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WEAK COMPACTNESS OF SOLUTION SETS
TO STOCHASTIC DIFFERENTIAL INCLUSIONS
WITH CONVEX RIGHT-HAND SIDES

MicHAL KISIELEWICZ

ABSTRACT. Necessary and sufficient conditions for the existence of weak
solutions to stochastic differential inclusions with convex right-hand sides
are given. The main results of the paper deal with the weak compactness
with respect to the convergence in distribution of solution sets to such
inclusions.

1. Introduction

The first papers concerning stochastic differential inclusions are due to F. Hiai
[3] and M. Kisielewicz [7], where independently, stochastic differential inclusions

have been defined as relations of the form
t t
(1) Ty — T 601L2</ F(T,IT)dT—i-/ G(T,LET)dBT)

that have to be satisfied by L2-continuous F;-nonanticipative stochastic process
(xt)o<t<r for every 0 < s <t < T, i.e. by Fi-nonanticipative square integrable
process (z¢)o<i<7 that is continuous with respect to the norm topology of the
space L?(Q,F,R™). Such inclusions were considered on a given complete fil-
tered probability space (Q, F, (Fi)o<i<r, P) satisfying the usual hypotheses, i.e.
with the filtration (F;)o<t<r such that Fy contains all P-null sets of F and
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Fi = Neso Fite. Apart from the set-valued mappings F : [0,T] x R™ — CI(R"™)
and G : [0, T]xR"™ — CI(R™) or with values at C1(H ), where H is a Hilbert space,
some Fi-Brownian motions (Bg)o<i<r and (Wi)o<i<r, with values at R or H,
also have been given. As usualy Cl(X) denotes the space of all nonempty closed
subsets of a metric space (X, p). Similarly as in the theory of stochastic differ-
ential equations, the process (x;)o<¢<7 mentioned above, is said to be a strong
solution to (1). Such solutions have been considered by J. P. Aubin and G. Da
Prato [1], G. Da Prato and Frankowska [2], J. Motyl [9], [10], [11] and others.
For the existence of strong solutions some Lipschitz type conditions for F(¢, -)
and G(t, -) have to be satisfied. Such assumptions are rather too strong for the
practical applications. Therefore, we are interested in the weaker notation of so-
lutions that are not restrictive in the existence theory and are extremaly useful
and fruitful in both theory and applications. Such type solutions are known as
weak ones ([4], [5]), and are understood in fact as systems including a complete
filtered probability space (2, F, (Fi)o<i<t, P) satisfying the usual hypotheses,
Fi-Brownian motion (B;)o<i<7 and an L?-continuous Fi-nonanticipative pro-
cess (zy)o<i<r satisfying the relation (1), when F and G are given. In what
follows we shall identify such system with a process (z;)o<i<r depending on
(Bt)o<t<T and denote it simply by (z:(B))o<t<T or (z¢)o<i<r if dependence on
(Bt)o<t<T is not important. We will say that (z:(B))o<t<7 is a weak solution to
(1) on (2, F, (Fy)o<t<t, P). If (2:(B))o<t<7 is such that P(zy'(B)) = p, where
1 is a given probability measure on the Borel o-algebra B(R™) on R™, then we
say that (z,(B))o<i<r is a weak solution to (1) on (2, F, (Fi)o<i<7, P) with an
initial distribution p on S(R™).

It was proved in [6] that for the existence of a weak solution to (1) with an
initial distribution g it is enough to assume that F' and G are Borel measurable,
bounded, convex valued and such that F'(¢, -) and G(t, -) are lower semicontin-
uous for fixed ¢t € [0,T]. Stochastic differential inclusions, considered in [6] and
[7] are defined for one-dimensional Brownian motions. In the present paper we
extend the notation to the general case with m-dimensional Brownian motion
(Bi)o<t<r- Therefore G has to take its values from the space CI(R"*™), where
R™ ™ denotes a space of all n x m-type matrices. We shall consider R"*™ as a
normed space with the metric || - || defined by

() ot = ( iigfj)w for g = (i)

i=1 j=1

Throughout the paper we assume that F' and G are convex-valued or that G is
such that the set {g- g7 : g € G(t,z)} is convex for (t,x) € [0,T] x R", where
g" denotes the transposition of g.
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Similarly as in [4, Definition I1.7.1] we will say that a filtered probability
space ((NZ,]?, (J’Et)ogtST, ﬁ) is an extension of (Q, F, (Fi)o<t<r, P) if and only if
there exists an (]t" , J)-measurable mapping 7 : Q — Q such that

(i) 7= 1(F) C F for t € [0, 7],
(i) P=Ponr !,
(iii) for every = € L>®(, F, P) one has E(Z|F)(&) = E(z|F)(x(@)) for
& € Q, where (@) = z(n(@)).

2. Existence of weak solutions

Let F': [0,T] x R" — CI(R™) and G : [0, T] x R" — CI(R™*"™) be Borel mea-
surable and bounded, i.e. such that there exists M > 0 such that max{|F(¢, )],
|G(t,z)|} < M for (t,x) € [0,T] x R™, where for a given subset A of a normed
space (X,|-|) we define |A| = sup{|a|] : a € A}. Assume that (B)o<i<r is
an m-dimensional F;-Brownian motion and z = (z;)o<¢<7r is an n-dimensional
L?-continuous Fi-nonanticipative process on (2, F, (F;)o<i<T, P) satisfying the
usual hypothesis. We can define stochastic set-valued integrals for mappings
(Fox)(w)=F(t,zi(w)) and (G o x)¢(w) = G(t, z;(w)) setting

@) /St(Foa:)TdT _ {/OT W y(r) frdr:fe S(Fox)},
(3) /:(Gox)TdBT _ {/OT oy grdB, i g€ S(Gox)},

where S(F o x) and S(G o z) denote families of all F;-nonanticipative selectors
for F oz and G o x, respectively. These integrals (see [7]) are defined to be
subsets of the space L%(£), F,R") and are denoted simply by f: F(r,2z,)dr and
fst G(7,2,)dB,, respectively. If F' and G are assumed to be convex-valued then
the last integrals are closed subsets of L2(Q), F,R") [7]. Therefore, in what
follows we shall consider stochastic differential inclusions written in the form:

¢ ¢
(4) mt—xse/ F(T7£L'T)d’7'+/ G(r,z,)dB;

for 0 < s <t < T. Similarly as in [7, Theorem 4] the following lemma can be
proved.

LEMMA 1. Let F : [0,T] x R" — CI(R") and G : [0, T] x R™ — CI(R"*™) be
measurable, bounded and convex valued. Assume (x¢)o<i<r and (yi)o<i<r are
n-dimensional L?-continuous F;-nonanticipative processes and (Bt)o<i<T 18 an
m-dimensional Fy-Brownian motion on (Q,F, (Fi)o<i<T, P). Then

t t
yi—ys € / Fra,)dr + / G(r.z,)dB,
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for every 0 < s <t < T if and only if there are f € S(Fox) and g € S(G o x)
such that

t t
yt:yo+/ fq—dTJr/ g-dB,  with (P.1)
0 0
fort e [0,T].

It is clear now that if F' and G are convex valued we can define a weak
solution to (4) as a system consisting of a complete filtered probability space
(Q,F, (Ft)o<i<r, P), a continuous Fi-adapted process (z;)o<i<r and an Fi-
Brownian motion (By)o<i<r satisfying (4) for every 0 < s < t < T. We shall
still denote such systems by (z(B))o<t<r on (2, F, (Ft)o<i<T, P).

Denote by CZ(R™) the space of all continuous bounded functions h : R™ — R,
having continuous and bounded derivatives hy and hy . for é,j = 1,...,n.
For any given F', G and a continuous m-dimensional F;-adapted process r =
(xt)o<t<r on (0, F, (Fr)o<i<T, P) we define a family

Apa = {Af, : (f,9) € S(Fox) x S(Goux)}

of linear operators on CZ(R™) with values in the space of all F;-nonanticipative
square integrable real valued processes on (€, F, (Ft)o<t<T, P), of the form:

(5) (Afgh)e = D ho (@0 fi + 530D W, (o)
i=1

i=1 j=1

a.e. on  and t € [0, 7] for every h € CZ(R"), where f = (f)1xn, 9 = (4" )nxm
and ¢ = g-¢g7. We will say that Aj, € A% generates on CZ(R™) a family
of continuous square integrable local F;-martingales, if for every h € CZ(R") a
process [(¢F)i]o<i<r defined by

(6) (h)e = h(z¢) — h(z0) — /0 (Aj,h)-dr with (P.1)

for t € [0,T] is a continuous square integrable local F;-martingales on the space
(, F, (Ft)osi<r, P). By MEo(CF(R™)) we denote the family of all A%, € Afq
that generates on C’E(R") a family of continuous square integrable local F;-
martingales.

THEOREM 2. Let F : [0,T] x R" — CI(R™) and G : [0,T] x R™ — CI(R™*™)
be Borel measurable, bounded and convex valued and let u be a probability measure
on B(R™). Stochastic differential inclusion (4) has at least one weak solution
with an initial distribution p if and only if there are a filtered probability space

(Q,F, (Ft)o<i<r, P) and an n-dimensional continuous F;-adapted process x =
(@t)o<t<T such that ngl = 1 and MEo(CE(R™)) # 0.
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PROOF. (=) Let (z:(B))o<t<r be a weak solution to (4) on the space (9, F,
(Ft)o<t<r, P) with an initial distribution p. For every 0 < s < ¢t < T we have

t t
xt—xse/ F(T,xT)dT-i-/ G(r,z,)dB:.

Therefore, by virtue of Lemma 1, there are f € S(F ox) and g € S(G o x) such
that

t t
T = T +/ frdr +/ g- dB, with (P.1)
0 0

for t € [0,T], and equivalently in the differential form dx; = fidr + g.dB; for
t € [0,T). Hence, by the It6 formula, for every h € CZ(R™), we obtain

t n.om t
(7) h(x:) — h(xo) —/ (Af h) dr = ZZ/ . (z;)-g¥dBI with (P.1)

0 i=1 j=170
for t € [0, 7], where B, = (B},... ,B™)7T and ¢, = (9/)nxm. By the definition
of (¢7), the above equality (7) can be written in the form

n m t
(o) = ZZ/ W, (x,)-g?dBI with (P.1)
i=1 j=170
for t € [0,T]. Hence, by the properties of the Itd integrals, it follows that
E € Myg(CR(R™) and M§o(CR(R™)) £ 0.

(<) Assume there are (Q, F, (F¢)o<¢<7, P) and an n-dimensional continuous
F-adapted process & = (;)o<;<7 such that Pzy' = p and M%,(CZ(R™)) # 0.
Let (f,9) € S(Fox) x S(G ox) be such that A%, € M%q(CF(R™)). Define
a sequence (7,)7°, of stopping times 7, = inf{t € [0,7] : z; ¢ K;}, where
Ki={zx eR": |z| <I} forl =1,2,... Select now, for every i = 1,... ,n,
h; € CZ(R™) such that h;(z) = z; for x € Kj, where z = (z!,... ,2™). For such
h; € CZ(R™) we have

tAT tAT )
/ (A% hi)r dr = / frdr  with (P.1)
0 ’ 0

and therefore,

) ) tAT] )
(T )inn =l —at— [ frdr with (P)
0

fori=1,...,n,1=1,2,... and t € [0,T]. But A%, € M%5(CZ(R™)). Then
[(#h,)iano<i<r is for every i = 1,... ,n and [ = 1,2,... a continuous square
integrable local F;-martingale on (2, F, P), which implies that also [(#}; )i]o<i<T
is a continuous square integrable local F;-martingale on (Q, F, P) for every i =
1,...,n. Denote it by (M})o<i<r, i.e. let M} = (¢} ); for i = 1,...,n and
t e 0,7
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Similarly, taking h;; € CZ(R") such that h;j(z) = z'z? for z € K; for
i,j = 1,...,n, we obtain a family (M}’)o<i<r; i,5 = 1,...,n of continuous
square integrable local Fi-martingals on (2, F, P) such that

t
M = gigh — gl — / Wi f7 4+ 29 1 4 o]dr with (P.1)
0
fori,j =1,...,n and ¢t € [0,T]. Now, similarly as in [3, Proposition 5.4.6], we
conclude that

t
<Mi,Mj>t:/ o dr with (P.1)
0

for i, =1,...,n and ¢ € [0,T]. Therefore, by [2, Theorem I11.7.1’], for every
7 =1,...,m, there exists an F;-Brownian motion (Bf)ogth on an extension
(Q,f7 (ft)OStSTu P) Of (Q, f7 (ft)0§t§T7 P) such that

mo
Mi=>" / g¥ dB, with (P.1)

=170

fori=1,...,nand t € [0,7]. Then
il :§3+/ fjdr+2/ g7 dB  with (P.1)
0 =170

fori=1,...,nand t € [0,T], or equivalently

t t _ _

Ty = Eo—l—/ fr dT+/ 9-dB; with (P.1)

0 0
for ¢ € [0,T], where & (@) = z:(n(@)), fu(@) = fi((@)) and G(&) = g:(n(@))
for w € Q. Hence, for 0 <s <t <T,

t t
Et—ise/ F(T,ETH/ G(r,%,)dB,
S S

i.e. (Z4(B))o<t<r is a weak solution to (4) on (2, F, (Fi)o<t<1, P). O

3. Diagonally convex subsets of R"*"™
and diagonally convex valued multifunctions

A set G C R™ ™ is said to be diagonally convezif aset D(G) = {u-u’ : u € G}
is a convex subset of R™*™. It is easy to see that for every G € CI(R™*"™) we also
have D(G) € CI(R"*"), because D(G) = I(G), where l(u) = u-uT for u € R**™.
It is also clear, that for every bounded set G C R™*™ D(G) is bounded. It is
natural to ask when the convexity of G C R™*™ implies the convexity of D(G).
We show that this is true for sets G € R'*™. It will be follow from the below
general result.
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PROPOSITION 1. IfG C R™ ™ is convex then for everyu,v € G and A € [0, 1]
there exists xx € G such that M|u|®> + (1 — N)|[v||? = ||||?, where || - || is the
norm in R™*™ defined above.

PRrROOF. Let u,v € G be given. If ||ul| = ||v| then for every A € [0,1] we
can take x) = u. Suppose 0 < |lu|| < [|v| and let zy = A||ul|® + (1 — A)|Jv||? for
fixed A € [0,1]. Let ry = \/zx. It is easy to see that |lu||* < zx < |lv||*. Then
By C By, C By, where B, denotes the closed ball in R"*™ centered at the
origin with a radius 7 > 0. Furthermore, we have u € 0B, and v € 9B,
where 0B, = {z € R"*™ : ||z|| = r}. Denoting l,, = {Au+(1—-A)v:0< A <1}
we obtain I, N IB,, # 0 for every A € [0,1]. By the convexity of G we have
lywNOB,, C G for every A € [0,1]. Therefore, for every A € [0,1] there is z) € G
such that [|za|| = ra. If 0 < |lv|| < |lu|]| we can also select xx € G to every
A € [0,1] such that ||zx|| = rx. Suppose now that ||u|| = 0 and ||v|| > 0. Taking
zy = (1= A)|lv]|? and 7y = V1= AJv|| we obtain that B,, C By, and that
lowNIB,, # 0 and l,, NIB,, C G. Hence it follows the existence of z) € G such
that [|zx]|?2 = (1 = A)|lv]|?2 = Mul|* + (1 — A)||Jv]|* with [jul| =0 for X € [0,1]. O

Now, from Proposition 1, we immediately obtain:
PROPOSITION 2. If G C R'™*™ is convex then it is also diagonally convez.

PROOF. Let us observe that for every u € RY™™ we have u - ul = |Jul?.
Therefore for every z1,z0 € D(G) and A € [0,1] there are u,v € G such that
Az + (1= Nz2 = Mu|? + (1 — N)||v||2. By Proposition 1, for every A € [0, 1]
there exists z) € G such that ||zx[|? = AMul|*> + (1 = N)||v]|* = Az1 + (1 — N)2z2
and ||z,]|? =z - 2 € D(G). O

In what follows we shall deal with set valued mappings G : [0,7] x R" —
CL(R™*™) that are assumed to be diagonally convex valued. It is clear that all
regularity properties of G can be extended for D(G) : [0,T] x R™ — CI(R™*"™)
defined by D(G)(t,x) = D(G(t,x)), because D(G(t,z)) = I(G(t,x)) and I :
R™*™ — R™"*" defined by I(u) = u - u? for u € R"*™ is continuous. Hence
in particular, it follows that for a given n-dimensional continuous F;-adapted
process x = (zy)o<t<r on (0, F, (Fi)o<i<r, P) one has S(D(Gox)) = D(S(G o
x)). Hence, in particular it follows that for every o € S(D(G o z)) there is
g € S(G ox) such that o = g- g7. More precisely we can state this result as the
following Proposition.

PROPOSITION 3. Assume G : [0,T] x R® — ClR"™*™) is measurable and
bounded. Then for every n-dimensional continuous Fi-adapted process x =
(xt)o<i<T and n x n-dimensional F-nonanticipative process o, = (otij)nxn on
(Q,F, (Ft)o<i<r, P) such that oy € D(G(t,z;)) on [0,T] xQ there is g € S(Gox)
such that o = g - g7.
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PROOF. The result follows immediately from [8, Theorem I1.3.12] applied
to the function I(u) = u - u? for u € R™™ and set-valued mapping I';(w) =
G(t,z¢(w)) that is ¥-measurable on [0,T] x Qwith ¥ ={Z € fr @ F : Z, € F;
for each ¢t € [0,T}, where Z; denotes the t-section of the set Z. It is easy to
see that Y-measurability of I" is equivalent with its F;-nonanticipativity. Now,
by ([8], Theorem I1.3.12) o¢(w) € I(T+(w)) for (t,w) € [0,T] x Q implies the
existence of g € S(G o x) such that o1(w) = I(gt(w)) on [0,T] x 2. O

4. Selection properties of some set-valued mappings

A continuous n-dimensional stochastic process * = (z)o<i<r on (Q,F,
(Fi)o<i<r,P) can be equivalently defined as (F,3(Cr))-measurable random
function z : Q@ — Cr, where Cr = C([0,T],R") and 3(Cr) denotes the Borel
o-algebra on Cr. Such defined continuous process determines on 5(Cr) its dis-
tribution, denoted by Pz~! and understood as a probability measure on 3(Cr)
of the form (Pz~1)(A) = P(z71(A)) for every A € 3(Cr), where z71(A) = {w €
0 : z(w) € A}. Tt admits the definition of convergence of sequences of continu-
ous processes in distribution, calling also a weak convergence. Recall, a sequence
(27)22; of continuous processes defined on a sequence {(2", F", P")}%2, of prob-
ability spaces is said to be convergent in distribution to a continuous process x on
(Q, F, P) if the sequence {P(z")~1}22, converges weakly to Pz~! as r — oo. It
is well known (see [5]) that it is equivalent to lim,_, E,. f(2") = Ef(x) for every
continuous bounded function f : C7 — R, where E,. and E denote expectations
with respect to P” and P, respectively. In particular, for continuous processes x
and = on (Q,F, P) and ((NZ,]?,PN’), respectively such that Pz~! = P71 we have
Ef(z) = Ef(Z) for every continuous bounded function f : C7 — R. Denote
Cn = Cp(R™,R™) and Cpxp, = Cp(R™,R™*™) and define on C,, x R™ x R™ and
Cpxn X R™™ x R™ set-valued mappings ® and ¥ by settings

® Bp,u)(2) = Yo wile) -

(9) T(,u)(z) =YY vi(z) v,

i=1 j=1

for ¢ € Cp, ¥ € Cpxcn, u € R?, v € R™™ and z € R™, where ¢ = (¢1,... ,¥n),
YV = (Yij)nxn, U = (ul,...,u") and v = (v9),x,. In what follows we shall
restrict functional parameters ¢ and ¢ to the set K = {z € R" : |z| < k} for
fixed k = 1,2, ... and consider ® and ¥ on the restricted spaces C¥ = Cy (K, R")
and CF . = Cp(Ky,R™™") instead of C,, and C,xn, respectively. We shall also

consider ® and ¥ with the restricted domain to the sets {p(h) : h € CZ(R™)} x
R™ x R™ and {¢(h) : h € C}(R™)} x R™*" x R™, where ¢(h) = (hl,,,... ,h], )
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and ¥(h) = (K, )nxn for every h € CZ(R"). Immediately from the above

ZTij

definitions we obtain:

LEMMA 3. Let F : [0,T] x R" — CI(R") and G : [0,T] x R™ — CI(R"*™) be
measurable and bounded.

(i) If F and G are convezx and diagonally convex valued, respectively then
O(p, F(t,2))(z) and ¥ (¢, D(G(t,2)))(z) are bounded closed and convex
subsets of R for fixzed ¢ € Cp, ¥ € Cpxn, 2 € R™ and t € [0,T].

(ii) (o, F(-, ))(-) and (v, D(G(-, -)))(+) are measurable on [0,T] x R"
for fixred p € C,, and Y € Cpxp.

(iil) @(-,F(t,2))(z) and ¥(-,D(G(t, 2)))(2) are continuous for fized (t,z) €
[0,T] x R™.

(iv) If F(t, ) and G(t, -) are continuous then ®(p, F(t,-))(-) and U(1,
D(G(t, -)))(-) are continuous for fixred ¢ € Cp, 1 € Cpxn, and t € [0, 7).

LEMMA 4. Assume F : [0, T]xR" — CI(R") and G : [0, T)xR" — CI(R"*™)
are measurable and bounded and are such that F(t, -) and G(t, -) are continu-
ous for fizred t € [0,T]. Let x and T be n-dimensional continuous processes on
(Q,F,P) and (57]?,13), respectively, such that Px~! = Pi~l. Then for every
leC, pely, and ¢ € Cpxn one has

5t [ “a(p, P s ar) = B(1) [ @, P(r)(E) i)

and

B(ien | "W, DG, s dr
- E(l(@) / W, DG ) () df)

forevery0 <s<t<T.
PRrROOF. Let 0 < s <t < T, p € Cp,¥ € Cpuxn and | € C; be fixed. Define,
for fixed p € R, mappings U, : Cr — R and V}, : Cr — R by

e = (. U)o Flr, ) (ar)dr ).
i) =7 (b [ e 00 DG 2o dr ).

for z € Cr, where J (-, A) denotes the support function of a set A C R. It can
be verified (see [8]) that U, and V,, are continuous and bounded on Cr for every
p € R. Therefore, by the properties of z and Z, we get EU,(z) = EUP(E) and
EV,(z) = EV,(Z) for every p € R, where E and E denote the expectations with
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respect to P and f’, respectively. By the properties of Aumann’s integral (see
[8]) we obtain

for every p € R. Hence the convexity of Aumann’s integrals implies the result..J

Let us extend now the definition of the operator A? g on the space C,, X Croxn
by taking

Afg(p0)e =D wilwe) - fi + 5 DD wi(i)ay
i=1 i=1 j=1
for t € [0,T], ¢ = (¢i)ixn € Cn and ¥ = (Vij)nxn € Cnxn, where for a given
continuous process & = (x¢)o<t<7 on (Q, F, P) we have f € S(Fox), g € S(Gox)
and 0 = g-g7. It is clear that for every h € CZ(R™) we have (A% h)e =

%o (@(h), ¥ (h)); for t € [0, T].

LEMMA 5. Assume F and G satisfy the assumptions of Lemma 4 and are
convex and diagonally convez valued, respectively, and let (x¢(B))o<t<T be a weak
solution to (4) on (Q,F, (Fi)o<i<T, P). Assume T = (Ty)o<i<T @S @ continu-
ous n-dimensional ft—adapted process on ((NZ, .7?, (-%t)ogth’ 13) such that Pz~ =
P71. Then for everyl € C1, p € Cp, and ¢y € Cpyxn, there are ]?t—nonanticipatz've
processes (a (1, ¢))o<i<T and (Bt(l7¢))0§t§T such that

(i) @l ) € D(o, F(t, 7)) (&) with (P 1)
(ii) Au(l, 1/))6‘1’11% (G(t,2)))(@) with ( )t
(i) E(Z (2, / Az (o) ) E< {&Tu,@) " ;'ﬂl(z,w)] d7>,

for every 0 < s <t < T, where f € S(F o) and g € S(Gox) are such that
dﬂ?t = ftdt + gtdBt.

ProOOF. Let [ € Cy, ¢ € C,, and ¥ € C, «p, be fixed. Denote

= Z%(Jﬂt)ff and (B = ZZ@/}ij(xt)aij with (P.1)
i=1

i=1 j=1
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for t € [0,T]. We have oy € ®(p, F(t,2¢))(z¢) and 8, € U(¢, D(G(t, xy))) ()
a.e. on [0,7] x Q. Hence, and by Lemma 4, it follows that

E(zm) / "o, dT> e E(l(@) / t@(so,szT))(%T))dT),

B | 5, ir) e B(1) [ W, D(G(r FONE)dr

forevery 0 < s <t <T.

Let L = sup,cpn |[{(z)| < 0o and M; = sup{la| : a € B¢, F(t,71))(T1)}.

By the definition of ® and properties of F it follows that (M)OStST is
bounded on [0,7] x Q. Assume L > 0 and let € > 0. Select § > 0 such that
SUPg<;<T Eftﬂ_é o dr < g/4L, supg<i<r Eftt% M, dr < /AL, SUpg<i<7 |t —
Ty15] < € and supg<y<p [T — Ty15] < e with (P.1) and (P.1), respectively. Let
70 = 0 and 7, = ko0 for kK = 1,...,N, where N is such that (N — 1)§ <
T < Né. By the definitions of set-valued integrals for every k& = 1,... /N
there is (aF)o<i<r € S(®(p, F(-,7)(Z)) such that E[f;’“_ll(kafl)aT dr] =
E[f;il l(ETk,l)&E dT] Define z¢ = 1[0’71)1}0 + 1[,,.1’.,.2)l‘7—1 + ...+ 1[7-N—1,T]'CL‘TN717
T = 1[0771)%0+1[7-1,7.2)%7—1 +.. ~+1[TN,1,T]%TN_1 and a® = l{o}a(1)+1(7.77.1](~11+. .t
Liry_,,m@. For every t € [0,T] thereis k € {1,..., N} such that ¢ € [7,_1,7%).
Therefore, |x; — 25| = |2y — 2, _,| < € and |T¢ — 5| = |T¢ — Z5,_,| < €, which
implies that supy<,<r [v: — 2f| < € and supg<,<r [T¢ — 77| < e with (P.1) and
(P.1), respectively. By the definition of a° we get a° € S(®(p, F(-,7))(F)) be-
cause S(®(¢, F(-,7))(Z)) is a decomposable set (see [8] p. 50). For every fixed
0 < s <t < T there are positive integers 1 < r <! < N such that s € (1,1, 7]
and t € (77, 7-1] or s,t € (1,—1,7] or s,t € (13—1,7;]. In the last two cases we
get

'E(/Stl(xi)aTdT) —E</St1(5§)ai>‘
§LE</t|aT|dT) +LE</:MTdT> <e

If s € (1,-1,7] and t € (7;_1,7;] we obtain

’E(/Sl(xz)aTdT> _ (/ (G de)‘

<‘E</:l(m o dT) _E</ @) dT)‘
s E(/Tjill(xn_l)%d7> E(/Tj:l(zn_l)aim)

i=r—+1

E(/ﬂtlmm)% dr) —E(/ﬂtlzmll)ag d7>

+
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Tr . T __ t
SLE(/ aT|dT> +LE(/ M.,-dT) —|—LE(/ |Oz7—|d7'>
s s TI_1

~ t —
+LE</ MTdT>§E.
Ti—1

By the weak compactness of S(®(p, F(-,%))(Z)) (see [7], [8]) in the space of
all f—measurable (Fi-nonanticipative) bounded functions, for every sequence
(en)p2, with €, — 0 we can select its subsequence, say (e, )72, such that
(@®mx)ge, converges weakly to some o € S(®(p, F(-,2)))(T)) as k — oo. Fur-
thermore, we have supy<,<r |7+ — ;™| — 0 and SUpPg<i<7 [Tt — T, — 0 as

k — oo with (P.1) and (ﬁ.l), respectively. Therefore, we finally get

E(/stl(xs)aTdT) :E</Stl(a7s)&TdT>

for 0 < s <t < T. Denoting &(l, ) = & we obtain condition (i). In a similar
way we obtain the existence of 8(I,v¢) = 8 € S(V (¢, D(G(-,%)))(Z) such that

E( / U8, dT) - E( / RICALA d7>

for every 0 < s <t <T. Thus (ii) is satisfied. By the definition of A% (p,) it
follows that (i) and (ii), imply that also (iii) is satisfied. O

LEMMA 6. Let assumptions of Lemma 5 be satisfied and let 7, = inf{t €
[0,T): 2 ¢ Ki} and T, = inf{t € [0,T] : T ¢ Ky}, where Kj, = {z € R" : |2] <
k} for k =1,2,... Then, for everyl € C1, ¢ € Cp, ¥ € Cpxn and k = 1,2, ...
there are Fy-nonanticipative processes (@F(l,9)o<i<T and (Bf(l,w)ogtg;p such
that

o+

(i) ar(l,0) € D(p, F(t,Tupz,) @inz,)) with (P.1),
(11) (lv w) € \Ij(wv D(G(t7 Et/\?k)))(gt/\‘?k)) with (Pl);
(iil) for every0 <s<t<T

Bl [

SATE

x>

tATR

e 0)dr) = BGars) [ @00 + 5500 dr),

SATE

(iv) aF and BF are continuous on C¥ x Ck and C¥ x CE. .., respectively for

fized t € [0,T] and k =1,2,...

PROOF. Let us observe that CF,C¥ and CF,, are separable metric space
for k = 1,2,... Denote their countable dense subsets by DY, D¥ and DE_ .,
respectively and assume that DY = {l1,la,...}, DE = {p1,p2,...} and DE =
{t1,1a,...} Similarly as in Lemma 5 we can show that for every fixed k =
1,2,... and ¢ = 1,2,... there are .%t—nonanticipative processes (&i)OStST and
(Bf)ogth such that

(") @ € ®(pi, F(t, Fenz,))(Tinz, ) with (P.1),
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(i) Bi € W(ihs, D(G(t, Fopz, ) (Tinz, ) with (P.1),
(iii’) forevery 0 <s<t<T

SATL _ B SATE . 1~.
E (li(xs/\ﬂc) / ?g(‘piy ¢z)7’ dT) =F (li(xs/\ﬁ) / B |:Ol:— + 2ﬂ71.:| dT) .
SATE SATE

Define now multifunctions ®% and V%, by setting

i ~ (I)(QO7F(t7§f:t/\?k))(§t/\?k) for (l,@) 7é (l’u@ )7
@F(t7w,l,<p) =93 ~;
O/i for (1750) = (117902)’
o { (0, D(G(t Fons) Fonry) o (L1) # (1 ),
G\lyWy by
B for (1, ¢) = (li, i),
for i = 1,2,... It is easy to see that @g and \116 are closed convex valued.
Furthermore ®%.(-, -,l,¢) and W4 (-, -,l,1) are Y -measuarble (i.e. Fy-non-
anticipative) and ®%.(t,@, -, ) and WL (t,o, -, -) are continuous on C{ x CF
and C¥ x CF ., respectively Therefore, by [12, Theorem 2] for every i =

1,2,... there are Y ® AL and Y ® AL, ,-measurable, respectively mappings

v [0,T] x Q@ x Chx CF — Rand X : [0,T] x Q x CF x €k, — R, where

nxn
BL and B, denote the Borel o-algebras on Cf x CF and C} x CF,, , respec-
tively, such that v*(t,@, -, -) and \'(¢,&, -, -) are continuous on C¥ x C* and

Cr x Ck, | respectively, v!(t,w,l,p) € ®(p, F(t,Tinz,))(Tinz,), N(t,w,l ¢)

(v, D(G(t, xt/\;k)))(%té'?k)7 f}/i(t’inv(pi) = a;(w) and )‘i(tvwalz,wi) = Bt( )
for a.e. (t,w) € [0,T] xQand i =1,2,...
Let (UF)22, and (V}¥)22, be a countable open covering for C¥ x CF and CF x
CF. ., respectively such that (I;, ;) € U; and (I;,1;) € VF for i = 1,2,... Select
continuous locally finite partitions of the unity (p;)$2; and (qz) 2, subordmate

to (UF)22, and (V}¥)2,, respectively. Define now af(l, ¢) and BE(1, ) by

sz Yt w1 ),
qulw (tw, 1,1),

for 1€ Ck peCk ¢ ecCk,, and (t,w) € [0,T] x Q. It is clear that
Ak (1) € ®(p, F(t,Tinz,)) (Tinz,) with (P.1),
ﬁtk(lvw) € W(¢, D(G(t’ %t/\‘?k)))(‘%t/\?k) with (f)~1)7

for a.e. t € [0,T], because (p;)52; and (¢;)$2, are locally finite and multifunctions
D(p, F(t,2))(z) and (¢, D(G(t,2)))(z) are convex valued. Immediatelly from
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the above definitions, it follows that af and Bf are continuous on C¥ x C¥ and
Cr xCk. . with (P.1) for fixed t € [0, T]. Finally, by the above definitions we get

Aultopo) =B (1) [ Jolo )
B [ [t + SR w] ar)
_ ifjlpi(zyso)qj(uw) (it [ Apo)ear)
2 k
- E(z@mﬁ) /:A: {’Yi(T, o)+ %)\j(T, -,z,w)] dT)]

for0 <s<t<T,1e€Ck peccCFandy €Ck, . Hence, by the properties
of v* and A" and (iii)’ it follows that A (l;, @, ;) = 0 for every i = 1,2,...
and 0 < s <t <T. But Ay is continuous on CF x C¥ x CF_, and is equal to
zero on DY x DF x DF Then by the density of the last set we finally have

nxn-*

Asi(l,0,9) =0 for I € CF, o € C¥ and v € CF O

nxn-*

LEMMA 7. Let assumptions and notations of Lemma 6 be true. Then for
every k = 1,2,... there are f* € S(F o 2%) and §g* € S(G o Z%) such that for
k=1,2,... we have

) E(iten) [ 5, (o) i)

ATk
tATE

~E(1Gn) [ Ao i)

SATE

forevery0 <s<t<T,l1€Ck pecCkandyccCk where % = (Tynz, Jo<i<T-

nxn’

PROOF. Let (aF(l, ¢))o<t<r and (BE(1, ¥))o<t<T be such as in Lemma 6 and
let us define multifunctions K and ) by setting
K@) =F(t, ) n{uecR”: sup dist(af(l,¢) (@), ®(p,u)(@irz, (@)}
(Lp)ECk xCE

and
Q:(@) = D(G(t,z¢)) N {v € R"*":
sup  dist(BF(1,9)(@), T(e, v)(Tenr, (@)))}

(Lp)eckxck

nxn

for t € [0,T], & € Q. By the continuity of dist(a(-, - )(@), ®(-,u) (Frz, (@)))
and dist(BF (-, ) (@), ¥(-,v)(Tinz, (@))) for fixed (t,) € [0,T] x Q, u € R™ and
v € R™"™ and the separability of metric spaces CF x C*¥ and CF x CF

 «n We have

Ki(@) = F(t,2;) Nn{u e R": sup  dist(@F (1, ) (@), ®(p, u)(Tinz, (@)))}
(1,p)EDF xDE



WEAK COMPACTNESS 163

and

Q@) = D(G(t, 7)) N{v e R"*":
sup  dist(BF (1L ¥)(@), T (¥, v) (Fonm, (@)))}

(1,)EDY xDE

for (t,&) € [0,T] x Q. By the continuity of the functions mentioned above, it
follows that mappings

[0,7] % Q3 (@) — dist(FF (1, ) (@), (0, 0) (Fenz, (9))) € R,

[0,T] x 3 (t,@) — dist(5; (1, ) (@), ¥ (¥, v)(Tn7, (©))) € R,

are i—measurable, i.e. Fi-nonanticipative for fixed I € D¥, o €Dk €D,

u € R" and v € R"*", Then, by the countability of Df x DX and D} x DE

nxn?
also mappings

0,T)x Q3 (t,&) —  sup  dist(@F(l, 0)(@), ®(p, u)(Fepz, (@) € R,
(1,p)€DF x Dk

0,T] x Q53 (t,&) —  sup  dist(BF(, ) (@), ¥(1h,v)(Tnz, (@))) € R,
(l,z/;)eD’fxDﬁ

are i—measuarble for fixed u € R™ and v € R"*". Hence, similarly as in the
proof of [8, Theorem II.3.12], it follows that (K;)o<i<7 and (Q)o<i<T are .7-'t—
nonanticipative. Therefore, by virtue of Kuratowski and Ryll-Nardzewski mea-
surable selection theorem, there are F;-nonanticipative selectors f* = (Ek)ogtST
and 6% = (6F)o<i<r for (K;)o<i<r and (Qq)o<i<T, respectively. By the defini-
tions of K;(@) and Qy(®) it follows that f* € S(F o Z) and 5% € S(D(G o 7).

Furthermore, we have

sup  dist(ay (I, ) (@), D(, [ (@) (Tenz, (@))) =0,
(Lp)eCk xCk

sup dist(BF (1, ¥) (@), T (2,55 (@) (Tenr, @))) =0,
(L,p)eck xck

nxn

a.e. on [0,T] x Q. By virtue of Proposition 4, 5% € S(D(G o %)) implies the
existence of g¥ € S(G o ¥) such that ¢ = §* - (¢*)”. Hence the properties of
(@ (1, ©))o<e<r and (85 (1, 9))o<i<7, and the definition of A%, (0, 9)¢, imply that
(10) is satisfied. O

LEMMA 8. Let F: [0, T] x R — CI(R"™) and G : [0,T] x R™ — CI(R"*™) be
bounded measurable and convex and diagonally convex valued, respectively and
such that F'(t, -) and G(t, -) are continuous for firedt € [0,T]. Let (x4(B))o<i<T
be a weak solution to (4) on (U, F, (Fi)o<i<r, P). Assume T = (Ty)o<i<T S an
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n-dimensional continuous ]?t—adapted process on (§~2,]-", (ﬁt)0§t§T7f)) such that
Pz=1 =Pz~!. Then there are f € S(FoZ) and g € S(G o T) such that

e [ Apleear) = B(16) [ A5 ir)

forevery0 <s<t<T,le€C, pelp, v eECy and Y € Cpxp.

PRrROOF. Let (73)72, and (7%)72, be such as in Lemma 6. We have 0 <
< To..., 0 < T < Toy..., limp oo = T and limy_ .o 7w = T with
(P.1) and (13.1), respectively. Denote by I, ¢ and 1, the restrictions of
l € Cy, p €Cp, and ¥ € Cpxp to the set Ky, for k = 1,2,..., respectively.
We have lp(zanr,) = Uzarn,)s be(@anz) = [Fanz)s [onr® A% (or, Pr)r dr =
JKQA(%wdTmmmgA%AmwwdT*ﬂgﬂaw(w)wwm
(P.1) and (P.1), respectively, where f* € S(F 0Z) and g* € S(G o T) are such
that (10) is satisfied. Put now f = l{o}fo + 10,7 f + 1z, Tz]f2 and
g= 1{0}90 + 1(077119 + l(ﬁﬁ]g + ... Let us observe that by the decomposabil—

ity of S(FoZ) and S(GoZ) we have f € S(FoZ) and § € S(GoZ). Furthermore

tATE . tATy _
B(twn) [ Ay fodrar) = B(i) [ A fo)rar)
SATE SATy

for0<s<t<T,l€C, p€Cly, and P € C,xy. Hence, in the limit as k — oo,
we obtain

B(160) [ gyt 00ar) = B(1) [ Az (000007

for0<s<t<T,leCy,p€lp,and Y € Cpxn- O

LEMMA 9. Let assumptions of Lemma 8 be satisfied. Then there are f €
S(FoZ) and g € S(G o X) such that

(12) EQ@QL%?ﬁ%W)zEO@QL%@%LM)

for every 0 < s <t <T,1€Cy and h € CZ(R").

PROOF. The proof follows immediately from Lemma 8. Indeed, by Lemma 8
there are f € S(FoZ) and § € S(Go) such that (11) is satisfied for 0 < s < ¢t < T
and every | € C1, ¢ € Cy, and ¢ € Cpxp,- Then (11) is in particular, satisfied for
0<s<t<T,¢h)€C,and P(h) € Cpxn for every I € C; and h € CZ(R").
But for every h € C?(R™) one has

Af(p(h), ¥(h))e = (AFgh)e  with (P.1),
AT (o), 6. = (AT ), with (B,
for t € [0,T]. Thus (12) is satisfied. O
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LEMMA 10. Assume that cponditions of Lemma 8 are satisfied and let G
be conver valued. Then there are f € S(F ox) and g € S(G o Z) such that
AT € MEg(CR(E™)).

PRrOOF. By virtue of Theorem 2, there are f € S(F oxz) and g € S(G o
z) such that A, € Mo (CZ(R™)). Then, for every h € CZ(R") a process
[(¥F)tlo<t<T, with (7)), defined by (6), is a continuous square integrable local
Fi-martingale on (2, F, P). Therefore, there exists a sequence (ry)52, of Fy-
stopping times on (Q,F, P) such that rp_; < rg for k =1,2,..., with ro = 0,
limy o 7% = +o00 with (P.1) and such that [(¢F)iar,Jo<i<T are, for every k =
1,2,..., continuous square integrable F;-martingales on (2, F, P). Hence, in
particular it follows that for every 0 < s < ¢t < T one has E[(¢})iar,|Fs] =
(©%)sar, with (P.1). Thus, for every 0 < s <t < T and h € CZ(R") we have
E{{(@F)trre) — (©F)sar )| Fs} = 0 with (P.1). By the continuity of I € C; and F,-
measurability of z,, a random variable I(zs) is also Fs-measurable. Therefore
E{U)[(#D)inrs) — ()snn ] Fs} = 0 with (P.1) for every 0 < 5 < ¢ < T,
| € C; and h € CZ(R™), which in particular implies that E(l(zs)[(¢F)tar,) —
(0% )sare)) = 0 for every 0 < s <t < T, 1 € Cy and h € CZ(R"). Hence, in the
limit as k — oo, we obtain E(I(z,)[(¢F): — (¢F)s]) = 0, that can be written in
the form

(13) E(l(xs)[(h(xt) = h(zs)]) = E(Kﬂ?s)/ (AFgh)~ dT)

for every 0 < s <t < T, 1 € Cy and h € CZ(R"). By Lemma 9, there are fe
S(FoZx)and g € S(GoZ) such that (12) is satisfied. By the continuity of I € C;
and h € CZ(R™) and the equality Pz~ = P71 it follows that E(I(xs)[h(z:) —
h(z,)]) = E((Z)[M(E:) — h(Z,))]) for every 0 < s < t < T. Hence, from (12) and
(13) one obtains

(14) B )@ ~ h@)) = B(1(2.) [ (A5 ar)

for 0 <s<t<T,leC and h € C2R™), i.e. E{I(Z:)[(¢])i — (¢T)s]} = 0 for
0<s<t<T,l€Candh € CZR"). Hence, in particular, E(I(Z,) E{[(cp%)t -
(gp%)gﬂﬁg}) =0for 0 <s<t<Teveryl € C; and h € C}(R"). Taking
in particular, 1(7,) = B{[(¢): — (¢F)u]IF} with (B.1) we get B(E{[(¢]): -
(D)) FsH? =0for 0 < s <t < T and h € C}(R"). Therefore, E{[(¢}); —
(¢D)]|Fs} = 0 with (P.1) for 0 < s < ¢t < T and h € C2(R"). Then
E[(9D)i|Fs] = (¢F)s with (P.1) for every 0 < s < ¢t < T and h € CZ(R™).
Therefore, .A% € ML, (CZ(R™)). O

LEMMA 11. Assume F and G satisfy the assumptions of Lemma 8 and
G is conver valued. Let (z7(B"))o<i<T be weak solutions to (4) on the space
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Q" F" (F)o<i<r, P") forr =1,2,... Let " = (Z})o<t<r and T = (T¢)o<t<T
be for r =1,2,... continuous n-dimensional ft—adapted processes on the space
(Q, F, (Fo<t<r,P) such that P(z")~! = Prz"(B")]™ for r = 1,2,... and
lim, oo SUPg<y< [T} — T¢| = 0 with (P.1). Then there are f € S(F o %) and
g € S(G o X) such that A% € ML, (CZ(R™)).

PrOOF. By virtue of Lemma 10, for every r = 1,2, ... there are fr € S(Fox)
and g" € S(G o Z) such that A?:ET € M%.(CZ(R™)). Similarly as in the proof
of Lemma 10, it follows

(15) BQ@)[M(E) ~ h(F) = E(K%’g) |z n, dr)

forevery r=1,2,...,0<s<t<T, and h € C}(R").

By the continuity of [ € C; and h € CZ(R™) we get lim, o E(I(Z7)[h(Z])
—h(@0)]) = E((&)[h(F) — h(@,)]), for every 0 < s < t < T, | € C, and
h € CZ(R™). By the boundedeness of F we obtain that a sequence (FN)o<t<Ts
r = 1,2,... is uniformly integrable ([8]) and therefore it is weakly compact.

Then there exists an F;-nonanticipative process (fi)o<i<r such that for every
A€ fr®F one has [, fI drdP — [, f- drdP as r — oo. Therefore, for every
e>0and A € fr @ F we also get

dist(/ﬁdeIS,/ F(r,2;) de1~3>
A A

g‘/ﬁdrdﬁ—/ﬁdrdﬁ‘+dist</ﬁd7dﬁ,/F(Tj:)drdﬁ)
A A A A

+H(/ F(Tﬁc’;)dmﬁ,/ F(T,af:)dmﬁ) <e
A A

for sufficiently large r = 1,2,..., because fI € F(r,i") a.ec. on [0,T] x Q,
[, frdrdP — [, frdrdP and H([, F(r,%;)drdP, [, F(1,77)drdP) — 0 as
r — 00, where H is a generalized Haussdorff metric on CI(R™). Hence it follows
that fe S(F o). On the other hand, by the linearity of the mapping ®(y, -),
defined by (8) we obtain

t t
tim B(ua) [ oo, 7@ ar) = B(1@) [ oem, Hi@)dr)
for every 0 < s <t < T, 1 €C and h € CZ(R"), because | € C1, h € CZ(R™)
and lim, .o SUpg<,<7 |77 — Z¢| = 0 with (P.1).

Similarly, by the boundedeness of D(G(t, z)), for (t,z) € [0,T] x R™, a se-
quence (G7)o<i<r, defined for each r = 1,2,... by setting o7 = g - (g/)7 is
also weakly compact, because 67 € D(t, %)) for a.c. (£,&) € [0,T] x Q and each
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r =1,2,... Then there exists an n x n-dimensional ft—nonanticipative process
¢ = (0¢)o<t<r such that o € S(D(G o)) = D(S(G o x)) and such that

i £ (1(02) | tqfw(h),a:)(ﬁs:)czf) - (i) [ tw(h),a)(%r)df)

T™—00

for every 0 < s < t < T, 1 € C' and h € CZ(R"), which similarly as in the
proof of Lemma 10, implies that there is § € S(G o ) such that ¢ = - ¢ and
AL € Mig(CRE™). .

5. Weak compactness of solution sets

For given F : [0,T] x R® — CI(R"), G : [0,T] x R" — CI(R™™) and a
probability measure p on F(R™) we denote by X, (F, G) a set of all weak solutions
to (4) with an initial distribution p. A sequence (z"(B"))32; of &, (F,G) is said
to be convergent in distribution if there is a probability measure P on 5(Cr),
such that P"(z"(B"))~! = P as r — oo, where = denotes the weak convergence

of probability measures. We prove now the main results of the paper.

THEOREM 12. Assume that F' and G satisfy the assumptions of Lemma 8
and G is convex valued. Then, for every probability measure i on B(R™), the set
X, (F,G) is nonempty and sequentially weakly closed with respect to the conver-
gence in distribution.

PROOF. By virtue of ([12], Theorem 2) there are measurable mappings f :
[0,7] x R — R™ and g : [0,T] x R" — R™*™ guch that f(¢, -) and g(¢, - ) are
continuous for fixed ¢ € [0, T] and such that f(¢,z) € F(t,z) and g(t,z) € G(t, )
for (t,x) € [0,T]xR™. Now, immediately from [4, Theorem I'V.2.2] it follows that
a stochastic differential equation dxy = f (¢, x¢)dt + g(t, z¢) dB; has at least one
weak solution (z;(B))o<i<r on (Q,F, (Fi)o<i<r, P) with an initial distribution
p. By the definitions of mappings f and g it easy follows that (z.(B))o<i<r €
X,(F,G). Thus X, (F,G) # 0.

Assume {(z} (B"))o<i<r 22 is a sequence in X, (F, G) convergent in distri-
butions. Then there is a probability measure P on 3(Cr) such that P"[(z"(B")]~*
= P as r — oo, where (Q7, F", (F] )o<i<t, P") is such that z"(B,) satisfies (4)
on this space. We have also P[z§(B")]~! = p for every r = 1,2,...

By virtue of [4, Theorem 1.2.7] there is (Q, F, (F)o<t<r, P) and random func-
tions 7" : 2 — Cp and 7 : Q — Cp; each r = 1,2,... such that PT[z"(B")]"! =
P(E")~! for r = 1,2,..., P7~! = P and lim, SUpg<i<r |Tf — T¢] = 0 with
(P.1). Then, by Lemma 11 there are f € S(F o %) and § € S(G o Z) such

~

that A% € AL, (CZ(R™)). Therefore, by Theorem 2, there exists F;-Brownian

motion (Et)ogth on an extension (ﬁ,]?, (ﬁt)OStST,ﬁ) of (Q,]?, (j':t)ogth, ﬁ)

~

and such that (/x\t(é))ogth is a weak solution to (4) on (Q, F, (ﬁt)ogth,P),
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where % (B) (@) = F(m(@)) for every & € Q. It is easy to sce that P[Zo(B)] = p.
On the other hand we have PT[z"(B")]"! = P(z")! and Z] — Z, uniformly
with respect to ¢ € [0,7] with (P.1). Then P(Z")"! = Pi ! as r — oo
and P(z")~! = Pr[z"(B")]"!; each r = 1,2,... Therefore, P"[z"(B")]"! =
P71 as r — oco. By the definition of the extension (€, F, (F;)o<i<r, P) of
(0, F, (F)o<i<r, P) it follows that P[Z(B)]~1(A) = P[E(B)"*(A)] = P[(r=' o
T (A)] = (Por 1)@ 1(A)) = P(F~1(A)) = (PF(A) for every A € 3(Cr).
Therefore, P[E(B)]~* = PZ ! and P"[z"(B")]~* = P[#(B)]* as r — oo, which
completes the proof. O

REMARK 1. For the nonemptiness of X,(F,G) it is enough only to assume
that F' and G are measurable bounded closed and convex valued and such that
F(t,-) and G(t, - ) are lower semicontinuous for fixed ¢ € [0,T].

Denote now by X, (F, G, 2) set of all weak solutions to (4) on the space (Q, F,
(Ft)o<t<T, P) with an initial distribution . We have of course X, (F,G,Q) C
X, (F,G).

THEOREM 13. If F and G satisfy the assumptions of Theorem 12 then for
every filtered probability space (2, F, (Fi)o<i<T, P) and every probability measure
poon B(R™) the set X, (F,G,Q) is nonempty and relatively sequentially weakly
compact with respect to the convergence in distribution.

PROOF. Similarly as in the proof of Theorem 12 we obtain X, (F, G, Q) # 0
for fixed (Q, F, (Fi)o<i<r,P) and p. Let {(z7(B"))o<i<r}oe, be a sequence
of weak solutions to (4) on (Q,F, (Fi)o<i<r, P) with an initial distribution pu.
By virtue of Lemma 1 for every r = 1,2,... there are f € S(F o a") and
g" € S(Gox") such that dzf = f/dt + g7 dBj for t € [0,1]. Now, similarly as in
[4, Theorem IV.2.2], for every k = 1,2, ..., there is a number C}, such that

sup sup E{|2]|*} < Cp and sup sup E{|zj|*} < Cpft —s|®

r>10<t<T r>10<t<T
for every t,s € [0,T]. Therefore, by [4, Theorems 1.4.2 and 1.4.3] there ex-
ist an increasing sequence (r,)°; of positive integers, a filtered probability
space (Q, F, (F)o<t<r,P) and continuous n-dimensional processes (Z7)o<i<r
and (Z;)o<i<7, each [ = 1,2,... such that P(z™)~* = P(z™)~! for [ = 1,2,...
and limy o supg<; < [2™ — 74| = 0 with (P.1). Hence, by virtue of Lemma 11
there are f € S(FoZ) and g € S(G o) such that A% € M%,(CZ(R™)), which
by Theorem 2 implies the existence of ﬁt—Brownian motion on an extension of
(Q,F, (F)o<i<r, P) of (U F, (Fy)o<i<r. P) such that (Z,(B))o<s<r is a weak so-
lution to (4) on (Q, F, (Fy)o<i<7, P), where Z;(B) (@) = & (7 (&) for & € Q. Sim-
ilarly as in the proof of Theorem 12 we can show that P[z™ (B™)]=* = P[#(B)|
as | — oo. Then the set cl? (X, (F,G,Q)) is weakly compact with respect to the
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convergence in distribution, where cl¢ denotes the weak closure with respect to

the convergence in distribution. O
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