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ALMOST-PERIODICITY PROBLEM
AS A FIXED-POINT PROBLEM
FOR EVOLUTION INCLUSIONS

Jan Andres — Alberto M. Bersani

Abstract. Existence of almost-periodic solutions to quasi-linear evolution

inclusions under a Stepanov almost-periodic forcing is nontraditionally ex-

amined by means of the Banach-like and the Schauder–Tikhonov-like fixed-
point theorems. These multivalued fixed-point principles concern condens-

ing operators in almost-periodic function spaces or their suitable closed

subsets. The Bohr–Neugebauer-type theorem jointly with the Bochner
transform are employed, besides another, for this purpose. Obstructions

related to possible generalizations are discussed.

1. Introduction (fixed-point theorems)

In [19], A. M. Fink devotes the whole Chapter 8 to application of fixed-point
methods for obtaining almost-periodic solutions of differential equations. More
precisely, the applications of the Banach contraction principle and the Schauder
fixed-point theorem are there discussed. This approach is rather rare, but effi-
cient (see e.g. [4], [6], [9], [11], [18], [20]). As we have already pointed out in [1],
[2], [7], [4], the Schauder–Tikhonov theorem is however more appropriate than
the Schauder theorem, because a suitable closed subset of an almost-periodic
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function space jointly with the compactness of related operators must be guar-
anteed at the same time.

In this paper, we would like to employ the same approach, but for differential
inclusions in a Banach space (i.e. for evolution inclusions). Therefore, we need
more general fixed-point principles.

The Banach-like fixed-point theorem for multivalued contractions is due to
H. Covitz and S. B. Nadler [14].

Theorem 1 ([14]). If X is a complete metric space and F :X → 2X \ {∅} is
a (multivalued) contraction with nonempty closed values, namely

dH(F (x), F (y)) ≤ Ld(x, y) for all x, y ∈ X,

where L ∈ [0, 1) and dH stands for the Hausdorff metric, then F has a fixed-point,
i.e. there exists x̂ ∈ X such that x̂ ∈ F (x̂).

Since a closed subset of a complete metric space is complete, Theorem 1 can
be immediately reformulated as follows.

Theorem 1’. If X is a closed subset of a complete metric space and F :X →
2X \ {∅} is a contraction with nonempty closed values, then F has a fixed-point.

The following Schauder–Tikhonov-like fixed-point theorem for condensing
multivalued mappings in Fréchet spaces represents a particular case of a more
general statement in [3] (cf. also [28], [29]).

Let M be a class of subsets of a Fréchet space E such that if Ω ∈ M, then
also co Ω ∈ M (where co stands for the closed convex hull). Let K = (K,≥)
be a cone of some vector space with the natural partial ordering (i.e. x ≤ y,
whenever y − x ∈ K). We say that β:M→ K is a measure of noncompactness
in E (see [24], [30]) if β(co Ω) = β(Ω), for every Ω ∈M. β is called:

(i) monotone if Ω0,Ω1 ∈M, Ω0 ⊂ Ω1 implies β(Ω0) ≤ β(Ω1),
(ii) nonsingular if {a}, Ω ∈M implies {a}∪Ω ∈M and β({a}∪Ω) = β(Ω).

As a particular case of a measure of noncompactness, satisfying (i), (ii), which
is available in any locally convex topological vector space (e.g. a Fréchet space),
we point out the Hausdorff measure of noncompactness γ:M→ K defined by

γ(Ω)(p) := inf{d > 0 : Ω is the union of finitely many balls

with radius (w.r.t. a seminorm p) less than d}.

Here M denotes the class of all bounded subsets of E and K is a cone in the
vector space of real-valued functions k on a family of seminorms P , generating
the locally convex topology, i.e. k:P → [0,∞).
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An upper-semi-continuous mapping F :E ⊃ D → 2E \ {∅} is said to be β-
condensing (or, in particular, γ-condensing) if Ω ⊂ D implies that Ω, F (Ω) ∈M
and if Ω satisfying the inequality

β(F (Ω)) ≥ β(Ω) (or γ(F (Ω)) ≥ γ(Ω))

implies that Ω is relatively compact.

Theorem 2 ([3]). Let X be a closed convex subset of a Fréchet space E

and let F :X → 2X \{∅} be an Rδ-mapping (i.e. upper-semi-continuous mapping
with Rδ-values) which is β-condensing w.r.t. a monotone, nonsingular measure
of noncompactness β on E. Then F has a fixed-point, i.e. there exists x̂ ∈ X

such that x̂ ∈ F (x̂).

Let us note that a slightly weaker version of Theorem 2 can be also deduced
from our fixed-point theorems in [2], [5], on the basis of the statement in [26].
More precisely, the existence of a nonempty, compact, convex subset X0 ⊂ X is
implied such that F (X0) ⊂ X0, provided the measure of noncompactness is still
regular (i.e. β(Ω) = 0 if and only if Ω is relatively compact, for every Ω ∈ M)
and semiadditive (i.e. β(Ω0 ∪ Ω1) = max{β(ω0), β(Ω1)} for all Ω0,Ω1 ∈M).

Assuming that F :X → 2X \ {∅} is additionally a contraction (w.r.t. all
seminorms of E which, however, does not automatically mean the contraction in
a metric of E, see [21]) on a closed bounded subset X of a Fréchet space E, it
follows (cf. e.g. [24], [30]) that F is γ-condensing w.r.t. the Hausdorff measure
of noncompactness γ. So, we can still give

Theorem 2’. Let X be a closed, bounded and convex subset of a Fréchet
space. Let F :X → 2X \ {∅} be a contraction with Rδ-values (i.e., in particular,
with nonempty, compact and connected values). Then F has a fixed-point.

Comparing Theorem 2’ to Theorem 1’, the assumptions of Theorem 2’ might
seem to be (in spite of the fact that, in Theorem 1’, a contraction is w.r.t. the
metric of X) rather restrictive and partially superfluous. Moreover, in order to
apply Theorem 2 without further restrictions (like contractivity), verifying that
F is mapped into a suitable closed subset of a complete space of almost-periodic
functions is rather difficult (for more details, see [4]). On the other hand, there
are situations, when Theorem 2’ applies, but not Theorem 1’. Let us also note
that, for a single-valued F , Theorem 2’ is a particular case of a fixed-point
theorem in [13].

In our paper, before applying Theorem 1 in Chapter 3 and Theorem 2 in
Chapter 4, some further auxiliary results, definitions, notations, etc., are pre-
sented in Chapter 2. Several concluding remarks are added in Chapter 5.
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2. Auxiliary results (almost-periodic functions)

The notion of almost-periodicity is understood here in the sense of V. V. Ste-
panov. We say that a locally Bochner integrable function f ∈ Lloc(R, B), where
B is a real separable Banach space, is Stepanov almost-periodic (S-a.p.) if the
following is true:

• for all ε > 0 there exists k > 0 and for all a ∈ R there exists τ ∈ [a, a+k]
such that

DS(f(t + τ), f(t)) < ε,

where DS(f, g) := supa∈R
∫ a+1

a
|f(t) − g(t)| dt stands for the Stepanov

metric and | · | is the norm in B.

It is well-known (see e.g. [8], [27]) that the space S of S-a.p. functions is
Banach and that, for a uniformly continuous f ∈ C(R, B), S-a.p. means uniform
almost-periodicity (a.p.), namely

• for all ε > 0 there exists k > 0 and for all a ∈ R there exists τ ∈ [a, a+k]
such that

‖f(t + τ)− f(t)‖ < ε,

where ‖ · ‖ := supt∈R ‖ · ‖.

Denoting ‖f‖S = DS(f, 0), let us still consider the real Banach space BS =
{f ∈ Lloc(R, B) | ‖f‖S < ∞}. Obviously, S ⊂ BS.

The Bochner transform (see e.g. [8], [27])

f b(t) := f(t + η), η ∈ [0, 1], t ∈ R,

associates to each t ∈ R a function defined on [0, 1] and

f b ∈ Lloc(R, L([0, 1])), whenever f ∈ Lloc(R, B).

Thus, BS = {f ∈ Lloc(R, B) | f b ∈ L∞(R, L([0, 1]))}, because

‖f‖S = ‖f b‖L∞ = sup esst∈R‖f b(t)‖L([0,1]) = sup esst∈R

∫ 1

0

|f(t + η)| dη.

Since still (see again e.g. [8], [27])

f b ∈ C(R, L([0, 1])), where f ∈ Lloc(R, B),

we arrive at

BS = {f ∈ Lloc(R, B) | f b ∈ BC(R, L([0, 1]))},

where BC denotes the space of bounded and continuous functions.
S. Bochner has shown for the space S of S-a.p. functions that (see e.g. [8,

pp. 76–78])
S = {f ∈ Lloc(R, B) | f b ∈ Cap(R, L([0, 1]))},
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where Cap means the space of uniformly almost-periodic functions. This impor-
tant property, jointly with obvious relations

‖f‖S = ‖f b‖BC(R,L([0,1]))

and fn
S−→ f inf and only if f b

n
BC−→ f b, will play an important role in the sequel.

Defining, for a given S-a.p. function f ∈ S, the sets

Ωf := {(ε, k, a, τ) ∈ R4 | τ ∈ [a, a + k] and ‖f(t + τ)− f(t)‖S < ε},
Mf := {g ∈ C(R, B) | (ε, k, a, τ) ∈ Ωf ⇒ for all t ∈ R |g(t + τ)− g(t)| < ε},

we can state the following lemma (observe that if g ∈ Mf , then g ∈ Cap), which
is essential in applying Theorem 2 (or Theorem 2’).

Lemma 1. Mf is a closed subset (in the topology of the uniform convergence
on compact subintervals of R) of C(R, B).

Proof. Let Mf 3 gl
loc−→ g hold on R, by which g ∈ C(R, B). Assume that

(ε, k, a, τ) ∈ Ωf , for all t ∈ R. Then, for each δ > 0, then exists l0 such that, for
all l > l0, we have

|g(t + τ)− gl(t + τ)| < δ/2 and |g(t)− gl(t)| < δ/2.

It follows from the inequality

|g(t + τ)− g(t)| ≤ |g(t + τ)− gl(t + τ)|+ |gl(t + τ)− gl(t)|+ |gl(t)− g(t)|

that

l > l0 : |g(t + τ)− g(t)| < δ + ε.

Since δ can be chosen arbitrarily small, we arrive at |g(t + τ)− g(t)| < ε. �

Remark 1. Using the Bochner transform, one can prove quite analogously
that M ′

f is a closed subset of Lloc(R, B), where

Ω′f := {(ε, k, a, τ) ∈ R4 | for all t ∈ R τ ∈ [a, a + k]

and |f b(t + τ)− f b(t)| < ε},
M ′

f := {g ∈ Lloc(R, B) | (ε, k, a, τ) ∈ Ω′f
⇒ for all t ∈ R |gb(t + τ)− gb(t)| < ε}.

Moreover, Mf as well as M ′
f can be proved to be convex (cf. [4]).

Observe that if α ∈ [−1, 1], β ∈ R, then αMf + β ⊂ Mf , and subsequently
Mf ∩ QC is convex, closed subset of C(R, B), where QC := {g ∈ C(R, B) |
supt∈R |g(t)| ≤ C}.

The following Bohr–Neugebauer-type statement is true.
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Lemma 2. Consider the linear evolution equation in the Banach space B:

(1) X ′ + AX = P (t),

where A:B → B is a linear, bounded operator whose spectrum does not intersect
the imaginary axis and P ∈ S is an essentially bounded S-a.p. function. Then
(1) possesses a unique uniformly a.p. solution X(t) ∈ ACloc(R, B) of the form

(2) X(t) =
∫ ∞

−∞
G(t− s)P (s) ds,

where G(t− s) is the principal Green function for (1), which takes the form

G(t− s) =

{
eA(t−s)P− for t > s,

−eA(t−s)P+ for t < s,

and P−, P+ stand for the corresponding spectral projections to the invariant
subspaces of A (for more details, see e.g. [16, pp. 79–81]).

Proof. It is well-known (see e.g. [16], [25]) that, under the above assump-
tions, equation (1) has exactly one solution X(t) of the form (2).

In order to prove that X(t) is uniformly a.p., we will equivalently show (see
e.g. [8], [4]) that the set of functions Xτ (t) := X(t + τ), τ ∈ R, is precompact in
the topology ‖X‖S = ‖Xb‖BC(R,L([0,1])).

Since P (t) is S-a.p., we can choose from the sequence {P−τk
(t)} a Cauchy

subsequence {P−τkj
(t)}. Having apparently

Xτkj
(t) = X(t + τkj

) =
∫ ∞

−∞
G(t− s)P (s− τkj

)ds =
∫ ∞

−∞
G(t− s)P−τkj

(s)ds,

it follows that Xτkj
(t) is a Cauchy sequence (in the BC-topology) as well. In

fact (cf. [16, p. 88]),

‖Xb
τkj

(t)−Xb
τki

(t)‖BC

=
∥∥∥∥∫ ∞

−∞
Gb(t− s)[P−τkj

(s)− P−τki
(s)] ds

∥∥∥∥
BC

≤ sup
t∈R

∣∣∣∣ ∫ ∞

−∞
|G(t− s)|‖P b

−τkj
(s)− P b

−τki
(s)‖BC ds|

≤ ‖P b
−τkj

(t)− P b
−τki

(t)‖BC sup
t∈R

∣∣∣∣ ∫ ∞

−∞
|G(t− s)| ds

∣∣∣∣
≤ C(A)‖P b

−τkj
(t)− P b

−τki
(t)‖BC ,

where C(A) is a finite constant depending only on A.
This already means that the set of functions Xτ (t) is precompact, which

completes the proof. �
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Remark 2. Another Bohr–Neugebauer-type theorem has been proved in
[12]. Although this theorem even deals with (1), where A = A(t,X) can be
time-dependent and nonlinear, it only applies to our situation in particular cases
(see e.g. [6]).

Remark 3. For B = Rn, the (n × n)-matrix A can be arbitrary in order
every entirely bounded solution of (1) to be (uniformly) a.p. (see e.g. [19, p. 86]).
In R2, A can be, more generally, a maximal monotone operator for the same goal
(see [22]).

3. Banach-like approach

In this chapter, Theorem 1 will be applied to the differential inclusion in a
real separable Banach space with the norm | · |, namely

(3) X ′ + AX ∈ F (X) + Σ(t),

where A:B → B is again a (single-valued) bounded, linear operator whose spec-
trum does not intersect the imaginary axis, F :B → 2B \ {∅} is a Lipschitz-
continuous multifunction with bounded, closed, convex values and Σ: R → 2B \
{∅} is an essentially bounded S-a.p. multifunction with closed, convex values. By
a solution X(t) of (3) we mean everywhere the function belonging to the class
ACloc(R, B) and satisfying (3) almost everywhere.

Let us recall that by the Lipschitz-continuity of F we mean:

∃L ∈ [0,∞) : dH(F (X), F (Y )) ≤ L|X − Y | for all X, Y ∈ B,

where dH( · , · ) stands for the Hausdorff metric, and by an S-a.p. multifunction
Σ the measurable one (i.e. {t ∈ R | Σ(t) ⊂ U} is a measurable set, for each open
U ∈ B) satisfying that, for every ε > 0, there exists a positive number k = k(ε)
such that, in each interval of the length k, there is at least one number τ with

sup
a∈R

∫ a+1

a

dH(Σ(t),Σ(t + τ)) dt < ε.

Let us note that F admits, under our assumptions, a Lipschitz-continuous
selection (F ⊃)f :B → B if and only if B is finite dimensional (see [23, p. 101]).
However, even for B = Rn, the Lipschitz constant need not be the same (for
the related estimates and more details, see [23, pp. 101–103]). On the other
hand, although a uniformly a.p. multifunction need not admit a uniformly a.p.
selection (see [10]), S(t) possesses (see [15], [17]) an S-a.p. selection σ ⊂ Σ.

Hence, consider still a one-parameter family of linear inclusions

(4) X ′ + AX ∈ F (q(t)) + σ(t), q ∈ Q,

where σ ⊂ Σ is an (existing) S-a.p. selection and Q is the Banach space of
uniformly a.p. functions q ∈ C(R, B).
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Since one can easily check the composition F (q) to be S-a.p. (see e.g. [6],
[15]), it can be Castaing-like represented in the form (see [15], [17])

F (q(t)) =
⋃
n∈N

fn(q(t)),

where fn(q), n ∈ N, are related S-a.p. selections. Therefore, denoting (cf. (2)
and (4))

T (q) :=
∫ ∞

−∞
G(t− s)

[ ⋃
n∈N

fn(q(s)) + σ(s)
]

ds, q ∈ Q,

where the integral is understood in the sense of R. J. Aumann (cf. [23]), one can
already discuss the possibility of applying Theorem 1. It is required that

(i) Q is complete,
(ii) T :Q → 2Q\{∅} is a Lipschitz-continuous multifunction with nonempty,

closed values, having a Lipschitz constant L0 ∈ [0, 1).

Since Q is (by the hypothesis) Banach, only (ii) remains to be verified.
Taking into account the well-known elementary properties of S-a.p. functions

(the S-limit of a sequence of S-a.p. functions is an S-a.p. function and the sum of
two S-a.p. functions is an S-a.p. function as well) and applying Lemma 2 to (4)
(when taking separately the indicated S-a.p. selections on the right-hand side of
(4)), we get that T (Q) ⊂ Q. Moreover, the set of values of T can be verified
quite analogously as in e.g. [3] or [2] to be nonempty, closed and convex, for
every q ∈ Q. Thus, we only need to show that T is a contraction.

If F is Lipschitzean with a sufficiently small Lipschitz constant L ∈ [0, 1),
then we obtain (see [23, p. 199])

sup
t∈R

dH(T (q1), T (q2))

= sup
t∈R

dH

( ∫ ∞

−∞
G(t− s)F (q1(s)) ds,

∫ ∞

−∞
G(t− s)F (q2(s)) ds

)
≤ sup

t∈R

∣∣∣∣ ∫ ∞

−∞
|G(t− s)|dH(F (q1(s)), F (q2(s))) ds

∣∣∣∣
≤ L sup

t∈R

∣∣∣∣ ∫ ∞

−∞
|G(t− s)| sup

t∈R
|q1(t)− q2(t)| ds

∣∣∣∣
≤ LC(A) sup

t∈R
|q1(t)− q2(t)| = LC(A)d(q1, q2),

where C(A) is a constant depending only on A (cf. [16]).
So, the desired contraction takes place, when L0 := LC(A) < 1.
We are in position to give the first main result.
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Theorem 3. Let the above assumptions be satisfied. Then inclusion (3)
admits a uniformly a.p. solution, provided the Lipschitz constant L satisfies the
inequality L < 1/C(A), where C(A) is a constant depending only on A such that

sup
t∈R

∣∣∣∣∫ ∞

−∞
|G(t− s)|ds

∣∣∣∣ ≤ C(A),

(G denotes the principal Green function for (1)).

Remark 4. For B = Rn, the explicit estimate of C(A) can be found, under
some additional restrictions in [6] (cf. also [7]).

4. Schauder–Tikhonov-like approach

Consider again inclusion (3), but this time assume, for a moment, that F

is no longer Lipschitz-continuous, but upper-semi-continuous (i.e. for any open
subset U ⊂ B, the set {X ∈ B | F (X) ⊂ U} is open) and such that

(5) |F (X)| ≤ L|X|+ M,

where 0 ≤ L < 1/C(A) and M ≥ 0 is an arbitrary constant. Let all the other
assumptions be satisfied.

Applying Theorem 2 to (3), one can establish quite analogously as in [3] (cf.
Theorem 17 in [3]) the following statement.

Proposition 1. Let all the above assumptions be satisfied (jointly with (5),
where L < δ/C(A) and δ ≤ 1 is a given constant related to the fact that the
moduls of frequencies of S-a.p. multifunctions involve those of their S-a.p. selec-
tions (see [15], [17]). Assume, furthermore, that

(6) γ(F (Ω)) <
1

C(A)
γ(Ω), for every bounded Ω ⊂ B,

where γ stands for the Hausdorff measure of noncompactness (and C(A) has the
same meaning as above). Then inclusion (3) admits a uniformly a.p. solution,
provided:

(H1) F (q) ∈
{

G: R → 2B \ {∅} is measurable
∣∣∣∣ (ε, k, a, τ) ∈ Ω̃′0

⇒ sup
b∈R

∫ b+1

b

dH(G(t), G(t + τ)) dt < δL1ε

}
,

for every q ∈ M̃σ := {g ∈ C(R, B) | (ε, k, a, τ) ∈ Ω̃′σ ⇒ ‖g(t + τ) −
g(t)‖S < ε}, where Ω̃′σ := {(ε, k, a, τ) ∈ R4 | τ ∈ [a, a + k] and ‖σ(t +
τ)− σ(t)‖S < ε/∆}, L1 < 1/C(A) and ∆ � 1 is sufficiently big,

(H2) δ = δ(ε) in (H1) is independent of ε > 0,
(H3) T (Q) ⊂ M̃σ (⇒ T (Q) ⊂ Q),
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where

T (q) :=
∫ ∞

−∞
G(t− s)

[ ⋃
n∈N

f̃n(q(s)) + σ(s)
]

ds,

f̃n(q) ∈ M̃ ′
σ := {g ∈ Lloc(R, B) | (ε, k, a, τ) ∈ Ω̃′σ ⇒ ‖g(t + τ)− g(t)‖S < Lε/δ},

and f̃n(q) ⊂ F (q), for every n ∈ N,

Q := M̃σ ∩QC

(observe that Q is again a closed, convex subset of C(R, B)),

QC := {g ∈ C(R, B) | sup
t∈R

|g(t)| ≤ C},

and C > 0 is a constant such that

C ≥ C(A)
1− C(A)L1

(M + sup esst∈R|Σ(t)|).

Remark 5. Conditions (H1), (H2) imply (see [15], [17]) that F (q) can be
Castaing-like represented in the form

F (q(t)) =
⋃
n∈N

f̃n(q(t)) for every n ∈ N,

where f̃n(q) ∈ M̃ ′
σ and f̃n(q) ⊂ F (q), for every n ∈ N.

Since satisfying conditions (H1)–(H3) without a Lipschitz-continuity of F

seems to be, even in particular single-valued cases, a difficult task, we still give

Proposition 2. Assume (H2) and let the assumptions of Theorem 3 hold
with L < δ/C(A), where δ ≤ 1 is a given constant. Then all conditions in
Proposition 1 are satisfied.

Proof. It is well-known (see e.g. [24, p. 85]) that, under the above assump-
tions, the Lipschitz-continuity of F with the constant L < δ/C(A), δ ≤ 1, implies
(6). As (5) follows immediately, we restrict ourselves to checking only (H1) and
(H3).

Since the Lipschitz-continuity of F implies

sup
b∈R

∫ b+1

b

dH (F (q(t)), F (q(t + τ))) dt ≤ L sup
b∈R

∫ b+1

b

|q(t + τ)− q(t)| dt < δL1ε,

for every q ∈ M̃σ, hypothesis (H1) is satisfied and so, in view of Remark 5,
f̃n(q) ∈ M̃ ′

σ, for every n ∈ N.
As concerns (H3), consider a uniformly a.p. solution X(t) of the equation

X ′ + AX = f̃(q(t)) + σ(t), q ∈ Q (= M̃σ ∩QC),
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where f̃(q) ∈ M̃ ′
σ and f̃(q) ⊂ F (q). We have that

‖Xb(t + τ)−Xb(t)‖BC

=
∥∥∥∥∫ ∞

−∞
Gb(t− s)[f̃(g(s + τ))− f̃(g(s)) + σ(s + t)− σ(s)] ds

∥∥∥∥
BC

≤ sup
t∈R

∣∣∣∣ ∫ ∞

−∞
|G(t− s)|‖f̃ b(q(s + τ))− f̃ b(q(s)) + σb(s + τ)− σb(s)‖BC ds

∣∣∣∣
≤ ‖f̃ b(q(t + τ))− f̃ b(q(t)) + σb(t + τ)− σb(t)‖BC sup

t∈R

∣∣∣∣ ∫ ∞

−∞
|G(t− s)| ds

∣∣∣∣
≤ C(A)‖f̃ b(q(t + τ))− f̃ b(q(t)) + σb(t + τ)− σb(t)‖BC

< C(A)
(

Lε

δ
+

ε

∆

)
= εC(A)

(
L

δ
+

1
∆

)
< ε,

by the hypothesis L < δ/C(A) and ∆ >> 1. Thus, X(t) = T (q) ∈ M̃σ, for every
q ∈ Q, which completes the proof. �

Remark 6. If F is single-valued, then one can obviously take δ = 1. If
B = Rn, then a lower estimate for δ can be obtained explicitly for a Lipschitz-
continuous F , namely δ ≤ 1/n(12

√
3/5 + 1) (see [23, pp. 101–103]). In the both

cases, (H2) holds automatically.

Hence, we can conclude this section by the second principal result.

Theorem 4. Let the assumptions of Theorem 3 be satisfied, where F is
single-valued or B = Rn. Then inclusion (3) admits (on the basis of Theorem 2)
a uniformly a.p. solution belonging to the set Q, provided L < 1/C(A) or L <

1/C(A)n(12
√

3/5 + 1), respectively.

5. Concluding remarks (comparison of approaches)

We could see that if F is a contraction with L < δ/C(A), δ ≤ 1, then we
arrived, under (H2), at the same results, when applying Theorem 1 or Theorem 2.
In fact, due to (H3), Theorem 2 gives us a bit more, namely that an a.p. solution
belongs to Q. On the other hand, it is a question, whether or not conditions
(H1)–(H3) can be satisfied in particular (especially, single-valued) cases without
the Lipschitz-continuity of F . If so, then (in spite of the fact that the application
of Theorem 1 is apparently more straightforward) Theorem 2 might be more
efficient in this field.

In the single-valued case, the problem reduces to verifying only (H1), be-
cause (H2) holds trivially (see Remark 6) and (H3) is then satisfied, whenever
C(A) < 1. As a simplest example for C(A) < 1, we can take B = R2 and
A = diag(a11, a22), where a11 > 0 > a22 and (1/a11 − 1/a22) < 1 (see [7], where
more examples can be found). Moreover, according to Corollary to Lemma 3
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in [15], F (q) = f̃(q) is an S-a.p. function whose modul of frequencies is involved
in the one of any q ∈ M̃σ. This, however, does not yet mean (H1).

Nevertheless, for differential inclusions in Banach spaces, Theorem 3 seems
to be a new result. On the other hand, the conclusion of Theorem 4 can be also
obtained by different techniques (see e.g. [2], [27]).
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