3.19) where the third term on the r.h.s. takes the form
(ũ − ũ(0))∇′2ζ. It means that in the r.h.s. of (3.19) is the function ũ − ũ(0) ∈
H2µ(R2; 0). First we show that g̃R ∈ H1µ(R2; 0). For this purpose we examine

‖∇′ũ∇′ζ‖2H1µ(R2,0) ≤ c(‖∇
′2ũζ̇‖2L2,µ−1(R2;0) + ‖∇

′ũ(|ζ̇|+ |ζ̈|)‖2L2,µ−2(R2;0))

≤ cξ2
∫
R2

|∇′2ũ|2|x′|2µ dx′ + cξ2
∫
R2

|∇′ũ|2|x′|2µ−2 dx′

≤ cξ2
∫
R2

|ω̃|2|x′|2µ dx′,



102 W. M. Zajączkowski

where we used that |ξ|−1|x′|−1 ≤ c and the estimates from the proof of Lem-
ma 3.1. Next

‖ũ∇′2ζ‖2H1µ(R2;0) ≤ c‖∇
′ũ(|ζ̈|+ |ζ̇|)‖L2,µ−2(R2;0)

+ c‖(ũ− ũ(0))(|ζ̇|+ |ζ̈|+ |
...
ζ |)‖2L2,µ−3(R2;0)

≤ cξ2
∫
R2

|∇′ũ|2|x′|2µ−2 dx′ + cξ2
∫
R2

|ũ− ũ(0)|2|x′|2µ−4 dx′

≤ cξ2
∫
R2

|ω̃|2|x′|2µ dx′.

Finally, from the proof of Lemma 3.1, it follows that ξ2ũR ∈ H1µ(R2; 0). Hence
g̃R ∈ H1µ(R2; 0) is shown.
Now we prove that g̃R ∈ H11+µ(R2; 0). For this purpose we examine

‖∇′ũ∇′ζ‖H11+µ(R2;0) ≤ c‖∇
′2ũζ̇‖2L2,µ(R2;0) + c‖∇

′ũ(|ζ̇|+ |ζ̈|)‖2L2,µ−1(R2;0)
≤ c‖ω̃‖2L2,µ(R2;0).

Continuing

‖(ũ− ũ(0))∇′2ζ‖2H1+µ(R2;0) ≤ c‖∇
′ũ(|ζ̈|+ |ζ̇|)‖2L2,µ−1(R2;0)

+ c‖(ũ− ũ(0))(|ζ̇|+ |ζ̈|+ |
...
ζ |)‖2L2,µ−2(R2;0)

≤ c‖ω̃‖2L2,µ(R2;0).

Finally, in view of (3.18) and that ũR vanishes for |ξ| |x′| ≥ R, we obtain

‖ξ2ũR‖2H1+µ(R2;0) ≤ c
∫
R2

ξ4|∇′ũR|2|x′|2(1+µ) dx′ + c
∫
R2

ξ4|ũR|2|x′|2µ dx′

≤ cξ2
(∫

R2

|∇′ũR|2|x′|2µ dx′ +
∫
R2

|ũR|2|x′|2µ−2 dx′
)

≤ cξ2
∫
R2

|ω̃|2|x′|2µ dx′.

Hence g̃R ∈ H11+µ(R2; 0) is proved. Therefore from (3.19) and Theorem 2.2
we have existence of two solutions ũ1R ∈ H3µ(R2; 0) and ũ2R ∈ H31+µ(R2; 0) and
because 2− µ > 1 > 2− (1 + µ) = 1− µ we have that

ũ2R = ũ
1
R + c11x1 + c12x2, ‖ũR − c0 − c11x1 − c12x2‖H3µ(R2;0) ≤ c‖ω̃‖H1µ(R2;0),

where c0 = u|r=0, c11 = u ,x1 |r=0, c12 = u ,x2 |r=0. Applying the Parseval identity
and adding necessary norms we obtain (3.24). This concludes the proof. �

Next we consider the case ω ∈ W k2,µ(R3;L), where k > 1. For this purpose
we need
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Lemma 3.3. Assume that ω ∈ Lk2,µ(R3;L), k ≥ 0. Then there exists a func-
tion v ∈ Lk+22,µ (R3;L) such that f = ∆v + ω ∈ Hkµ(R3;L) and the estimate holds

(3.26) ‖v‖Lk+22,µ (R3;L)
+ ‖f‖Hkµ(R3;L) ≤ c‖ω‖Lk2,µ(R3;L).

Proof. Let

ωs =
∑
|α|=s

Dαx′ω|x′=0
xα11
α1!

xα22
α2!

,

where α = (α1, α2) is the multiindex and Dαx′ = ∂
α1
x1 ∂

α2
x2 . We introduce homoge-

nous polynomials Rs defined by the relations (see [4], [5])

(3.27)

−∇′2Rs = ∇′′2Rs−2 + ωs−2,
Rs|γ0 = Rs|γ2π ,

Rs,ϕ|γ0 = Rs,ϕ|γ2π ,

where ∇′′ = ∂x3 . We assume that R0 = R1 = 0. In view of Theorem 2.3 we have

(3.28)
∑

|α|=[k+1−µ]

〈Dαx′R|α|〉
(k+1−µ−|α|)
2,L ≤ c‖ω‖Lk2,µ(R3;L).

We choose a function v in such a way that

(3.29) v|x′=0 = 0, Dαx′v|x′=0 = Dαx′R|α|,

where 0 < |α| ≤ [k + 1− µ] and

(3.30) ‖v‖Lk+22,µ (R3;L)
≤ c

∑
|α|≤[k+1−µ]

〈Dαx′R|α|〉
(k+1−µ−|α|)
2,L ≤ c‖ω‖Lk2,µ(R3;L).

Moreover, for |β| < k − 1− µ, we have

Dβx′(∆v + ω) = ∇
′′2Dβx′(v −R|β|) +∇

′2Dβx′(v −R|β|+2) +D
β
x′(ω − ω|β|).

Hence Dβx′(∆v + ω)|x′=0 = 0 so ∆v + ω ∈ Hkµ(R3;L) and

‖∆v + ω‖Hkµ(R3;L) ≤ c‖∆v + ω‖Lk2,µ(R3;L).

This concludes the proof. �

In view of Lemma 3.3 we can consider problem (1.13) with ω ∈ Hkµ(R3;L).

Theorem 3.4. Assume that ω ∈ Hkµ(R3;L), µ ∈ (0, 1). Then the prob-
lem (1.13) has a solution u ∈ Lk+22,µ (R3;L) and

(3.31) ‖u‖Lk+22,µ (R3;L)
≤ c‖ω‖Hkµ(R3;L),

holds. Moreover, there exists a polynomial P(k)(u) of degree k such that

(3.32) ‖u‖H∗k+2µ (R3;L) ≤ c‖ω‖Hkµ(R3;L),
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where H∗k+2µ (R3;L) is defined by (3.45) and (3.46). The polynomial P(k)(u)
depends on derivatives of u up to the order k calculated on the axis L.

Proof. We examine problem (1.13) in the form (3.6). We show the lemma
step by step starting from the regularity of weak solutions. Let ω ∈ L2,µ(R3;L).
Then Lemma 3.1 implies that u− P0 ∈ H∗2µ (R3;L), P0 = u|r=0 and

(3.33) ‖u− P0‖H∗2µ (R3;L) ≤ c‖ω‖L2,µ(R3;L).

Let ω ∈ H1µ(R3;L). Then Lemma 3.2 gives that u− P0 − P1 ∈ H∗3µ (R3;L) and

(3.34) ‖u− P0 − P1‖H∗3µ (R3;L) ≤ c‖ω‖H1µ(R3;L),

where P1 = ux1(0)x1 + ux2(0)x2. Assume that ω ∈ Hkµ(R3;L). Then ω̃ ∈
Ekµ(R2; 0), where

(3.35) ‖ũ‖2Ekµ(R2;0) =
∑
j≤k

|ξ|2j‖ω̃‖2
Hk−jµ (R2;0).

The meaning of the space Ekµ(R2; 0) is such that

‖u‖2Hkµ(R3;Γ) =
∞∫
−∞

dξ‖ũ‖2Ekµ(R2;0),

by the Parseval identity. To simplify considerations we introduce

u0 = u− P0, u1 = u− P0 − P1, so u0 ∈ H∗2µ (R3;L), u1 ∈ H∗3µ (R3;L).

To increase regularity we are looking for solutions of the problems

−∆′ũj = −ξ2ũj−2 + ω̃,
ũj |γ0 = ũj |γ2π ,

ũj,ϕ|γ0 = ũj,ϕ|γ2π ,

where j ≥ 2, and homogeneous polynomials P̃s,s+2j of degree s + 2j, s = 0, 1,
which are solutions to the problems

−∆′P̃s,s+2j = −ξ2P̃s,s+2(j−1),

P̃s,s+2j |γ0 = P̃s,s+2j |γ2π ,
P̃s,s+2j,ϕ|γ0 = P̃s,s+2j,ϕ|γ2π ,

where P̃0,0 = P̃0, P̃1,1 = P̃1. Looking for solutions in H4µ we introduce

v′ = ũ1 − ζ(|x′|)P̃0,2,
v′′ = ũ2 + (1− ζ(|x′|))P̃0,2.
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They are solutions to the same problem

(3.36)

−∆′v = h,
v|γ0 = v|γ2π ,

v,ϕ|γ0 = v,ϕ|γ2π ,

because

h′ = −ξ2ũ+ ω̃ + ζξ2P̃0,2 + 2∇′ζ∇′P̃0,2 +∇′2ζP̃0,2,
h′′ = −ξ2ũ0 + ω̃ − ξ2P̃0 + ζξ2P̃0,2 +∇′2ζP̃0,2,

are equal. Let us introduce the polynomials

(3.37) Qk = akrk sin kϕ+ bkrk cos kϕ.

Since h = h′ = h′′ ∈ H1µ(R2; 0) ∩ H2µ(R2; 0) we have that h(1) = 2 − µ < 2 <
3− µ = h(2). Applying Theorem 2.2 we obtain that v′ = v′′ + Q̃2, so

ũ1 = ũ2 + P̃0,2 + Q̃2,

or

(3.38) ũ = ũ2 + P̃0 + P̃1 + P̃0,2 + Q̃2.

Moreover, we have

(3.39) ‖ũ2‖H4µ(R2;0) ≤ c‖ω̃‖E2µ(R2;0).

To show regularity in H5µ(R2; 0) we introduce

v′ = ũ2 − ζP̃1,2, v′′ = ũ3 + (1− ζ)P̃1,2,

which are solutions of the same problem (3.36) because ũ1 + P̃1 = ũ0 implies
that h′ = h′′.
Since h ∈ H2µ(R2; 0) ∩ H3µ(R2; 0) and h(2) = 3 − µ < 3 < 4 − µ = h(3) we

have, by Theorem 2.2, that v′ = v′′ + Q̃3, so

ũ2 = ũ3 + P̃1,2 + Q̃3.

Hence

(3.40) ũ = ũ3 + P̃0 + P̃1 + P̃0,2 + P̃1,2 + Q̃2 + Q̃3

and

(3.41) ‖ũ3‖H5µ(R2;0) ≤ c‖ω̃‖E3µ(R2;0).

To increase further regularity we introduce

v′ = ũ3 − ζ(P̃0,4 + Q̃2,4),
v′′ = ũ4 + (1− ζ)(P̃0,4 + Q̃2,4),
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where Q̃2,4 is the fourth degree polynomial calculated from the problem

−∇′2Q̃s,s+2j = −ξ2Q̃s,s+2(j−1),

Q̃s,s+2j |γ0 = Q̃s,s+2j |γ2π ,
Q̃s,s+2j,ϕ|γ0 = Qs,s+2j,ϕ|γ2π ,

where s = 2 and j = 1 and Q̃s,s = Q̃s. To apply Theorem 2.2 we see that
h(3) = 4− µ < 4 < 5− µ = h(4), so

(3.42) ũ3 = ũ4 + P̃0,4 + Q̃2,4 + Q̃4.

Continuing the above considerations we have

(3.43) ũ = ũk +
∑
2j≤k

P̃0,2j +
∑
1+2j≤k

P̃1,1+2j +
∑
s≤k

s+2j≤k

Q̃s,s+2j ,

and

(3.44) ‖ũk‖Hk+2µ (R2;0) ≤ c‖ω̃‖Ekµ(R2;0).

Moreover, in view of (3.38)–(3.44), we obtain

‖ũ‖2
H∗k+2µ (R2;0) ≡ ξ

2(k+1)‖ũ‖2L2,µ(R2;0) + ξ
2k‖ũ‖2H1µ(R2;0)(3.45)

+ |ξ|2k−2‖ũ0‖2H2µ(R2;0) + · · ·+ ‖ũk‖
2
Hk+2µ (R2;0)

≤ c‖ω̃‖2Ekµ(R2;0).

Hence in view of the Parseval equality, we obtain (3.32) where H∗k+2µ (R3;L) is
defined by

(3.46) ‖u‖2
H∗k+2µ (R3;L) =

∫
R1

dξ‖ũ‖2
H∗k+2µ (R2;0).

This concludes the proof. �

From Lemma 3.3 and Theorem 3.4 we have

Theorem 3.5. Assume that ω ∈ Lk2,µ(R3;L), µ ∈ (0, 1). Then there exists
a solution to (1.13) such that u ∈ Lk+22,µ (R3;L) and

(3.47) ‖u‖Lk+22,µ (R3;L)
≤ c‖ω‖Lk2,µ(R3;L).

Moreover, there exists a function v determined by Lemma 3.3 such that

(3.48) ‖u‖H∗k+2µ (R3;L) ≤ c‖ω − v‖Hkµ(R3;L).

We have to underline that the boundary conditions in the problem (1.13)
are artificial and are used to apply the technique of weighted Sobolev spaces
introduced by Kondratiev only (see [2]). It can be shown similarly as in [8] that
the solution remains regular passing through the plane Γ0 = Γ2π.
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4. Existence of solutions to (1.10)

To prove the existence of solutions to problem (1.10) and to find an appro-
priate extimate we use the existence of weak solutions (see Lemma 1.2) and
the estimate (1.12). To show higher regularity we apply local considerations.
Therefore we distinguish four different kinds of neighourhoods:

(1) near internal points of L,
(2) near the points where L meets the boundary,
(3) near internal points of Ω but in a positive distance from L,
(4) near boundary points but in a positive distance from the points where

L meets ∂Ω.

In the cases (3) and (4) the weighted spaces are not necessary. We shall restrict
to cases (1) and (2) which can be treated similarly. Let ζ be a smooth function
with the support near an internal point of L. Let ũ = uζ, ω̃ = ωζ. Then
problem (1.10) takes the form

(4.1) −∆ũ = ω̃ − 2∇ζ∇u−∆ζu ≡ ω̃1,

where we can add additionally the boundary conditions (1.13)2,3. In view of the
weak solution and for ω ∈ L2(Ω) we have that ω̃1 ∈ L2(Ω) too. Therefore we
can repeat the consideratons from Section 3.

Theorem 4.1. Assume that ω ∈ W k2,µ(Ω;L), µ ∈ (0, 1). Then there exists
a solution to problem (1.13) such that u ∈W k+22,µ (Ω;L) and the estimate holds

(4.2) ‖u‖Wk+22,µ (Ω;L)
≤ c‖ω‖Wk2,µ(Ω;L).

Let p ∈ L. Then there exists a neighbourhood Ω(p) of p sufficiently small
and a function v = v(p) such that

(4.3) ‖u‖H∗k+2µ (Ω(p);L) ≤ c‖ω − v(p)‖Hkµ(Ω(p);L).

5. Existence of solutions to problem (1.1)

In view of results of Sections 3 and 4 we have

Theorem 5.1. Assume that ω ∈W k2,µ(Ω;L), k ∈ N0, µ ∈ (0, 1). Then there
exists a solution v ∈W k+12,µ (Ω;L) such that

(5.1) ‖v‖Wk+12,µ (Ω;L)
≤ c‖ω‖Wk2,µ(Ω;L).

Moreover, in any sufficiently small neighbourhood Ω(p) of a point p ∈ L, there
exist v∗(ω, p) such that

(5.2) ‖v‖H∗k+1µ (Ω(p);L) ≤ c‖ω − v∗(ω, p)‖Hkµ(Ω(p);L) + ‖w‖L2,µ(Ω;L).
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