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ON THE SECOND DEFORMATION LEMMA

Jean-Noël Corvellec

Dedicated to Andrzej Granas, with gratitude

Abstract. In the framework of critical point theory for continuous func-
tionals defined on metric spaces, we give a new, simpler proof of the so-

called Second Deformation Lemma, a basic tool of Morse theory.

The purpose of this note is to provide a new approach to the so-called Sec-
ond Deformation Lemma (according to the terminology of [3]), for continuous
functionals defined on metric spaces: see Theorem 4, an extension of [5, The-
orem 2.10]. Roughly speaking, the new idea is reminiscent of the one which is
commonly used when dealing with smooth functionals defined on smooth mani-
folds (see [2], [18], [20], [22]), when a “normalized” (pseudo-)gradient vector field
is employed, in order that the functional decrease at constant rate along the de-
formation, also when approaching critical points. More precisely, starting with
the notion of weak slope [10] and with the basic deformation result of [9], this is
achieved by applying a variant (Theorem 2) of the Noncritical Interval Theorem
of [1], [9], with a suitable choice of metric on the underlying space, thanks to
a variant (Theorem 3) of a general change-of-metric procedure established in [6].

The point of view adopted here is technically simpler than the one in [5], as
well as it sheds a new light on the result. As a matter of fact, the most technical
parts in [5] borrowed much from earlier arguments in smooth settings. Compare
also with the variant given in [15] of the basic result of [5], on deformation near
an isolated critical point.
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56 J.-N. Corvellec

This version of the Second Deformation Lemma allows to develop Morse the-
ory for continuous functionals, as explicited in [5]. An application to a class
of quasilinear problems is given in [8], where the associated functional is con-
tinuous, but not locally Lipschitzian in general. See also [1] for an overview
of the connections between the abstract theory and problems of the calculus of
variations.

In the sequel, X is a metric space endowed with the metric d, and f : X → R
is a continuous function.

If Y is a subset of X, a deformation of Y is a continuous map η : Y×[0, 1] → Y

such that η(u, 0) = u for every u ∈ Y . If Z is another subset of X, with Z ⊂ Y ,
the set Z is a strong deformation retract of Y if there exists a deformation η of
Y such that η(Y, 1) ⊂ Z and η(u, t) = u for every u ∈ Z and t ∈ [0, 1]; the set
Z is a weak deformation retract of Y if there exists a continuous r : Y → Z, a
deformation η1 of Y , and a deformation η2 of Z, such that η1(u, 1) = r(u) for
u ∈ Y and η2(v, 1) = r(v) for v ∈ Z (see, e.g. [12]). In particular, Z is a weak
deformation retract of Y if there exists a deformation η of Y with η(Y, 1) ⊂ Z

and η(Z × [0, 1]) ⊂ Z. Of course, a strong deformation retract is a weak one.
We further observe, for later use, that if Y is an ANR, if η is a deformation of
Y , and if Z is a subset of Y such that η(Y × ]0, 1]) ⊂ Z (in particular, Z is a
weak deformation retract of Y ), then Z also is an ANR: this readily follows from
a result of Hanner, see, e.g. [13, Theorem IV.6.3].

We shall denote by B(u; δ) the open ball of radius δ > 0 centered at u ∈ X.
If Y and Z are subsets of X, we set

d(Y,Z) := inf{d(y, z) : y ∈ Y, z ∈ Z},

with the convention that d(Y, ∅) = ∞. For a ∈ R ∪ {∞}, we let

fa := {u ∈ X : f(u) < a}, f
a

:= {u ∈ X : f(u) ≤ a}.

We recall the notion of weak slope from [10, Definition (2.1)].

Definition 1. For u ∈ X we denote by |df |(u) the supremum of the σ’s in
[0,∞[ such that there exist δ > 0 and H : B(u; δ)× [0, δ] → X continuous with

d(H(v, t), v) ≤ t, f(H(v, t)) ≤ f(v)− σt.

The extended real number |df |(u) is called the weak slope of f at u. We say that
u ∈ X is a critical point of f if |df |(u) = 0.

Note that u 7→ |df |(u) is lower semicontinuous, as readily follows from the
definition, while the set {u ∈ X : |df |(u) < ∞} is dense in X, as follows from
Ekeland’s variational principle, see e.g. [10, Corollary 3.4].

The above notion was introduced independently in [16], while a variant was
introduced in [14]. We recall that if X is a Finsler manifold of class C1, and
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if f is of class C1, then |df |(u) = ‖f ′(u)‖ for u ∈ X. Observe that in this
case, namely, if X is of class C1 only , then the classical deformation techniques
of critical point theory do not apply, since only a continuous pseudo-gradient
vector field for f is available. Using the notion of weak slope, the following is
the first global deformation result proved in [9, Theorem (2.8)]; here, we added
to the statement some features which are both clear from the proof, and needed
for our present purposes.

Theorem 1. Let X be a metric space, f : X → R and σ : X → [0,∞[ be
two continuous functions such that

|df |(u) 6= 0 ⇒ |df |(u) > σ(u) > 0.

Then, there exist a continuous function τ : X → [0,∞[ such that

τ(u) = 0 ⇔ |df |(u) = 0,

and a continuous map η : X × [0,∞[→ X such that

(a) d(η(u, t), u) ≤ t,
(b) t ≥ τ(u) ⇒ η(u, t) = η(u, τ(u)),
(c) 0 ≤ t ≤ τ(u) ⇒ f(η(u, t)) ≤ f(u)− σ(u)t.

(In particular, η(u, t) = u for every t if and only if |df |(u) = 0.)

Given f : X → R continuous and a ∈ R, we let

Ka := {u ∈ X : |df |(u) = 0, f(u) = a}

denote the set of critical points of f at the level a.

Corollary. Let X be a metric space, f : X → R be a continuous function,
and a ∈ R. Then, there exists a deformation η : X × [0, 1] → X such that

(a) f(η(u, t)) ≤ f(u),
(b) |df |(u) = 0 ⇒ η(u, t) = u,
(c) u ∈ f

a
and t > 0 ⇒ η(u, 1) ∈ fa ∪Ka.

In particular, fa ∪Ka is a weak deformation retract of f
a
.

Proof. Since |df | is lower semicontinuous and not identically equal to ∞,
letting

σ(u) :=
1
2

inf{d(u, v) + |df |(v) : v ∈ X},

we have that σ : X → [0,∞[ is a continuous function with σ(u) = 0 if |df |(u) = 0,
and

|df |(u) 6= 0 ⇒ |df |(u) > σ(u) > 0.

Let then η′ : X × [0,∞[ → X and τ : X → [0,∞[ be the continuous map and
function given by Theorem 1. It is readily seen that the map η : X × [0, 1] → X

defined by η(u, t) := η′(u, τ(u)t) has the required properties. �
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Remark 1. According to a previous observation, the above corollary shows
that if f

a
is an ANR, then so is fa∪Ka. We shall comment more on this matter

in our final remarks.
The next result also builds upon Theorem 1.

Theorem 2. Let X be a metric space, f : X → R be a continuous function,
a, c ∈ R with a < c, and σ > 0. Assume that f−1([a, c]) is complete, and that

(1) |df |(u) > σ for every u ∈ f−1(]a, c]).

Then, there is a deformation η : f
c × [0, 1] → f

c
such that:

(a) f(η(u, t)) ≤ f(u),
(b) u ∈ f

a ⇒ η(u, t) = u,
(c) η(f

c
, 1)) ⊂ f

a
.

Thus, f
a

is a strong deformation retract of f
c
.

Proof. Set U := f−1(]a, c]), and let η1 : U × [0,∞[ → U and τ1 : U →
]0,∞[, both continuous, be given by Theorem 1, such that for every (u, t) ∈
U × [0,∞[ we have

d(η1(u, t), u) ≤ t, f(η1(u, t)) ≤ f(u),

t ≥ τ1(u) ⇒ η1(u, t) = η1(u, τ1(u)),

0 ≤ t ≤ τ1(u) ⇒ f(η1(u, t)) ≤ f(u)− σt.

For h ∈ N, h ≥ 2, define recursively (as in the proof of [9, Theorem (2.11)], for
(u, t) ∈ U × [0,∞[:

ηh(u, t) =

{
ηh−1(u, t) if 0 ≤ t ≤ τh−1(u),

η1(ηh−1(u, τh−1(u)), t− τh−1(u)) if t ≥ τh−1(u),

τh(u) = τh−1(u) + τ1(ηh−1(u, τh−1(u))).

Clearly, each ηh is continuous and, for every u, (τh(u)) is an increasing sequence
of positive real numbers. For each u ∈ U and each h ∈ N, we have that

(2) 0 ≤ t ≤ τh(u) ⇒ f(ηh(u, t)) ≤ f(u)− σt,

and

(3) d(ηh+1(u, τh+1(u)), ηh(u, τh(u))) ≤ τh+1(u)− τh(u) = τ1(ηh(u, τh(u))).

We infer from (2) that τh(u) ≤ (f(u) − a)/σ for each h ∈ N, hence there exists
t(u) := limh τh(u) ∈ ]0, (f(u)− a)σ[. We then obtain from (3) that (ηh(u, τh(u)))
is a Cauchy sequence in f−1(]a, c]). Hence, letting u := limh ηh(u, τh(u)), we see
that f(u) = a – for, otherwise, we have a < f(u) < c while τ1(u) = 0, which is
not true.
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For (u, t) ∈ f
c × [0, 1], set:

η(u, t) :=

{
lim

h→∞
ηh(u, tt(u)) if f(u) > a,

u if f(u) ≤ a.

Let u ∈ U . If t ∈ [0, 1[, let k ∈ N be such that τk(u) ≥ tt(u), then ηh(u, tt(u)) =
ηk(u, tt(u)) for h ≥ k. On the other hand,

lim
h→∞

ηh(u, t(u))= lim
h→∞

ηh(u, τh(u)) = u,

so that η is well-defined. Furthermore, we clearly have f(η(u, t)) ≤ f(u) for
every (u, t) ∈ f

c × [0, 1], while η( · , 1) maps f
c

in f
a
, so that it remains to show

that η is continuous. It is clear that η is continuous at (u, t) if either f(u) < a,
or f(u) > a and t < 1. Assume that f(u) > a and t = 1. Observe that for v ∈ U

and h, k ∈ N, k ≥ h, we have

(4) f(ηk(v, τk(v)))− f(ηh(v, τh(v))) ≤ −σ(τk(v)− τh(v)).

This shows, first, that v 7→ t(v) is continuous at u: indeed, let ε > 0, and let
γ > 0, γ ≤ ε, be such that f(w) ≤ a + εσ for every w ∈ B(u; γ). Let then h ∈ N
and δ > 0 be such that

ηh(v, τh(v)) ∈ B(u; γ) and |τh(v)− τh(u)| ≤ ε for every v ∈ B(u; δ) ∩ U.

Let v ∈ B(u; δ) ∩ U . It follows from (4) that τk(v)− τh(v) ≤ ε for every k ≥ h,
whence t(v)− τh(v) ≤ ε, so that

|t(v)− t(u)| ≤ t(v)− τh(v) + |τh(v)− τh(u)|+ t(u)− τh(u) ≤ 3ε.

We may thus have chosen (as we now do) δ so small that, also, 1−δ ≥ τh(v)/t(v)
for every v ∈ B(u; δ)∩U . Then, if v ∈ B(u; δ)∩U , if t ∈ [1− δ, 1], and if k ≥ h,
we have tt(v) ≥ τh(v) and ηk(v, tt(v)) = ηk(v,min{τk(v), tt(v)}), so that

d(ηk(v, tt(v)), u) ≤ d(ηk(v, tt(v)), ηh(v, τh(v))) + d(ηh(v, τh(v)), u)

≤ τk(v)− τh(v) + γ ≤ 2ε,

and consequently, d(η(v, t), u) ≤ 2ε, which shows that η is continuous at (u, 1).
Arguing in a similar (but simpler) way, one shows that η is also continuous at
(u, t) whenever f(u) = a. �

The preceding result was partly motivated by [4, Lemma 4.1], where X = Rn,
f is Lipschitz continuous and of class C2 on a neighbourhood of f−1(]a, c]),
and the proof standardly uses the flow generated by the negative (normalized)
gradient of f – a very special case of Theorem 2, but the point here is that f is
implicitly allowed to possess critical points at the level a. Of course, whenever X

is, say, a Banach space and f is of class C1 on X, the fact that Ka be nonempty
is not compatible with assumption (1). Since, as usual, we want to cover this
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important case as well as others, we shall show how it can be treated, and to
what extent, through an appropriate change of the metric d, according to the
following result.

Theorem 3. Let (X, d) be a metric space, A be a nonempty subset of X, and
β : [0,∞[ → [0,∞[ be a continuous function with β(s) > 0 for s > 0. Assume
that either β(0) > 0, or A is compact and its connected components are single
points. Then, there exists a metric d̃ on X which is topologically equivalent to d

and such that

(a) For any subset B of X, we have

(5) d̃(B,A) ≥
∫ d(B,A)

0

β(s) ds.

Consequently, if
∫∞
0

β(s)ds = ∞, then (X, d̃) is complete if (X, d) is
complete.

(b) Letting βA := {u ∈ X : β(d(u, A)) = 0}, if f : X → R is a continuous
function, and if we denote by |d̃f | the weak slope of f with respect to
the metric d̃, we have

|d̃f |(u) =
|df |(u)

β(d(u, A))
for every u ∈ X \ βA.

Proof. The result is proved in [6, Theorem 4.1] in the case when β has
positive values (that is, βA = ∅). We thus assume that β(0) = 0 (so that
βA = A), A is compact, and the connected components of A are single points.

The metric d̃ is defined as follows: let Y be a Banach space such that X

is isometrically embedded in Y , and, for u, v ∈ Y , denote by Γu,v the set of
C1-paths γ : [0, 1] → Y with γ(0) = u, γ(1) = v; we set

d̃(u, v) := inf
γ∈Γu,v

∫ 1

0

β(d(γ(s), A))‖γ′(s)‖ ds,

where d also stands for the distance associated to the norm. The arguments in
the proof of [6, Theorem 4.1] readily yield all the assertions made, but for the
following points, for which some refinements are needed: d̃(u, v) > 0 whenever
u 6= v (so that d̃ indeed be a metric on X); d̃-convergence implies d-convergence;
and (X, d̃) is complete if

∫∞
0

β(s) ds = ∞ and if (X, d) is complete.
The first two points are true if we show that given u ∈ Y and r > 0, there

exists δ > 0 such that
‖u− v‖ ≥ r ⇒ d̃(u, v) ≥ δ.

This is clear if u /∈ A, in fact simpler to prove than the case u ∈ A, that we shall
treat. We may assume that F := X \B(u; r) 6= ∅. From the assumptions on A,
we find two disjoint compact sets F1 and F2 such that u ∈ F1, A ∩ F ⊂ F2, and
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A = F1 ∪ F2. Indeed, if A ∩ F = ∅, we take F2 = ∅; otherwise, use the chain
argument, see, e.g. [17, 5.T]. Of course, F1 ⊂ B(u; r). Set

α := min
{

1
2
d(F1, F ),

1
4
d(F1, F2)

}
> 0 and ε := min{β(s) : s ∈ [α, 2α]}.

Let v ∈ F and γ ∈ Γu,v. By the choice of α, we find 0 < tγ < t′γ ≤ 1 such that

d(γ(tγ), A) = α, d(γ(t′γ), A) = 2α, and d(γ(s), A) ∈ [α, 2α]

for all s ∈ [tγ , t′γ ] (consider the cases d(γ([0, 1]), F2) ≥ 2α, d(γ([0, 1]), F2) < 2α

whenever F2 6= ∅). We thus have∫ 1

0

β(d(γ(s), A))‖γ′(s)‖ ds ≥
∫ t′γ

tγ

β(d(γ(s), A))‖γ′(s)‖ ds

≥ ε‖γ(t′γ)− γ(tγ)‖ ≥ εα,

so that d̃(u, v) ≥ εα =: δ.
We now show that for any 0 < r < R there exists δ > 0 such that

(6) r ≤ d(ui, A) ≤ R, i = 1, 2 ⇒ d̃(u1, u2) ≥ δ min{r/2, R, ‖u1 − u2‖}.

Indeed, set δ := min{β(s) : s ∈ [r/2, 2R]}, and for γ ∈ Γu1,u2 , let

tγ := sup{t ∈ [0, 1] : r/2 ≤ d(γ(s), A) ≤ 2R for all s ∈ [0, t]} ∈ ]0, 1] .

Then,∫ tγ

0

β(d(γ(s), A))‖γ′(s)‖ ds ≥ δ‖u1 − γ(tγ)‖ ≥ δ min{r/2, R, ‖u1 − u2‖},

considering the cases tγ < 1 (so that either d(γ(tγ), A) = r/2, or d(γ(tγ), A) =
2R), and tγ = 1. Since γ is arbitrary in Γu1,u2 , (6) follows.

Assume that
∫∞
0

β(s)ds = ∞, and let (uh) be a Cauchy sequence in (X, d̃).
According to (5), the sequence (d(uh, A)) is bounded, and in particular, we have
that ρ := lim infh→∞ d(uh, A) is finite. If ρ = 0, there exist a subsequence
(vh) of (uh) and a point u ∈ A such that (vh) d-converges, hence d̃-converges,
to u, so that (uh) d̃-converges to u. If ρ > 0, we find 0 < r < R such that
r ≤ d(uh, A) ≤ R for h large enough, and it follows from (6) that (uh) is a
Cauchy sequence in (X, d). Thus, (X, d̃) is complete if (X, d) is complete. �

The verification of assumption (1) in Theorem 2 depends, in practice, on the
verification of a Palais–Smale type condition, a version of which we now recall.

Definition 2. Let X be a metric space, f : X → R be a continuous function,
and U a nonempty closed subset of X. We say that a sequence (uh) ⊂ U is a
Palais–Smale sequence for f in U (a (PS) sequence for f in U , for short), if the
sequence (|df |(uh)) converges to 0 and the sequence (f(uh)) is bounded.
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We say that f satisfies the Palais-Smale condition in U (condition (PS) in U ,
for short), if every (PS) sequence for f in U contains a subsequence converging
in X. Note that since |df | is lower semicontinuous and U is closed, any cluster
point of a (PS) sequence for f in U is a critical point of f in U .

The connection between the (PS) condition and Theorem 3 is established
through the following

Lemma. Let X be a metric space, f : X → R be a continuous function, U

be a closed subset of X with nonempty interior, and let KU denote the (possibly
empty) set of critical points of f in U . Assume that f is bounded on U and
satisfies condition (PS) in U . Then, KU is compact and there exists a continuous
nondecreasing function β : [0,∞[ → [0,∞[ such that β(s) > 0 if s > 0, and

|df |(u) > β(d(u, KU )) for every u ∈ U \KU .

Proof. The fact that KU is compact readily follows from the (PS) condition
and the boundedness of f on U . For s ≥ 0, set

β̃(s) :=
1
2

inf{|df |(u) : u ∈ U, and d(u, KU ) ≥ s whenever KU 6= ∅},

then β̃ is real-valued and nondecreasing. Also, β̃(s) > 0 if s > 0 – for, other-
wise, we could find a (PS) sequence for f in U at positive distance of KU , in
contradiction with the fact that f satisfies the (PS) condition in U . Thus, β̃ is
a positive constant if KU = ∅, in which case we are done. So, we now assume
that KU 6= ∅, in which case β̃(s) = 0 if and only if s = 0. Also, if u /∈ KU then
|df |(u) > β̃(d(u, KU )). It is easily seen that the lower semicontinuous regular-
ization β̂ of β̃ has the same mentioned properties. If we now set

β(s) := inf{|s− τ |+ β̂(τ) : τ ≥ 0},

then, β is continuous, and also possesses the required properties. �

A notion of modulus of regularity of a function f on an open subset G ⊂ X

with respect to a disjoint closed subset C ⊂ X is given in [14], which is a function
with similar properties as β in the Lemma, see [14, Definition 3], and the remark
that follows it, concerning an early contribution of Morse [20] in this direction.

We finally state our version of the Second Deformation Lemma.

Theorem 4. Let X be a metric space, f : X → R be a continuous function,
and a ∈ R, b ∈ R ∪ {∞} with a < b. Assume that for every c ∈ [a, b[, f−1([a, c])
is complete and f satisfies condition (PS) in f−1([a, c]), that f has no critical
point u with a < f(u) < b, and that either Ka = ∅ or the connected components
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of Ka are single points. Then, there exists a deformation η : f b × [0, 1] → f b

such that

(a) f(η(u, t)) ≤ f(u),
(b) u ∈ Ka ⇒ η(u, t) = u,
(c) η(f b, 1) ⊂ fa ∪Ka.

In particular, fa ∪Ka is a weak deformation retract of f b.

Proof. We may of course assume that f−1(]a, b[) 6= ∅, and, further, that
Ka 6= ∅ (the case Ka = ∅ is just simpler – not requiring Theorem 3).

Let (ch) be an increasing sequence of real numbers with c1 > a and limh ch =
b, and let c0 := a. Thanks to the (PS) condition, to the fact that f has no
critical point in f−1(]a, b[), and to the Lemma, we find a sequence of positive real
numbers (σh)h≥2 and a continuous nondecreasing function β : [0,∞[ → [0,∞[
with β(s) > 0 for s > 0, such that

|df |(u) > σh for every u ∈ f−1([ch−1, ch+1]), h ≥ 2,(7)

|df |(u) > β(d(u, Ka)) for every u ∈ f−1([a, c2]) \Ka.(8)

Recall also that Ka is compact. We consider X as endowed with the metric
d̃ associated to β and A := Ka = βA, according to Theorem 3: then, f is
continuous on (X, d̃), f−1([a, c2]) is complete in (X, d̃), and

|d̃f |(u) =
|df |(u)

β(d(u, Ka))
> 1 for every u ∈ f−1([a, c2]) \Ka,(9)

according to (8), where |d̃f | denotes the weak slope with respect to d̃. In view
of (7), (9), and applying Theorem 2 in (X, d) for h ≥ 2 and in (X, d̃) for h = 1,
we find deformations η′h : f

ch+1 × [0, 1] → f
ch+1 such that

f(η′h(u, t)) ≤ f(u), f(η′h(u, 1)) ≤ ch−1,

f(u) ≤ ch−1 ⇒ η′h(u, t) = u.

Observe that η′1 is continuous with respect to the metric d as well as to the
metric d̃, and from now on till the end of the proof, we stay in (X, d).

We now construct, as in the proof of the Noncritical Interval Theorem [9,
Theorem (2.15)], a strong deformation retraction η′ of f b in f

a
. Let ϑ : R → [0, 1]

be defined by ϑ(s) = 0 for s ≤ 0, ϑ(s) = s for s ∈ [0, 1], and ϑ(s) = 1 for s ≥ 1.
For each h ∈ N, define a deformation η′′h : X × [0, 1] → X by

η′′h(u, t) := η′h

(
u, ϑ

(
ch+1 − f(u)
ch+1 − ch

)
t

)
,
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so that

f(η′′h(u, t)) ≤ f(u),

f(u) ≤ ch ⇒ f(η′′h(u, 1)) ≤ ch−1, f(u) ≤ ch−1 ⇒ η′′h(u, t) = u.

Define ηh : X × [0, 1] → X by

η1(u, t) := η′′1 (u, t),

ηh(u, t) := ηh−1(η′′h(u, t), t), h ≥ 2.

Arguing by induction, it is easy to see that, for each h,

ηh(u, 0) = u, f(ηh(u, t)) ≤ f(u),

f(u) ≤ ch ⇒ f(ηh(u, 1)) ≤ a,

f(u) ≤ ch−1 ⇒ ηh(u, t) = ηh−1(u, t), h ≥ 2,

f(u) ≤ a ⇒ ηh(u, t) = u,

so that the map η′ : f b × [0, 1] → f b defined by η′(u, t) := limh→∞ ηh(u, t) is a
strong deformation retraction of f b in f

a
, and satisfies (a).

Finally, let η′′ : X × [0, 1] → X be given by the Corollary, and providing a
weak deformation retraction of f

a
in fa∪Ka. Then, the map η : f b× [0, 1] → f b

defined by η(u, t) := η′′(η′(u, t), t)) has the required properties. �

Remarks 2. (i) Theorem 4 extends [5, Theorem 2.10], where it is assumed
that Ka is a finite set. The more general assumption on Ka made here is the
same as in [3, Theorem I.3.2] (where X is a C2 Finsler manifold and f is of class
C1), and it allows, for example, Ka to be an infinite sequence together with its
limit. In view of Theorem 3, this assumption on Ka seems to be the weakest
possible, in general. On the other hand, Ka might be any set in particular
settings, meaning that Theorem 2 can be used directly, without changing the
metric: recall the comments after Theorem 2.

(ii) In [5, Theorem 2.10], it was written by mistake that the deformation
η was a deformation of the whole space X, which is (clearly) not the case, in
general, if b ∈ R and Kb 6= ∅. Of course, this mistake does not affect the validity
of the other results in [5], which are just based on the fact that fa ∪ Ka is a
weak deformation retract of f b. On the contrary, if b ∈ R and Kb = ∅, then the
deformation η can be extended to X× [0, 1], and the conclusion (c) strengthened
to read

f(u) ≤ b ⇒ η(u, 1) ∈ fa ∪Ka.

This can be seen making further use of the Corollary at the level b, as in the
proof of the Noncritical Interval Theorem [1, Theorem 1.1.14], whence yielding
an extension of the latter result.
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(iii) As evoked at the beginning of this note, Theorem 4 allows to develop
Morse theory for continuous functionals through the notion of critical groups,
which are defined in [5] using relative singular homology (as is usual). Results
on computation of the critical groups for a class of continuous functionals as-
sociated with quasilinear elliptic problems are established in [8]. These results
essentially deal with a nondegenerate situation (in a suitable sense); under ap-
propriate assumptions, also a degenerate situation is treated in [18], through
a nonsmooth adaptation of the Generalized Morse Lemma of [12] in a neigh-
bourhood of an isolated critical point. In [18], the critical groups are defined via
Alexander-Spanier cohomology, since use is made, as a substitute for Theorem 4,
of [11, Theorem 2.7]. The latter result shows that, letting Ka be any set in The-
orem 4, the inclusion f

a ⊂ f b still induces an isomorphism H∗(f
a
) → H∗(f b)

for Alexander–Spanier cohomology. Indeed, thanks to the tautness property of
Alexander–Spanier cohomology, it suffices to use the nonsmooth version of the
First Deformation Lemma given in [9, Theorem (2.14)], in order to deal with the
(possibly) critical level a.

In a general metric space, the critical groups depend on the particular choice
of the (co)homology theory involved in the definition. I owe to Marco Degiovanni
the suggestion that it may be worth noticing that if the metric space X is an
ANR, then Theorem 4 shows that so are fa ∪Ka and f

a
. Indeed, we mentioned

in the proof that f
a

is a strong deformation retract of f b, hence an ANR; then,
the fact that also fa ∪ Ka is an ANR is already observed in Remark 1. In
this situation, all the “usual” cohomology theories agree, and so do the critical
groups.

(iv) The change-of-metric procedure (Theorem 3) can be used for various
purposes (leading to applications in existence results for partial differential equa-
tions), also in situations when the set A is not a set of critical points of a given
functional, see [6], [7] for some examples.
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