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SYMMETRIC SOLUTIONS OF THE NEUMANN PROBLEM
INVOLVING A CRITICAL SOBOLEV EXPONENT

Jan Chabrowski — Pedro M. Girão

Abstract. We study the effect of the coefficient of the critical nonlinearity

for the Neumann problem on existence of symmetric least energy solutions.
As a by-product we obtain two inequalities in symmetric Sobolev spaces

involving a weighted critical Lebesgue norm and the H1 norm.

1. Introduction

The purpose of this work is to investigate the existence and nonexistence
of least energy solutions, having some symmetry properties, of the nonlinear
Neumann problem

(Iλ)

{ −∆u+ λu = Qu2∗−1, u > 0 in Ω,
∂u

∂ν
= 0 on ∂Ω,

under symmetric assumptions on the coefficient function Q and the domain Ω.
The problem (Iλ) originates in the study of mathematical models in biological
pattern formation theory governed by diffusion and cross-diffusion systems such
as the Gierer and Meinhardt and the Keller and Segel models. In this respect
the reader is referred to the survey article [16] by W. M. Ni.
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The number 2∗ is the critical Sobolev exponent, 2∗ = 2N/(N − 2), and
λ > 0. The domain Ω ⊂ RN , N ≥ 3, is bounded, with smooth boundary, and
G-invariant, where G is a finite subgroup of O(N); that is, if x ∈ Ω and g ∈ G,
then gx ∈ Ω. The vector ν denotes the outer normal to ∂Ω. The coefficient Q is
Hölder continuous on Ω, nonconstant, nonnegative, and also G-invariant, that is

Q(x) = Q(gx) for x ∈ Ω and g ∈ G.

Solutions will be obtained as minimizers of the constrained variational problem

mλ,G := inf
{
Eλ(u)

∣∣∣∣ u ∈ H1
G(Ω),

∫
Ω

Q|u|2
∗

= 1
}
,

where
Eλ(u) :=

∫
Ω

(|∇u|2 + λu2)

and
H1

G(Ω) := {u ∈ H1(Ω) | u( · ) = u(g · ) for every g ∈ G}.
If Q ≡ 1 on Ω, and with no symmetry assumptions, the problem (Iλ) has an

extensive literature.
In the subcritical case, this problem has been studied by C. S. Lin, W. M. Ni,

L. Takagi ([14]) and W. M. Ni, L. Takagi ([17], [18]). They obtained existence
of a least energy solution for λ sufficiently large. This solution has exactly one
maximum point Pλ in Ω. Pλ ∈ ∂Ω and H(Pλ) → max∂ΩH as λ→∞, where H
is the mean curvature of ∂Ω with respect to the outward normal.

In the critical case, existence of a least energy solution was proved by Adi-
murthi and G. Mancini ([1]) and X. J. Wang ([21]). Denoting by mλ the corre-
sponding least energy in this case,

mλ := inf
{
Eλ(u)

∣∣∣∣ ∫
Ω

|u|2
∗

= 1
}
,

and by S the best Sobolev constant,

S = inf
u∈D1,2(RN )\{0}

∫
RN |∇u|2

(
∫

RN |u|2∗)2/2∗
,

they proved that

mλ <
S

22/N
for λ > 0.

and proved that this condition yields the existence of a minimizer. The least
energy solutions are single-peaked in the sense that they attain their maximum
at exactly one point Pλ ∈ ∂Ω, for large λ. Moreover, H(Pλ) → max∂ΩH as
λ→∞.

Besides the study of least energy solutions, higher energy solutions have also
been constructed. Adimurthi, Pacela and Yadava ([3]) proved existence of a
solution concentrating at a strict local maximum of the mean curvature H, with
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H > 0, for n ≥ 7. They also proved that solutions blow up at critical critical
points of H as λ→∞ (see also [4]). These results were extended to dimensions
n = 5, 6 by Z. Q. Wang ([23]). With the aid of the Lyapunov–Schmidt type
reduction method, Adimurthi, Mancini and Yadava ([2]) proved existence of a
solution concentrating at a nondegenerate critical point of the mean curvature,
with positive mean curvature, as λ→∞, for n ≥ 6.

More recently, Gui and Ghoussoub ([13]) gave a general construction of
a multi-peaked solution having a finite number of peaks on the boundary, pro-
vided the mean curvature of the boundary has the same number of strict local
maximums, with positive mean curvature, for n ≥ 5. O. Rey ([19]) constructed
solutions having a finite number of peaks on the boundary, provided the mean
curvature of the boundary has the same number of nondegenerate critical points,
with positive mean curvature, for n ≥ 6.

In the case of symmetric domains, Z. Q. Wang ([22], [24]–[26]) proved exis-
tence of multi-peaked solutions belonging to symmetric Sobolev spaces.

J. Chabrowski and M. Willem ([8]) investigated the effect of the coefficient
Q on the existence of least energy solutions.

In this work we study the effect of symmetries of the coefficient Q on the
existence of multi-peaked solutions of (Iλ) in symmetric Sobolev spaces. This
is done by combining the techniques used in [8] and [26]. As a by-product we
obtain inequalities involving weighted Lebesgue norms with the critical Sobolev
exponent and the H1 norm.

The organization of this work is as follows. In Section 2 we give the minimum
level Ŝ at which compactness of Eλ fails, and we give the asymptotic behavior
of the infimum mλ,G, as λ → ∞. In Section 3 we examine the situation where
concentration occurs at the boundary of Ω, as λ→∞, and prove there exist least
energy solutions for all positive λ. In Section 4 we examine the situations where
there exists a Λ > 0 such that least energy solutions exist for 0 < λ < Λ and
least energy solutions do not exist for λ > Λ. The argument is by contradiction.
If least energy solutions were to exist for all positive λ, then concentration would
occur in the interior of Ω. Using an estimate due to H. Brezis and L. Nirenberg,
this leads to a contradiction. In Section 5 we derive two Sobolev inequalities as
corollaries of the results of Section 4. Finally, for the reader’s convenience, in the
Appendix we give the proof of Struwe’s compactness lemma for this Neumann
problem.

2. Preliminaries

First recall the case that Q ≡ 1 and Ω = RN . The Talenti instanton

U(x) :=
(

N(N − 2)
N(N − 2) + |x|2

)(N−2)/2
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minimizes the ratio ∫
RN |∇u|2

(
∫

RN u2∗)2/2∗

among nonzero functions in D1,2(RN ). The minimum is the Sobolev constant S.
The instanton U satisfies

(1) −∆U = U2∗−1,

so that

(2)
∫

RN

|∇U |2 =
∫

RN

U2∗ = SN/2.

Let ε > 0. For later use, we define the rescaled function

Uε,P := ε−(N−2)/2U

(
· − P

ε

)
,

which also satisfies equalities (1) and (2).
Now let Ω, Q and G be as in the introduction. Let

QM := max
Ω

Q, Qm := max
∂Ω

Q

and
k := min{#G(x) | x ∈ Ω \ {0}},

where G(x) denotes the orbit of x and #G(x) is the cardinal number of G(x).
Define

Eλ(u) :=
∫

Ω

[|∇u|2 + λu2]

on H1(Ω), and

VG(Ω) :=
{
u ∈ H1

G(Ω)
∣∣∣∣ ∫

Ω

Q|u|2
∗

= 1
}
.

Let mλ,G := infu∈VG(Ω)Eλ(u).
As stated in the introduction, our main objective is to inquire about the

existence of minimum for mλ,G. Suppose that 0 ∈ Ω and Q(0) > 0. Our first
lemma will concern the comparison of mλ,G with the quantity Ŝ, which we now
define. Let

Ŝ := min
(

Sk2/N

22/NQ
(N−2)/N
m

,
S

Q(0)(N−2)/N
,

Sk2/N

Q
(N−2)/N
M

)
.

Note that if the minimum is equal to the first term, then

Case 1:

{
Qm ≥ QM/22/(N−2),

Qm ≥ k2/(N−2)Q(0)/22/(N−2).

Otherwise, either the minimum is equal to the second term,

Case 2:

{
Q(0) > 22/(N−2)Qm/k

2/(N−2),

Q(0) ≥ QM/k2/(N−2),
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or the minimum is equal to the third term,

Case 3:

{
QM > 22/(N−2)Qm,

QM ≥ k2/(N−2)Q(0),

and, of course, these two last cases occur simultaneously if the second and third
terms are equal and smaller than the first one.

Lemma 2.1. For all λ > 0, mλ,G ≤ Ŝ.

Proof. The proof is standard. In the Case 2, concentrate an instanton at
the origin, cut it off far away from the origin using a positive symmetric test
function and multiply the product by a constant, so that the result belongs to
the space VG(Ω). The proof in Cases 1 and 3 is similar, but instead of one
instanton use an invariant function obtained using k instantons, concentrated at
points of maximum of Qm and QM , respectively. �

The function λ 7→ mλ,G is increasing and continuous. So, there exists a
Λ ∈ R+ ∪ {∞} such that mλ,G < Ŝ for λ < Λ and mλ,G = Ŝ for λ ≥ Λ.
The value Λ cannot be zero because mλ,G < Ŝ for small λ, as can be seen by
evaluating Eλ(u) for u constant in VG(Ω). So we give the following

Definition 2.2. Λ := inf{λ : mλ,G = Ŝ}.

We now recall the concentration-compactness principle ([15]). Let un ⇀ u in
H1(Ω), un → u a.e. on Ω and |un|2

∗
⇀ µ, |∇un|2 ⇀ µ̃ in the sense of measures

on Ω. Then, there exists at most a countable set J , numbers µj > 0 and µ̃j > 0
and points xj ∈ Ω, j ∈ J , such that

µ = |u|2
∗

+
∑
j∈J

µjδxj , µ̃ ≥ |∇u|2 +
∑
j∈J

µ̃jδxj .

Moreover,

• if xj ∈ Ω, then S(µj)(N−2)/N ≤ µ̃j ,
• and if xj ∈ ∂Ω, then S/22/N (µj)(N−2)/N ≤ µ̃j .

The first inequality is a consequence of the Sobolev inequality and the second of
the Cherrier inequality ([9]).

The next lemma gives a criterion for the existence of minimum for mλ,G.

Lemma 2.3. If mλ,G < Ŝ, then mλ,G is achieved.

Remark. The proof we now give relies on the concentration-compactness
principle. An alternative proof follows from Corollary A.7 of Struwe’s Compact-
ness Lemma in the Appendix.

Proof. Let {un} ⊂ H1
G(Ω) be such that

∫
Ω
Q|un|2

∗
= 1, for each n, and

Eλ(un) → mλ,G. We may assume that un ⇀ u in H1
G(Ω), un → u in L2(Ω) and
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un → u a.e. on Ω. Applying the concentration-compactness principle we can
write ∫

Ω

Q|u|2
∗

+
∑
j∈J

Q(xj)µj = 1

and

mλ,G = lim
n→∞

Eλ(un) ≥
∫

Ω

(|∇u|2 + λu2) +
∑
j∈J

µ̃j .

Let j0 be the index j such that xj0 = 0, if such an index exists.

(3)
∫

Ω

Q|u|2
∗

+Q(0)µj0 +
∑

[xj ]∈(Ω\{0})/G

#G(xj)Q(xj)µj = 1.

We have

mλ,G ≥
∫

Ω

(|∇u|2 + λu2) +
∑
j∈J

µ̃j

≥mλ,G

( ∫
Ω

Q|u|2
∗
)2/2∗

+
∑

xj∈Ω\{0}

µ̃j + µ̃j0 +
∑

xj∈∂Ω

µ̃j

≥mλ,G

( ∫
Ω

Q|u|2
∗
)2/2∗

+
∑

xj∈Ω\{0}

Q(xj)(N−2)/N

Q(xj)(N−2)/N
Sµ

(N−2)/N
j

+
Q(0)(N−2)/N

Q(0)(N−2)/N
Sµ

(N−2)/N
j0

+
∑

xj∈∂Ω

Q(xj)(N−2)/N

Q(xj)(N−2)/N

S

22/N
µ

(N−2)/N
j

≥mλ,G

( ∫
Ω

Q|u|2
∗
)2/2∗

+
∑

[xj ]∈(Ω\{0})/G

Sk2/N

Q
(N−2)/N
M

(#G(xj)Q(xj)µj)(N−2)/N

+
S

Q(0)(N−2)/N
(Q(0)µj0)

(N−2)/N

+
∑

[xj ]∈∂Ω/G

Sk2/N

22/NQ
(N−2)/N
m

(#G(xj)Q(xj)µj)(N−2)/N .

Recalling that mλ,G < Ŝ and, using (3), it follows that all the µj ’s are zero. So∫
Ω
Q|u|2∗ = 1. Since mλ,G ≥

∫
Ω
(|∇u|2 + λu2) ≥ mλ,G, we conclude that u is a

minimizer for mλ,G. �

So Ŝ is the minimum level at which compactness of Eλ fails.

Remark 2.4. Obviously, λ 7→ mλ,G is strictly increasing for λ < Λ and
mλ,G is not achieved for λ > Λ.

The next lemma gives the asymptotic limit of mλ,G as λ→∞.
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Lemma 2.5. limλ→∞mλ,G = Ŝ.

Proof. Once again, the proof is by contradiction and relies on the con-
centration-compactness principle. Suppose that the limλ→∞mλ,G = S∞ < Ŝ.
Let (λj) be a sequence, λj → ∞, and uj ∈ VG(Ω) be a minimizer for mλj ,G.
The sequence (uj) is bounded (say by S∞) in H1(Ω). From the inequality
λj

∫
Ω
u2

j ≤ S∞, we deduce that uj → 0 in L2(Ω). We may assume that uj ⇀ 0
in H1(Ω), uj → 0 a.e. on Ω. By the concentration-compactness principle, there
exists at most a countable set J , numbers µj > 0 and µ̃j > 0 and points xj ∈ Ω,
j ∈ J , such that

µ =
∑
j∈J

µjδxj and µ̃ ≥
∑
j∈J

µ̃jδxj .

Let j0 be the index j such that xj0 = 0, if such an index exists. Then

(4) Q(0)µj0 +
∑

[xj ]∈(Ω\{0})/G

#G(xj)Q(xj)µj = 1

and

S∞ ≥
∑
j∈J

µ̃j ≥
∑

[xj ]∈(Ω\{0})/G

Sk2/N

Q
(N−2)/N
M

(#G(xj)Q(xj)µj)(N−2)/N

+
S

Q(0)(N−2)/N
(Q(0)µj0)

(N−2)/N

+
∑

[xj ]∈∂Ω/G

Sk2/N

22/NQ
(N−2)/N
m

(#G(xj)Q(xj)µj)(N−2)/N .

Recalling that we are supposing S∞ < Ŝ and using (4), it follows that all the
µj ’s are zero, which is impossible. Therefore, S∞ = Ŝ. �

3. Existence of least energy solutions for all positive λ

It follows from the results of the previous section that there exists a least
energy solution of (Iλ) for λ < Λ, and there does not exist a least energy solution
of (Iλ) for λ > Λ. Therefore it is important to determine if Λ is finite or not.
We start by proving that Λ = ∞ in Case 1.

Theorem 3.1. Assume N ≥ 3, and Ω has a smooth boundary. Suppose
Qm ≥ QM/22/(N−2) and Qm ≥ k2/(N−2)Q(0)/22/(N−2). Suppose also that Qm =
Q(y) for some y ∈ ∂Ω, with #G(y) = k, H(y) > 0 and |Q(x)−Q(y)| = o(|x−y|)
as x→ y. Then Λ = ∞, i.e. mλ,G < Ŝ for all λ > 0.

Proof. Let R > 0 be small and ϕ be a radial C∞-function such that

ϕ(x) =

{
1 if |x| ≤ R/2,

0 if |x| ≥ R.
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Fixing y as in the statement of the theorem, Adimurthi and Mancini ([1]) proved
that, for sufficiently small ε > 0,

Eλ(Uε,yϕ( · − y))
‖Uε,yϕ( · − y)‖2

L2∗ (Ω)

<
S

22/N
−


ANH(y)ε log(1/ε)− aNλε+O(ε) + o(λε) for N = 3,

ANH(y)ε− aNλε
2 log(1/ε)

+O(ε2 log(1/ε)) + o(λε2 log(1/ε)) for N = 4,

ANH(y)ε− aNλε
2 +O(ε2) + o(λε2) for N ≥ 5,

where AN and aN are positive constants depending on N .
We now want to estimate Jλ(Uε,yϕ( · − y)), where

Jλ(u) =

∫
Ω
(|∇u|2 + λu2)

(
∫
Ω
Q|u|2∗)2/2∗

.

To do that, we first show that

(5)
∫

Ω

Q(x)U2∗

ε,y(x) dx =
∫

Ω

Q(y)U2∗

ε,y(x) dx+ o(ε).

In fact, let δ > 0. Fix ρ such that |Q(x)−Q(y)| < δ|x− y| for |x− y| < ρ. Then∫
Ω

|Q(x)−Q(y)|U2∗

ε,y(x) dx

≤
∫

Ω∩Bρ(y)

δ|x− y|U2∗

ε,y(x) dx+
∫

Ω\Bρ(y)

|Q(x)−Q(y)|U2∗

ε,y(x) dx

≤ δε

∫
Bρ/ε(0)

|z|U2∗(z) dz +O(εN ) ≤ Cδε+O(εN ) ≤ Cδε,

if ε is sufficiently small. This proves (5). Hence it follows that

Jλ(Uε,yϕ( · − y)) <
S

22/NQ
(N−2)/N
m

−

{
ÃNH(y)ε log(1/ε) +O(ε) for N = 3,

ÃNH(y)ε+ o(ε) for N ≥ 4.

Choosing R small enough so as to obtain functions with disjoint supports, we
get

Jλ

( ∑
g

Uε,gyϕ( · − gy)
)

= k2/NJλ(Uε,yϕ( · − y)),

which obviously implies the desired result. �

4. Nonexistence of least energy solutions for λ sufficiently large

In contrast to the result of the previous section, where Λ = ∞, we now prove
that Λ <∞ in Cases 2 and 3. In the next lemma we suppose, by contradiction,
that Λ = ∞ and examine the behavior of a sequence of minima of mλn,G as
λn → ∞ in the situation of Case 3. To simplify, we first consider the case that
0 6∈ Ω.



Neumann Problem 9

Lemma 4.1. Let Ω be a smooth bounded G-invariant domain such that 0 6∈ Ω.
Let Q be nonnegative and Hölder continuous in Ω and suppose QM>22/(N−2)Qm.
Let M := Q−1(QM ). Suppose that mλn,G is achieved by a nonnegative un where
the λn form a sequence converging to ∞. Let Pn be a point where un achieves
its maximum. Then, up to a subsequence, (Pn) converges to a point in M as
n→∞ and there exists a sequence (εn), with εn > 0 and εn → 0, such that

lim
n→∞

∥∥∥∥∇un −∇
∑

g

[
ε−(N−2)/2

n U

(
S1/2k1/NQ

1/N
M

· − gPn

εn

)]∥∥∥∥
L2(Ω)

= 0.

Note that ε−(N−2)/2
n = maxΩ un.

Proof. As we saw in Lemma 2.1,

mλ,G ≤ Ŝ :=
Sk2/N

Q
(N−2)/N
M

for all λ > 0. Since we are assuming that mλn,G(Ω) is achieved for a sequence
λn → ∞, by Remark 2.4 Λ = ∞ and mλ,G is strictly increasing in λ. Hence,
mλ,G < Ŝ for all λ > 0. Recall that by Lemma 2.5 mλ,G → Ŝ as λ → ∞. We
can assume the functions un satisfy

−∆un + λnun = mλn,GQu
2∗−1
n in Ω,

un > 0 in Ω,
∂un

∂ν
= 0 on ∂Ω.

The maxima Mn := maxΩ un = un(Pn) satisfy

λnMn ≤ mλn,GQ(Pn)M2∗−1
n or M2∗−2

n ≥ λn

mλn,GQ(Pn)
,

since Q(Pn) = 0 implies un ≡ 0, which is impossible. So Mn → ∞. Up to a
subsequence we can assume Pn → P0 ∈ Ω. We note that there exist g0 = id, g1,
. . . , gk−1 ∈ G and σ > 0 such that σ ≤ |giP0−gjP0|, for i 6= j, i, j = 0, . . . , k−1.
So, for n sufficiently large, |giPn− gjPn| ≥ σ/2. Let An := Ω∩Bσ/4(Pn) and εn

be such that ε(N−2)/2
n = 1/Mn, so that λnε

2
n = λnM

−(2∗−2)
n ≤ mλn,GQ(Pn) ≤

ŜQM . We also define vn(x) := ε
(N−2)/2
n un(εnx+ Pn) and Bn := (An − Pn)/εn.

Then

−∆vn + λnε
2
nvn = mλn,GQ(εnx+ Pn)v2∗−1

n in Bn,

0 < vn ≤ 1 in Bn,

∂vn

∂ν
= 0 on ∂((Ω− Pn)/εn) ∩ ∂Bn,

vn(0) = 1.
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Again up to a subsequence, we can assume that λnε
2
n → a ≥ 0 and that

dist(Pn, ∂Ω)/εn converges in the extended nonnegative real line. Let B be such
that χB = limn→∞ χBn

= limn→∞ χ(An−Pn)/εn
.

By elliptic regularity theory vn ∈ C2,α
loc (Bn), for some α > 0 independent

of n. Furthermore, by Theorems 15.3 (which deals with Lp estimates) and 7.3
(which deals with Schauder estimates) of [5], in each compact set we can find
a bound for the C2,α-norm of vn which is independent of n. We can also apply
Lemma 6.37 of [11] to extend, if necessary, the functions vn up to ∂B, to obtain
functions wn whose C2,α norm is uniformly bounded. The functions wn have a
subsequence which is convergent in C2

loc(B) to a function v satisfying

−∆v + av = ŜQ(P0)v2∗−1 in B,

0 ≤ v ≤ 1 in B,
∂v

∂ν
= 0 on ∂B,

v(0) = 1.

Suppose that limn→∞ dist(Pn, ∂Ω)/εn = d ∈ R+
0 . Then B is a half space

and P0 ∈ ∂Ω. We extend v by reflection to RN and call the extension v. We
recall that un is bounded in H1(Ω) and that the rescaling does not change
the L2∗ norm or the L2 norm of the gradient. By lower semicontinuity, the
function v is in D1,2(RN ). From the equation we conclude that v ∈ L2(RN ).
By Corollary B.4 of [27] (Pohozaev’s identity in an unbounded domain), a = 0.
Hence v(x) = U(βx) where β2 = ŜQ(P0), or β = S1/2k1/NQ(P0)1/2/Q

1/2∗

M . Now∫
B

|∇v|2 = β2−N

∫
B

|∇U |2 =
1
2
β2−NSN/2 =

1
2

1
k(N−2)/N

Q
(N−2)/2∗

M

Q(P0)(N−2)/2
S.

On the other hand,∫
B

|∇v|2 ≤ lim inf
n→∞

∫
Bn

|∇vn|2 = lim inf
n→∞

∫
An

|∇un|2

≤ 1
k

lim inf
n→∞

∫
Ω

|∇un|2 ≤
1
k

lim sup
n→∞

∫
Ω

|∇un|2

≤ 1
k

lim
n→∞

mλn,G =
1
k

k2/N

Q
(N−2)/N
M

S.

So Q
(N−2)/2∗+(N−2)/N
M ≤ 2Q(P0)(N−2)/2 ≤ 2Q(N−2)/2

m , which implies QM ≤
22/(N−2)Qm and contradicts our initial assumption. Therefore

lim
n→∞

dist(Pn, ∂Ω)/εn = ∞

and B = RN . As before, we get v(x) = U(βx). Now∫
B

|∇v|2 = β2−N

∫
RN

|∇U |2 =
1

k(N−2)/N

Q
(N−2)/2∗

M

Q(P0)(N−2)/2
S.
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Again, ∫
B

|∇v|2 ≤ 1
k

k2/N

Q
(N−2)/N
M

S.

So Q
(N−2)/2∗+(N−2)/N
M ≤ Q(P0)(N−2)/2, which is equivalent to QM ≤ Q(P0).

Therefore P0 ∈M and
∫
Ω
|∇un|2 → Ŝ.

Now we note that

lim
n→∞

||∇vn||2L2(Bn) = ||∇[U(β · )]||2L2(RN ) = Ŝ/k,

for β = S1/2k1/NQ
1/N
M . This implies

(6) lim
n→∞

||∇vn −∇[U(β · )]||L2(Bn) = 0,

as is shown below. Hence,

lim
n→∞

∥∥∥∥∇un −∇
[
ε−(N−2)/2

n U

(
β
· − Pn

εn

)]∥∥∥∥
L2(An)

= 0.

Similarly, since limn→∞ ‖∇un‖2L2(Ω) = Ŝ, we finally conclude that

lim
n→∞

∥∥∥∥∇un −∇
∑

g

[
ε−(N−2)/2

n U

(
β
· − gPn

εn

)]∥∥∥∥
L2(Ω)

= 0.

Proof of (6). Let 0 < ε < 1.
Step 1. There exists a R > 0 such that∫

RN\BR(0)

|∇[U(β · )]|2 < ε.

Obviously, ∫
BR(0)

|∇[U(β · )]|2 > Ŝ/k − ε.

Step 2. Since vn converges to U(β · ) in C2
loc(RN ),∫

BR(0)

|∇vn −∇[U(β · )]|2 < ε2,

for n sufficiently big.
Step 3. We have

Ŝ

k
− ε <

∫
BR(0)

|∇[U(β · )]|2 ≤
∫

BR(0)

|∇[U(β · )]−∇vn|2 +
∫

BR(0)

|∇vn|2

+ 2
∫

BR(0)

(∇[U(β · )]−∇vn) · ∇vn ≤ ε2 +
∫

BR(0)

|∇vn|2 + 2ε
√
Ŝ/k.

So ∫
BR(0)

|∇vn|2 ≥ Ŝ/k − cε,
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for some constant c. Since
∫

Bn
|∇vn|2 ≤ Ŝ/k,∫

Bn\BR(0)

|∇vn|2 ≤ cε.

Step 4. Combining the previous inequalities,∫
Bn

|∇vn −∇[U(β · )]|2

=
∫

Bn∩BR(0)

|∇vn −∇[U(β · )]|2 +
∫

Bn\BR(0)

|∇vn|2

+
∫

Bn\BR(0)

|∇[U(β · )]|2

+ 2
( ∫

Bn\BR(0)

|∇vn|2
)1/2( ∫

Bn\BR(0)

|∇[U(β · )]|2
)1/2

≤ ε2 + (c+ 1)ε+ 2
√
cε,

for n big, which is what we wanted to prove. �

Now we suppose that 0 ∈ Ω. Combining the arguments of Lemma 4.1 with
the ones of Lemma 3.1 of [26] one easily gets the following three results, corre-
sponding to Cases 2 and 3 above. The first result tells us that in Case 2, and
when λn →∞, the sequence (un), of minima of mλn,G, is close to a sequence of
instantons concentrating at the origin.

Lemma 4.2. Let Ω be a smooth bounded G-invariant domain such that 0 ∈ Ω.
Let Q be nonnegative and Hölder continuous in Ω and suppose

Q(0) > 22/(N−2)Qm/k
2/(N−2) and Q(0) > QM/k2/(N−2).

Suppose that mλn,G is achieved by a nonnegative un where the λn form a sequence
converging to ∞. Let Pn be a point where un achieves its maximum. Then, for
n large, Pn = 0 and there exists a sequence (εn), with εn > 0 and εn → 0, such
that

(7) lim
n→∞

∥∥∥∥∇un −∇
[
ε−(N−2)/2

n U

(
S1/2Q(0)1/N ·

εn

)]∥∥∥∥
L2(Ω)

= 0.

The next lemma shows how concentration occurs in Case 3.

Lemma 4.3. Let Ω be a smooth bounded G-invariant domain such that 0 ∈ Ω.
Let Q be nonnegative and Hölder continuous in Ω and suppose

QM > 22/(N−2)Qm and QM > k2/(N−2)Q(0).

Let M := Q−1(QM ). Suppose that mλn,G is achieved by a nonnegative un where
the λn form a sequence converging to ∞. Let Pn be a point where un achieves
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its maximum. Then, up to a subsequence, (Pn) converges to a point in M as
n→∞ and there exists a sequence (εn), with εn > 0 and εn → 0, such that

(8) lim
n→∞

∥∥∥∥∇un −∇
∑

g

[
ε−(N−2)/2

n U

(
S1/2k1/NQ

1/N
M

· − gPn

εn

)]∥∥∥∥
L2(Ω)

= 0.

Lemma 4.4. Under the hypothesis of Lemmas 4.2 and 4.3 but assuming
QM = k2/(N−2)Q(0) > 22/(N−2)Qm, either (7) or (8) hold.

Next we state Lemma 4.7 of [24]. It allows us to compare the energy of the
functions un with the energy of instantons.

Lemma 4.5. Assume N ≥ 5. Let λn > 0, λn → ∞, σn > 0, σn → 0,
Pn ∈ Ω, Pn → P0 with P0 ∈ Ω, and vn ∈ H1(Ω), vn ≥ 0, vn ⇀ 0 in H1(Ω) be
such that

lim
n→∞

∥∥∥∥∇vn −∇
(

Uσn,Pn

‖Uσn,Pn‖L2∗ (RN )

)∥∥∥∥
L2(Ω)

= 0.

If Eλn
(vn) < S, then there exist sequences (δn) and (yn), δn > 0, yn ∈ Ω, such

that, modulo a subsequence, δn/σn → 1, yn → P0,

(9) Eλn(vn) ≥ Eλn

(
Uδn,yn

‖Uδn,yn‖L2∗ (RN )

)
+O(δ2n) + o(λnδ

2
n)

and λnδ
2
n = O(δn).

The next well-known lemma, due to Brezis and Nirenberg [7], gives an esti-
mate for the energy of an instanton.

Lemma 4.6. Suppose N ≥ 5. Let y be an interior point of Ω. There exists
a constant bN > 0, depending only on N , such that

Eλ

(
Uδ,y

‖Uδ,y‖L2∗ (RN )

)
= S + bNλδ

2 +O(δ2) + o(λδ2);

O( · ) and o( · ) are uniform in λ and y as δ → 0 for λ ≥ 1 and for y in a compact
subset of Ω.

The main result in Case 2 is

Theorem 4.7. Assume N ≥ 5. Suppose Q(0) > 22/(N−2)Qm/k
2/(N−2) and

Q(0) > QM/k2/(N−2). Then Λ <∞.

Proof. The proof is by contradiction. Suppose Λ = ∞. Choose a sequence
λn →∞. For each n, since mλn,G < Ŝ, we can take un ∈ VG(Ω) that minimizes
Eλn

. By Lemma 4.2, there exists a sequence (εn), with εn > 0 and εn → 0, such
that equation (7) holds. We define vn := Q(0)1/2∗un. Note that

Eλn
(vn) = Q(0)2/2∗Eλn

(un) < S



14 J. Chabrowski — P. M. Girão

and

lim
n→∞

∥∥∥∥∇vn −∇
[
σ−(N−2)/2

n S−(N−2)/4U

(
·
σn

)]∥∥∥∥
L2(Ω)

= 0,

with σn = εn/(S1/2Q(0)1/N ). Using Lemma 4.5, with Pn = 0, we get sequences
(δn) and (yn), δn > 0, yn ∈ Ω, such that, modulo a subsequence, δn/σn → 1,
yn → 0 and equation (9) holds. Lemma 4.6 implies that Eλn

(vn) > S, for n
large. We have reached a contradiction. Therefore Λ <∞. �

On the other hand, the main result in Case 3 is

Theorem 4.8. Assume N ≥ 5. Suppose QM > 22/(N−2)Qm and QM >

k2/(N−2)Q(0). Then Λ <∞.

Proof. Suppose Λ = ∞. Choose a sequence λn → ∞. For each n, since
mλn,G < Ŝ, we can take un ∈ VG(Ω) that minimizes Eλn

. By Lemma 4.3, there
exists a sequence (εn), with εn > 0 and εn → 0, such that equation (8) holds.
We define vn := k1/2∗Q

1/2∗

M un. Let σ and P0 be as in Lemma 4.1. Note that∫
Ω∩Bσ/4(P0)

[|∇vn|2 + λnv
2
n]

= k2/2∗Q
2/2∗

M

∫
Ω∩Bσ/4(P0)

[|∇un|2 + λnu
2
n] < k2/2∗Q

2/2∗

M

Ŝ

k
= S

and

lim
n→∞

∥∥∥∥∇vn −∇
[
σ−(N−2)/2

n S−(N−2)/4U

(
· − Pn

σn

)]∥∥∥∥
L2(Ω∩Bσ/4(P0))

= 0,

with σn = εn/(S1/2k1/NQ
1/N
M ). Using Lemma 4.5, with Ω replaced by Ω ∩

Bσ/4(P0), we get sequences (δn) and (yn), δn > 0, yn ∈ Ω, such that, modulo
a subsequence, δn/σn → 1, yn → P0 and∫

Ω∩Bσ/4(P0)

[|∇vn|2 + λnv
2
n] ≥ O(δ2n) + o(λnδ

2
n)

+
∫

Ω∩Bσ/4(P0)

[∣∣∣∣∇(
Uδn,yn

‖Uδn,yn‖L22∗ (RN )

)∣∣∣∣2 + λn

(
Uδn,yn

‖Uδn,yn‖L22∗ (RN )

)2]
.

Lemma 4.6 implies that
∫
Ω∩Bσ/4(P0)

[|∇vn|2 + λnv
2
n] > S, for n large. Hence

Eλn(un) > k(1/k2/2∗)(1/Q2/2∗

M )S = Ŝ. We have reached a contradiction. There-
fore Λ <∞. �

In the case that the equality QM = k2/(N−2)Q(0) holds, by Lemma 4.4 we
get

Theorem 4.9. Assume N≥ 5. Suppose QM = k2/(N−2)Q(0) >22/(N−2)Qm.
Then Λ <∞.
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5. Sobolev inequalities

From the results of Section 4, we derive two Sobolev inequalities. From
Theorem 4.7 we get

Corollary 5.1. Assume N ≥ 5. Let Ω be a G-invariant domain with 0 ∈ Ω
and Q be Hölder continuous on Ω, G-invariant, nonnegative and satisfy Q(0) >
22/(N−2)Qm/k

2/(N−2), Q(0) ≥ QM/k2/(N−2). Then there exists a Λ(Ω, Q) such
that, for all u ∈ H1

G(Ω),( ∫
Ω

Q|u|2
∗
)2/2∗

≤ Q(0)(N−2)/N

S

( ∫
Ω

|∇u|2 + Λ(Ω, Q)
∫

Ω

u2

)
.

From Theorem 4.8 we get

Corollary 5.2. Assume N ≥ 5. Let Ω be a G-invariant domain with
0 ∈ Ω and Q be Hölder continuous on Ω, G-invariant, nonnegative and satisfy
QM > 22/(N−2)Qm, QM ≥ k2/(N−2)Q(0). Then there exists a Λ(Ω, Q) such that,
for all u ∈ H1

G(Ω),( ∫
Ω

Q|u|2
∗
)2/2∗

≤
Q

(N−2)/N
M

k2/NS

( ∫
Ω

|∇u|2 + Λ(Ω, Q)
∫

Ω

u2

)
.

Remark. If 0 6∈ Ω the same result holds, provided one ignores the condition
relating QM and Q(0).

Appendix

For the reader’s convenience, in this Appendix we give a proof of Struwe’s
Compactness Lemma ([20]) for our Neumann problem. We follow the argument
of Theorem 8.13 in Willem’s book [27]. See also A. Bahri and P. L. Lions ([6])
and M. Clapp ([10]).

Throughout this appendix we denote by N a fixed integer, N ≥ 3. Let Ω
be a smooth bounded domain of RN . Let a, Q: Ω → R be Hölder continuous,
with a positive and Q nonnegative and not identically equal to zero. We denote
QM = maxΩQ. In H1 we use the norm ‖u‖2H1 = |∇u|2L2 + |u|2L2 . As usual,
let D1,2(RN ) := {u ∈ L2∗(RN ) : ∇u ∈ L2(RN )} with norm ‖u‖2D1,2(RN ) =∫

RN |∇u|2.
Define

ϕ(u) :=
∫

Ω

[
|∇u|2

2
+ a

u2

2
−Q

|u|2∗

2∗

]
, for u ∈ H1(Ω),

and, for a smooth domain S of RN and Q̃ ∈ C(S),

ψ
eQ(u) :=

∫
S

[
|∇u|2

2
− Q̃

|u|2∗

2∗

]
, for u ∈ D1,2(RN ).
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We will start by proving a few Lemmas. We will use the following assumption,
which will later be satisfied.

(A) (yn) is a sequence in Ω, yn → y0, (λn) is a sequence in R+, λn → 0, and
(1/λn)dist(yn, ∂Ω) converges in the extended nonnegative real line.

Under (A) it follows that χ(Ω−yn)/λn
→ χS0 pointwise, where S0 is a half

space or S0 = RN ; χS denotes the characteristic function of the set S.

Lemma A.1 (Brezis–Lieb Lemma). Let assumption (A) be satisfied. If (un)
is bounded in Lp(RN ), 1 ≤ p <∞, and un → u a.e. on RN , then

lim
n→∞

( ∫
(Ω−yn)/λn

Q(λnx+ yn)|un|p −
∫

(Ω−yn)/λn

Q(λnx+ yn)|un − u|p
)

=
∫

S0

Q(y0)|u|p.

Proof. By Fatou’s Lemma, |u|Lp(RN ) < ∞. For each ε > 0 there exists a
c(ε) such that, for all a, b in R,

‖a+ b|p − |a|p| ≤ ε|a|p + c(ε)|b|p.

Taking a = un − u and b = u,

fε
n := (|Q(λnx+ yn)|un|p −Q(λnx+ yn)|un − u|p −Q(y0)|u|p|

− εQ(λnx+ yn)|un − u|p)+

≤ (|Q(λnx+ yn)|un|p −Q(λnx+ yn)|un − u|p|
− εQ(λnx+ yn)|un − u|p)+ +Q(y0)|u|p

≤QMc(ε)|u|p +QM |u|p = QM (1 + c(ε))|u|p.

By Lebesgue’s dominated convergence theorem,
∫
(Ω−yn)/λn

fε
n → 0. Since

|Q(λnx+ yn)|un|p −Q(λnx+ yn)|un − u|p −Q(y0)|u|p|
≤ fε

n + εQ(λnx+ yn)|un − u|p

we obtain

lim sup
n→∞

∫
(Ω−yn)/λn

|Q(λnx+ yn)|un|p −Q(λnx+ yn)|un − u|p −Q(y0)|u|p|

≤ 0 + εQM sup |un − u|Lp(RN ).

Letting ε→ 0 the result follows. �

Note. The same proof shows that if (un) is bounded in Lp(Ω), 1 ≤ p <∞,
and un → u a.e. on Ω, then

lim
n→∞

( ∫
Ω

Q|un|p −
∫

Ω

Q|un − u|p
)

=
∫

Ω

Q|u|p.
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Lemma A.2. Suppose (A) is satisfied and χ(Ω−yn)/λn
→ χS0 . Suppose also

that un ∈ D1,2(RN ), un ⇀ u in D1,2(RN ), with u ∈ L∞loc(S0). Let w ∈ D1,2(RN )
and wn(x) := λ

(N−2)/2
n w(λnx + yn). Then, for any ε > 0, there exists a p ∈ N

such that n > p implies∣∣∣∣ ∫
(Ω−yn)/λn

Q(λnx+ yn)|un|2
∗−2unwn

−
∫

(Ω−yn)/λn

Q(λnx+ yn)|un − u|2
∗−2(un − u)wn

−
∫

(Ω−yn)/λn

Q(y0)|u|2
∗−2uwn

∣∣∣∣ < ε‖w‖H1(Ω).

Proof. Step 1. By the mean value theorem

|Q(λnx+ yn)|un|2
∗−2un −Q(λnx+ yn)|un − u|2

∗−2(un − u)|
= (2∗ − 1)Q(λnx+ yn)|un − θxu|2

∗−2|u| ≤ (2∗ − 1)QM [|un|+ |u|]2
∗−2|u|,

with θx ∈ (0, 1). Let w ∈ D1,2(RN ).∣∣∣∣ ∫
(Ω−yn)/λn\BR(0)

Q(λnx+ yn)|un|2
∗−2unwn

−
∫

(Ω−yn)/λn\BR(0)

Q(λnx+ yn)|un − u|2
∗−2(un − u)wn

−
∫

(Ω−yn)/λn\BR(0)

Q(y0)|u|2
∗−2uwn

∣∣∣∣
≤ cQM [|un|2

∗−2
2∗ + |u|2

∗−2
2∗ ]

( ∫
(Ω−yn)/λn\BR(0)

|u|2
∗
)1/2∗

|wn|L2∗ ((Ω−yn)/λn)

+QM

( ∫
(Ω−yn)/λn\BR(0)

|u|2
∗
)(2∗−1)/2∗

|wn|L2∗ ((Ω−yn)/λn).

For every ε > 0, there exists R > 0 such that for every w ∈ D1,2(RN ) the last
expression is less than ε‖w‖H1(Ω)/2.

Step 2. Let M := supS0∩BR(0) |u|.

|Q(λnx+ yn)|un|2
∗−2un −Q(λnx+ yn)|un − u|2

∗−2(un − u)|
≤ QM (2∗ − 1)(|un|+M)2

∗−2M.

Suppose 1 ≤ p < N/2. Since un → u in L
(2∗−2)p
loc because of Rellich’s theorem,

Krasnosel’skĭı’s theorem implies that

zn := Q(λnx+ yn)|un|2
∗−2un −Q(λnx+ yn)|un − u|2

∗−2(un − u)

−Q(y0)|u|2
∗−2u→ 0
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in Lp(S0 ∩BR(0)), and in particular for p = 9N/20, so∫
BR(0)

|zn|2N/5χ(Ω−yn)/λn
→ 0.

Now∣∣∣∣ ∫
(Ω−yn)/λn∩BR(0)

Q(λnx+ yn)|un|2
∗−2unwn

−
∫

(Ω−yn)/λn∩BR(0)

Q(λnx+ yn)|un − u|2
∗−2(un − u)wn

−
∫

(Ω−yn)/λn∩BR(0)

Q(y0)|u|2
∗−2uwn

∣∣∣∣
≤ |Q(λnx+ yn)|un|2

∗−2un −Q(λnx+ yn)|un − u|2
∗−2(un − u)

−Q(y0)|u|2
∗−2u|L2N/5((Ω−yn)/λn∩BR(0))|wn|L2N/(2N−5)((Ω−yn)/λn∩BR(0))

and |wn|L2N/(2N−5)((Ω−yn)/λn∩BR(0)) ≤ c‖w‖H1(Ω).
Step 3. Combining the two previous results, we get the assertion in the

statement of the lemma.
Note that the same proof shows that if un ⇀ u in H1(Ω), with u ∈ L∞(Ω),

then

Q(x)|un|2
∗−2un −Q(x)|un − u|2

∗−2(un − u) → Q(x)|u|2
∗−2u

in H−1(Ω). �

Lemma A.3. Suppose that

un ⇀ u in H1(Ω), ϕ(un) → c,

un → u a.e. on Ω, ϕ′(un) → 0 in H−1(Ω).

Then ϕ′(u) = 0 and vn := un − u is such that

‖vn‖2H1(Ω) = ‖un‖2H1(Ω) − ‖u‖
2
H1(Ω) + o(1),

ψQ(vn) → c− ϕ(u),

ψ′Q(vn) → 0 in H−1(Ω).

Proof. Step 1. Since vn ⇀ 0 in H1(Ω),

‖vn‖2H1(Ω) =
∫

Ω

|∇un −∇u|2 +
∫

Ω

|un − u|2

= ‖un‖2H1(Ω) + ‖u‖2H1(Ω) − 2
∫

Ω

∇un∇u− 2
∫

Ω

unu

= ‖un‖2H1(Ω) − ‖u‖
2
H1(Ω) + o(1).
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Step 2. Since vn ⇀ 0 in H1(Ω), (vn) is bounded in L2∗(Ω), v2
n ⇀ 0 in

LN/(N−2) and so
∫
Ω
av2

n → 0. Using the Brezis–Lieb Lemma,

ψQ(vn) =
∫

Ω

[
|∇un −∇u|2

2
−Q

|un − u|2∗

2∗

]
=

∫
Ω

[
|∇un|2

2
− |∇u|2

2
−Q

|un|2
∗

2∗
+Q

|u|2∗

2∗

]
+ o(1)

= ϕ(un)− ϕ(u)−
∫

Ω

au2
n +

∫
Ω

au2 + o(1)

= ϕ(un)− ϕ(u)−
∫

Ω

av2
n + o(1) = ϕ(un)− ϕ(u) + o(1).

Step 3. ϕ′(un) → 0 in H−1(Ω) implies that, for all w ∈ H1(Ω),

0 = lim
n→∞

ϕ′(un)w = lim
n→∞

∫
Ω

[
∇un∇w + aunw −Q|un|2

∗−2unw

]
= ϕ′(u)w,

because un ⇀ u in H1(Ω). So ϕ′(u) = 0. This implies that u ∈ C2(Ω). On the
other hand, the preceding lemma implies that, for all w ∈ H1(Ω),

ψ′Q(vn)w =
∫

Ω

[∇vn∇w −Q|vn|2
∗−2vnw]

=
∫

Ω

[∇un∇w −∇u∇w −Q|un|2
∗−2unw +Q|u|2

∗−2uw]

+ o(‖w‖H1(Ω))

=ϕ′(un)w − ϕ′(u)w −
∫

Ω

aunw +
∫

Ω

auw + o(‖w‖H1(Ω))

= o(‖w‖H1(Ω)). �

Lemma A.4. Assume (A) and χ(Ω−yn)/λn
→ χS0 . Suppose un ∈ D1,2(RN ),

vn(x) := λ
(N−2)/2
n un(λnx+ yn) and

vn ⇀ v in D1,2(RN ), ψQ(un) → c,

vn → v a.e. on RN , ψ′Q(un) → 0 in H−1(Ω).

Then

−∆v = Q(y0)|v|2
∗−2v in S0,

∂v

∂ν
= 0 on ∂S0,

and the sequence wn(x) := un(x)− λ
(2−N)/2
n v((x− yn)/λn) satisfies

‖wn‖2H1(Ω) = ‖un‖2H1(Ω) − |∇v|
2
L2(S0)

+ o(1),

ψQ(wn) → c− ψQ(y0)(v),

ψ′Q(wn) → 0 in H−1(Ω),



20 J. Chabrowski — P. M. Girão

where the integral in ψQ(y0)(v) is computed in S0.

Proof. Step 1. Note that v((x− yn)/λn) ∈ L2∗(Ω) ⊂ L2(Ω). Since vn ⇀ v

in D1,2(RN ),

‖wn‖2H1(Ω) =
∫

Ω

|∇wn|2 +
∫

Ω

|wn|2

=
∫

(Ω−yn)/λn

|∇(vn − v)|2 + |un − λ(2−N)/2
n v((x− yn)/λn)|2L2(Ω)

=
∫

(Ω−yn)/λn

|∇vn|2 −
∫

S0

|∇v|2 + |un|2L2(Ω) + o(1)

=
∫

Ω

|∇un|2 + |un|2L2(Ω) −
∫

S0

|∇v|2 + o(1)

= ‖un‖2H1(Ω) − |∇v|
2
L2(S0)

+ o(1).

Step 2. The Brezis–Lieb Lemma yields,

ψQ(wn) =
∫

Ω

|∇wn|2

2
−

∫
Ω

Q
|wn|2

∗

2∗

=
∫

(Ω−yn)/λn

|∇(vn − v)|2

2
−

∫
(Ω−yn)/λn

Q(λnx+ yn)
|vn − v|2∗

2∗

=
∫

(Ω−yn)/λn

|∇vn|2

2
−

∫
(Ω−yn)/λn

Q(λnx+ yn)
|vn|2

∗

2∗

−
∫

S0

|∇v|2

2
+

∫
S0

Q(y0)
|v|2∗

2∗
+ o(1)

=ψQ(un)− ψQ(y0)(v) + o(1) = c− ψQ(y0)(v) + o(1).

Step 3. For z ∈ D1,2(RN ) let zn = λ
(2−N)/2
n z((x− yn)/λn). Since ψ′Q(un) →

0 in H−1(Ω) and vn ⇀ v in D1,2(RN ),

0 = limψ′Q(un)zn = lim
∫

Ω

[∇un∇zn −Q|un|2
∗−2unzn]

= lim
∫

(Ω−yn)/λn

[∇vn∇z −Q(λnx+ yn)|vn|2
∗−2vnz]

=
∫

S0

[∇v∇z −Q(y0)|v|2
∗−2vz],

i.e. ψ′Q(y0)
(v) = 0. Therefore v ∈ C2(S0). Let z ∈ D1,2(RN ) and zn(x) :=

λ
(N−2)/2
n z(λnx+ yn). By Lemma A.2,

|ψ′Q(wn)z| = |ψ′Q(λnx+yn)(vn − v)zn|
= |ψ′Q(λnx+yn)(vn)zn − ψ′Q(y0)

(v)zn|+ o(‖z‖H1(Ω))

= |ψ′Q(λnx+yn)(vn)zn|+ o(‖z‖H1(Ω))

= |ψ′Q(un)z|+ o(‖z‖H1(Ω)) = o(‖z‖H1(Ω)). �
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Lemma A.5. Suppose S is a half space and B1 is a ball with radius one
whose center belongs to S. Let Q̃ ∈ C(S), Q̃M := sup Q̃ < ∞, u ∈ D1,2(RN )
and v ∈ D(B1). There is a constant σ such that∫

S

Q̃v2|u|2
∗
≤ σQ̃

(N−2)/N
M

( ∫
S∩supp v

Q̃|u|2
∗
)2/N ∫

S

|∇(vu)|2.

Proof. By Poincaré’s inequality,∫
S

Q̃v2|u|2
∗

=
∫

S

[(Q̃2/N |u|4/(N−2))(Q̃(N−2)/Nu2v2)]

≤
( ∫

S∩supp v

Q̃|u|2
∗
)2/N( ∫

S

Q̃|vu|2
∗
)(N−2)/N

≤ σQ̃
(N−2)/N
M

( ∫
S∩supp v

Q̃|u|2
∗
)2/N ∫

S

|∇(vu)|2. �

Finally, we can prove the main result of this Appendix.

Theorem A.6. Suppose the conditions in the second paragraph of this Ap-
pendix are satisfied. Let (un) be a sequence in H1(Ω) such that

ϕ(un) → c and ϕ′(un) → 0 in H−1(Ω).

Then, replacing (un) by a subsequence, if necessary, there exist

• a function v0 ∈ H1(Ω) such that −∆v0 + av0 = Q|v0|2
∗−2v0,

• m points yi
0 ∈ Ω and m sets Si, i = 1, . . . ,m, where each Si is either

a half space or RN ,
• for each i = 1, . . . ,m, a function vi ∈ D1,2(RN ) such that

−∆vi = Q(yi
0)|vi|2

∗−2vi in Si,

∂vi

∂ν
= 0 on ∂Si,

• and sequences (yi
n), (λi

n), i = 1, . . . ,m, satisfying yi
n ∈ Ω, yi

n → yi
0,

λi
n > 0, λi

n → 0,

1/λi
ndist(yi

n, ∂Ω) → d ∈ R+
0 or 1/λi

ndist(yi
n, ∂Ω) →∞,

satisfying∥∥∥∥un − v0 −
m∑

i=1

(λi
n)(2−N)/2vi((x− yi

n)/λi
n)

∥∥∥∥∥
H1(Ω)

→ 0,

‖un‖2H1(Ω) → ‖v0‖2H1(Ω) +
m∑

i=1

|∇vi|2L2(Si)
,

ϕ(v0) +
m∑

i=1

ψQ(yi
0)

(vi) = c.
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If un ≥ 0 a.e. on Ω for all n, then v0 ≥ 0 and vi > 0 for i = 1, . . . ,m.

Proof. Step 1. For n big,

supϕ(un) + ‖un‖H1(Ω) ≥ ϕ(un)− 1
2∗
ϕ′(un)un

=
1
N

∫
Ω

|∇un|2 + a|un|2 ≥
c

N
‖un‖2H1(Ω).

So ‖un‖H1(Ω) is bounded. We extend each un to H1(RN ), with ‖un‖H1(RN ) ≤
C‖un‖H1(Ω) ≤ C.

Step 2. We assume that un ⇀ v0 in D1,2(RN ) and un → v0 a.e. on RN . By
Lemma A.3, ϕ′(v0) = 0, and u1

n := un − v0 is such that

‖u1
n‖2H1(Ω) = ‖un‖2H1(Ω) − ‖v0‖

2
H1(Ω) + o(1),

ψQ(u1
n) → c− ϕ(v0),

ψ′Q(u1
n) → 0 in H−1(Ω).

Step 3. If
∫
Ω
Q|u1

n|2
∗ → 0, then u1

n → 0 in H1(Ω) and the proof is complete.
If

∫
Ω
Q|u1

n|2
∗ 6→ 0, then choose 0 < δ < (2N/2σN/2Q

(N−2)/2
M )−1 sufficiently small,

so that ∫
Ω

Q|u1
n|2

∗
> δ.

Consider the Levy concentration function

Qn(r) := sup
y∈Ω

∫
Ω∩Br(y)

Q|u1
n|2

∗
.

Since Qn(0) = 0, Qn(∞) > δ and Qn is continuous, there exist sequences (y1
n)

and (λ1
n) such that y1

n ∈ Ω and λ1
n > 0 for all n, and

δ = sup
y∈Ω

∫
Ω∩B

λ1
n

(y)

Q|u1
n|2

∗
=

∫
Ω∩B

λ1
n

(y1
n)

Q|u1
n|2

∗
.

We may assume y1
n → y1

0 ∈ Ω, λ1
n → λ1

0 ≥ 0 and (1/λn)dist(yn, ∂Ω) converges
in the extended nonnegative real line. Then there exists a set S1 such that
χ(Ω−y1

n)/λ
1
n → χS1 .

Let v1
n(x) := (λ1

n)(N−2)/2u1
n(λ1

nx + y1
n). Since ‖u1

n‖D1,2(RN ) = ‖v1
n‖D1,2(RN ),

we may assume that v1
n ⇀ v1 in D1,2(RN ) and a.e. in RN . Note that

δ = sup
y∈(Ω−y1

n)/λ1
n

∫
(Ω−y1

n)/λ1
n∩B1(y)

Q(λ1
nx+ y1

n)|v1
n|2

∗

=
∫

(Ω−y1
n)/λ1

n∩B1(0)

Q(λ1
nx+ y1

n)|v1
n|2

∗
.
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Step 4. Suppose v1 = 0. Then v1
n → 0 in L2

loc(S1). We wish to prove
∇v1

n → 0 in L2
loc(S1). Let h ∈ D(RN ), with support contained in a ball of radius

one. We have∫
(Ω−y1

n)/λ1
n

|∇(hv1
n)|2 =

∫
(Ω−y1

n)/λ1
n

∇v1
n∇(h2v1

n) +
∫

(Ω−y1
n)/λ1

n

(v1
n)2|∇h|2

=
∫

(Ω−y1
n)/λ1

n

∇v1
n∇(h2v1

n) + o(1)

=
∫

(Ω−y1
n)/λ1

n

Q(λ1
nx+ y1

n)h2|v1
n|2

∗

+ ψ′Q(λ1
nx+y1

n)(v
1
n)(h2v1

n) + o(1)

=
∫

(Ω−y1
n)/λ1

n

Q(λ1
nx+ y1

n)h2|v1
n|2

∗
+ o(1);

using Lemma A.5 and appropriate diffeomorphisms,

≤σQ(N−2)/N
M

( ∫
(Ω−y1

n)/λ1
n∩supp h

Q(λ1
nx+ y1

n)|v1
n|2

∗
)2/N

×
∫

(Ω−y1
n)/λ1

n

|∇(hv1
n)|2 + o(1)

≤σQ(N−2)/N
M δ2/N

∫
(Ω−y1

n)/λ1
n

|∇(hv1
n)|2 + o(1)

=
1
2

∫
(Ω−y1

n)/λ1
n

|∇(hv1
n)|2 + o(1).

Therefore ∇v1
n → 0 in L2

loc(S1), and, since v1
n → 0 in L2

loc(S1), v1
n → 0 in

L2∗

loc(S1). This contradicts
∫
(Ω−y1

n)/λ1
n∩B1(0)

Q(λ1
nx + y1

n)|v1
n|2

∗
= δ > 0. We

conclude that v1 6= 0.
Step 5. If λ1

0 > 0, then u1
n ⇀ 0 in H1(Ω) and ‖u1

n‖H1(RN ) ≤ C implies
v1

n ⇀ 0 in H1(S1). This is a contradiction. So λ1
0 = 0 and S1 is a half space or

S1 = RN .
Step 6. By Lemma A.4, the function v1 satisfies

−∆v1 = Q(y1
0)|v1|2

∗−2v1 in S1,
∂v1
∂ν

= 0 on ∂S1.

If S1 = RN ,

S|v1|2L2∗ (RN ) ≤ |∇v1|2L2∗ (RN ) =
∫

RN

Q(y1
0)|v1|2

∗
.

Hence ∫
RN

|v1|2
∗
≥

(
S

Q(y1
0)

)N/2

and

ψ(v1) =
Q(y1

0)
N

∫
RN

|v1|2
∗
≥ 1
N

SN/2

Q(y1
0)(N−2)/2

≥ 1
N

SN/2

Q
(N−2)/2
M

.
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On the other hand, if S1 is a half space,∫
S1

|v1|2
∗
≥ 1

2

(
S

Q(y1
0)

)N/2

and

ψ(v1) =
Q(y1

0)
N

∫
S1

|v1|2
∗
≥ 1

2N
SN/2

Q
(N−2)/2
m

.

Step 7. Also by Lemma A.4, the sequence

u2
n(x) := u1

n(x)− (λ1
n)(2−N)/2v1((x− y1

n)/λ1
n)

satisfies

‖u2
n‖2H1(Ω) = ‖un‖2H1(Ω) − ‖v0‖

2
H1(Ω) − |∇v1|

2
L2(S1)

+ o(1),

ψQ(u2
n) → c− ϕ(v0)− ψQ(y1

0)(v1),

ψ′Q(u2
n) → 0 in H−1(Ω),

where the integrals in ψQ(y1
0)(v1) are computed over S1.

Step 8. We iterate the above procedure to find sequences (yi
n), (λi

n), (yi
0),

(λi
0), (Si) and (vi) as in the statement of the theorem. Since |∇vi|2L2(Si)

≥
SN/2/(2Q(N−2)/2

M ), the iteration must end at some finite index m.
Step 9. Suppose now that un ≥ 0 for all n. Then clearly v0 ≥ 0. Using the

functionals

ϕ(u) :=
∫

Ω

[
|∇u|2

2
+ a

u2

2
−Q

u2∗

+

2∗

]
for u ∈ H1(Ω),

ψQ(u) :=
∫

S

[
|∇u|2

2
−Q

u2∗

+

2∗

]
for u ∈ D1,2(RN ),

and the maximum principle, we conclude that the vi’s with i ≥ 1 are positive
and that they are necessarily instantons or half-instantons. �

Corollary A.7. Let

VG(Ω) :=
{
u ∈ H1

G(Ω)
∣∣∣∣ ∫

Ω

Q|u|2
∗

= 1
}
, Eλ(u) :=

∫
Ω

[|∇u|2 + λu2].

Let mλ,G := infu∈VG(Ω)Eλ(u). If

mλ,G < Ŝ = min(Sk2/N/(22/NQ(N−2)/N
m ), S/Q(0)(N−2)/N , Sk2/N/Q

(N−2)/N
M ),

then mλ,G is achieved.

Proof. Let (un) be a minimizing sequence. Without loss of generality, we
can suppose that un ≥ 0. By the Ekeland variational principle (see Theorem 8.5
in [27]), (un) is a Palais–Smale sequence for

ϕ̂(u) :=
∫

Ω

[
|∇u|2

2
+ λ

u2

2
−mλ,GQ

|u|2∗

2∗

]
for u ∈ H1(Ω).
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By Theorem A.6, there exists a function v0 ∈ H1(Ω) satisfying

−∆v0 + λv0 = mλ,GQ|v0|2
∗−2v0,

m points yi
0 ∈ Ω, m sets Si, where each Si is either a half space or RN , and m

functions vi ∈ D1,2(RN ) satisfying

−∆vi = mλ,GQ(yi
0)|vi|2

∗−2vi,
∂vi

∂ν
= 0 on ∂Si,

such that

(10) ϕ̂(v0) +
m∑

i=1

ψmλ,GQ(yi
0)

(vi) =
mλ,G

N
.

We easily conclude (cf. [12]) that

vi =
(

1
mλ,GQ(yi

0)

)(N−2)/4

U.

Multiplying equation (10) by N and taking into account the invariance of VG(Ω),

Eλ(v0) + l1(mλ,GQ(0))(2−N)/2SN/2

+
∑

[yi
0]∈(Ω\{0})/G

#G(yi
0)(mλ,GQ(yi

0))
(2−N)/2SN/2

+
∑

[yi
0]∈∂Ω/G

#G(yi
0)(mλ,GQ(yi

0))
(2−N)/2S

N/2

2
= mλ,G,

where l1 is either 1 or 0, according to if there exists a yi
0 = 0 or not. If any of

the vi’s, with i ≥ 1, is nonzero, then

l1(mλ,GQ(0))(2−N)/2SN/2 +
∑

[yi
0]∈(Ω\{0})/G

k(mλ,GQM )(2−N)/2SN/2

+
∑

[yi
0]∈∂Ω/G

k(mλ,GQm)(2−N)/2S
N/2

2
≤ mλ,G.

Solving for mλ,G, we get Ŝ ≤ mλ,G, which contradicts our initial assumption.
Therefore all the vi’s with i ≥ 1 are zero, and it follows, again from Theorem A.6,
that un converges to v0 in H1(Ω). But then, of course, v0 ∈ VG(Ω) and Eλ(v0) =
mλ,G. �
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