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Abstract. This paper presents a general and systematic discussion of var-

ious symbolic representations of iterated maps through subshifts. A unified
model for all continuous maps on a metric space is given. It is shown that

at most the second order representation is enough for a continuous map.

By introducing distillations, partial representations of some general contin-
uous maps are obtained. Finally, partitions and representations of a class

of discontinuous maps and some examples are discussed.

1. Introduction

It has long been known that interesting behaviour can occur when iterating
continuous maps. Such maps define discrete dynamical systems, which have
been used as simplified prototypical models for some engineering and biological
processes; see, e.g. [20], [15], [11]. Through the Poincaré section maps, discrete
dynamical systems have also been used to study continuous dynamical systems,
e.g. [14], [23].

Considerable progress has been made in the last two decades in the under-
standing of dynamical behaviour of nonlinear continuous maps. These systems,
while mostly studied individually because of their distinct nature of nonlinear
interactions, show similar dynamical features, especially when the parameters
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of the systems are close to some critical values where abrupt change in behav-
ior takes place. The universality of such behavior has been a key subject in the
study of nonlinear dynamics. A mathematical framework has, however, yet to be
established under which a class of dynamical systems, such as one-dimensional
continuous maps, can be described by a unified model. Such a framework will
improve our understanding of general properties of dynamical systems and may
be useful in our effort to classify dynamical systems.

Shifts and subshifts defined on a space of abstract symbols are special dis-
crete dynamical systems which are called symbolic dynamics systems. Symbolic
dynamics is a powerful tool to study more general discrete dynamical systems,
because the latter often contain invariant subsets on which the dynamics is sim-
ilar or even equivalent to a shift or subshift. Moreover, there are a number of
definitions of chaos, namely (1) the Li–Yorke definition; (2) Devaney’s definition;
(3) topological mixing; (4) Smale’s horseshoe; (5) transversal homoclinic points;
and (6) symbolic dynamics. The symbolic dynamics definition is especially im-
portant of these definitions, as it unifies aspects of many of the definitions. More
precisely, it implies the first three definitions, is topologically conjugate to the
fourth one and occurs as a subsystem of the fifth. Furthermore (see for exam-
ple Ford [4]) symbolic dynamics is very important for analysis of applications of
nonlinear dynamics in physical sciences.

For a dynamical system, we can study it either directly or via other systems
which are better understood. Symbolic representations are methods to study
dynamical systems through shifts and subshifts. In the study of hyperbolic dy-
namics of homeomorphisms, symbolic dynamics is one of the most fundamental
models. Since the discovery of the Markov partitions of the two dimensional torus
by Berg [8] and the related work by Adler and Weiss [3], symbolic representa-
tions of hyperbolic systems through the Markov partitions have been studied
extensively (e.g. see [2]).

The equivalence between Smale’s horseshoe and the symbolic dynamical sys-
tem (Σ(2), σ) (see [22]) implies that the former has a symbolic representation
through the full shift (Σ(2), σ). A similar symbolic representation has also been
revealed by Wiggins (see [23]) on higher dimensional versions of the Smale’s
horseshoe. Earlier works in [24] and [9] established that, under certain condi-
tions, the restrictions of a general continuous self-map f : X → X to some
horseshoe-like invariant subsets are topologically conjugate to σ|Σ(N) or σ|Σ(Z+)

(see [9]), where (Σ(Z+), σ) is the symbolic dynamics system with a countable al-
phabet. These results actually demonstrated the partial symbolic representation
of a class of maps as a full shift over a countable alphabet.

Motivated by the above work, we study in this paper symbolic representations
of continuous self-maps by using a more general and systematic approach. We



Symbolic Representations 121

present a unified model for all continuous maps on a metric space, by representing
a map as a general subshift (Σ(Y ), σ). We show that the subshifts of (Σ(Y ), σ)
with Y = X may be used as such a unified model for all continuous self-maps on
a metric space X. And it is shown that at most the second order representation
is enough for a continuous map. In particular, when X is a closed interval, we
show that the dynamics of one-dimensional continuous maps to a great extent
can be transformed to the study of subshifts of a symbolic dynamical system.
We also discuss quasi-representations, and by introducing distillations, partial
representations of some general continuous maps are obtained. Finally, partitions
and representations of a class of discontinuous maps, piecewise continuous maps,
are discussed, and as examples, a regular representation of the Gauss map via
a full shift over a countable alphabet and regular representations of interval
exchange transformations as subshifts of infinite type are given.

2. Some definitions, notation and lemmas

Before turning to the next section to discuss representation theorems, we
recall some definitions, introduce some notation, and provide some lemmas.

Let (Y, d) be a metric space and denote by Σ(Y ) the space Y Z+ which consists
of functions from the nonnegative integers Z+ to the metric space Y . Thus
y ∈ Σ(Y ) may be denoted by y = (y0, . . . , yi, . . . ), yi ∈ Y , i ≥ 0. Further, let
Σ(Y ) be endowed with the product topology, so Σ(Y ) is metrizable. The metric
on Σ(Y ) can be chosen to be

ρ(y, y′) =
∞∑
i=0

1
2i

d(yi, y′i)
1 + d(yi, y′i)

, y = (y0, y1, . . . ), y′ = (y′0, y
′
1, . . . ) ∈ Σ(Y ).

The shift map σ : Σ(Y ) → Σ(Y ) is defined by (σ(y))i = yi+1, i = 0, 1, . . .
Since ρ(σ(y), σ(y′)) ≤ 2ρ(y, y′), σ is continuous. (Σ(Y ), σ) is a general symbolic
dynamics system (see [23], [10], [11]). We call Y the symbol space or alphabet,
and Σ(Y ) the symbol sequence space.

When Y is chosen as {0, . . . , N − 1} and the metric d on {0, . . . , N − 1} is
the discrete metric:

d(m,n) =

{
0 for m = n,

1 for m 6= n,

then (Σ(Y ), σ) becomes the usual symbolic dynamics system (Σ(N), σ) as in [14].
Let Σ ⊆ Σ(Y ) be closed, and invariant for σ, i.e. σ(Σ) ⊆ Σ, then (Σ, σ) forms

a subsystem of (Σ(Y ), σ). We call (Σ, σ) a subshift of the full shift (Σ(Y ), σ),
denoted by (Σ, σ) ≤ (Σ(Y ), σ).

Let X be a metric space, denote by C(X) the set of all continuous self-maps
on X and M(X) the set of all self-maps on X. We also call the iteration system
of an f ∈ M(X) a dynamical system, denoted by (X, f). For two dynamical
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systems f1 : X1 → X1 and f2 : X2 → X2, where Xi are metric spaces and
fi ∈ M(Xi), i = 1, 2, if there exists a homeomorphism h : X1 → X2 such that
hf1 = f2h, then we call f1 is topologically conjugate to f2, denoted by f1 ∼ f2.
If h is continuous and surjective, but not necessarily invertible, and if hf1 = f2h,
then we call f1 is topologically semi-conjugate to f2, and also call f2 a factor of
f1 (and f1 an extension of f2). We call f1 and f2 are weakly conjugate if each
is a factor of the other.

We give the following definitions for various symbolic representations:

Definition 2.1. If for an f ∈ M(X), there exists a subshift (Σ, σ) of a
certain symbolic dynamical system (Σ(Y ), σ) and a surjective map h : Σ → X,
and a countable subset D ⊆ Σ, such that h is one-to-one and continuous on
Σ \ D, finite-to-one on D, and f ◦ h = h ◦ σ, then we call the subshift (Σ, σ)
a regular representation of the dynamical system (X, f). If D = ∅, we call the
subshift (Σ, σ) a faithful representation of the dynamical system (X, f).

If h is a topological conjugacy, we call (Σ, σ) a conjugate representation of
(X, f).

If σ|Σ and f are weakly conjugate, we call (Σ, σ) a weakly conjugate repre-
sentation of (X, f).

If h is a topological semi-conjugacy, i.e., (X, f) is a factor of (Σ, σ), we call
(Σ, σ) a semi-conjugate representation of (X, f).

If (Σ, σ) is a factor of (X, f), we call (Σ, σ) a quasi-representation of (X, f).
In all the above representations, we call a correspondence between symbol

sequences in Σ and points in X (either from Σ to X or from X to Σ) a coding.

From the definition above, among the six representations, conjugate repre-
sentation is the strongest one, since it implies all the others. A weakly con-
jugate representation is always a semi-conjugate representation and a quasi-
representation. A faithful representation is also a semi-conjugate representation.
Quasi-representation is the weakest one, but it still tells us some information. For
example, if (Σ, σ) is a quasi-representation of (X, f), then htop(f) ≥ htop(σ|Σ),
while the latter is usually easier to calculate (htop( · ) denotes the topological
entropy).

In the definition of a regular representation, we allow h to be possibly dis-
countinuous onD so that we can apply this definition to symbolic representations
of some discontinuous maps.

Note that weak conjugacy is strictly weaker than conjugacy (see [19]). For
example, the Fibonacci subshift (consists of all sequences of 0 and 1 with 1
separated by 0) and the even subshift (consists of all sequences of 0 and 1 with
1 separated by an even number of 0) are weakly conjugate, but they are not
conjugate since one is a subshift of finite type and the other is a subshift of
infinite type.
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Throughout this paper, for a ∈ I = [0, 1], we denote by rm(a) the m-adic
fraction

rm(a) =
∞∑
i=0

ai
mi+1

,

and when a 6= 0, we require that there are infinite number of non-zero ai, i ≥ 0,
and denote ai by rim(a). Unless indicated otherwise, we will always make this
choice when we write an m-adic fraction expansion of a real number.

For an integer sequence x ∈ Σ(N), x = (x0, . . . , xi, . . . ), we also denote in
form by rm(x) the m-adic fraction

rm(x) =
∞∑
i=0

xi
mi+1

, where m ≥ N.

For a, b ∈ I, let

d0(a, b) = |a− b|,

d1(a, b) =
∞∑
i=0

1
2i
|ri2(a)− ri2(b)|,

and denote by Ik the metric space (I, dk), k = 0, 1. Define the metric ρk on
Σ(Ik) as

ρk(x, y) =
∞∑
i=0

1
2i

dk(xi, yi)
1 + dk(xi, yi)

, k = 0, 1.

The lemmas below are necessary for the proof of the theorems in the following
sections.

Lemma 2.2. Suppose x = (x0, . . . , xi, . . . ), y = (y0, . . . , yi, . . . ) ∈ Σ(X),
then

• if ρ(x, y) < 1/22N+1 then d(xi, yi) < 1/2N for all i ≤ N ,
• if, for δ > 0, d(xi, yi) < δ, for all i ≤ N then ρ(x, y) < 2δ + 1/2N .

Proof. Otherwise, if there exists i0 ≤ N , such that d(xi0 , yi0) ≥ 1/2N , then

ρ(x, y) ≥ 1
2i0

1/2N

1 + 1/2N
≥ 1

2N
1

1 + 2N
≥ 1

22N+1
.

This is a contradiction. So we have the first inequalities. We can check directly
the second inequality. �

Lemma 2.3. If A ⊆ I is compact in I1, then A is also compact in I0; and if
Σ ⊆ Σ(I) is compact in Σ(I1), then Σ is also compact in Σ(I0).

Proof. For all a, b ∈ I,

d0(a, b) = |a− b| =
∣∣∣∣ ∞∑
i=0

2−(i+1)(ri2(a)− ri2(b))
∣∣∣∣ ≤ 1

2
d1(a, b).
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So any limit points of A in the metric d1 are also limit points of A in the metric d0.
Hence compactness of A in I1 implies compactness of A in I0.

Similarly, we can check the compactness of Σ in Σ(I0). �

We say a subshift (Σ, σ) satisfies the condition (2.1) if

(2.1) x = y if and only if x0 = y0

for all x = (x0, x1 . . . ), y = (y0, y1, . . . ) ∈ Σ,

Lemma 2.4. For any (Σ, σ) ≤ (Σ(I1), σ), there exists (Σ∗, σ) ≤ (Σ(I1), σ)
such that σ|Σ ∼ σ|Σ∗ , and (Σ∗, σ) satisfies the condition (2.1).

Proof. For all ξ ∈ Σ, ξ = (ξ0, . . . , ξi, . . . ). Rewrite ξi by

ξi = r2(ξi) =
∞∑
j=0

ξij
2j+1

, i = 0, 1, . . .

Let

r(ξ) = 0.ξ00ξ10ξ01 . . . ξk0ξk−1,1 . . . ξ1,k−1ξ0k . . . (binary fraction),

R(ξ) = (r(ξ), r(σ(ξ)), . . . , r(σk(ξ)), . . . ).

From R(ξ) = R(η) we have r(ξ) = r(η), thus ξij = ηij , i, j = 0, 1, . . . As a result,
ξ = η, that is, R is one-to-one.

Whenever ξ, η ∈ Σ with ρ1(ξ, η) < 1/22N+1, from Lemma 2.2 we have
d1(ξi, ηi) < 1/2N , i ≤ N . So ξij = ηij , i, j ≤ N . Denote

r(ξ) =
∞∑
k=0

2−(k+1)(r(ξ))k, r(η) =
∞∑
k=0

2−(k+1)(r(η))k,

we have

(r(ξ))k = (r(η))k, k ≤ (N + 1)(N + 2)/2,

(r(σ(ξ)))k = (r(σ(η)))k, k ≤ N(N + 1)/2,

. . . . . . . . . . . . . . . . . . .

(r(σl(ξ)))k = (r(σl(η)))k, l ≤ N, k ≤ (N + 1− l)(N + 2− l)/2,

. . . . . . . . . . . . . . . . . . .

Take N = 2M . Denote Nl = (N + 1− l)(N + 2− l)/2. Then for l ≤M , we have

d1(r(σl(ξ)), r(σl(η))) =
∞∑
k=0

1
2k
|(r(σl(ξ)))k − (r(σl(η)))k|

≤
∞∑

k=Nl+1

1
2k

=
1

2Nl
≤ 2−(M+1)(M+2)/2 <

1
2M

,
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therefore

ρ1(R(ξ), R(η)) ≤
M∑
l=0

1
2l

2−M

1 + 2−M
+

1
2M

<
3

2M
,

which implies that R : Σ → R(Σ) is continuous.
Take Σ∗ = R(Σ). Let ξ̃, η̃ ∈ Σ∗, then exists ξ, η ∈ Σ, such that

ξ̃ = (r(ξ), r(σ(ξ)), . . . , r(σk(ξ)), . . . ),

η̃ = (r(η), r(σ(η)), . . . , r(σk(η)), . . . ).

Let N = (2k+ 1)(2k+ 2)/2, when ρ1(ξ̃, η̃) < 1/22N+1, from Lemma 2.2 we have

d1(r(σi(ξ)), r(σi(η))) <
1

2N
for i ≤ N,

then we have ξij = ηij , i ≤ k, j ≤ 2k, because otherwise there would exist
m ≤ N such that

d1(r(σm(ξ)), r(σm(η))) ≥ 1
2N

,

a contradiction. Therefore d1(ξi, ηi) ≤ 1/22k, i ≤ k. Again from Lemma 2.2 we
have

ρ1(R−1(ξ̃), R−1(η̃)) <
1

22k−1
+

1
2k
.

Therefore R−1 : Σ∗ → Σ is also continuous, hence R is a homeomorphism. And
for all ξ ∈ Σ,

Rσ(ξ) = (r(σ(ξ)), r(σ2(ξ)), . . . , r(σk(ξ)), . . . ) = σR(ξ),

so σ|Σ ∼ σ|Σ∗ , while the subshift (Σ∗, σ) satisfies the condition (2.1). �

Lemma 2.5. The full shift (Σ(I1), σ) is a faithful representation of (Σ(I0), σ).
And for all (Σ, σ) ≤ (Σ(I1), σ) with Σ compact, there exists a subshift (Σ′, σ) ≤
(Σ(I0), σ), such that σ|Σ ∼ σ|Σ′ .

Proof. For all a, b ∈ [0, 1] we have d0(a, b) ≤ d1(a, b)/2. So ρ0(ξ, η) ≤
ρ1(ξ, η), for all ξ, η ∈ Σ(I1), hence the identity mapping i : Σ(I1) → Σ(I0) is
continuous. Moreover, the following diagram commutes:

Σ(I1)
σ−−−−→ Σ(I1)

i

y yi
Σ(I0) −−−−→

σ
Σ(I0)

So (Σ(I1), σ) is a faithful representation of (Σ(I0), σ).
For all (Σ, σ) ≤ (Σ(I1), σ) with Σ compact, i : Σ → Σ′ = i(Σ) = Σ ⊆ Σ(I0)

is a homeomorphism, therefore (Σ, σ) ≤ (Σ(I0), σ) and σ|Σ ∼ σ|Σ′ . �

The result in Lemma 2.5 can be generalized to:
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Proposition 2.6. If (Σ, σ) is a compact subshift of a faithful representation
of (X, f) under coding h, then (Σ, σ) is a conjugate representation of (h(Σ), f),
a compact subsystem of (X, f).

Remark 2.7. For all f ∈M(I), f |I0 is a factor of f |I1 .

For the identity mapping i : I1 → I0, from the proof of Lemma 2.5, we have

d0(i(x), i(y)) = d0(x, y) ≤
1
2
d1(x, y) for all x, y ∈ I1.

So i : I1 → I0 is continuous.
For all f ∈M(I), it is obvious that the following diagram commutes:

I1
f−−−−→ I1

i

y yi
I0 −−−−→

f
I0

So f |I0 is a factor of f |I1 .

3 Conjugate representations

As discussed in [2], representing a general dynamical system by a symbolic
one involves a fundamental complication: it is difficult and sometimes impossible
to find a coding of a continuous one-to-one correspondence between orbits and
symbolic sequences, and especially when we desire the shift system to be one
of finite type and with a finite (or at most countable [10], [9], [18]) alphabet.
In this section, we will discuss conjugate representations of general continuous
maps through general subshifts, which usually involve an uncountable alphabet.

For a metric space (X, d), there exists a huge number of continuous self-maps
on X. The dynamics on X is therefore diverse. The following theorem shows
that the general subshifts of (Σ(Y ), σ) with Y = X can be used as a unified
model for all continuous self-maps on the space X.

Theorem 3.1. Let (X, d) be a metric space, for all f ∈ C(X), there exists
(Σ, σ) ≤ (Σ(X), σ), such that (Σ, σ) is a conjugate representation of (X, f).

Proof. Define a mapping h : X → Σ(X) as

h(x) = (x, f(x), . . . , fn(x), . . . ),

then h is a one-to-one mapping. Since f is continuous, for any positive integer
N and any sequence {xn} ⊂ X with limn→∞ xn = x0 ∈ X, we have

lim
n→∞

d(fk(xn), fk(x0)) = 0, k = 0, . . . , N.
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From

0 ≤ ρ(h(xn), h(x0)) =
∞∑
i=0

1
2i

d(f i(xn), f i(x0))
1 + d(f i(xn), f i(x0))

≤
N∑
i=0

1
2i

d(f i(xn), f i(x0))
1 + d(f i(xn), f i(x0))

+
∞∑

i=N+1

1
2i
,

we have

0 ≤ lim sup
n→∞

ρ(h(xn), h(x0)) ≤
1

2N
, for all N ≥ 1,

that is, h : X → Σ(X) is continuous.
Suppose we have a sequence {ξ(n) = (ξ(n)

0 , . . . , ξ
(n)
i ), . . . } ⊂ h(X) with

limn→∞ ξ(n) = η = (η0, . . . , ηi, . . . ) ∈ h(X), then

lim
n→∞

ρ(ξ(n), η) = 0.

From

0 ≤ d(ξ(n)
0 , η0)

1 + d(ξ(n)
0 , η0)

≤ ρ(ξ(n), η) → 0 as n→∞,

we obtain

lim
n→∞

d(ξ(n)
0 , η0) = 0.

So h−1 : h(X) → X is also continuous, and therefore h is a homeomorphism
from X to h(X). Moreover,

hf(x) = (f(x), f2(x), . . . ) = σh(x) for all x ∈ X,

i.e. hf = σh.
Take Σ = h(X), then Σ is invariant for the shift map σ, and Σ is a closed

subset of Σ(X). So (Σ, σ) ≤ (Σ(X), σ), and f is topologically conjugate to σ|Σ.�

Remark 3.2. The theorem above shows how to symbolize (X, f) to (Σ, σ).
Although the phase space of the latter may be more complex than that of the
former, the map action of the latter is definitely simpler than that of the former.
If we can understand the construction of the space Σ by some means, then the
dynamics of f on X can be known accordingly.

We note that the subshift (Σ, σ) in the proof of Theorem 3.1 satisfies the
condition (2.1), i.e.,

x = y if and only if x0 = y0 for all x = (x0, x1, . . . ), y = (y0, y1, . . . ) ∈ Σ.

This is a restriction under which Theorem 3.1 is reversible, as stated below.
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Theorem 3.3. Suppose that (X, d) is a compact metric space, (Σ, σ) ≤
(Σ(X), σ), and (Σ, σ) satisfies condition (2.1). Then there exists a compact sub-
set X0 ⊆ X, and a continuous self-map f on X0, such that (Σ, σ) is a conjugate
representation of (X0, f).

Proof. Let (Σ, σ) be a subshift of (Σ(X), σ) satisfying condition (2.1). De-
fine ϕ : Σ → X as

ϕ((x0, x1, . . . )) = x0 for all (x0, x1, . . . ) ∈ Σ.

Then ϕ is a one-to-one mapping. Denote ϕ(Σ) by X0. Then ϕ : Σ → X0 is
just the restriction to a subset of the projection map from the cartesian product
space Σ(X) to the first component, therefore ϕ is continuous.

Since X is compact, Σ(X) is also compact and so is Σ. As a result, ϕ : Σ →
X0 is a homeomorphism and hence X0 ⊆ X is compact. Take f : X0 → X0 as
f = ϕσϕ−1, then f is continuous, and f |X0 ∼ σ|Σ. �

Naturally, one would like to ask if Theorem 3.3 still holds for subshifts (Σ, σ)
which don’t satisfy the condition (2.1)? The answer is yes if one can construct
another subshift (Σ∗, σ) such that (Σ, σ) ∼ (Σ∗, σ), and (Σ∗, σ) satisfies the
condition (2.1). This can be done at least for one-dimensional self-maps, as
shown in the following example.

Example. Let X = [0, 1], d(x, y) = |x − y|, Σ = Σ(2) = {(x0, . . . , xi, . . . ) :
xi = 0, 1, i ≥ 0}. Take Σ∗ = R(Σ) = {R(x) : x ∈ Σ}, where R : Σ → Σ(X) is
defined as

R(x) = (r10(x), r10(σ(x)), . . . , r10(σk(x)), . . . ),

r10(x) = 0.x0x1 . . . xk . . . (decimal fraction), for all x = (x0, . . . , xk, . . . ) ∈ Σ,

then it can be verified (see Remark 5.5 in Section 5 for detail) that R : Σ → Σ∗ is
a topological conjugacy. So σ|Σ ∼ σ|Σ∗ , while (Σ∗, σ) satisfies the condition (2.1).

In the following theorem, we reach a more general conclusion for the case of
X = [0, 1]. That is, when X = [0, 1], Theorem 3.3 holds for all subshifts (Σ, σ) ≤
(Σ(I0), σ) with Σ compact in (Σ(I1), σ), regardless of the condition (2.1).

Theorem 3.4. For all (Σ, σ) ≤ (Σ(I0), σ) with Σ compact in Σ(I1), there
exists an f ∈ C(I0) and Λ ⊆ I0 with Λ compact and invariant for f , such that
(Σ, σ) is a conjugate representation of (Λ, f).

Proof. Since Σ is compact in Σ(I1), (Σ, σ) is also a subshift of (Σ(I1), σ).
From Lemma 2.4, there exists a subshift (Σ∗, σ) of (Σ(I1), σ) with Σ∗ also com-
pact, such that σ|Σ ∼ σ|Σ∗ , and (Σ∗, σ) satisfies the condition (2.1).

From Lemma 2.5, (Σ∗, σ) is also a subshift of (Σ(I0), σ) satisfying the con-
dition (2.1)
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Similar to the proof of Theorem 3.3, it can be shown that there exists a
compact subset Λ ⊆ I0, and a continuous self-map f on Λ such that (Σ∗, σ) is a
conjugate representation of (Λ, f), a subsystem of (I0, f). Therefore (Σ, σ) is a
conjugate representation of (Λ, f). �

Putting Theorema 3.1 and 3.4 together, we have the following representation
theorem for one-dimensional continuous self-maps.

Theorem 3.5. For all f ∈ C(I0) there exists (Σ, σ) ≤ (Σ(I0), σ) such
that (Σ, σ) is a conjugate representation of (I0, f); conversely, for all (Σ, σ) ≤
(Σ(I0), σ) with Σ compact in Σ(I1), there exists f ∈ C(I0) and Λ ⊆ I0, where Λ
is compact and invariant for f , such that (Σ, σ) is a conjugate representation of
(Λ, f).

4. The second order representations

Theorem 3.1 indicates that for all f ∈ C(X), (X, f) can be embedded in
(Σ(X), σ), denoted by (X, f) ↪→ (Σ(X), σ). This embedding relation means that
the system (X, f) may be represented by a subshift of (Σ(X), σ). Naturally, one
may further consider the representation of the system (Σ(X), σ) itself. To do
so, one can regard Σ(X) as a symbol space and denote by Σ2(X) the symbol
sequence space Σ(Σ(X)), i.e.

Σ2(X) = {x = (x0, . . . , xi, . . . ) : xi ∈ Σ(X), i ≥ 0}.

We specify a metric ρ(2) on Σ2(X) by

ρ(2)(x, y) =
∞∑
k=0

1
2k

ρ(xk, yk)
1 + ρ(xk, yk)

,

where ρ is the metric on Σ(X). We denote by σ2 the shift map on Σ2(X), and
if no confusion caused, we also denote by σ the shift map on Σ2(X). And so
we get a general symbolic dynamics system (Σ2(X), σ). Similarly, we can define
general symbolic dynamics system (Σk(X), σk) (or denote by (Σk(X), σ) if no
confusion caused) for k ≥ 3, and call it the k-th order symbolic representation
of dynamics on X.

For higher order symbolic sequence spaces, we have the following general
result.

Theorem 4.1. Suppose (X, d) is a metric space. Then Σ2(X) is homeo-
morphic to Σ(X). In general, for k ≥ 2, Σk(X) is homeomorphic to Σk−1(X).

Proof. For x̃, ỹ ∈ Σ2(X), denote

x̃ = (x̃0, . . . , x̃i, . . . ), ỹ = (ỹ0, . . . , ỹi, . . . ),

x̃i = (xi0, . . . , xij , . . . ), ỹi = (yi0, . . . , yij , . . . ),
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where xij , yij ∈ X. Define h : Σ2(X) → Σ(X) as

h(x̃) = (x00x10x01 . . . xi0xi−1,1 . . . x1,i−1x0i . . . ),

then h is one-to-one and onto. When

ρ(2)(x̃, ỹ) <
1

22(2N+1)+1
,

from Lemma 2.2, we have

ρ(x̃i, ỹi) <
1

22N+1
, i ≤ 2N + 1,

therefore d(xij , yij) < 2−N , i ≤ 2N + 1, j ≤ N , so we get

ρ(h(x̃), h(ỹ)) <
1

2N−1
+

1
2N1

,

where N1 = (N + 1)(N + 2)/2 +N + 1.
On the other hand, let x = (x0 . . . xk . . . ), y = (y0 . . . yk . . . ) ∈ Σ(X), when

ρ(x, y) < 2−(2N+1), where we suppose N = (2k+1)(2k+2)/2, we have d(xi, yi) <
2−N , i ≤ N . Let

h−1(x) = x̃ = (x̃0, . . . , x̃i, . . . ), x̃i = (xi0, . . . , xij , . . . ),

h−1(y) = ỹ = (ỹ0, . . . , ỹi, . . . ), ỹi = (yi0, yi1, . . . , yij , . . . ),

then d(xij , yij) < 2−N , i + j ≤ 2k + 1. Therefore d(xij , yij) < 2−N , i ≤ k,
j ≤ k. This implies ρ(x̃i, ỹi) < 21−N + 2−k, i ≤ k, therefore ρ(2)(x̃, ỹ) <

22−N + 21−k + 2−k, i.e. we have

ρ(2)(h−1(x), h−1(y)) <
1

2N−2
+

1
2k−1

+
1
2k
.

Hence both h and h−1 are continuous, and therefore Σ2(X) is homeomorphic to
Σ(X).

Similarly, we can check that Σk(X) is homeomorphic to Σk−1(X) for k ≥ 2.�

On the other hand, define ϕ : Σ(X) → Σ2(X) as

ϕ(x) = (x, σ(x), . . . , σk(x), . . . ),

then if X is compact, ϕ can be verified to be a topological conjugacy from Σ(X)
to ϕ(Σ(X)) ⊆ Σ2(X). So (Σ(X), σ) ↪→ (Σ2(X), σ).

In general, for a compact metric space X, we have the following embedding
sequence:

(4.1) (X, f) ↪→ (Σ(X), σ) ↪→ (Σ2(X), σ) ↪→ . . . ↪→ (Σk(X), σ) ↪→ . . .

That’s why we discuss the higher order representations. And the topic is also
motivated by Nasu ([21]) and is helpful to study maps in symbolic dynamics
discussed in [21], as well.
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As we discussed earlier that (X, f) ↪→ (Σ(X), σ) shows a transformation
between dynamics on X and subshifts structure in (Σ(X), σ), (Σk(X), σ) ↪→
(Σk+1(X), σ) indicates that the subshifts structure in (Σk(X), σ) can be trans-
formed to the subshifts structure in (Σk+1(X), σ). In other words, the symbolic
dynamics system (Σk(X), σ), and its subshifts, can be further represented by
the one order higher symbolic dynamics system (Σk+1(X), σ). If the embed-
ding sequence (4.1) is finite, then the above transformation or representations
will not go on without limit. This means that the piling up of symbol sequence
spaces Σk(X) will not cause an unlimited increase of the complexity of the cor-
responding shift systems. In particular, if we have (Σ(X), σ) ∼ (Σ2(X), σ),
then (Σ(X), σ) is an ultimate (or final) representation. We may ask under what
conditions does (Σ(X), σ) ∼ (Σ2(X), σ) hold? We have the following theorems.

Theorem 4.2. (Σ2(X), σ) is topologically conjugate to (Σ(X), σ) if and
only if Σ(X) is homeomorphic to X. In general, for k ≥ 1, (Σk+1(X), σ) ∼
(Σk(X), σ) if and only if Σk(X) is homeomorphic to Σk−1(X).

Proof. Suppose α : Σ(X) → X is a homeomorphism. Define ϕ : Σ2(X) →
Σ(X) as

ϕ(ξ) = (α(ξ0), . . . , α(ξk), . . . ), ξ = (ξ0, . . . , ξk, . . . ) ∈ Σ2(X),

then ϕ is a homeomorphism, and ϕσ2 = σϕ. Therefore (Σ2(X), σ) ∼ (Σ(X), σ).
Conversely, let ϕ : Σ2(X) → Σ(X) is a topological conjugacy. Denote x̃ =

(x, . . . , x, . . . ), for all x ∈ Σ(X). Then x̃ is a fixed point of σ2 in Σ2(X). Since
σ2 ∼ σ, ϕ(x̃) is also a fixed point of σ in Σ(X). So there exists x∗ ∈ X, such
that ϕ(x̃) = (x∗, . . . , x∗, . . . ). Define α : Σ(X) → X as: α(x) = x∗. Then α is a
homeomorphism.

Similarly, we can prove the general case of the theorem. �

From Theorems 4.1 and 4.2, the following corollary is immediate.

Corollary 4.3. Suppose (X, d) is a metric space, then we always have

(Σk(X), σ) ∼ (Σ2(X), σ) for all k ≥ 3.

So the embedding sequence (4.1) is finite, and the third or higher order
representations are therefore not necessary.

The following results show that we further have (Σ(X), σ) ∼ (Σ2(X), σ)
when X = I1.

Theorem 4.4. (Σ(I1), σ) is topologically conjugate to (Σ2(I1), σ), i.e.

(Σ(I1), σ) ∼ (Σ2(I1), σ).
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Proof. Let (x0, . . . , xk, . . . ) ∈ Σ2([0, 1]), where

xi ∈ Σ([0, 1]), xi = (a(i)
0 , a

(i)
1 , . . . , a

(i)
k , . . . ), a

(i)
k ∈ [0, 1], i ≥ 0, k ≥ 0.

Rewrite a(i)
k by

a
(i)
k = r2(a

(i)
k ) =

∞∑
j=0

2−(j+1)a
(i)
kj , i, k ≥ 0,

then define α : Σ([0, 1]) → [0, 1] as:

α(xi) =
∞∑
l=0

l∑
j=0

k+j=l
k≥0

2−(l(l+1)/2+j+1)a
(i)
kj , i ≥ 0.

So α(xi) is also a binary fraction. Further, α : Σ([0, 1]) → [0, 1] is a one-to-one
and onto mapping. Choose d1 as the metric on [0, 1], and correspondingly ρ1 as
the metric on Σ([0, 1]). Then, for all xi, yi ∈ Σ(I1),

xi = (a(i)
0 , . . . , a

(i)
k , . . . ), yi = (b(i)0 , . . . , b

(i)
k , . . . ),

rewrite a(i)
k and b(i)k as

a
(i)
k = r2(a

(i)
k ) =

∞∑
j=0

2−(j+1)a
(i)
kj , b

(i)
k = r2(b

(i)
k ) =

∞∑
j=0

2−(j+1)b
(i)
kj .

Whenever ρ1(xi, yi) < 1/22N+1, we have d1(a
(i)
k , b

(i)
k ) < 1/2N for k ≤ N , there-

fore a(i)
kj = b

(i)
kj , for k ≤ N , j ≤ N − 1. So we have

d1(α(xi), α(yi)) ≤ 21−N(N+1)/2,

namely, α : Σ(I1) → I1 is continuous.
Similarly, we can check that α−1 : I1 → Σ(I1) is also continuous. Hence

Σ([0, 1]) is homeomorphic to [0, 1]. From Theorem 4.2 we have (Σ(I1), σ) ∼
(Σ2(I1), σ). �

We may ask if we also have (Σ(I0), σ) ∼ (Σ2(I0), σ)? We guess this is not
true but only have:

Proposition 4.5. (Σ(I1), σ) is a faithful representation for both (Σ(I0), σ)
and (Σ2(I0), σ).

Proof. From Lemma 2.4, (Σ(I1), σ) is a faithful representation of (Σ(I0), σ).
Since d0(α, β) ≤ d1(α, β)/2, for all α, β ∈ [0, 1], we have

ρ0(a, b) ≤ ρ1(a, b) for all a, b ∈ Σ([0, 1]),

ρ
(2)
0 (x, y) ≤ ρ

(2)
1 (x, y) for all x, y ∈ Σ2([0, 1]).
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Similar to the proof of Lemma 2.4, we can prove that (Σ2(I1), σ) is topologically
semi-conjugate to (Σ2(I0), σ) under the identity mapping i : Σ2(I1) → Σ2(I0).
Therefore (Σ2(I1), σ) is a faithful representation of (Σ2(I0), σ). So (Σ(I1), σ) is
a faithful representation for both (Σ(I0), σ) and (Σ2(I0), σ). �

Note that from Theorem 4.2, (Σ2(N), σ) � (Σ(N), σ). We suspect that
(Σ2(I0), σ) � (Σ(I0), σ). And we also suspect in most circumstances (Σ2(X), σ)
� (Σ(X), σ). So it is very necessary to study the second order representations.

(Σ2(N), σ) � (Σ(N), σ) also means that shift maps with a finite or countable
alphabet is not sufficient for the study of symbolic representations of dynamical
systems, and so it is necessary to study symbolic dynamics with an uncountable
alphabet.

5. Quasi-representations

While we have shown the existence of the topological conjugacy between a
one-dimensional map and a subshift of a symbolic dynamics system, in practice it
is often difficult to construct such conjugacy for applications. Instead, it may be
easier to find a topological semi-conjugacy, which sometimes is sufficient for the
problems under investigation. In this section we discuss quasi-representations of
one-dimensional dynamical systems.

The symbolic dynamics system (Σ(I), σ) is an extension of the usual symbolic
dynamics system (Σ(N), σ). Equip Σ(N) with a metric ρ as follows:

ρ(x, y) =
∞∑
i=0

1
2i

|xi − yi|
1 + |xi − yi|

.

Take from I1 a convergent sequence {ak} with the limit a ∈ I1, where ai 6= aj
for all i 6= j. Let

S∞ = {a1, a2, . . . , a},
Σ∞ = {(x0, x1, . . . ) ∈ Σ(I1) : xi ∈ S∞, i ≥ 0},

then Σ∞ is compact in Σ(I1), and (Σ∞, σ) ≤ (Σ(I0), σ). From Theorem 3.4,
there exists f ∈ C(I0) and Λ ⊆ I0,Λ is compact and invariant for f , such that
f |Λ ∼ σ|Σ∞ .

For all (Σ, σ) ≤ (Σ(N), σ), we have

htop(σ|Σ) ≤ htop(σ|Σ(N)) = logN 6= htop(σ|Σ∞) = ∞,

So σ|Σ 6∼ σ|Σ∞ , and f |Λ 6∼ σ|Σ. Therefore the following result is obvious.
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Theorem 5.1. There exists an f ∈ C(I0), such that, for all (Σ, σ) ≤
(Σ(N), σ), f |Λ 6∼ σ|Σ, where Λ ⊆ I0 is a closed invariant subset for f .

Theorem 5.1 indicates once again that the scope of application for (Σ(N), σ)
is quite limited. So it is necessary to study its extensions, such as (Σ(I0), σ), etc.
Nevertheless, the system (Σ(N), σ) still has its special significance. For example,
(Σ(N), σ) can be used effectively to characterize the dynamics of multimodal
one-dimensional maps (see [15] and the references therein). The significance of
(Σ(N), σ) can also be shown by the following theorem.

Theorem 5.2. For all f ∈ C(I0), there exists (Σ, σ) ≤ (Σ(N), σ), N ≥ 2,
such that (Σ, σ) is a quasi-representation of (I0, f).

Proof. First, we prove that (Σ(I0), σ) is topologically semi-conjugate to
(Σ(N), σ). Let

[0, 1] =
N−1⋃
k=0

Ak, where A0 = [0, 1/N ], Ak = (k/N, k + 1/N ], k = 1, . . . , N−1.

Define α : [0, 1] → {0, . . . , N − 1} as α(a) = k, a ∈ Ak. And define ϕ : Σ(I0) →
Σ(N) as

ϕ((x0, . . . , xk, . . . )) = (α(x0), . . . , α(xk), . . . ).

Then |α(xi)− α(yi)| = |k − l| for xi ∈ Ak and yi ∈ Al. If k 6= l, we have

1/N ≤ |xi − yi| ≤ 1, 1 ≤ |α(xi)− α(yi)| ≤ N − 1,

therefore
|α(xi)− α(yi)|

1 + |α(xi)− α(yi)|
< N2 |xi − yi|

1 + |xi − yi|
.

If k = l, it is obvious that

|α(xi)− α(yi)|
1 + |α(xi)− α(yi)|

≤ N2 |xi − yi|
1 + |xi − yi|

.

So ρ(ϕ(x), ϕ(y)) ≤ N2ρ0(x, y), thus ϕ is continuous. ϕ is also surjective. And
the following diagram commutes:

Σ(I0)
σ−−−−→ Σ(I0)

ϕ

y yϕ
Σ(N) −−−−→

σ
Σ(N)

So we have proved that (Σ(I0), σ) is topologically semi-conjugate to (Σ(N), σ).
For all f ∈ C(I0), there exists (Σ∗, σ) ≤ (Σ(I0), σ) such that f |I0 ∼ σ|Σ∗ .

Denote the topological conjugacy by ψ. Then we can define λ : I0 → ϕ(Σ∗)
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as λ = ϕψ,
I0

ψ−−−−→ Σ∗ −−−−→
ϕ

ϕ(Σ∗)

f

y ↓
yσ yσ

I0 −−−−→
ψ

Σ∗ −−−−→
ϕ

ϕ(Σ∗)

So λ is a continuous and onto map, and λf = σλ.
Since σ(Σ∗) ⊆ Σ∗, σ(ϕ(Σ∗)) ⊆ ϕ(Σ∗). So ϕ(Σ∗) is invariant for σ. Σ∗ is

closed, Σ(I0) is compact, so ϕ(Σ∗) is closed. So (ϕ(Σ∗), σ) ≤ (Σ(N), σ). Take
Σ = ϕ(Σ∗), then f |I0 is topologically semi-conjugate to σ|Σ. �

From the above discussions, we have the following remarks.

Remark 5.3. There exists (Σ∗, σ) ≤ (Σ(I0), σ), such that for all (Σ, σ) ≤
(Σ(N), σ), σ|Σ 6∼ σ|Σ∗ .

Remark 5.4. (Σ(N), σ) is a factor of (Σ(M), σ) when M > N . And
(Σ(N), σ) is a factor of (Σ(I0), σ).

Remark 5.5. (Σ(N), σ) can be embedded in (Σ(I0), σ), i.e. there exists
(Σ, σ) ≤ (Σ(I0), σ), such that σ|Σ(N) ∼ σ|Σ, where N ≥ 2.

In fact, the subshift Σ may be chosen as: Σ = RN (Σ(N)), where

RN (x) = (rN (x), rN (σ(x)), . . . , rN (σk(x)), . . . ),

rN (x) =
∞∑
i=0

xi
N i+1

, for all x = (x0, x1, . . . ) ∈ Σ(N).

Then, if RN (x) = RN (y), we have for all k ≥ 0,

rN (σk(x)) = rN (σk(y)),

rN (σk+1(x)) = rN (σk+1(y)).

These imply xk = yk, for all k ≥ 0. So x = y, and RN : Σ(N) → Σ is a
one-to-one mapping.

When x, y ∈ Σ(N) and ρ(x, y) < 1/2M+1, we have xi = yi, i = 0, . . . ,M . So

|rN (σk(x))− rN (σk(y))| ≤
∞∑

i=M−k+1

|xk+i − yk+i|
N i+1

<
1

NM−k ,

for 0 ≤ k ≤M . Therefore

ρ0(RN (x), RN (y)) ≤
M∑
k=0

1
2k

1
NM−k + 1

+
∞∑

k=M+1

1
2k
.

Since N ≥ 2, 1/N ≤ 1/2 we have ρ0(RN (x), RN (y)) < (M + 2)/2M . So RN is
continuous, and therefore is a homeomorphism.

It is obvious that RNσ|Σ(N) = σ|ΣRN . So σ|Σ(N) ∼ σ|Σ. So we have the
result in Remark 5.5.
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6. Partitions and representations

In Section 5 quasi-representations of one-dimensional dynamical systems are
discussed. From the proof of Theorem 5.2, when the whole interval (phase space)
is divided into some smaller pieces, and code each piece with a symbol, then we
get a quasi-representation of the original system. This shows a direct connection
between partitions and representations. Partitions are natural ways to asso-
ciate a symbolic sequence with an orbit by tracking its history. As pointed out
in [2], in order to get a useful symbolism, one needs to construct a partition
with special properties. For example, when a partition is Markov, the sysytem
can be represented by a subshift of finite type. Some hyperbolic systems, such
as Anosov systems, axiom A systems, psuedo-Anosov systems, and hyperbolic
automorphisms on n-tori, n ≥ 2, admit Markov partitions. However, for non-
hyperbolic systems, there may be no Markov partitions. Therefore other than
Markov partitions, some more general partitions for these systems need to be
used, so that if a certain kind of partition exists for a non-hyperbolic system,
the system then can be represented by a subshift of infinite type.

In this section we generalize some concepts and main results discussed in [2].
The discussion below are for dynamical systems (X,ϕ), whereX is a compact

metric space with metric d( · , · ) and ϕ is a homeomorphism of X onto itself.

Definition 6.1. A finite or countable family of subsets R = {Ri, i ∈ I} is
called a topological partition for a dynamical system (X,ϕ) if

(1) each Ri is open,
(2) Ri ∩Rj = ∅, i 6= j,
(3) X =

⋃
i∈I Ri,

(4) for all i ∈ I, card{k ∈ I, ϕRi ∩Rk 6= ∅} <∞.

Remark 6.2. Other authors have taken the sets Ri to be closed sets with
the property that each is the closure of its interior. The variation introduced
by Adler here is slightly more general, just enough to make some notation and
certain arguments simpler. In fact, there is a example of partition whose elements
are not the interiors of their closures ([2]).

Remark 6.3. When card I < ∞, then Definition 6.1 coincides with the
definition of topological partitions in [2].

Given two topological partitions R = {Ri, i ∈ I1} and S = {Sj , j ∈ I2},
we define their common topological refinement R∨ S as

R∨ S = {Ri ∩ Sj , i ∈ I1, j ∈ I2}.
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Lemma 6.4. For dynamical system (X,ϕ) with topological partition R, the
set ϕnR defined by

ϕnR = {ϕnRi, i ∈ I}

is also a topological partition; and for all m ≤ n,
∨n
k=m ϕ

kR is again a topological
partition.

A topological partition is called a generator for a dynamical system (X,ϕ) if

lim
n→∞

D

( n∨
−n
ϕkR

)
= 0.

D(R) denotes the diameter of a partition R,

D(R) = max
Ri∈R

D(Ri)

where D(Ri) ≡ supx,y∈Ri
d(x, y).

We say that a topological partition R for a dynamical system (X,ϕ) satisfies
the n-fold intersection property for a positive integer n ≥ 3 if

Rsk
∩ ϕ−1Rsk+1 6= ∅, 1 ≤ k ≤ n− 1 ⇒

n⋂
k=1

ϕ−kRsk
6= ∅.

Furthermore, we call a topological partition Markov if it satisfies the n-fold
intersection property for all n ≥ 3.

A homeomorphism ϕ is said to be expansive if there exists a real number
c > 0 such that if d(ϕn(x), ϕn(y)) < c for all n ∈ Z, then x = y.

Suppose a dynamical system (X,ϕ) has a Markov generatorR = {Ri, i ∈ I}.
We define an associated subshift of finite type (ΣR, σ) over a finite or countable
alphabet by

ΣR = {s = (sn)n∈Z : Rsn−1 ∩ ϕ−1Rsn
6= ∅, sn ∈ I, n ∈ Z}.

Similar to Theorems 6.5 and 6.13 in [2], we have the following result.

Theorem 6.5. If the dynamical system (X,ϕ) is expansive and has a Mar-
kov generator R = {Ri, i ∈ I}, then the map π : ΣR → X defined by

π(s) =
∞⋂
n=0

ϕnRs−n
∩ ϕn−1Rs−n+1 ∩ . . . ∩ ϕ−nRsn

gives a regular representation (ΣR, σ) of (X,ϕ). Moreover, a subshift of finite
type is a semi-conjugate representation of an expansive dynamical system (X,ϕ)
if and only if (X,ϕ) has a Markov partition.
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7. Partial representations

It would be better, under certain conditions, to symbolize a dynamical system
by a conjugate representation and using a finite or countable alphabet. This
section will show that if there exists a distillation, then we can achieve this
target, although we have to abandon the quest of representing all points in the
phase space, instead, only represent an invariant subset, that is, we obtain a
partial representation.

In contrast with partitions, if there exist pairwise disjoint non-empty closed
or compact subsets A0, . . . , AN−1 of the phase space X (here the union of all
Ai’s need not to cover X), satisfying certain conditions, then the restriction of
the system to a invariant subset of X can be represented by the full shift on
N symbols. When the number of such closed (compact) subsets need to be
countably infinite, then a subsystem can be represented by the full shift with
a countable alphabet ([9]). The family of such closed (compact) subsets with
certain conditions is called a distillation. More precisely, we give the following
definitions.

Definition 7.1. If for an f ∈M(X), there exists an invariant subset Λ ⊆ X

and a subshift (Σ, σ) of a certain symbolic dynamical system such that (Σ, σ)
is a symbolic representation of (Λ, f), then we call the subshift (Σ, σ) a partial
representation of (X, f).

A partial representation is also helpful to our understanding of the original
system, especially when Λ is a maximal invariant subset or a global attractor of
(X, f). In these cases, apart from some transient states in X \ Λ, all significant
dynamical behaviour will asymptotically take place in Λ.

Definition 7.2. Let X be a topological space, f ∈M(X). We call a finite
family of subsets A = {A0, . . . , AN−1} a quasi-distillation of order N for the
system (X, f) if:

(1) each Ai is compact and non-empty,
(2) Ai ∩Aj = ∅ for all i 6= j,
(3) f(Ai) ⊇

⋃
j∈a(i)Aj for all 0 ≤ i ≤ N − 1.

Where a(i) ⊆ {0, . . . , N − 1}, and each a(i) is non-empty and is maximal in the
sense that for all j /∈ a(i), f(Ai) ∩Aj = ∅.

We callA a distillation of order N for (X, f) if it satisfies a further condition:

(4) card(
⋂∞
s=0 f

−s(Ais)) ≤ 1 for all (i0 . . . is . . . ) ∈ Σ(N).

card( · ) denotes the cardinal number of a set.
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Definition 7.3. Let X and f be as above. We call a countable family of
subsets A = {A0, . . . , Ak, . . . } a quasi-distillation of order infinity for the system
(X, f) if:

(1) each Ai is closed and non-empty,
(2) there are open subsets Oi ⊆ X, i ∈ Z+, such that

Ai ⊆ Oi and Oi ∩
( ⋃
i 6=j

Aj

)
= ∅ for all i ∈ Z+,

(3) f(Ai) ⊇
⋃
j∈a(i)Aj for all i ∈ Z+,

where a(i) ⊆ Z+, and each a(i) is non-empty and is maximal in the same sense
as in Definition 7.2.

We call A a distillation of order infinity for a self-map on a metric space
(X, d) if it satisfies a further condition:

(4) limn→∞D(
⋂n
s=0 f

−s(Ais)) = 0 for all (i0 . . . is . . . ) ∈ Σ(Z+),

where D(S) denotes the diameter of a subset S, i.e. D(S) = supa,b∈S d(a, b).

At first we give a general lemma.

Lemma 7.4. For a finite or countable family of subsets {Ai, i ∈ I} of a
topological space X and a map f : X → X, if f(Aj) ⊇

⋃
i∈I Ai for all j ∈ I,

then for all l ≥ 1 and all ik ∈ I, k = 0, 1, . . . ,

f l
( l⋂
s=0

f−s(Ais)
)

= Ail .

Proof. From
f(Aj) ⊇

⋃
i∈I

Ai for all j ∈ I,

we have
f(Ai) ∩Aj = Aj for all i, j ∈ I.

So, when l = 1, we have

f(Ai0 ∩ f−1(Ai1)) ⊆ f(Ai0) ∩Ai1 = Ai1 .

For all x ∈ Ai1 , since f(Ai0) ⊇ Ai1 , there exists y ∈ Ai0 such that f(y) = x.
Therefore y ∈ f−1(Ai1), and hence y ∈ Ai0 ∩ f−1(Ai1), and x = f(y) ∈ f(Ai0 ∩
f−1(Ai1)). That is

Ai1 ⊆ f(Ai0 ∩ f−1(Ai1)).

So we get
f(Ai0 ∩ f−1(Ai1)) = Ai1 .

By the similar argument the lemma can be proven inductively. �
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Some known results about distillations and symbolic representations are
Smale’s horseshoe theorem ([22]), higher dimensional versions of horseshoes ([23])
and some generalizations to horseshoe-like invariant sets ([9], [24]), and etc. Be-
low we give some more general results about distillations and representations.

The following theorem gives results on partial representations over a finite
alphabet.

Theorem 7.5. Suppose X is a Hausdorff space and f ∈ C(X), and (X, f)
has a quasi-distillation of order N . Then there exists a subshift of finite type
(Σ, σ) ≤ (Σ(N), σ) such that (Σ, σ) is a partial quasi-representation of (X, f).
If (X, f) has a distillation of order N , then there exists a subshift of finite
type (Σ, σ) ≤ (Σ(N), σ) such that (Σ, σ) is a partial conjugate representation
of (X, f).

Proof. Let ΣA = {x ∈ Σ(N) : x = (x0 . . . xk . . . ), axkxk+1 = 1 for all k ≥
0}, where A is the transition matrix,

A = (aij)N×N , aij =

{
1 for j ∈ a(i),
0 otherwise.

For all (i0i1 . . . ) ∈ ΣA, we have

f(Ai0) ⊇
⋃

i∈a(i0)

Ai ⊇ Ai1 ,

so we have f(Ai0) ∩ Ai1 = Ai1 . Following exactly the same argument in the
proof of Lemma 7.4, we have f(Ai0 ∩ f−1(Ai1)) = Ai1 . Inductively, for all l ≥ 1,

f l
( l⋂
s=0

f−s(Ais)
)

= Ail for all (i0i1 . . . ) ∈ ΣA.

So
⋂∞
s=0 f

−s(Ais) 6= ∅, since X is a Hausdorff space. Let

Λ =
∞⋂
s=0

f−s
(N−1⋃

i=0

Ai

)
=

⋃
(i0i1... )∈ΣA

∞⋂
s=0

f−s(Ais),

then Λ is an invariant compact subset for f . Define a coding ϕ : Λ → ΣA as:

ϕ(x) = (i0 . . . ik . . . ) for all x ∈
∞⋂
s=0

f−s(Ais).

Then ϕ is surjective.
For all x ∈ Λ, suppose x ∈ Ai0 , fs(x) ∈ Ais , s = 0, . . . ,K. Then

ϕ(x) ∈
K⋂
s=0

ϕf−s(Ais).
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From the continuity of fs, there exists a neighbourhood Vs(x) of x such that

fs(Vs(x) ∩ Λ) ⊆ Ais , s = 0, . . . ,K.

Let V (x) =
⋂K
s=0 Vs(x), then V (x)∩Λ ⊆

⋂K
s=0 f

−s(Ais). So for all y ∈ V (x)∩Λ,
we have ϕ(y) ∈

⋂K
s=0 ϕf

−s(Ais). Thus the first K entries of ϕ(y) and ϕ(x)
agree, therefore ρ(ϕ(x), ϕ(y)) ≤ 1/2K . So ϕ is continuous. The commutativity
ϕf |Λ = σ|ΣA

ϕ is obvious. So (ΣA, σ) is a partial quasi-representation of (X, f).
When (X, f) has a distillation of order N , then ϕ is also one-to-one. Note

that X is a Hausdorff space, ϕ is therefore a homeomorphism, and hence (ΣA, σ)
is a partial conjugate representation of (X, f). �

The following two theorems give results on partial representations over a
countable alphabet. For the first result, we do not require X to be a metric
space, only T1.

Theorem 7.6. Let X be a sequentially compact T1 space and f ∈ C(X).
If (X, f) has a quasi-distillation of order infinity, then there exists a countable
state Markov subshift (Σ, σ) ≤ (Σ(Z+), σ) such that (Σ, σ) is a partial quasi-
representation of (X, f).

Proof. For all (s0, s1, . . . ) ∈ ΣA, where ΣA is defined similarly as in the
proof of Theorem 7.2, but here A is a matrix of infinite order. From

∞⋂
s=0

f−s(Ais) =
∞⋂
l=0

l⋂
s=0

f−s(Ais),

⋂∞
s=0 f

−s(Ais) is the intersection of a decreasing sequence of nonempty closed
subsets in a sequentially compact T1 space, so it is nonempty. Define a coding

ϕ : Λ → ΣA, ϕ(x) = (i0 . . . ik . . . ),

for all x ∈ Λ :=
∞⋂
s=0

f−s
( ∞⋃
i=0

Ai

)
=

⋃
(i0i1... )∈ΣA

∞⋂
s=0

f−s(Ais),

then ϕ is onto. Let N > 0 satisfy ε >
∑∞
n=N 1/2n. Suppose x ∈ Ai0 and

fs(x) ∈ fs(x) ∈ Ais , then x ∈ f−s(Ais) and ϕ(x) ∈ ϕf−s(Ais), s = 0, . . . , N .
From the continuity of fs, there exists a neighbourhood Vs(x) of x such that
fs(Vs(x)) ⊆ Ois , s = 0, . . . , N . Let V (x) =

⋂N
s=0 Vs(x), then fs(V (x)) ⊆ Ois ,

therefore fs(V (x) ∩ Λ) ⊆ Ais , s = 0, . . . , N , and V (x) ∩ Λ ⊆
⋂N
s=0 f

−s(Ais).
So y ∈ V (x) ∩ Λ implies ϕ(y) ∈ ϕ

⋂N
s=0 f

−s(Ais) ⊆
⋂N
s=0 ϕf

−s(Ais). Thus the
first N entries of ϕ(y) and ϕ(x) agree, hence ρ(ϕ(x), ϕ(y)) < ε. This proves the
continuity of ϕ. Therefore (ΣA, σ) is a partial quasi-representation of (X, f). �
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Theorem 7.7. Let (X, d) be a complete metric space and f ∈ C(X). If
(X, f) has a distillation of order infinity, then there exists a countable state
Markov subshift (Σ, σ) ≤ (Σ(Z+), σ) such that (Σ, σ) is a partial conjugate rep-
resentation of (X, f).

Proof. As being shown in the proofs of Theorems 7.5 and 7.6, for all
(i0 . . . ik . . . ) ∈ ΣA,

⋂∞
s=0 f

−s(Ais) is a nonempty set. From the condition (4) in
Definition 7.3,

⋂∞
s=0 f

−s(Ais) is a one-point set. Define a coding ϕ : Λ → ΣA as:

ϕ

( ∞⋂
s=0

f−s(Ais)
)

= (i0 . . . is . . . ),

where Λ =
⋂∞
s=0 f

−s(
⋃∞
i=0Ai) =

⋃
(i0i1... )∈ΣA

⋂∞
s=0 f

−s(Ais). Then as shown in
the proof of Theorem 7.6, ϕ is continuous.

For x = (x0, x1 . . . ) ∈ ΣA, for all ε > 0, there exists N > 0, whenever n ≥ N ,
we have

D

( n⋂
s=0

f−s(Aas)
)
< ε.

For all y ∈ ΣA, when ρ(x, y) < 1/2N , the first N + 1 entries of x and y agree.
Thus

d(ϕ−1(x), ϕ−1(y)) ≤ D

( N⋂
s=0

f−s(Axs
)
)
< ε,

hence ϕ−1 is continuous. This shows that ϕ is a homeomorphism. Therefore
(ΣA, σ) is a partial conjugate representation of (X, f). �

8. Representations for discontinuous maps

This section will discuss some specific examples and show that it is possible
to use symbolic dynamics as a tool for further studies of dynamics of a class of
discontinuous maps: piecewise continuous maps.

Let X ⊆ Rn, and P = {P0, . . . , PN−1} be a finite family of subsets of X,
satisfying

⋃N−1
i=0 Pi = X, and Pi ∩Pj = ∅ for i 6= j. A piecewise continuous map

is a map f : X → X whose restriction to each Pi, 0 ≤ i ≤ N − 1, is continuous,
and P is minimal in the sense that f is not continuous on Pi ∪ Pj for i 6= j.

A partition P = {P0, . . . , PN−1} associated to a piecewise continuous map
provides a natural coding ϕ : X → Σ(N) by ϕ(x) = (i0 . . . ik . . . ) where fk(x) ∈
Pik .

Let G = {(x, ϕ(x)), x ∈ X} be the graph of ϕ : X → Σ(N) endowed with
the metric

dG((x, ϕ(x)), (y, ϕ(y))) = max{d(x, y), ρ(ϕ(x), ϕ(y))},
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where d is the metric on X. Then the extension map fG : G→ G, fG(x, ϕ(x)) =
(f(x), ϕ(f(x))), is continuous ([12]). This result may be useful since sometimes
it is a bridge between discontinuous and continuous maps.

Here we give a definition of partitions for piecewise continuous maps.

Definition 8.1. For X ⊆ Rn, f ∈M(X). We call a finite family of subsets
P = {P0, . . . , PN−1} a partition of (X, f) if:

(1) each Pi is open and convex,
(2) Pi ∩ Pj = ∅ for i 6= j,
(3) X =

⋃N−1
i=0 Pi,

(4) for all 0 ≤ i ≤ N − 1, f |Pi
is continuous and can be extended to a

continuous map on Pi.

We call a partition minimal if f is not continuous on Pi ∪ Pj for i 6= j.
A cell, denoted by C(x), is a set of points in X encoded by the same symbolic

sequence ϕ(x), i.e. C(x) = {y ∈ X : ϕ(y) = ϕ(x)}, where ϕ is called the coding
associated with the partition P, ϕ : X → Σ(N) is defined by ϕ(x) = (i0 . . . ik . . . )
where fk(x) ∈ Pik .

Example 8.2. Symbolic representation for the Gauss map.
Let (I, g) be the iterated system of the Gauss map ([1]) g : x→ x−1 ( mod 1)

for 0 < x ≤ 1, and g(0) = 0. Let a sequence s = (sn)n∈Z+ ∈ Σ(N) correspond to
the continued fraction expansion [s0s1s2 . . . ]. This defines the map π from Σ(N)
to I = [0, 1]:

π(s0, s1, . . . ) = [s0s1s2 . . . ].

It can be verified that

(i) gπ = πσ,
(ii) π is continuous,
(iii) π is onto,
(iv) there is a bound on the number of pre-images (in this case two),
(v) there is a unique pre-image of “most” numbers in I (here those with

infinite continued fraction expansions).

So (Σ(N), σ) is a regular representation of (I, g). The map π is not a homeomor-
phism, but we do have a satisfactory representation of the dynamical system by
a one-sided full shift over a countable alphabet in the sense of Adler [2], i.e.

• orbits are preserved,
• every point has at least one symbolic representative,
• there is a finite upper limit to the number of representatives of any

point,
• and every symbolic sequence represents some point.
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There is an alternate definition of π in terms of a countable partition of I:

R = {Ri, i ∈ N}, Ri = (1/(i+ 1), 1/i).

π(s0, s1, . . . ) =
∞⋂
n=0

Rs0 ∩ g−1(Rs1) ∩ . . . ∩ g−n(Rsn).

Note that in a suitable torus topology the Gauss map becomes continuous
everywhere except at x = 0. Below we give another example where the map is
“more discontinuous” but is still easy to symbolize.

Example 8.3. Symbolic representations for interval exchange transforma-
tions.

An interval exchange transformation f : I → I, I = [0, 1], over a partition
P = {I0, . . . , IN−1} is a one-dimensional piecewise isometry, so we can follow
the arguments in [6], [7], [13] to discuss symbolic representation for f .

By naturally coding orbits of f using the partition P, ϕ : I → Σ(N),

ϕ(x) = (. . . i−1i0i1 . . . ),

where fk(x) ∈ Iik , k ∈ Z, we obtain a subset Σ ⊆ Σ(N) of bi-infinite symbolic
sequences, Σ = {ϕ(x) ∈ Σ(N), x ∈ I}. Σ is closed and shift invariant, so
(Σ, σ) ≤ (Σ(N), σ).

Note that if a subinterval S ⊆ I is invariant under fm, then fm|S is either
the identity or the reflection in the midpoint of S (in this case f2m|S is the
identity). So the disk/polygon packing discussed in [6], [7], [13] now reduce to
rigid interval ([17]) packing, i.e. the set

J = I \
⋂
n∈Z

fn(Î), Î =
N−1⋃
k=0

int Ik

of points that never hit or approach the discontinuity can be decomposed into
finite cells ([17, Lemma 14.5.4]), or rigid intervals Jk,

J =
K⋃
k=1

Jk for K ≤ 2(N − 1),

all points in J have periodic codings, and f is periodic on each Jk.
As discussed in [17], when f is generic (i.e. J = ∅), we can define a map

h : Σ → I,
h((. . . i−1i0i1 . . . )) =

⋂
k∈Z

f−k(Iik).

h satisfies:

(1) fh = hσ,
(2) h is continuous,
(3) h is onto,
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(4) there is a bound on the number of pre-images (in this case 2N ),
(5) there is a unique pre-image of “most” points in I (here those no image

or pre-image of them are discontinuity points).

So (Σ, σ) is a regular representation of (I, f). Although the map h is not a home-
omorphism, we do have a satisfactory representation of the dynamical system
by a two-sided subshift over a finite alphabet with the properties listed near the
end of Example 8.2.

If (Σ, σ) is topologically transitive, then (Σ, σ) is a subshift of infinite type,
because otherwise the periodic points of σ|Σ would be dense in Σ.

9. Final remarks

When we consider the symbolic representation of an iterated map, one may
hope to find one of the following:

(A) a full representation (i.e., all points in the phase space are symbolically
represented);

(B) a conjugate representation;
(C) a representation via a subshift of finite type over a finite or countable

alphabet.

Unfortunately, it is very rare to get a symbolic representation satisfying all of
(A), (B) and (C). Usually, if we’d like to get a symbolic representation satisfying
(A) and (B), we may need to pay the price of giving up (C), i.e. we need to use
an uncountable alphabet, as discussed in Sections 3 and 4; if we’d like to obtain
a representation with properties (A) and (C), we may have to give up (B), as
discussed in Sections 5 and 6; if we’d like to find a representation with (B) and
(C), we may have to give up (A), i.e. we only get a partial representation, as
discussed in Section 7.

When we consider a symbolic representation of a discontinuous map, we at
least have to give up (B), as discussed in Section 8 using special cases of piecewise
continuous maps.

Symbolic representations provide a powerful method to investigate general
discrete dynamical systems through shifts or subshifts. This is similar to the
situation for the study of finite groups in algebra, where all finite groups can be
represented by subgroups of symmetric groups Sn, which are better understood.
We can view Sn as “symbolic” groups.

There is a large body of theory that describes the dynamics of continuous
smooth dynamical systems. However, if there are discontinuities in the system
such as those caused by collisions (impacting) or switching there is still compara-
tively little in the way of general theory to describe such systems. In Section 8 we
have shown through specific examples that it is helpful to use symbolic dynam-
ics to develop the general theory of dynamics of a class of discontinuous maps:
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piecewise continuous maps. Most results in this paper are proven constructively.
This makes our results potentially useful for applications.

Finally, we conjecture that some results in Sections 3–5 and 8 about rep-
resentations for one dimensional maps may be extended to higher dimensional
cases. Higher dimensional binary expansions and higher dimensional continued
fractions ([5]) may be useful in the extension. We hope to discuss this topic in
a separate paper.
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