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MULTIPLE POSITIVE SOLUTIONS FOR A SINGULARLY
PERTURBED DIRICHLET PROBLEM

IN “GEOMETRICALLY TRIVIAL” DOMAINS

Giovanna Cerami — Caterina Maniscalco

Abstract. In this paper we consider the singularly perturbed Dirichlet
problem (Pε), when the potential aε(x), as ε goes to 0, is concentrating

round a point x0 ∈ Ω. Under suitable growth assumptions on f , we prove

that (Pε) has at least three distinct solutions whatever Ω is and that at
least one solution is not a one-peak solution.

1. Introduction

In this paper we consider the problem

(Pε)


−ε2∆u+ aε(x)u = f(u) in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

where Ω ⊂ RN , is a bounded domain having smooth boundary ∂Ω, ε ∈ R+\{0},
f : R+ → R is a C1,1 superlinear function and aε is a given nonnegative function
of the form

aε(x) = a∞ + α

(
x− x0

ε

)
, a∞ ∈ R+, x0 ∈ Ω.
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During the last ten years the relations between the shape of Ω and the multiplicity
of solutions to problems like (Pε), when ε→ 0 have been intensively investigated.
Most of the results are concerned with problems like

(1.1)


−ε2∆u+ u = up in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

and we cannot mention here all of them. We recall only that at the beginning
the effect of the domain topology was pointed out, by giving a lower bound to
the number of solutions of (1.1) in terms of suitable topological invariants of Ω
([1]–[3]). Subsequently the role of the geometry of Ω and the importance of the
distance function d(x, ∂Ω) have been stressed more and more. Starting from the
fact (proven in [10]) that any least energy solution, when ε is suitably small, has
a single spike layer, which converges to the point where the distance function
admits its global maximum, the existence of single peaked solutions to (1.1) has
been shown to be strictly linked to the existence of critical points of the distance
function (see [11], [7], [4], [5] and references therein).

On the other hand, it is well known that if Ω is a ball (1.1) admits only one
positive solution ([6]).

The aim of this paper is to show that multiplicity results can be obtained even
if the domain is “geometrically trivial” (in the sense that the distance function
admits only its global maximum as critical point) when the linear term contains
a piece concentrating, as ε→ 0, around some point of Ω.

We make the following assumptions:

(H1) there exists k ∈ R, k > 0 such that, for every t > 0,

|f(t)| < k + ktp,

|f ′(t)| < k + ktp−1,

where p > 1, and p < (N + 2)/(N − 2) for N ≥ 3.
(H2) there exists θ ∈ (0, 1/2) such that

F (t) ≤ θtf(t) for all t > 0,

where

F (t) =
∫ t

0

f(s) ds for all t > 0,

(H3) f(0) = f ′(0) = 0,

(H4) d
dt

(
f(t)
t

)
> 0 for all t > 0,

(H5) a∞ > 0, α(x) ≥ 0, α ∈ LN/2(RN ), |α|LN/2(RN ) 6= 0.

The result we obtain is
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Theorem 1.1. Suppose the assumptions (H1)–(H5) are satisfied, then there
exists ε∗ > 0 such that, for any ε ∈ (0, ε∗], problem (Pε) has at least three distinct
solutions. Moreover, at least one solution is not a one-peak solution.

The proof of the above theorem is contained in Section 3, while in Section 2
some useful facts are collected.

2. The functional analytic setting and some useful facts

Throughout the paper we make use of the following notations

• Lp(D), 1 ≤ p < ∞, D ⊆ RN denotes a Lebesgue space; the norm in
Lp(D) is denoted by | · |p,D.

• H1
0 (D), D ⊆ RN denotes the Sobolev space obtained as closure of C∞0 (D)

under the norm

‖u‖D =
[ ∫

D
(|∇u|2 + a∞u

2) dx
]1/2

.

If u ∈ H1
0 (D1) and D1 ⊂ D2 ⊆ RN we denote also by u its extension to

D2 made setting u ≡ 0 outside of D1.
• Bρ(y) denotes the open ball of radius ρ centered at y in RN :

Bρ(y) = {x ∈ RN : |x− y|RN < ρ}.

• Dε denotes the subset of RN {y ∈ RN : εy ∈ D}, D ⊂ RN .
• For what follows it is also useful to extend f and F to R− in the following

way
f(t) = 0 for t < 0,

F (t) = 0 for t < 0.

On H1
0 (D) we consider the functionals Eε and Gε defined by

Eε(u) =
1
2

∫
D

(ε2|∇u|2 + aε(x)u2) dx−
∫
D
F (u) dx,(2.1)

Gε(u) = E′ε(u)[u] =
∫
D

(ε2|∇u|2 + aε(x)u2) dx−
∫
D
f(u)u dx.(2.2)

Let us remark that by the assumptions, Eε is a C2-functional on H1
0 (D), so

Gε is well defined and C1.

Set

(2.3) Vε(D) = {u ∈ H1
0 (D) : u 6= 0 and Gε(u) = 0}

and denote by

(2.4) SD = {u ∈ H1
0 (D) : ‖u‖D = 1} \ {u ∈ H1

0 (D) : u ≤ 0 a.e.}.

The following three lemmas collect the properties of Eε and Vε(D).
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Lemma 2.1. For any D ⊆ RN , Vε(D) is a smooth manifold of codimension 1
in H1

0 (D). Vε(D) is diffeomorphic to SD by a C1,1-diffeomorphism ψε:SD →
Vε(D). Moreover, there exist hε = hε(D) > 0 and kε = kε(D) > 0 such that, for
any u ∈ Vε(D),

(2.5)

{
(i) ‖u‖D ≥ hε,

(ii) Eε(u) ≥ kε.

Lemma 2.2. For any D ⊂ RN , bounded, the Palais–Smale condition holds
for both the free functional Eε and the functional Eε constrained on Vε(D).

Lemma 2.3. For any D ⊆ RN , u ∈ H1
0 (D) is a free critical point of Eε if

and only if u is a critical point of Eε constrained on Vε(D).

The above listed properties can be proven by the same arguments used in [2]
(Lemmas 2.1–2.4).

It is useful to remark that Vε(D) turn out to be the graph of a C1,1-function ψε

defined on SD by

(2.6) ψε(u) = ξε(u)u, u ∈ SD,

ξε(u) being the unique positive number which realizes the maximum of the func-
tion defined on R+ by

λ→ Eε(λu).

Moreover, ξε:SD → R is a C1,1-function.
We set

(2.7) mε(D) = inf{Eε(u), u ∈ Vε(D)}.

By (2.5)(ii) mε(D) is well defined and positive. Moreover, whenever D ⊂ RN

is bounded the infimum is achieved since Eε(u) satisfies the (PS) condition on
Vε(D).

It is clear that to critical points u ∈ H1
0 (Ω) of Eε, there correspond (weak)

solutions of (Pε), so the existence of at least one solution of (Pε), having energy
mε(Ω), easily follows using Lemma 2.3.

Setting, for all u ∈ H1
0 (D)

(2.8) uε(x) := u(εx)

we obtain a one to one map between H1
0 (D) and H1

0 (Dε) such that

(2.9)
1
2

∫
D

(
ε2|∇u|2 +

[
a∞ + α

(
x− x0

ε

)]
u2

)
dx−

∫
D
F (u) dx

= εN

[
1
2

∫
Dε

(|∇uε|2 + [a∞ + α(x− x0)]u2
ε) dx−

∫
Dε

F (uε) dx
]
,
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and

(2.10)
∫
D

(
ε2|∇u|2 +

[
a∞ + α

(
x− x0

ε

)]
u2

)
dx−

∫
D
f(u)u dx

= εN

[ ∫
Dε

(|∇uε|2 + [a∞ + α(x− x0)]u2
ε) dx−

∫
Dε

f(uε)uε dx

]
.

Hence (2.8) maps in a one to one way critical points of Eε constrained on
Vε(D) in critical points of E1 constrained in V1(Dε). In particular we have

(2.11) mε(D) = εNm1(Dε).

Let us denote by

(2.12) M∞ = inf
{

1
2

∫
RN

(|∇u|2 + a∞u
2) dx−

∫
RN

F (u) dx :

u ∈ H1
0 (RN ), u 6= 0,

∫
RN

(|∇u|2 + a∞u
2) dx =

∫
RN

f(u)u dx
}

it is well known (see [2, Lemma 3.1]) that the following result holds:

Lemma 2.4. M∞ is achieved. Any function ω that realizes M∞ is positive,
radially symmetric about some point in RN , decreasing when the radial coordinate
increases and such that

(2.13) lim
ρ→∞

|Dαω(ρ)|ρ(N−1)/2 exp(
√
a∞ρ) = const. > 0, α = 0, 1.

Remark 2.5. By the definition of M∞, it is clear that to any function ω

that realizes M∞ there corresponds a class of functions, obtained from ω by
translations having the same properties. The uniqueness modulo translations of
the function ω realizing M∞ has been proven in [8] when f(u) = up.

Lemma 2.6. Let α ∈ LN/2(RN ) be such that α(x) ≥ 0 for all x ∈ RN . Let
ω be a function, radially symmetric about y0 ∈ RN , that realizes M∞. Then for
all x0 ∈ RN fixed

(2.14) lim
r→∞

sup
{ ∫

RN

α(x− x0)(ω(x+ y0 − y))2 dx : |y − yo| = r

}
= 0.

Proof. Without any loss of generality we can suppose y0 = 0. Let us
assume, by way of contradiction, that there exists a sequence {yn}n∈N , yn ∈ RN ,
limn→∞ |yn| = +∞, such that

(2.15) lim
n→∞

∫
RN

α(x− x0)(ω(x− yn))2 dx > 0.
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We have for any r ∈ R, r > 0,∫
RN

α(x− x0)(ω(x− yn))2dx

=
∫

Br(yn)

α(x− x0)(ω(x− yn))2dx+
∫

RN\Br(yn)

α(x− x0)(ω(x− yn))2dx

≤ |ω|22∗,RN

( ∫
Br(yn)

|α(x− x0)|N/2 dx

)2/N

+ |α|N/2,RN

( ∫
RN\Br(yn)

|ω(x− yn)|2
∗
dx

)2/2∗

.

Now

lim
n→∞

∫
Br(yn)

|α(x− x0)|N/2dx = 0,

so we have, for all r > 0,

lim
n→∞

∫
RN

α(x− x0)(ω(x− yn))2 dx

≤ |α|N/2,RN

( ∫
RN\Br(0)

|ω(x)|2
∗
dx

)2/2∗

+ o(1),

hence the relation

lim
r→∞

∫
RN\Br(0)

|ω(x)|2
∗
dx = 0

gives

lim
n→∞

∫
RN

α(x− x0)(ω(x− yn))2 dx = 0

contradicting (2.15). �

Lemma 2.7. Let α ∈ LN/2(RN ) be such that α(x) ≥ 0 for all x ∈ RN ,
|α|N/2,RN 6= 0. Put

(2.16) Ma := inf{E1(u) : u ∈ H1
0 (RN ), u ∈ V1(RN )}

= inf
{

1
2

∫
RN

[|∇u|2 + (a∞ + α(x− x0))u2] dx−
∫

RN

F (u) dx :

u ∈ H1
0 (RN ),∫

RN

[|∇u|2 + (a∞ + α(x− x0))u2] dx =
∫

RN

f(u)u dx
}

then

(2.17) Ma = M∞

and the minimization problem (2.16) has no solution.
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Proof. For every u ∈ SRN , let ξ∞(u) and ξ1(u) be, respectively, the unique
positive numbers such that∫

RN

[|∇(ξ∞(u) u)|2 + a∞(ξ∞(u) u)2] dx =
∫

RN

f(ξ∞(u) u)ξ∞(u)u dx

and ξ1(u) u ∈ V1(RN ).
Since ξ1(u) is the positive number that realizes max{E1(λu) : λ ∈ R+} we

have

1
2

∫
RN

[|∇(ξ∞(u)u)|2 + a∞(ξ∞(u)u)2] dx−
∫

RN

F (ξ∞(u)u) dx(2.18)

≤ 1
2

∫
RN

[|∇(ξ∞(u)u)|2 + (a∞ + α(x− x0))(ξ∞(u)u)2] dx

−
∫

RN

F (ξ∞(u)u) dx ≤ E1(ξ1(u)u).

Then Ma ≥M∞.

To see that the equality holds, let us denote by ω ∈ H1
0 (RN ) a function

radially symmetric about the origin that realizes M∞, by {yn} a sequence of
points in RN such that limn→∞ |yn| = +∞, and consider

vn = tn ω(x− yn),

where

tn = ξ1

(
ω(x− yn)
‖ω‖RN

)
‖ω‖−1

RN .

Then vn ∈ V1(RN ) and, because of (2.14), tn → 1, E1(vn) →M∞ as n→∞.

Finally, assume that a function Ψ exists such that

Ψ ∈ V1(RN ), E1(Ψ) = M∞,

then Ψ(x) ≥ 0 a.e. in RN and applying (2.18) to Ψ/‖Ψ‖RN = Ψ̂ we obtain

1
2

∫
RN

[|∇(ξ∞(Ψ̂)Ψ̂)|2 + a∞(ξ∞(Ψ̂)Ψ̂)2] dx−
∫

RN

F (ξ∞(Ψ̂)Ψ̂) dx = M∞

and ∫
RN

α(x− x0)Ψ̂2 dx = 0,

contradicting Lemma 2.4 and the assumptions on α. �

3. Proof of the result

In what follows without any loss of generality we shall assume 0 ∈ Ω, x0 = 0,
a∞ = 1. Moreover, we denote by ρ a positive real number such that B4ρ(0) ⊂ Ω
and by Aρ the subset of Ω

Aρ = {x ∈ RN : 2ρ ≤ |x| ≤ 3ρ}.
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We define for all ε > 0 a map βε : H1
0 (Ω) → RN by

(3.1) βε(u) :=
1

|u|pp,Ω

∫
Ω

χε(x)|u(x)|p dx

where

χε(x) =

{
x if |x| ≤ ε,

ε x|x| if |x| ≥ ε,

and we set

(3.2) cε = inf {Eε(u) : u ∈ Vε(Ω), |βε(u)| < ε/2}.

Also, for all u ∈ H1
0 (RN ), we put

(3.3) β(u) :=
1

|u|pp,Ω

∫
RN

χ(x)|u(x)|p dx

where

χ(x) =

{
x if |x| ≤ 1,
x

|x|
if |x| ≥ 1.

For any ε > 0 and y ∈ Aρ we consider the function

(3.4) ϕε
y(x) :=

ζ(x)ω((x− y)/ε)
‖ζ(x)ω((x− y)/ε)‖Ω

,

where ω ∈ H1
0 (RN ) is a positive function spherically symmetric about the origin

that realizes M∞ and ζ: RN → [0, 1] is defined by

ζ(x) = ζ̂

(
|x− y|
ρ

)
,

ζ̂: R+ → [0, 1] being a decreasing C∞-function such that

ζ̂(t) =

{
1 0 ≤ t ≤ 1/2,

0 t ≥ 1.

Then for any ε > 0 and y ∈ Aρ we define the operator Φε:Aρ → Vε(Ω) by

(3.5) (Φε(y))(x) = ξε(ϕε
y) · ϕε

y(x),

where ξε is the function defined in (2.6). Let us remark that Φε is continuous
in Aρ.

We set

(3.6) µε = max{Eε(Φε(y)) : y ∈ Aρ}.
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Lemma 3.1. Assume (H1)–(H5) are satisfied. Then the relation

(3.7) lim
ε→0

cε
εN

> M∞

holds.

Proof. By (2.9), (2.10) and (3.1), (3.3), we have that

cε
εN

= inf{E1(u) : u ∈ V1(Ωε), |β(u)| < 1/2}.

Remark that β(u) is well defined for all u ∈ V1(Ωε). Clearly

inf{E1(u) : u ∈ V1(Ωε), |β(u)| < 1/2} ≥ m1(Ωε) > M∞

so

lim
ε→0

cε
εN

≥M∞.

To prove the strict inequality we argue by contradiction and we suppose that
the equality holds. In this case there exist a sequence {εn}, εn ∈ R, εn > 0,
limn→∞ εn = 0 and a sequence of functions {un}, such that

un ∈ H1
0 (Ωεn

), un ∈ V1(Ωεn
), |β(un)| < 1/2

and

M∞ ≤ 1
2

∫
Ωεn

(|∇un|2 + (1 + α(x))u2
n) dx−

∫
Ωεn

F (un) dx ≤M∞ +
1
n
.

Setting un(x) = 0 in RN \ Ωεn , we have then un ∈ H1
0 (RN ), un ∈ V1(RN )

|β(un)| < 1/2 and

M∞ ≤ 1
2

∫
RN

[|∇un|2 + u2
n]dx−

∫
RN

F (un) dx

≤ 1
2

∫
RN

[|∇un|2 + (1 + α(x))u2
n] dx−

∫
RN

F (un)dx ≤M∞ +
1
n
.

Hence un, up to a subsequence, by well known results [9] and by Lemma 2.7,
must be of the form

un(x) = ω(x− yn) + wn(x)

where ω ∈ H1
0 (RN ) is a positive function, spherically symmetric about the origin,

that realizes M∞, {yn}n∈N is a sequence of points of RN such that limn→∞ |yn| =
+∞ and {wn}n∈N is a sequence of functions belonging to H1

0 (RN ) and going
strongly to 0 in H1

0 (RN ).
Thus, by the continuity of β,

(3.8)
1
2
> |β(un)| ≥ |β(ω(x− yn))| − o(1).
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On the other hand, since limn→∞ |yn| = ∞, for all η > 0 and for all R > 0,
n exists such that for all n > n

|x− yn| < R⇒
∣∣∣∣ x|x| − yn

|yn|

∣∣∣∣ < η

and the asymptotic decay of ω implies that, for all η > 0, R > 0 exists so that,
for all R > R and for all n,

(3.9)
∫

RN\BR(yn)

|ω(x− yn)|p dx =
∫

RN\BR(0)

|ω(x)|p dx < η.

Hence, choosing η > 0 arbitrarily and fixing R so that (3.9) is verified, for n
large enough we get

(3.10)
∣∣∣∣β(ω(x− yn))− yn

|yn|

∣∣∣∣ ≤ 1
|ω|p

p,RN

∫
RN

∣∣∣∣χ(x)− yn

|yn|

∣∣∣∣|ω(x− yn)|p dx

=
1

|ω|p
p,RN

[ ∫
RN\BR(yn)

∣∣∣∣χ(x)− yn

|yn|

∣∣∣∣|ω(x− yn)|pdx

+
∫

BR(yn)

∣∣∣∣ x|x| − yn

|yn|

∣∣∣∣|ω(x− yn)|p dx
]
≤ 2η + η = 3η.

Thus |β(ω(x− yn))| ≥ 1− o(1) contradicting (3.8). �

Lemma 3.2. Assume (H1)–(H5) are satisfied. Then there exists ε̂ such that
for all ε ∈ (0, ε̂] the inequality

(3.11) µε < cε

holds.

Proof. Since Φε(y)(x) = 0 for all x /∈ Bρ(y) we have

Eε(Φε(y)(x))

=
1
2

∫
Bρ(y)

(ξε(ϕε
y))2[ε2|∇ϕε

y(x)|2 + aε(x)(ϕε
y(x))2] dx

−
∫

Bρ(y)

F (ξε(ϕε
y)ϕε

y(x)) dx = εN

[
(ξε(ϕε

y))2/2
‖ζ(x)ω((x− y)/ε)‖2Bρ(y)

·
∫

Bρ/ε(y/ε)

(∣∣∣∣∇ζ(εx)ω(
x− y

ε

)∣∣∣∣2 + (1 + α(x))
(
ζ(εx)ω

(
x− y

ε

))2)
dx

−
∫

Bρ/ε(y/ε)

F

(
ξε(ϕε

y)
ζ(εx)ω(x− y/ε)

‖ζ(x)ω((x− y)/ε)‖Bρ(y)

)
dx

]
.

Using (H1) and (2.13) we easily obtain for all y ∈ Aρ

(3.12a)
∥∥∥∥ω(

x−y
ε

)
−ζ(εx)ω

(
x−y

ε

)∥∥∥∥2

RN

≤c1
∫

RN\Bρ/2ε(0)

(|∇ω|2+a∞ω2) dx = o(ε),
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(3.12b)
∣∣∣∣ω(

x− y

ε

)
− ζ(εx)ω

(
x− y

ε

)∣∣∣∣p+1

p+1,RN

≤ c2

∫
RN\Bρ/2ε(0)

|ω(x)|p+1 dx = o(ε),

0 ≤
∫

RN\Bρ/2ε(y/ε)

f

(
ω

(
x− y

ε

))
ω

(
x− y

ε

)
dx(3.12c)

≤ k

∫
RN\Bρ/2ε(0)

[ω(x) + (ω(x))p+1] dx = o(ε),

0 ≤
∫

RN\Bρ/2ε(y/ε)

F

(
ω

(
x− y

ε

))
dx(3.12d)

≤ k̂

∫
RN\Bρ/2ε(0)

[ω(x) + (ω(x))p+1] dx = o(ε),

(3.12e)
∫

RN\Bρ/2ε(y/ε)

α(x)
(
ω

(
x− y

ε

))2

dx

≤ |α|N/2,RN

( ∫
RN\Bρ/2ε(0)

|ω(x)|2
∗
dx

)2/2∗

= o(ε).

Hence when ε→ 0, taking account of (2.17), we obtain for all y ∈ Aρ

ξε(ϕε
y)

‖ζ(x)ω((x− y)/ε)‖Ω
→ 1,

εNM∞ < mε(Bρ(y)) ≤ Eε(Φε(y)) ≤ εN [M∞ + o(ε)].

So, because of the compactness of Aρ,

(3.13) lim
ε→o

µε

εN
= M∞

that with (3.7) gives the claim. �

Lemma 3.3. The relation

(3.14) lim
ε→0

sup
y∈Aρ

∣∣∣∣1εβε(Φε(y))− y

|y|

∣∣∣∣ = 0

holds true.

Proof. For any y ∈ Aρ and for any ε > 0 small enough we have
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∣∣∣∣1εβε(Φε(y))− y

|y|

∣∣∣∣ =
∣∣∣∣ 1
ε|Φε(y)|pp,Bρ(y)

∫
Bρ(y)

χε(x)|Φε(y)(x)|pdx− y

|y|

∣∣∣∣
=

∣∣∣∣ 1
|ζ(εx)ω(x− y/ε)|pp,Bρ/ε(y/ε)

∫
Bρ/ε(y/ε)

χ(x)
∣∣∣∣ζ(εx)ω(

x− y

ε

)∣∣∣∣p dx− y

|y|

∣∣∣∣
≤ 1
|ζ(εx)ω(x− y/ε)|pp,Bρ/ε(y/ε)

∫
Bρ/ε(y/ε)

∣∣∣∣χ(x)− y

|y|

∣∣∣∣∣∣∣∣ζ(εx)ω(x− y

ε

)∣∣∣∣p dx.
Then, since |y|/ε → +∞ and ρ/ε → ∞ as ε → 0, (3.12.b), an argument

similar to that used to prove (3.10) and the compactness of Aρ give (3.14). �

In what follows, for all σ ∈ R we set

V σ
ε = {u ∈ Vε(Ω) : Eε(u) ≤ σ}.

Proof of Theorem 1.1. By (3.14) there exists ε∗ ∈ R, 0 < ε∗ ≤ ε̂ such
that for any ε ∈ (0, ε∗] and for any y ∈ Aρ

(3.16)
∣∣∣∣βε ◦ Φε(y)− ε

y

|y|

∣∣∣∣ ≤ ε

4
.

Fix now ε ∈ (0, ε∗] and choose τε such that µε ≤ τε < cε and

{u ∈ Vε(Ω) : Eε(u) = τε, ∇Eε|Vε(Ω)(u) = 0} = ∅.

Indeed, if this choice were not possible, we would have infinitely many critical
levels between µε and cε.

Our aim is to show that Eε has at least two solutions belonging to V τε
ε and

at least another solution in Vε(Ω) \ V τε
ε .

The functional Eε satisfies the (PS) condition on the set V τε
ε , hence applying

a classical result of the Lusternik–Schnirelman theory, we deduce

# {u ∈ V τε
ε : ∇Eε|Vε(Ω)(u) = 0} ≥ catV τε

ε .

Let us show that catV τε
ε ≥ 2. Assume, by contradiction that V τε

ε is a con-
tractible set, then there exists h ∈ C([0, 1]× V τε

ε , V τε
ε ) such that

h(0, u) = u for all u ∈ V τε
ε ,

h(1, u) = w, w ∈ V τε
ε for all u ∈ V τε

ε .

Put Aε = {x ∈ RN : ε/2 ≤ |x| ≤ 3ρ} and consider the map g ∈ C ([0, 1]×Aρ, Aε)
defined by

g(t, y) =

{
(1− 2t)y + 2t(βε ◦ Φε(y)) 0 ≤ t ≤ 1/2,

βε ◦ h(2t− 1,Φε(y)) 1/2 ≤ t ≤ 1,
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g is well defined because (3.16), (3.2) and the choice of τε and

g(0, y) = y for all y ∈ Aρ,

g(1, y) = βε(w) ∈ Aε

so Aρ turns out to be contractible to a point in Aε, and this is clearly a contra-
diction.

Let us consider, now the set Φε(Aρ) = Γε ⊂ V τε
ε , the same argument as

before shows that Γε is not contractible in V τε
ε . Then, in order to prove the

existence of another critical point, it is sufficient to construct an energy level
σε > τε such that Γε is contractible in V σε

ε .
Take u∗ ∈ Vε(Ω), u∗ ≥ 0, u∗ 6∈ Γε (remark this choice is possible because Γε

is compact). Define the set

Θε = {θu∗ + (1− θ)u : θ ∈ [0, 1], u ∈ Γε}.

Θε is compact and contractible, moreover 0 6∈ Θε (since any u ∈ Γε is positive
on a set of positive measure). Hence the set

Λε =
{
tε(v)v : v ∈ Θε, tε(v) = ξε

(
v

‖v‖Ω

)
‖v‖−1

Ω

}
is well defined and Γε ⊆ Λε ⊆ Vε(Ω). Then, setting

σε = max{Eε(z), z ∈ Λε}

we have that Γε is contractible in V σε
ε . Finally let us show that for all ε ∈ (0, ε∗]

there exists a function vε ∈ Vε(Ω) so that

Eε(vε) ≥ cε, ∇Eε|Vε(Ω)(vε) = 0,

that, because of (3.7), cannot be a one-peak solution. We prove that denoted by
wε the critical point such that τε < Eε(wε) ≤ σε either Eε(wε) ≥ cε or exists
vε 6=wε such that Eε(vε) ≥ cε and ∇Eε|Vε(Ω)(vε) = 0.

Assume in fact Eε(wε) = γε < cε, then we can find a level τ̂ε :

cε + γε

2
< τ̂ε < cε

such that {u ∈ Vε(Ω) : Eε(u) = τ̂ε and ∇Eε|Vε(Ω)(u) = 0} = ∅.
Otherwise any level ((cε + γε)/2, cε) would be critical and, since (PS) condi-

tion holds, cε too would be critical. Then we can argue exactly as we have done
before and prove that there exist σ̂ε > τ̂ε and ŵε ∈ Vε(Ω) such that

cε + γε

2
< τ̂ε < Eε(ŵε) < σ̂ε, ∇Eε|Vε(Ω)(ŵε) = 0

so, obviously ŵε 6= wε.



76 G. Cerami — C. Maniscalco

Iterating this argument we find either a function vε such that Eε(vε) ≥ cε or
a sequence of functions vn such that

lim
n→∞

Eε(vn) = cε and ∇Eε|Vε(Ω)(vn) = 0

and this, since the Palais–Smale condition holds, implies the existence of a critical
point of Eε at the level cε. �
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